+

Please type a plus sign (+) inside this box —) /5 — z(ﬁ - 67() PTO/SB/16 (2-98)

Approved for use through 01/31/2001. OMB 0651-0037 +
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1985, no persons are required to respond to a collection of information unless it displays a

valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53 (c).

TITLE OF THE INVENTION (280 characters max)
A Method And Apparatus For Resource lManagement

Direct all correspondence to: CORRESPONDEN(,:E ADDRESS —;mwmmm—__ .
r
Customer Number

23501 —> Bar angeﬁfre

d oR Type Customer Number here
: Firm or PATENT TRADEHARK UFF O
individual Name | James B. Bechtel, Esq.
Address Naval Surface Warfare Center (Code CD222)
Address 17320 Dahlgren Road
City Dahlgren State VA 71 |22448-5100
Country United States |Telephone |540-653-8061 | Fax {540-653-7816
ENCLOSED APPLICATION PARTS (check all that apply)
[Q Specification Mumber of Pages 279 D Small Entity Staternent
[I Drawing(s) Number of Sheets D Other (specify)
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (check one)
. " FILING FEE
A check or money order is enclosed to cover the filing fees AMOUNT ($)

. The Commissioner is hereby authorized to charge filing i
X | fees or credit any overpayment to Deposit Account Number.[50-0967] $]_50‘,OO

The invention was made by an agency of the United States Government or under a contract with an agency of the
United States Government.

D No.

@ Yes, the name of the U.S. Government agency and the Government contract number are:

DEPT. QF THE NAVY - NAVATL SURFACE WARFARE

Respectfully submitt

SIGNATURE ekt D recisTAaTionNo. [
TYPED or PRINTED NAME —=-2268 N (i appropriate) |

Ce5n. : NC8218
o _340-653-8061 l > |

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is reguired by 37 CFR 1.51. The information is used by the public 1o file (and by the PTO to
process) a provisional application. Confideritiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated
1o take 8 hours to complete, including gathering, preparing, and submitting the complete provisioral application to the PTO.
Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form
and/or suggestions for reducing this burden, should be sent to the Chiet Information Officer, U.S. Patent and Trademark
Otiice, U.S” Department ot Commerce, Washington, D.C., 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C., 20231.

INVENTOR(S) o

— Residence E, e

c% N Given Name (first and middle [if any]) Family Name or Surname (City and erther State or Foreign Country) [=
g O =0
ao=="1 Michael V. Masters Fredericksburg, VA w2 =0
== Paul V, '/ Werme Dahlgren, VA -2 =8
=2=="] Lomie R. Welch Athens, OH S=s

e—— > —

=3 . —

= D Additional inventors are being hamed on the ___ separately numbered sheets attached hereto " ==

Ex.1009 / Page 1 of 280
TESLA, INC.

DRAFT 18 May 2000

Description of Resource Management, NSWCDD patent case number TBD
Michael W. Masters, NSWCDD, Code B35

Resource Management consists of a set of cooperating computer programs that provides an ability to
dynamically allocate computing tasks to a collection of networked computing resources (computer
processors interconnected on a network) based on the following measures: an application developer/user
description of application computer program performance requirements; measured performance of each
application programs; measured workload (CPU processing load, memory accesses, disk accesses) of each
computer in the network; and measured inter-computer message communication traffic on the network.

The capabilities provided by Resource Management are as follows:

s Dynamically allocate computer programs to computers within a network based on a user statement
of computer program performance goals

* Dynamically change allocation according to ch;angmg system loading conditions
Change allocations based on manual operator direction

¢ Dynamically adjust to overall computer workload by balancing processing loads among a number
of scalable, replicated load sharing programs

¢ Dynamically compensate for computer failures and network link failures by restarting copies of
lost computer programs on surviving computers within the network

Resource management consists of the following computer program components:

e A Performance Specification Language whereby application developers/users define the
performance goals they want Resource Management to insure for each application. Application
computer program performance requirements, or performance goals, consist of requested CPU
execution times for each application. A performance goal may also be specified for the end-to-end
processing time of a combination of several computer programs which are designed to process
data in a sequence (referred to as a path). In a path, each computer program in sequence performs
a defined set of processing steps and then passes its data to the next computer program in the path.

e A Specification Language Processor Program that converts application developers/users
requirements into instruction for action by the remainder of Resource Management

¢ An Operating System Instrumentation Subsystem that collects measured performance data from
each computer in the network. This subsystem consists of two types of components. The first is
an Operating System Instrumentation Data Collector Program, a copy of which runs on each
program in the network and collects computer performance data from the operating system on
which it resides. The second is a centralized Operating Systern Measurement Repository Program
that accumulates operating system instrumentation data from all the collector programs. The
collector programs periodically report the data they have collected to the central operating system
measurement repository program.

e A System Health Monitor Subsystem, consisting of a heartbeat mechanism (periodic messages to
all computers in the network). The System Health Monitor Subsystem detects the failure of any
computer in the network or the loss of a network link within the overall network and reports this
information to the Operating System Instrumentation Subsystem.

¢ An Application Instrumentation Subsystem that collects measured performance data from each
application running under the scope and control of Resource Management. This subsystem
consists of two types of components. The first is an Application Program Instrumentation Data
Collector Program, a copy of which runs on each program in the network and collects computer
performance data from the application computer programs running on the computer on which the
collector program resides. The second is a central Application Program Measurement Repository
Program that accumulates application instrumentation data from all the collector programs. The

1of3

Flme/

Ex.1009 / Page 2 of 280
TESLA, INC.

y DRAFT 18 May 2000

collector programs periodically report the data they have collected to the central application
measurement repository program.

» A Resource Allocation Program that utilizes measurement information from both the Operating
System Measurement Repository Program and the Application Program Instrumentation Data
Collector Program to make decisions concerning the allocation or assignment of computer
programs to computers within the network. It compares the observed performance of each
application program with the application developer/user requested performance level. For each
application, if the application’s performance is within bounds specified by the application
developer/user, the resource allocation program makes no change of allocation to the system
(computers, network and applications). If one or more applications are found to be performing in
a less than satisfactory manner compared to the performance goals specified by the application
developer/user, or if based on trend analysis they are projected to begin performing in a less than
satisfactory manner, or if a computer failure or network link failure has been detected in the
network, then the Resource Allocation Program examines data on the measured Joading and
performance of each computer in the network from the operating system instrumentation data
collector program, applies an optimization algorithm, and selects a configuration change, or
application computer program reassignment re-assignment to a different computer designed to
restore the application’s performance to the level specified by the application developer/user. The
Resource Allocation Program sends the configuration change request to a Program Control
Subsystem and its agents for implementation, (see description of program control component
below). The Resource Allocation Program selects one of the following actions:

o If the computer program that is not meeting performance goals has been designed as a
scalable, replicated load-sharing computer program, then the Resource Allocation
Program will select a computer from the network which has sufficient reserve capacity to
provide adequate processing services and will direct the Program Control Subsystem to
load and initialize a second (and eventually a third, and a fourth, etc.) copy of the
application program that is not meeting its performance goals.

o If the program that is not meeting its performance goals is not a scalable, replicated load-
sharing program, then the Resource Allocation Program will direct that the Program
Control Subsystem move it to a different computer. This move operation consists of
starting a new copy of the application program that is not meeting its performance goal
on a computer with the reserve capacity to run the program satisfactorily and then
shutting down the copy of the application program that is not meeting its performance
goals.

o Ifa computer or network link has failed, then the Resource Allocation Program selects
one or more computers in the network with the capacity to run the applications on the
computer or computers that have failed or that have been isolated from the rest of the
network by the failure of the network link. It will direct the Program Control Subsystem
to load and initialize copies of all application programs that have been rendered
inoperable by the computer failures or network link failure.

¢ A Program Control Subsystem that receives resource allocation configuration changes from the
Resource Allocation Program and carries them out. The Program Control Subsystem consists of a
Program Control Program and a set of Program Control Agents, one of which resides on each
computer in the network. The Program Control Program has two modes of operation: a manual,
Program Control Program Operator activated mode and an automatic mode commanded by the
Resource Allocation Program. When the Program Control Program receives a configuration
change directive, either from the Program Control Program Operator or the Resource Allocation
Program, it sends a command to the Program Control Agent on the computer where the
configuration change operation is to take place. The Program Control Agent on that computer
performs the appropriate action by means of interaction with the operating system of the computer
on which it resides and by means of interaction with the file system of the computer network.

20f3

Ex.1009 / Page 3 of 280
TESLA, INC.

DRAFT 18 May 2000

o If the requested configuration change results in starting a new program on the designated
computer, then the Program Control Agent sends commands to the file system causing
the new program to be loaded across the network and initiated on the designated
computer.

o If the requested configuration change results in shutting down a program on the
designated computer, then the Program Control Agent sends commands to the operating
system causing the program to be stopped.

Based on long-term oversight and technical direction of the Resource Management capability from its
‘inception as a part of the joint DARPA and Navy funded HiPer-D program and the DARPA follow-on
_“Quorum program, it is my assessment that three individuals have contributed substantially to invention of
“the concept and architecture of Resource Management. The initial concept and design were developed by

the author, Michael W. Masters, and by Dr. Lonnie Welch while he was on sabbatical at NSWCDD as a
-visiting professor. Subsequently, Mr. Paul Werme added substantial technical detail to the architecture.
Two individuals have been predominant in the detailed design of the implementation of the components of

Resource Management described above and in the demonstration and verification that the Resource

Management concept is realizable. These are Dr. Lonnie Welch and Mr. Paul Werme. In addition, Mr.

Larry Fontenot may have contributed substantially to the invention of the Performance Specification

Language and the Specification Language Processor Program.

This assessment, along with the technical accuracy and completeness of the description provided above, is
‘solely that of the author and should be considered preliminary subject to review and clarification by Dr.
Welch and Mr. Werme. To the best of the author’s knowledge, all work on Resource Management, from
its inception, has been performed either by government employees or by non-government employees
working under the direction of government employees through government contracts.

30f3

Ex.1009 / Page 4 of 280
TESLA, INC.

EXECUTIVE SUMMARY ..ottt 1

1.0 INTRODUCGTION ...ttt ettt 3
1.1 HiPer-D Phase 1 — DARPA Technology Evaluation................ccccocoiiiiiiin, 3
1.1.1 Phase | Integrated Demonstration One (I1) ..., 3
1.2 HiPer-D Phase 2 — DARPA/COTS Technology and Critical Issues Evaluatlon 4
1.2.1 HiPer-D Phase 2 Engineering Testbed One (T1) Demonstrationcccooeenrne. 6
1.2.2 HiPer-D Phase 2 Engineering Testbed T'wo (T2) Demonstration...........ccoccoveerennnnn. 7
1.2.3 HiPer-D Phase 2 Engineering Testbed Two A (T2A) Demonstration........................ 7
1.2.4 HiPer-D Phase 2 Engineering Testbed Three (T3) Demonstration...............c...c.oee. 8
1.3 Dm0 98 ODBJECLIVES ..ottt ettt ettt ettt e eb et een s 9
2.0 STAND-ALONE ENGINEERING TESTS ..ot 11
2.1 Evaluating the Performance of Multicast Communications..............cc.ocveecreveeeennennn. 11
2.2 Data Distribution EXperimentocoociuiiiiiiiioiiiiioieeeeeeeeee e 11
2.3 Windows NT INVestiZations.........cooooiiiiiiiiiiiios oottt e e 12
3.0 ADVANCED COMPUTING TESTBED DEMO 98 INTEGRATED
DEMONSTRATION DESCRIPTION........ooiiiiiiiieieie e 13
3.1 AAW Subsystem Functional Description..............c..ccooorviorioriiiioiiieeeeeeeeeeee 17
3.1.1 Advanced Track Correlation and Filtering (ATCF)ccoooovoiviiiioee 19
3111 ATCEF OVEIVIEWviiiiiiiiiieieeeeee ettt 19
3.1.1.1.1 Standard Message FOrmat..............cccooeiioiioiiiois e 20
31112 MEFAR BIOKET.....ooiiiiiii et 20
3.1.1.1.3 IP Multicast COMMUNICALIONSocooiirerieiiereeiiieiee e et 21
3.1.1.1.4 ATCF Fault TOIEIANCEcooiiieiiiieiieieiee e 24
3.1.1.1.5 Track Number Mappiig........coccooiiiiiiiiiiiiie ettt 25
3.1.2 Air Engagement Control (AEC)..........ccoooiiviiiii i 25
3.1.2.1 AEC CompOonent SUMIDATY.........ocouiioiiiiaiaiie o e vttt e ettt sieseneeeeiee e 26
3.1.2.2 AEC DISPLAY. ..ottt 27
3.1.2.3 Display State Data SEIVETcc.ccooiiviiiiiieiiieeee e 28
3.1.2.4 Manual Engage Control...........ccooviiiiiiiiiiiie e 28
3.1.2.5 PIan SEIVET ..o.oovoiiiiiii oo 28
3.1.2.6 SeMI-AULO ...oviiiiiiie e 29
i 3127 AULO-SM o 29
3.1.2.8 AULO-SPECIAL.....c..viiiieiieiieiic et 29
3.1.2.9 Engagement SEIVET........oocoiiiiiiiiiiiee ettt ee et 30
3.1.3 Track Data Services COMPONENLScooooiiiiiiiiit oo 34
3.1.3.1 Radar Track Data Server (RTDS)ocoooiimriiiiiiieiiieeoeeeeeeeeeee e 35
3.1.3.2 CORBA Track Number Server (CTNS).......cocoviviiiiiiiineiceeeeeee 35
313217 CTINS OVEIVIEW ..ottt 36
3.1.3.2.2 Overall ATChItECUI®oiviiiiiiiiecc e 37
3.1.3.2.3 CTNS/TNSS Client CommUDICAHONSvv.vvieveriiiieieeecieeceeeeeieceeee e 38
3.1.3.2.4 CTNS Group CommUMCATION.oruiriiiiiiriiiieiee et 39
3.1.3.2.5 Startup ProCESSINE.....c..viirieiiricieiieeitie ittt eee ettt st e et e sb st e e st es et s e 40
3.1.3.2.6 POITOIMIANCE.ouiiiii ittt ettt e e 41
3.1.3.3 Sensor Rate Server (SRS)coooiiiiio et 41
3.2 Land Attack and C*I Subsystem Functional Descriptioncoccoo.orvverrrernnnnes. 41
3.2.1 Advanced Tomahawk Weapons Control System (ATWCS)........ocooooviiiiiiiiinn 42
i

Ex.1009 / Page 5 of 280
TESLA, INC.

3.2.2 Joint Maritime Command Information System (JMCIS) ... 47

3.2.2.1 DIS to OTHGOLD CONVETLOTc.ooiiiiiiiiiiiii e 48
3.2.3 Advanced Battle Management and Execution (ABMX) System..................c.cocoo.. 49
3.2.4 Data Brokers ~ Legacy System INterface..........c.c.ooovvveviioieoriiiiie e 49
3.2.4.1 IMCIS/AACT/AAW INEEIfaCe....c.ooviivieieicii e 50
3.2.4.2 Real-Time Data AAW Track Path............c.ccooiiniiiiii 50
3.2.43 OTH Track Data Path ..o 51
3.2.4.4 Aegis Air Correlator Tracker (AACT) ... 51
3.3 Simulation and Support COmPONENES.........ccooiiiiiiiiiiiiiiicii i 52
3.3.1 Environmental Simulations (EnvSIMS)ccooviiiviiiniiiiiiiiii o 54
3.3.1.1 Entity SImulatiOnsocoooieiiiiioiiiiii e 55
3.3.1.2 Sensors SIMUIALIONSooiiiiii ittt eeit ettt 58
3.3.1.3 DASPIAYS...ccuiiitieiie e 59
3.3.2 Simulation Control (SIMCON) . ..ottt ettt s et 63
3.3.2.1 Modifications DesCription.ccoivriiiiioriicee it 63
3.3.2.2 RESIICHIONSeoviiiiitiiieeiee ettt ettt ettt ettt et et e e et 63
3.3.3 Kinematics Daemon (KINED)oooiiiiiii e, 64
3.3.4 Weapons Control System Simulator (WCS Sim)...........o.cooooeiiiiioiieeee 64
3.3.5 Identification Upgrade Simulator (IDU Sim)cccoovoovioiioioiiiiie e 64
3.3.6 NSFS Simulator (NSFSSIM)ooviiiiiii et 64
3.3.7 Digital Call For Fire Support COMpONents.............c..coooveovieioieeieiieeceeeeeeeeee 65
3.3.7.1 Remote Digital Data Link (RDDL)occoooiiiiiiiiiiieee e 65
3.3.7.2 TACFIRE PrOCESSOIiiiuiiiiiiiieice ettt ettt ettt en e 65
3.3.7.3 G BIOKET...c.tieitieie ettt ettt ettt ettt b e ene e st en e e eaneeas 65
3.3.8 SyStem CONtIOL......iiiiiiiiii ettt 66
L 3.3.9 Clock SYNCHIONIZAtION.coviieiiiiii ettt 66
f? 3.3.10 Near Real-time Data Collection/Display (JEWEL)..........cocccocooiiiviiiinieiieinn,s 67
3.3.11 Group COMMUNICALIONSocviireiieeeiiieiieiee et ee et 69
3.4 Resource Management.coooiiiiiiiiei ittt 69
3.4.1 System MODIEOTINZ.eceiiiiiiitiairtitiiie ettt ettt et e e e s et ene e 73
3.4.1.1 UNIX Operating System and Network Monitoring.occcooooeeiviveoeienno 73
3.4.1.1.1 MethodOOZY. .oi ettt 74
3.4.1.2 Windows NT Operating System and Network Monitoring.ccoooee.. 76
3.4.1.2.1 Windows NT Statistics Retrieval......................coooioiii e 76
3.4.1.2.2 Network Interface. ..o, 77
3.4.1.3 Monitoring Status and History Servers...............c.cocooeeieiion. T e, 77
3.4.2 Dynamic Resource Management.c.ccoovivieviioioieiiee e 78
3.42.1 System Model ... 79
3.4.2.2 Adaptive QoS and Resource Management.oooeooieiiiieiiie i 80
3.4.2.2.1 Path QOS MOMILOL.oeeii ettt 81
3.4.2.2.2 QO0S DHAGNOSIS. ...o.vovevieeieieie ettt 82
3.4.2.2.3 Resource QOS MOBILOL.ooiiiiiie e e 82
3.4.2.2.4 Resource AOCATION.oveiiiiiieiiiet ettt e 83
34 2.3 RESUIS. ..ottt ettt ettt et ettt e ettt e e 83
3.4.3 Resource Control / Program Control.coooooiooiiieeece e 83
3.4.3.1 Graphical User INtEIFACE.ccoviiiieiieiieice e 83
1
Ex.1009 / Page 6 of 280

TESLA, INC.

3.4.3.2 Subsystem MANAGETS.ccoccvriiiiiii it 88

3.4.3.3 HOSE AZEIS. .ooviiioeieriieie ettt ettt et b 88
3.4.3.4 SUMINATY.eviiteitetiie ittt s s bbb 89
3.4.4 QoS and System Specifications............coooiiiiiiiiiiiiii i 90
3.4.5 VISUALIZATION. ©..iiiiiiiiorsiiie ottt ettt 90
3.4.5.1 HOSE DESPIAY. ...ttt 90
3.4.5.1.1 Host Display Design.cccooiiiiiiiiiiiiiiiiiiiciccn e 92
3.4.5. 1.2 Data FOIMIALS. ...ooiiiiiiiiiiiie e ettt e et e et e e st e s et e e s en et ae e 92
3.4.5.1.2.1 Host Configuration File.............ccooiiiiiiiiiiiii i 92
3.4.5.1.2.2 Interface t0 Data SEIVET.ooooiiiiiiiiei ettt 93
3.4.5.1.2.2.1 Host Configuration MESSAZE.ceoviiiiiriiiieiiiiet e 93
3.4.5.1.2.2.2 HOSt Process MESSAZE.uuuruiiamiiiriiiiiiiiiitiiiiiaiiiieiiiice i einiesie s er e e 94
3.4.5.1.3 Graph Display Interface. ... 95
3.4.5. 1.4 User INerface.ooooi it 95
3452 Path DISPLAY c..ovirie i e 96
3.4.5.2.1 Path Display Desi@h.coiiiiiiiiiiioieee ettt 96
3.4.52.2Data DISPIAYoiviiiiiiii e 96
345221 Data FIOWoooiiiiiiiicececece et 97
3.4.5.2.2.2 Application and Path Performance Data....................ccooooiriiiiiviiice 98
3.4.523 USer INTEITACE. ...ooviviiiiiieiiei ettt 99
3.4.5.3 Resource Management Decision Review Display.............coccoooiiiiiiici 100
3453 T DIBSIIL oviviiieiiiecie ettt et 100
3.4.53.2 Data FOIMAS.ooiiiiii it 101
3.4.5.3.2.1 BVENE MESSAZE. ...c.vviiiiiiiiiee ettt ettt 101
3.4.5.3.2.2 SCaleup MESSAZE. ...c.vviviiviirieiiiiee et et e e aae e s e es e e st e et 103
3.4.53.3 User INteITace.oooiiii i e 104
3.5 Demo 98 Hardware COnfiguIation.............cooiiiiiiiet it 104
3.6 Demo 98 SCENATIOoviiiiiiee et 106
3.7 Integrated System Demonstrationcc..ooiveiiiiesiiereris oo 107
3.7.1 Environmental SIMUIATIONccoooviiiiiiiiiiiieiicceceee e 107
3.7.2 ATWCS Launch Control Real Time Groupoocooiiieiiiiiiiiceeceeee 111
3.7.3 Fault Tolerant Engagement SEIrvVer., 113
3.7.3.1 Fault Injection Control............cccooiviiiiiii oo 115
3.7.3.2 Fault Recovery and Performance Impact................occooiiiiiiiiiiiie 116
3.7.3.3 Summary and FUIUIe............ocooiiiiiiiiiiiie e 120
3.7.4 Digital Call for Fire (CFF)ccocoiiioieieieeeeeeeee e 120
3.7.4.1 FO/FAC SUBSYSIEIMc.o ittt 121
3.7.4.2 CFF Initiation SEQUENCE..........c.oovviieeiieereeeieieeiseeeeee ettt 125
3.7.4.3 Visual DecOnfliCtIONc.cooieiiieiiiieiieee et 125
3.744 OTH Track InJection.............cccooviiiiiii oo, 125
3.7.4.5 CFF Engagement TranSmiSSIONccocoervirieiiiiiioreiiierieeeinieeseesaeeeensensesienaes 126
3.7.4.6 Engagement SEQUENCEcoutiiiiiriiite ittt e et e e 126
3.7.5 Demo 98 Resource Management SCENATIOcceovveriieiiiiiininieieenieoeineeiee e 130
3.7.5. T OVEIVIEW. ...oiviiviieieeiiecete ettt et ettt eb ettt e e bt ean et 130
3.7.5.2 Fault Tolerance of Resource Management Components...............ccocevereereeieneene 131
3.7.5.3 Control of Application Scalability.............ccocoeiieriiniinieceeee 134
i
Ex.1009 / Page 7 of 280

TESLA, INC.

3.7.5.4 Application Fault Detection and Recovery. ... 138

3.7.5.5 SUMMMATY. 1.0ttt ettt ettt et 139
4.0 LESSONS LEARNED ..ottt e 140
4.1 CORBA Plan Server Lessons Learned ... 140
4.1.1 Advantages Offered by the CORBA Technology............ccooviioniiiiiie 140
4.1.2 CORBA Learning CUIVE..........oooouiiiiieiiiiieiieiee ettt 140
4.1.3 Difficulties with Legacy SYSTeMS:cocvviiriiiiiiiie oo 141
4.1.4 CORBA Specifications versus Available ORB Implementations...........c..ccccceevenn. 141
4.1.5 CORBA N PerSPECLIVEcooviiiiit ittt r e 141
4.2 CORBA TNS Lessons Learned..........c.ooooiiiiiiiiiiiiiiiiii s 142
4.3 Engagement Server Lessons Learned. ..., 143
4.3.1 Synchronization and Determinismcocoiiiiiiiiiiii e 144
4.3.2 Cross-Group Data Difficultiesc.ocooviiiciiiiiii 146
4.3.3 Recovery Time and Group Coupling...........cccovieriniiiioiinriiiiee e 147
4.3.4 Precise Fault INJECtIONcooooiiiiiiiiiiii e 148
4.4 Remote Digital Call for Fire (CFF) Lessons Learned................ccoococoiiniinn, 148
4.5 T IMIODILOTIIIE Loeevviienire ettt e e et sttt e e e e e e e s et e e e st e e e s s e e e b e s ennbea s 149
4.5.2 Resource Management Decision MaKingcocooiiiiiiiiiiiic e, 150
4.5.3 Resource Control / Program Control.........cccoooiiiiiiiiiiiiiiicicci e 151
4.5.4 System and Software Specifications.........c..cocooiiiiiiiiiiio e 151
4.5.5 VISUAHZALION\iiiiitiiiiiiii ettt 151
45,6 SUINIIATY ..oetieiiiiit e ettt ee ettt e ettt e ettt e e e e e e ettt e e e aeeeeeee s e s ssnsseseeaaeaensnnsas 152
iv

Ex.1009 / Page 8 of 280
TESLA, INC.

APPENDIXES

A — Evaluating The Performance of Multicast Communications

B — HiPer-D Data Distribution Experiment

C — Windows NT Investigations

D - History of HiPer-D Track Correlator and Filtering Process

E — Group Communications

F — Adaptive QoS and Resource Management Using A Posteriori Workload Characterization
G — Resource Management QoS and System Specifications

%2

Ex.1009 / Page 9 of 280
TESLA, INC.

EXECUTIVE SUMMARY

The High Performance Distributed (HiPer-D) Computing Project was a six year joint
Defense Advanced Research Projects Agency (DARPA)/Aegis Program Office (NAVSEA PMS
400) program to investigate the application of advanced technologies and concepts to the Naval
Surface Ship Anti-Air Warfare (AAW) problem domain. The first phase of the program, funded
primarily by DARPA, was involved in prototype development and the evaluation and
demonstration of selected DARPA technologies using the system-level prototype developed.
The second phase, funded primarily by PMS 400, involved prototype expansion and
enhancement, incorporating COTS technology as well as DARPA technologies, and a focus of
risk reduction of Aegis identified critical technology and system issues. The HiPer-D
Computing Project was to have ended with publication of the Engineering Testbed Three (T3)
Report. However, due to the success of the project, the Aegis Program Office and DARPA have
elected to continue the effort. The next demonstration following T3 was named Demo 98.

The HiPer-D Computing Program Advanced Computing Testbed Demonstration 98
(Demo 98) was held in September 1998 in the System Control Laboratory (SCL) at NSWCDD.
Among the attendees were CDR Stevenson of PMS 400 and Dr. Gary Koob of DARPA. Once
again, the innovative expertise of the Aegis HiPer-D engineering team at NSWCDD and
JHU/APL, coupled with commercial tools and technology, resulted in both the building and
experimental validation of 21* century computing architectures that support mission-critical
weapon systems. All the following technical objectives were met.

(1) To expand the land attack capability by integrating the Advanced Tomahawk
Weapons Control System (ATWCS) Launch Control Real Time (LCRT) group into the HiPer-D
testbed.

(2) To enhance the NSFS call for fire from voice communications to a digital
capability.

(3) To complete the development and integration of a fully fault tolerant, scalable
AAW path through the system. This involved the development of a fault tolerant Engagement
Server and a fault tolerant Track Correlator and Filter (TCF).

(4) To enhance the resource management capability of the system. This included
increased functionality, reduced fault recovery times, and starting and re-starting of non-HiPer-D
components, such as ATWCS.

(5) To further the evolution toward Navy open systems. This included the expansion
of the ATM network and the addition of IP multicast capability over all three networks (ATM,
FDDI, Ethernet).

(6) To begin assessing the feasibility of using COTS-based distributed object
computing technologies for the Navy. This included the integration of CORBA in the Track
Number Server (TNS) and the Plan Server components.

Ex.1009 / Page 10 of 280
TESLA, INC.

(7) To evolve toward long term middleware. This included the integration of
commercial products, CORBA-based and NDDS, and the integration of SPREAD group
communication in the Advanced Track Correlator and Filter (ATCF).

(8) To expand the simulation capability of the testbed by adding a physics-based, DIS
compatible wrap-around simulation capability. The DIS capability would provide the basis for
integrating geographically dispersed laboratories into the HiPer-D testbed.

(9) To include navigation/gyro data distribution. The ATWCS LCRT component
requires a 16 Hz navigation data input which was delivered over the ATM network.

This report describes the components and conduct of Demo 98, how these objectives
were met, and the lessons learned from the effort.

Ex.1009 / Page 11 of 280
TESLA, INC.

1.0 INTRODUCTION

a. The High Performance Distributed (HiPer-D) Computing Project was a six year joint
Defense Advanced Research Projects Agency (DARPA)/Aegis Program Office (NAVSEA PMS
400) program to investigate the application of advanced technologies and concepts to the Naval
Surface Ship Anti-Air Warfare (AAW) problem domain. The first phase of the program, funded
primarily by DARPA, was involved in prototype development and the evaluation and
demonstration of selected DARPA technologies using the system-level prototype developed.
The second phase, funded primarily by PMS 400, involved prototype expansion and
enhancement, incorporating COTS technology as well as DARPA technologies, and a focus of
risk reduction of Aegis identified critical technology and system issues. The HiPer-D
Computing Project was to have ended with publication of the Engineering Testbed Three (T3)
Report. However, due to the success of the project, the Aegis Program Office and DARPA have
elected to continue the effort.

1.1 HiPer-D Phase 1 - DARPA Technology Evaluation

a. Phase | of the HiPer-D Program began in June of 1991 and ended in 1994, The
primary goals were to demonstrate and test DARPA-developed technologies, and assess the

viability of including distributed computing in future combat system planning. Major objectives
for HiPer-D Phase 1 were to:

(1) Evaluate DARPA technologies for use in combat systems.
(2) Educate Aegis engineers in distributed computing principles and methods.

(3) Provide feedback to Aegis and DARPA to focus further technology development
efforts.

1.1.1 Phasel Integrated Demonstration One (I1)

a. The DARPA technologies were thoroughly tested through various stand-alone
demonstrations and the HiPer-D Phase | Integrated Demonstration One (I11) that occurred in
March 1994. 11 successfully integrated prototype tactical functions and simulators that were
developed independently by the HiPer-D organizations [Naval Surface Warfare Center Dahlgren
Division (NSWCDD) and Johns Hopkins University Applied Physics Laboratory (JHU/APL)].
These were hosted on a layer of commercial off-the-shelf (COTS) software, using the full set of
DARPA distributed computing technologies: the multi-node Touchstone Sigma (Paragon)
computer, the Mach operating system kernel and, the Isis distributed communications toolkit.

b. HiPer-D 11 identified essential pieces of technology, not available as COTS or high
performance computing technology, that would enable the initial building of high performance
weapon systems. It identified the following technological requisites:

Ex.1009 / Page 12 of 280
TESLA, INC.

(1) A preemptive operating system with deterministic behavior that ran on high
volume, low cost, standard workstation and server platforms (not the low volume niche market
single board computers).

(2) Operating system instrumentation.
(3) Communication enhancements (simultaneous higher throughput combined with
lower latency communications for small message sizes).

(4) System level instrumentation that could associate tactical application processing
with resource consumption metrics from operating system instrumentation.

(5) Responsive fault tolerance mechanisms.

¢. The I1demonstration met all of the stated program objectives. It validated the use
of distributed computing technologies in future combat system design planning. The HiPer-D
Integrated Demonstration 1 (I1) Report, published in September 1994, provided performance
feedback to both the Aegis and DARPA communities on DARPA technologies in a simulated
tactical environment. The report also recommended technology improvements, briefly assessed
the process of developing combat system functions in a distributed environment and identified
areas for further development.

d. The I1 demonstration, and subsequent publication of the report, ended Phase 1 of the
HiPer-D Program.’

1.2 HiPer-D Phase 2 — DARPA/COTS Technology and Critical Issues Evaluation

a. InFebruary 1994, HiPer-D Phase 2 began when programmatic lead and funding
responsibility were transferred from DARPA to Aegis. Thus, the emphasis of the program
correspondingly shifted. The HiPer-D Technical Management Team (TMT) was tasked by the
Aegis chairman to focus on critical risks that had to be mitigated to ensure transition of
distributed computing technologies into the Aegis Baseline 7 development program. Based on
this guidance, the concept of an evolving engineering testbed was developed. Specific focus for
HiPer-D Phase 2 included the following:

(1) Targeting specific baseline objectives.

(2) Ensuring HiPer-D demonstrations are Critical Issues driven.

(3) Building upon lessons learned and experience gained from HiPer-D Phase 1.
(4) Basing future efforts and demonstrations on re-engineered Aegis code.

(5) Using COTS products and open architectures where practical.

(6) Evaluating recommended improvements to DARPA technologies when ready.

b. The vision of the HiPer-D testbed was to permit collection and evaluation of
engineering-quality data on new technologies and distributed system design concepts as they

! For further details see the HiPer-D Integrated Demonstration One (I1) Report, 6 September 1994

Ex.1009 / Page 13 of 280
TESLA, INC.

related to both future Aegis baselines and future surface combatants. This approach, and its
evolution to support future system engineering development, would comprise a continuously
evolving distributed computing testbed. The results of successive demonstrations of the testbed
would feed into the various Aegis baseline development (forward fit and backfit) efforts. The
base architecture serving as the departure point for HiPer-D Phase 2 testbed planning was Aegis
Baseline 7 Phase 1 and follow-ons.

¢. Since HiPer-D Phase 2 was driven by critical-issues, each of the HiPer-D technical
organizations compiled a list of specific areas that it believed should be addressed in planning
future distributed testbed demonstrations. The TMT consolidated this data into a Critical Issues
List, and structured the information into five major subdivisions:

(1) Requirements and Architecture
(2) Combat System Functionality
(3) Tactical Support Layer

(4) Integrated Service Layer

(5) Process

d. The TMT then developed specific demonstration activities to address each of these
areas. In order to target specific Aegis baseline objectives, demonstration activities were
arranged, in conjunction with the Aegis programmatic schedules, to develop the HiPer-D
distributed demonstration definitions and schedules. Table 1.2-1 details the consolidated
information with results arranged into the above five major subdivisions.”

e. The testbed activities are centered on a series of formal demonstrations, T1 through
T3. Each demonstration is composed of two parts, integrated demonstration and stand-alone
demonstrations. The evolving integrated demonstration builds on previous milestones, and
successively combines increasing Aegis Weapon System (AWS) functionality with the latest
distributed computing techniques and technologies. The second element of each testbed
demonstration includes a series of stand-alone experiments and demonstrations. The nature of

the experiments and the components used vary as they are directed toward specific computing
issues at a particular stage of the program.

? For comprehensive description of each critical issue see Appendix A, HiPer-D Phase 2 Engineering Test and
Demonstration Plan, 1 November 1994

Ex.1009 / Page 14 of 280
TESLA, INC.

Table 1.2-1 HiPer-D Phase 2 Critical Item List

1. Architecture « Architecture and System Partitioning Studies
2. Combat System « Standard Missile Engagement Path (SPY, C&D, WCS)
Functionality « Other AWS Tactical Functions as Required

. Non-AWS Elements
3. Tactical Support Layer « Track File Management
« Track File
+ Doctrine Processing
» Open Display / Submode Design
. Navigation / Gyro Data Distribution
« Parallelization
4. Integrated Service Layer « Communications Protocol
+ Networks
» Real-time Operating Systems
. Fault Tolerance
+ Open System Issues, e.g., Client / Server Model
« Distributed System Control and Resource Management
+ Time Management
« Security
5. Process o System Test
« Re-engineering Legacy Code
+ Tool Initiatives
b « Language Issues: Ada, Ada 9X & Annexes, C, C++
. Baseline Strategy (Forward and Backfit)

1.2.1 HiPer-D Phase 2 Engineering Testbed One (T1) Demonstration

a. T1, on 15 May 1995, was the first formal testbed demonstration of the HiPer-D Phase
2 Program. Results were unprecedented, in that it proved that COTS could support the
engineering development of large scale, complex, distributed computing-based systems. It

addressed several shortfalls identified in 11, and achieved a significant increase in tactical track
capacity.

b. Communications were addressed by moving from the Intel Paragon multi-computer
and employing more mainstream COTS fiber distributed data interface (FDDI) network-based
elements. Application of the COTS network was enhanced by a demonstration of an NSWCDD-
defined, highly fault-tolerant FDDI network configuration with fault recovery times of 100
milliseconds. The Aegis SM-2 Auto-Special engagement function was developed and integrated
into this test. Significantly, the HiPer-D track capacity was increased an order of magnitude
from 100 (I1) to 1,000 tracks. This dramatic increase was due to locating, and resolving, the
“track pipeline” bottlenecks over a period of several months.?

* For details concerning T1, see HiPer-D Engineering Testbed One (T1) Report, 17 November 1995

Ex.1009 / Page 15 of 280
TESLA, INC.

1.2.2 HiPer-D Phase 2 Engineering Testbed Two (T2) Demonstration

a. In October 1995, the second formal testbed demonstration of the HiPer-D Phase 2
Program, Engineering Testbed Two (T2), occurred. It consisted of the integrated demonstration,
built on the previous T1 Demonstration, and stand-alone investigation of IP Multicast. The
integrated demonstration included Alpha 3000s, with the Digital Unix 3.2B operating system,
enabling an asynchronous transfer mode (ATM) switched network; and, the successful
implementation of a hybrid network environment of FDDI and ATM. The tactical scenario
sequence, with two Auto-SM doctrines established and Auto-Special doctrine activated, involved
multi-sensor track initiations in the doctrine areas; appropriate engagements; random “no kill”
assessments and re-engagements; subsequent ramping up of background tracks; faulting of
servers;, faulting of clients; and continued multi-doctrine engagements.

b. A new "peer client" model was developed and demonstrated for load sharing and fault
tolerance. A new performance visualization tool based on the Isis Monitor of Performance
(IMP) was developed to instrument and display peer client performance. Together, the Peer-
Client model, used for Auto-SM, and the Radar Track Data Server (RTDS) design with
replicated servers, enabled processing to be added dynamically in support of fault tolerance and
load balancing. Application instrumentation (JEWEL) and the Peer-Client IMP X-Window
display provided real-time distributed system performance monitoring and Go Plot provide post-
exercise detailed analysis capability.

c. Significantly, the track entry rate in this demonstration was double that of the T1
Demo for the first 700 tracks entered. Subsequently, a capacity of more than 1200 tracks was
exhibited. The T2 Demo was accomplished using Aegis-originated code. This included radar
tracks from SPY and Surface Operations. The SPY Radar Control was derived from Lockheed
Martin’s SPY Control Loop; and Surface Ops was derived from Aegis Baseline 4 code. Finally,
the message flow within the Auto-Special SM 2 engagement path was enhanced to reflect that of
the current Aegis Weapon System.”

1.2.3 HiPer-D Phase 2 Engineering Testbed Two A (T2A) Demonstration

a. The HiPer-D Phase 2 T2A was held in December 1996. The stand-alone tests
involved several efforts, among them were network tests on the Fiber Data and Distribution
Interface (FDDI); Asynchronous Transfer Mode (ATM); Ethernet and Myrinet networks;
Transport Control Protocol (TCP); User Datagram Protocol (UDP) throughput; and, bandwidth
and latency for different platforms. Time synchronization tests using TCP were performed, and
high data rate (gyro distribution) tests were also conducted.

b. The T2A demonstration successfully distributed gyro data over commercial network
technology at 400 Hz, using a Gyro Data Converter simulator (GDC sim), with no degradation of
tactical performance at (extremely high) track loads. Dynamic resource management was
demonstrated through tactical applications automatically recognizing and reconfiguring after a

* For details concerning T2, see HiPer-D Engineering Testbed Two (T2) Report, 30 August 1996

Ex.1009 / Page 16 of 280
TESLA, INC.

system fault. Auto-SM was re-allocated to another homogeneous component based on CPU
resource usage. Resource management functionality was added with a one-button start-up
feature that brought all combat system functions on-line automatically, versus manually starting
each. The Common Display Kernel (CDK) was successfully integrated into the HiPer-D testbed
using the data broker concept. The Sensor Rate Server (SRS) demonstrated graceful degradation
under severe system overload conditions by maintaining high priority tracks at the requested
update rates, while reducing update rates for lower priority tracks.

c. By parallelizing more, and providing scalability through peer clients, effective track
capacity increased to greater than 2,000 tracks in T2A. A track capacity of 2200-2400 tracks
was achieved without SRS intervention, and a total of 4900 tracks was supported with SRS
intervention.

d. T2A also compared network technology using Aegis gyro data requirements;
specifically, FDDI versus ATM versus Myrinet, to determine which of these would provide the
most bandwidth, scalability, and particularly, the lowest latency.’

1.2.4 HiPer-D Phase 2 Engineering Testbed Three (T3) Demonstration

a. All of the software used in the T3 testbed was commercial off the shelf (COTS), and
the hardware was a heterogeneous mix composed of work stations from four vendors, each using
the vendor-supplied operating system, and three networks.

b. One of the major goals for T3 was to expand the scope of the testbed beyond
shipboard Anti-Air Warfare (AAW). To accomplish this, C*ISR components, the Joint Maritime
Combat Information System (JMCIS) and Advanced Planning and Power Projection and
Execution (APPEX) were interfaced to the Aegis AAW subsystem by data brokers. Data
brokers are small computer programs that, essentially, translate data from a transmitting
component into a format that can be processed by the receiving component. This is a concept
that could be used to integrate legacy systems into a new architecture. The Track Data Broker
and the C’I data broker were two new components developed for T3. During the demonstration,
JMCIS provided over the horizon (OTH) track information throughout the system, received real-
time AAW tracks, and provided track data to APPEX.

c. Another important goal was to demonstrate the ability to respond to a Naval Surface
Fire Support (NSFS) call for fire. To accomplish this goal, a scenario was scripted that included
landing Marines ashore, having multiple NSFS calls for fire, some with 57 gun engagements and
some with surface to surface missile engagements.

d. The HiPer-D Resource Manager (RM) was used to start non-HiPer-D components
automatically and remotely at the beginning of the demonstration. Resource Management for T3

>See HiPer-D Engineering Testbed Two A (T2A) Report, dated 16 Dec 97, for peer client architecture and
implementation details

Ex.1009 / Page 17 of 280
TESLA, INC.

had two dimensions. The first was system recovery in the event of a fault. The other was the
adding of resources when the system became overloaded.

e. A video from a Predator Unmanned Aerial Vehicle (UAV) was run during the T3
demonstration. It was displayed on the Anti-Surface Warfare (ASUW) Coordinator’s
workstation as well as Tactical Air Operations (TAO) workstation. The goal was to determine
the cost, in CPU usage and network bandwidth, to digitize, compress and send out the signal at
30 frames per second.®

1.3 Demo 98 Objectives
a. The technical objectives for Demo 98 included:

(1) To expand the land attack capability by integrating the Advanced Tomahawk
Weapons Control System (ATWCS) Launch Control Real Time (LCRT) group into the testbed.
This required the porting of the LCRT program from HP743RT to Sun Solaris and still meeting
the ATWCS LCRT real time requirements. Also the inertial navigation data and the interface
with the vertical launch system (simulator) were to be over the tactical network and not point-to-
point NTDS interfaces as in the operational system. ATWCS was to use the Network Time
Protocol (NTP) over the tactical network for clock synchronization. ATWCS was also to
integrate with the HiPer-D Resource Manager for both start-up and fault tolerance (“hot restart”
of LCRT). Finally, the ATWCS LCRT was to be instrumented with jewel to be able to assess
performance in near real time during the demonstration.

(2) To enhance the Naval Surface Fire Support call for fire from voice
communication to a digital capability. In T3 a voice communication (simulated) call for fire was
demonstrated. For Demo 98 the objective was to have a remote Forward Observer/Forward Air
Controller (FO/FAC) issue a digital call for fire over the network to ownship. Ownship was to
respond with a gun engagement and the appropriate tacfire messages (shot, splash, spot adjust,
etc.) were to be exchanged between ownship and the FO/FAC.

(3) To complete the development and integration of a fully fault tolerant, scalable
AAW path through the system. This involves the development of a fault tolerant Engagement
Server function. This function maintains all system state data or status regarding ongoing or
requested engagements by guns or missiles. The preservation of this engagement state data
during faults, failures, and recoveries was to be demonstrated. The impact of these faults,
failures, and recoveries during an engagement on the SPY Auto-Special timeline was also to be
examined. A fault tolerant Advanced Track Correlator and Filter (ATCF) is also an objective for

this demonstration. The two processes, Track Control and Track Processor, are to be replicated
for fault tolerance.

(4) To enhance the Resource Management capability of the system. The objective
included increased functionality (the scaleup of weapons doctrine components as track load
increased based on a Quality of Service track review time specification), reduced fault recovery

¢ See HiPer-D Engineering Testbed Three (T3) Report, dated 31 Dec 1998, for further details.

Ex.1009 / Page 18 of 280
TESLA, INC.

time, (programs that faulted and restarted in much less than one second), and the starting and
restarting (due to program faults) of non-HiPer-D components such as ATWCS.

(5) To further the evolution toward Navy open systems. This included the
installation, test, and use of the open network standard IP Multicast capability over three
networks (ATM, FDDI, and Ethernet). IP Multicast allows the message sender to transmit one
message that is received by many receivers.

(6) To begin assessing the feasibility of using COTS-based distributed object
computing technologies for the Navy. This included the integration of Common Object Request
Broker Architecture (CORBA) middleware technology in the Track Number Server (TNS) and
the Doctrine/Plan Server components.

(7) To evolve toward long term middleware. This included the integration of various
commercial products CORBA-based, and NDDS (a publish/subscribe communications package),
and the integration of SPREAD group communications in the ATCF component.

(8) To expand the simulation capability of the testbed by adding a physics-based, DIS
compatible wraparound simulation capability. The physics based capability would allow more
operationally oriented and operationally valid scenarios to be a part of future demonstrations.
The DIS capability would provide the basis for integrating readily with other simulators and
integrating geographically dispersed laboratories into the HiPer-D testbed.

(9) To include the real time, high data rate delivery of navigation/gyro data. The
ATWCS LCRT component requires a 16 Hz navigation data input which was to be provided
Y over the ATM network.

b. The remainder of the report describes the demonstration components and the

configuration, the demonstration scenario, how these objectives were met, and lessons learned
from the effort.

10

Ex.1009 / Page 19 of 280
TESLA, INC.

2.0 STAND-ALONE ENGINEERING TESTS

Stand-alone Engineering Tests provide data concerning the use and applicability of a
technology or product to the integrated demonstration. These tests are aimed at “breaking”
technologies and providing insight in the maturity, robustness, and performance under heavy
loads. Three Stand-alone Engineering tests are summarized in the following subparagraphs with
the details provided in appendices.

2.1 Evaluating the Performance of Multicast Communications

In the distributed shipboard environment of interest to the U. S. Navy, there is an
increasing interest in the use of multicast communications to reduce bandwidth consumption and
to reduce latencies. The bandwidth required to transmit large volumes of information (e.g., track
files, maps, etc.) to multiple receivers could potentially be reduced significantly by the use of
multicast data transmission. Many types of real-time shipboard data, such as navigational and
gyro data, need to be distributed to a large number of hosts. The distribution of this type of data
might also benefit from the reduced latency possible using multicast techniques instead of
sequential unicast transmission. Before multicast communications can be used in this
environment, however, a characterization of its performance must be made. Appendix A
proposes a number of metrics, and data collection and analysis techniques for assessing multicast
communications performance. Of particular significance is a metric that correlates reception of
message and shows promise in analyzing topology-related problems. While the concepts
presented in Appendix A are applicable to the general forms of multicast, the appendix
specifically focuses on the use of IP Multicast in an internal shipboard environment. The
MCAST Tool Suite (MTS), which uses the metrics and data collection techniques presented, is
described. The results of applying this toolset to simulate and instrument several IP Multicast-
based application scenarios are presented. See Appendix A for details.

~ 2.2 Data Distribution Experiment

The data distribution problem domain for command and control systems can be divided
into two general categories: control data and streaming data. Complex data ordering, low
volume, reliable delivery, and deterministic latency often characterize control data. Examples of
control data for the Aegis Combat System could be Auto-Special and Doctrine data. Streaming
data usually has limited data order dependencies, high volume, requires a stable frequency and
inter-arrival, and does not require reliable delivery. A message or possibly several messages
could be missed depending on the frequency and message type, and when the next message is
received the system requirements still would be satisfied. Examples of streaming data could be
gyro and track file update data. Obviously not all the message types used in the Aegis Combat
System fall neatly into one of these two categories. SPY data, for example, could be considered
high volume and yet require a stringent deterministic latency. The future Aegis Baseline 7 Phase
1 timing requirements are currently being reviewed on a message type basis. Tradeoffs, such as
deterministic latency versus reliable delivery, are being evaluated. These future Aegis baselines
will use distributed processing architectures and distributed applications that employ commercial
off the shelf hardware and software to the greatest extent possible. Software companies have
developed, and continue to develop, a broad variety of commercial middleware products to help

11

Ex.1009 / Page 20 of 280
TESLA, INC.

system developers implement distributed applications in the data distribution arena. One group
of products that appears to meet the data streaming requirements is publish/subscribe products.
Appendix B documents the results of the evaluation of two publish/subscribe products.

2.3 Windows NT Investigations

In June 1998, the Navy’s Chief Information Officer (CIO) released his Information
Technology Standards Guidelines (ITSG). The guidelines recognized the growing presence of
Windows NT, as well as its possible application to the Navy’s requirements for a powerful
operating system. The ITSG indicated an organization-wide shift towards NT over the next few
years, encompassing systems such as ashore and on-ship installations. The question now was not
“Should we use NT?” but “ What do we need to do to make NT work the way we want?” The
Windows NT investigations documented in Appendix C are the beginning of this effort whose
goal is to answer the latter question for HiPer-D.

12

Ex.1009 / Page 21 of 280
TESLA, INC.

3.0 ADVANCED COMPUTING TESTBED DEMO 98 INTEGRATED
DEMONSTRATION DESCRIPTION

a. The Demonstration 98 milestone event was held on September 29, 1998 in the System
Control Laboratory, Building 1500, at NSWCDD. Among the attendees were CDR Stevenson of
PMS 400 and Dr. Gary Koob of DARPA. The demonstration was imminently successful in that
all the following technical objectives were met:

(1) To expand the land attack capability by integrating the Advanced Tomahawk
Weapons Control System (ATWCS) Launch Control Real Time (LCRT) group into the HiPer-D
testbed.

(2) To enhance the NSFS call for fire from voice communications to a digital
capability.

(3) To complete the development and integration of a fully fault tolerant, scalable
AAW path through the system. This involved the development of a fault tolerant Engagement
Server and a fault tolerant Track Correlator and Filter (TCF).

(4) To enhance the resource management capability of the system. This included
increased functionality, reduced fault recovery times, and starting and re-starting of non-HiPer-D
components, such as ATWCS.

(5) To further the evolution toward Navy open systems. This included the expansion
of the ATM network and the addition of IP multicast capability over all three networks (ATM,
FDDI, Ethernet).

(6) To begin assessing the feasibility of using COTS-based distributed object
computing technologies for the Navy. This included the integration of CORBA in the Track
Number Server (TNS) and the Plan Server components.

(7) To evolve toward long term middleware. This included the integration of
commercial products, CORBA-based and NDDS, and the integration of SPREAD group
communication in the Advanced Track Correlator and Filter (ATCF).

(8) To expand the simulation capability of the testbed by adding a physics-based, DIS
compatible wrap-around simulation capability. The DIS capability would provide the basis for
integrating geographically dispersed laboratories into the HiPer-D testbed.

(9) To include navigation/gyro data distribution. The ATWCS LCRT component
requires a 16 Hz navigation data input which was delivered over the ATM network.

b. The Standard Missile engagement path through the AWS, as shown in Figure 3.0-1,
was initially chosen for prototype implementation in the test bed prior to the I1 demonstration in
1994. The standard missile path provides a high performance challenge with well-defined timing
requirements for experimental validation purposes. The tactical function in this AAW path is

13

Ex.1009 / Page 22 of 280
TESLA, INC.

essentially the same as in the AN/UYK-43 based AWS computer programs. Modifications were
made that kept the prototype unclassified and do not affect results.

c¢. Each successive demonstration since has added AAW capability to this engagement
path and with the T3 demonstration and this demonstration the test bed functionality has been
expanded into C4ISR and land attack areas as shown in the Demo 98 Block Diagram, Figure
3.0-2.

(1) The gray boxes are the wraparound simulation components that provide the
scenario inputs, control the scenario timing, and process the outputs of the tactical components.
The Environment Simulation (Env Sim) provides the scenario inputs and controls the scenario
timing. The MFAR Sim simulates a physics based multi-function array radar. The ID Sim
simulates the ID output of an IFF system. The OTH simulator provides OTH sensor data to
JMCIS. The FO/FAC and RDDL components simulate a remote digital CFF request from a
Forward Observer. The Engagement Planning Sim (EP Sim) and the Mission Data Sim (MD
Sim) provide mission planning inputs into the ATWCS LCRT group. The Vertical Launching
System Sim (VLS Sim), the Missile Sim, and the Flight Sim receive the ATWCS mission plans
and missile alignment data, and fly the ATWCS missiles to their assigned targets. The
Navigation simulator (Nav Sim) and the gyro data simulator (Gyro Sim) provide nav/gyro data to
the system. The Weapons Control system sim (WCS Sim) simulates the SM-2 missile system
and the Naval Surface Fire support simulation (NSFS Sim) simulates a 5" gun system. Kined is

a bulk track load generator used to input thousands of tracks into the system to demonstrate
system performance under heavy load.

(2) The AAW components are shown in blue. The Advanced Track Correlation and
Filtering (ATCF) components receive AAW tracks from the MFAR Broker and Kined. When
updates or new track data are received they are passed to the Radar Track Data Server (RTDS)
and the server provides AAW track data to all system components or clients that need the data.
The weapon doctrines (Semi-Auto, Auto-Sim, and Auto-Special) receive and process the track
data and send engagement requests to the Engagement Server for those tracks determined to be
threats based on the currently activated weapons doctrine. Manual Engage Control provides
operator selected, or operator approved engagement requests to the Engagement Server for
processing. The Engagement Server validates the engagement request and forwards the
engagement order to either WCS Sim for missiles or NSFS Sim for gun engagement. Two AAW
operator positions were utilized in Demo 98 using a geographical tactical picture display that
showed the AAW and OTH tracks and activated weapon doctrines. These two positions were
the Anti-Air Warfare Coordinator (AAWC) and the Surface Warfare Coordinator (SUWC). The
double boxed components are fault tolerant and/or scalable (ATCF, RTDS, Semi-Auto, Auto-
SM, Auto-Special, Engagement Server).

(3) The green components represent the land attack capability in the demo. The
Launch Control Executive (LC Exec) and the Launch Control Real Time (LCRT) are ATWCS
components. The Tacfire, C31 Broker, and Advanced Battle Management and Execution
(ABMX) are part of the digital CFF capability.

14

Ex.1009 / Page 23 of 280
TESLA, INC.

(4) The brown components are the C4I processes. JMCIS isa SPAWAR C4l
product that provides a C4I picture of current operations. The Aegis Air Correlator Tracker
(AACT) provides the interface between the C41 subsystem and the AAW subsystem allowing the
passing of OTH and AAW track data between the two. The OTH Data Server provides the OTH

track data to all system processes or clients that need OTH track data (ex., AAW operator
displays).

(5) The AAW components are described in detail next, followed by the ATWCS land
attack component and the JMCIS C4ISR components. Next the Resource Management
Component is described and then the simulation components. Following the component
description, the demonstration scenarios and major events are presented, then lessons learned
from the effort.

AIR TACTICAL
CONTROL DATA

: o ' CAEGES
TAGINTEL \ \ CTTTT 4 vaTns
e JlcomBAr \ o A ,
Df N . 4
s
e : ' ? . | ELE::TFRONIC
T - SASTEM,)

C&h ATWCS

Pl e
LAMPS -
SYSTEMS !
AL

ngrasEigATon-E.
g

{3 BOCKS
2 SRR,V

Q ELECTRONIC
SENSING

) SE RAVEGStON ., . HARPOON
+- - AesiEmRs.. | — MISSILE %
- ACTS SYSTEM
SONAR PHALANX
SYSTEMS | S, — WEAFT‘EQN
e SYSTEM
Prototyp€
ty ORTS

— %
Simulation DIGITAL INTERFAGE R cowmoL
— —— — VIDEQ INTERFACE LAMPS 1 \QMK 46 AND
\ MK SO
BT NIXIE

Figure 3.0-1 Aegis Weapon System with HiPer-D Overlay

15

Ex.1009 / Page 24 of 280
TESLA, INC.

wersei(q Yooig 86 0w 7-0'c 31n31g

[0 | [penvpue |

HOReIMMES -

&@sxﬁi 440 Tvlioa

o&.ssas vIO3dSOLNY AdS

WIS AN

v

WIS O¥AD

SNOHLOY

JOmkzooﬁl 7

LNOATS FTISSIN

v [sar

Y

siNano L
Twvor A
SIOvHL
“INTL

: &3 L Y. .—;(D.
-8B _odAo
¢ .7 |d3aH0

: 'ONZ NS

03
ON3 S4SN

SNOILOY
HO1vH3d0

w._.%mﬁo

TV ol

WVI33dS 0NV 434V1030-AdS

1s3No3y a SV

w._.zw_*u

Tv Ol

1vd
Avavy

-
NEE

AOVHL
y

-z]«

NP,

s THIHOYL

* HAANIS |
oarp | YAVAHIO i<

Tv ol

F 3

A

[wis &1 |

2O 0o E | &

IS FNSSIW |[€——

IS A

16|\ @0unosay
fiqeesg
aouelia|o} Jneq
Aoede) -
asuewIONdd -

§[eon

L 2

A
o) - =

orz|«duzs.

“ovdI03:

4

16

Ex.1009 / Page 25 of 280

TESLA, INC.

3.1 AAW Subsystem Functional Description

a. The AAW subsystem components are highlighted in Figure 3.1-1. These components
interface and receive sensor inputs from the sensor simulators, process the data into a track
report, distribute the track information to all client components that need access, process and

evaluate the track data for threat evaluation, and engage those tracks deemed hostile according to
the specified ship doctrine.

b. The major enhancements and additions to the AAW subsystem for Demo 98 include:

(1) Redesign of the track correlation and filtering components for increased capacity
and fault tolerance.

(2) Incorporation of CORBA technology in the Doctrine/Plan server and the Track
Number Server.

(3) Redesign of the state data intensive Engagement Server to provide a
primary/shadow fault tolerance capability.

¢. A description of all the AAW subsystem components follows with additional details
describing the major enhancements and additions.

17

Ex.1009 / Page 26 of 280
TESLA, INC.

paNy SIS s1ueuoduro) MVV YIm ureiSeiq Yooig 86 ourd([-1'¢ 2anSiy

[e]

HoBRINMIS

R 445 TvL91d

e TWIDIASOLNY AdS

WIS AUN .

v

SNOILOY
TOYLINGD

G’ AJUROSA

v

WIS OMAD

THIHOVL

&

WIS LHOH

Aigeess .
aoueJ9|jo} jjne .
A1oeden .
souewliopad -

Sjeon

5

BRI

9%
LI IR

TR

o

84

LNOATd FTISSIN

IS FHSSIN

m4
g
3
8
’M
M

B wan s awn ww W A wan W AW WA WW U AW AW VAW WA AW YW WA AMA MAN W MW WA WA A AW VWY W AW WA S W A W e e W e m

18

ovdiod

PEEN

Ex.1009 / Page 27 of 280

TESLA, INC.

3.1.1 Advanced Track Correlation and Filtering (ATCF)

a. The track correlation and filtering elements of HiPer-D originated as a port of the
“Milestone 90” Cooperative Engagement Processor (CEP) correlation and filtering capability to
HiPer-D. This became known as HiPer-D Correlation and Tracking (HCT). It was used in the
initial HiPer-D integrated demonstration, I1. The next generation was aimed at making the
correlation and filtering more directly relevant to Aegis. This build, called Track Correlation and
Filter (TCF), implemented correlation and filtering algorithms from the Aegis C&D PPS, and
was used in the T1, T2, T2A, and T3 HiPer-D demonstrations. Program focus during the
development of HCT and TCF was on issues of track distribution. In this environment, efforts
were not expended to make either component fault-tolerant or scalable. See Appendix D for
details of the history of HiPer-D Track Correlation and Filtering processing.

b. In T2A and T3 the TCF's total update rate of approximately 2300 updates per second
began to limit the throughput of the overall system significantly. This prompted the
development of the Advanced Track Correlator and Filter (ATCF) for the 1998 demonstration.
ATCF would be designed to be both scalable and fault-tolerant.

3.1.1.1 ATCF Overview

a. The Advanced TCF addressed several issues to improve upon the original TCF. Some
of these improvements were not fully realized in 1998, but the majority of the necessary
infrastructure to support them is in place. In particular, neither correlation nor filtering is
implemented yet. To date, the ATCF effort has focused on building the proper communications
architecture. The design looks similar to the original TCF but has a shift in functional allocation
that better addresses scalability. The two components have been renamed Track Controller and
Track Processor (see Figure 3.1.1.1-1). The ATCF is fully fault-tolerant and can distribute the
load across a dynamically changing number of Track Processors.

Track Changes o TRAgK .

N

X

r‘-“c
SENSOR // 1
BROKERSs o

(one per sensor) TRACK TRACK TRACK i TRACK out
PROCESSOR PROCESSOR PROCESSOR ! PROCESSOR | put
1 2 3 : n ; to RTDS
Track Updates ? ¢ ¢ ;

(high rate/high volume multicast)

Figure 3.1.1.1-1 Advanced TCF
b. The major issue with TCF was the complexity of scaling the Track Init function. In
ATCEF, the primary computation involved in correlation has been shifted out to the Track
Processors, with the Track Controller retaining a role as “coordinator”. Essentially, this shifts all
major processing to the Track Processors, thus reducing the need to scale the Track Controller.
Fault tolerance is achieved in the controller by providing a hot spare, and in the Track Processors

19

Ex.1009 / Page 28 of 280
TESLA, INC.

by allowing dynamic reallocation of track responsibilities. Track Processors split the processing
load by track. Each processor has a collection of tracks for which it is responsible. A new Track
Processor receives a portion of each existing Track Processor’s track load, and a failing Track
Processor’s responsibilities are redistributed over the remaining nodes.

3.1.1.1.1 Standard Message Format

a. The first step in building ATCF was to specify the input message formats. Each
sensor provides an independent stream of data, with slightly different characteristics. A single
message format called “sensor 3D” was defined for use within ATCF. This defines the
necessary components of data that ATCF expects to receive from a contributing sensor. The
introduction of brokers allows the input messages from a sensor to be converted to the standard
sensor three-dimensional (sensor 3D) format. All sensors (via their brokers) submit sensor 3D
messages to ATCF. As a result, all messages from all sensors can now be processed by the same
logic within ATCF. The use of brokers enables a new sensor to be added to a system without
having to modify the ATCF to account for the new sensor's message type. A broker simply
converts the sensor's unique message format to the sensor 3D format. The convenience and
reduced complexity of handling a single message type far outweighs the effort of developing any
new brokers. A broker was developed for the KINED’ sensor/simulator to demonstrate a sample

implementation. This adapts the KINED output to the new ATCF sensor 3D input format. No
changes to KINED were required.

Sensor 3D — T e ATCF_Internal group:

Messages - - ATCF =~ correlation requests & results,
™~ track assignments,

\ track change messages

) RTDS
/ \ RTDS
CLIENT

TRAGK PROCESSORS . A ;
~ - RTDS H RTDS m
—_—— CLIENT CLIENT
Figure 3.1.1.1.1-1 ATCF I/O
b. During a typical simulation run, KINED generates all track messages (new tracks,

updates, and track drops). The addition of a KINED broker has increased the number of
processes through which all traffic is routed. (Note the addition of a broker in Figures 3.1.1.1.1-1
and Figure 3.1.1.1.2-1.) This caused a slight increase in the end-to-end (KINED to RTDS client)

latencies. Track change message latencies increased approximately 2 ms, and track update
latencies increased approximately 10 ms,

Native Sensor
Messages

SENSOR || BROKER || i

3.1.1.1.2 MFAR Broker

" KINED is a simulator created to model multiple sensors and drive the system with input data.

20

Ex.1009 / Page 29 of 280
TESLA, INC.

a. A second broker was created for adapting the MFAR simulator’s® output to the new
ATCF (see Figure 3.1.1.1.2-1). The MFAR broker provides a bridge from one communications
mechanism (CSSEnet) to another (process group communications). MFAR broker accepts new
track, update, and drop track messages from the MFAR simulator. These messages are
converted to the Sensor 3D format and sent on to ATCF. The broker also receives Auto-Special
doctrine messages. The Doctrine/Plan Server sends doctrine messages in the Auto-Special
communications group. If MFAR broker receives an Auto-Special doctrine, new track messages
from the MFAR simulator will be compared against the doctrine parameters. Any new tracks
meeting the criteria are flagged as Auto-Special when sent to ATCF. This also triggers special
logic in the broker to flag the first update received for each Auto-Special track. This first update

must be issued as an Auto-Special resolution.
Sensor 3D
ATDnet/ Messages
CSSEnet 4
messages

'
'

DIS MFAR Jil MFAR |}]
SIMULATOR [*7 77| BROKER |}

7

AutoSpecial parameters,
rate requests

Figure 3.1.1.1.2-1 MFAR Broker

b. The MFAR simulator supports rate control for individual tracks. A track’s update rate
is the number of times an update report is issued for that track during a unit of time. A separate
process within HiPer-D, the Sensor Rate Server (SRS), determines when a rate for a particular
track should be adjusted. The MFAR broker receives these requests and forwards them to the

MFAR simulator. The MFAR simulator adjusts the rate at which updates are passed to the
MFAR broker.

¢. Multiple brokers can coexist and operate concurrently. Brokers may join and/or leave
a running system without disrupting the ATCF.

3.1.1.1.3 IP Multicast Communications

a. The next step in building ATCF was to develop a messaging layer to allow the
brokers to deliver updates to the Track Processors with maximum efficiency. First a
communications protocol selection was required. TP Multicast is inherently unreliable, and extra
steps are needed to verify that all messages get delivered to all listeners. Process group
communications libraries such as ISIS or Spread implement reliability and ordering at the
expense of increased latency in message arrival. From a system perspective, it is more important
to maintain a constant flow of timely updates than to expend extra effort checking that each and

¥ The MFAR Simulator is a component of NSWCDD’s CSSE simulation environment. It takes input from DIS and
filters it using physical characteristics to provide reports that more accurately repreent the returns seen by a radar.

21

Ex.1009 / Page 30 of 280
TESLA, INC.

every update gets delivered, in order. Given this, IP multicast was selected as an experimental
candidate. The question explored by this experiment was could an ATCF design use the lower
quality protocol and still provide high speed reliable service? The use of IP multicast was
significant because it is the first use of unreliable communications in a critical path within
HiPer-D.

b. The ATCF design used timestamps in the updates to be sure that time ordering of
reports is not grossly violated. If two updates for a single logical track arrive out of order, the
older one is discarded. Because the flow of updates is constant, allowing a small percentage to
be dropped should not have a significant impact. The track change messages (new track
messages and track drop messages) are still reliably delivered in process communications
groups.

c. Performance statistics were gathered to aid in evaluating the use of multicast. The
statistics being measured include the percentage of lost messages, the percentage of messages
that arrive out of order, and the average latency of the messages being delivered. Testing was
performed on Ethernet, FDDI, and ATM networks. The only behavioral difference displayed by
each type of network was that each medium provided a different maximum total track capacity.
Message loss and misordered delivery of messages was only observed upon nearing maximum
system capacity. Message loss was quite rare on ATM networks.

d. Timed buffering was implemented to improve throughput. A timed buffer is a queue
in which messages to be sent are placed. A maximum age, also known as a staleness value, for
the messages in the queue is set. A separate thread of execution (separate from the sending
thread) observes this buffer and sends the contents out at regular intervals as defined by the
staleness value (typically 10-50 ms). The buffer is also sent when it is full. Without modifying
the operating system, the minimum effective interval is approximately 10 ms.” Timed buffering
causes multiple messages to be sent as one unit, resulting in fewer socket calls. This is more
efficient than making a socket call for each message, and results in a much higher maximum
throughput. The tunable parameters are the staleness interval and the size of the buffer. The
latency for each message is directly related to this staleness value. End-to-end (KINED to RTDS
client) latencies as low as 40 ms were observed when all staleness intervals were set to 10 ms
and a moderately high number (several thousand) of tracks was injected into the system.
Average total (end to end) latencies were in the range of 50 to 70 ms for a load of around 1000
tracks. As the load increases, these timed buffers begin to fill completely before the interval

expires, causing more frequent sends to occur. This has the effect of pushing the total latency
down as the load increases.

e. One point of interest regarding buffer size is that each network standard has a
maximum transmission unit (MTU) size. For Ethernet, this is 1500 bytes. For FDDI, the MTU
size 1s around 4096 bytes. For ATM, it is dependent on the network interface driver (the actual
packet, or cell, size is 53 bytes). On the Solaris 2.6 workstations with ATM interfaces in the labs

° This was the case with single and multiprocessor workstations running Solaris 2.5, Solaris 2.6, and Digital’s
OSF/1 4.0. This is believed to be a side effect of the process scheduler allocating minimum time slices to each
process before preempting them.

22

Ex.1009 / Page 31 of 280
TESLA, INC.

at NSWCDD, MTU size was around 9000 bytes. It is acceptable for an application to request to
send a block of data larger than the MTU, but this will result in the message being fragmented
into multiple units, or packets. The fragments must then be reassembled by the receiving entity’s
kernel. It was expected that the overhead of fragmentation handling would cause a decrease in
performance, but this was not seen. In fact, using buffers larger than the MTU proved to be
more efficient than using smaller ones. This may be due to the fragments being sent as back-to-
back packets on the Ethernet and FDDI mediums, but this is purely conjecture. Another possible
explanation is that as the blocking size of the data is increased, the number of socket calls needed
decreases, for a constant amount of data (multiple blocks' worth). The time needed to pass a
block of data up or down through the protocols in the network stack may be significant and
independent of the size of the block of data.

f. The operating system also provides the ability to change the buffer size used within
the kernel for socket operations. This is not the same buffer used by a communications library
for timed buffering. Sizes between 4 Kb and 512 Kb were tried, but no effect on performance
was observed. A separate system call is performed to verify that the request to change the socket
buffer size was indeed being acknowledged by the operating system.

g. The multicast library does not ensure that messages get delivered (i.e., does not
implement reliable delivery). An incrementing counter is placed in each message sent. The
receiver simply remembers this counter value from the last message. If the next message
received has a counter value greater than (the last counter + 1), this indicates that some messages
were dropped. The exact number can be computed. The counter values used by the multicast
library are only used as a means of gathering statistics on performance. Reordering and
retransmit have not been implemented.

h. Each track update message contains a timestamp, which is placed there by the sensor
or simulator, indicating the time of contact. It is important that updates for a single logical track
are not processed out of order. It is acceptable that some updates may be discarded as a result.
These updates would have been delivered across the network in the wrong order. The timestamp
can be used to prevent processing an older update after a newer update. If a client were to
receive an older update after a newer one, it might appear that a track had changed direction, or
some other oddity. The ATCF only processes updates that are newer than the last received
update for a given track.

1. The application-programming interface to the multicast library was modeled using
Amalthea domain classes. Functions provided include: an initialize method, a callback
registration method for message delivery, a group join method, a method to send messages, and a
group leave method. Also, a method to enable and configure the timed buffering option was
provided.

j. Message buffering was experimented within the frack change process
communications group. With buffering enabled, several thousand tracks could be injected into a
system in a matter of seconds. However, the latency for all track change messages was increased
by approximately 8 ms as a result. Without buffering the frack change group, the time required

23

Ex.1009 / Page 32 of 280
TESLA, INC.

to feed several thousand tracks into the system increases dramatically, but keeps these latencies
to a minimum. This is the preferred option, since low latency is required for AutoSpecial events.

k. As apassive form of flow control, a maximum latency threshold can be specified for
messages received by a Track Processor. Presumably, if track updates are being received with
“old” timestamps, then the network medium is likely to be congested. The appropriate course of
action is to drop these aged reports, rather than propagate the condition by introducing more
traffic (delivering an update to a track processor will result in another update message being sent
to the RTDS). It is likely that the updates would be “aged” further before final delivery to
RTDS's clients. Some clients might wish to impose maximum latency thresholds for the track
updates. Therefore, it is in the best interest of the system to discard reports if they are too old.
Track Processor currently supports only a static threshold.

1. The Track Processors use a process communications group to deliver all messages to
the RTDS. Track change messages are combined with track reports in this group. This allows
the Track Processors to guarantee that the RTDS will not be subjected to illegal sequences (e.g.
receiving a track update before a new track message, or receiving a track update after a lost track
message). The ordering logic in Track Processor maintains a recent history of dropped tracks, in
case any reports arrive after the drop message. This prevents Track Processor from forwarding
any reports after sending a lost track message.

m. All messages emanating from a single Track Processor must be processed by all
RTDSs in the order they were sent (to ensure track update ordering). However, ordered streams
from different Track Processors may be interspersed in any fashion. The design of ATCF

supports independence between Track Processors (i.e., they do not communicate directly to
coordinate their activities with one another).

3.1.1.1.4 ATCF Fault Tolerance

a. The Track Controller is implemented with a primary/shadow form of fault tolerance.
Primary/shadow (sometimes called active/backup) means that redundant replicas of a process are
maintained. This is accomplished by having all processes consume input data with only the

designated (active) instance providing output. If the active instance fails, then one of the backup
replicas can be promoted to the active status.

b. The Track Controller directs and coordinates the activities of the Track Processors
with respect to fault tolerance. The ATCF uses all available Track Processors and has the ability
to recover from a total loss of Track Processors. If all Track Processors should fail, there is a 90-
sec window during which a new Track Processor may be started. No updates are delivered to
RTDS clients during this time. If a new Track Processor is created within this time window, all
tracks are assigned to this new Track Processor, and reports begin to flow again. If no new
Track Processor becomes available after 90 sec, RTDS will issue drop track messages for all
tracks that were being reported. If a new Track Processor was created after this event, and
reports began to arrive at the RTDS again, RTDS would issue new track messages to the RTDS
clients. The flow of updates would continue to the RTDS clients. The ATCF can even recover
as long as at least one Track Controller remains.

24

Ex.1009 / Page 33 of 280
TESLA, INC.

3.1.1.1.5 Track Number Mapping

a. Track number mapping occurs when a process transforms the track identifiers
provided in the input to a different set of identifiers for its output. Each sensor has its own
method of assigning identifiers (usually a number that can be represented by 16 or 32 bits) to
tracks. These identifiers are unique only within the domain of that one sensor. Therefore, in a
system with multiple sensors, it is entirely possible that two sensors might use the same identifier
for two logically different tracks. Each identifier would be unique to one sensor, but by
coincidence two sensors may select the same identifier. This is the reason number mapping is
performed. For each sensor, a mapping can be constructed to ensure that each logical track maps
to its own unique system-wide identifier. This is accomplished by drawing all mapped output
identifiers from a common pool of identifiers. The TNS was created for exactly this purpose.

b. Figure 3.1.1.1.5-1 illustrates the intended use of the TNS by various processes.
Typically a broker (Label 1 of Figure 3.1.1.1.5-1) performs the mapping function for each
sensor. This ensures that all sensors’ track contributions can be uniquely identified by ATCF.
An output identifier from a broker is called a sensor HTN (held track number). Track Controller
allocates numbers to logical track entities (Label 2a of Figure 3.1.1.1.5-1). The ATCF output
identifiers are called composite HTNs. If two tracks being reported by different sensors are
correlated, they can be mapped to the same composite HTN. The sensor HTN to composite
HTN mappings maintained by Track Controller get distributed to the Track Processors in the
track assignments (Label 2b of Figure 3.1.1.1.5-1). Note that the identifier mappings created by
Track Controller are applied to track change messages issued to the Track Processors, but the
B track update messages contain sensor HTN identifiers. Track Processor must transform the
sensor HTNs to composite HTNs before updates are sent to RTDS.

Track Number Server

: TRACK
/“acw CONTROLLER
chal®

W e TN
R

TRACK PROCESSORS
Figure 3.1.1.1.5-1 Track Number Change as a Result of Correlation

3.1.2 Air Engagement Control (AEC)

a. The AEC implements a portion of Aegis C&D and WCS functionality. It performs the
processing necessary to evaluate potentially threatening air tracks and initiate engagement of

25

Ex.1009 / Page 34 of 280
TESLA, INC.

those tracks with SM-2 missiles. AEC evaluates air threats by comparing track data provided by
the HCT against a priori defined criteria such as range, velocity, and identification. These
criteria are referred to as doctrine. AEC engagement doctrine may be semi-automatic (operator
in the loop), automatic, and/or sensor-initiated automatic doctrine, also known as Semi-Auto,
Auto-SM, and Auto-Special doctrine, respectively. An engagement server mediates engagement
requests from the doctrine processing applications and performs validity checks on the
engagements. It also provides the interface with the weapons control system to initiate
engagements and monitor their progress. Supporting applications include an Aegis-like display
capability with submode and alert routing support as well as tactical and character read-out
(CRO) displays, a manual engagement support application, a doctrine server that acts as a
repository of doctrine criteria, and a variety of simulators and instrumentation tools.

b. The AEC uses an open systems approach for its code base. This approach simplifies
the process of adding tactical functionality. The architecture relies on client/server design
principles, software layering, and data driven design. Libraries of reusable and common services
are used as building blocks upon which application unique functionality can be added. These
common services facilitate interfacing with other applications and include domain specific
services that abstract inter-application interface details including messaging and data marshalling
as well as data caching. Examples include track data management services, engagement client
services, and display services. A group-based communications API provides an abstraction for
group communications that is currently implemented using Ensemble but is not dependent upon
a particular implementation. The common services also include more general-purpose
functionality such as UDP and TCP communications service, queue management, string
manipulation, and semaphores.

3.1.2.1 AEC Component Summary

Table 3.1.2.1-1 summarizes the AEC components. The major enhancements to the AEC
components for Demo 98 were the addition of Common Object Request Broker Architecture

(CORBA) to the Doctrine Plan Server and the addition of fault tolerant capability to the
Engagement Server.

26

Ex.1009 / Page 35 of 280
TESLA, INC.

Table 3.1.2.1-1 AEC Component Descriptions

ELEMENT FUNCTION
AEC Display + General Purpose Tactical Display Capability
« X-Windows Based Map and PPI Using ADS Map Database
. CRO, Submodes, Alerts, Tutorials, Close Control, FAB / VAB,
and Fixed Map Control Support
Display State » Alert Routing

Data Server + Submode Mediation / Control
. Display State Repository in Support of Open Systems Architecture
Manual « Engagement Client

Engage Control | - Manual Engagement Initiation

« Operator Interface to Engagement Status
Semi-Auto-SM |« Semi-Auto-SM Doctrine Qualification

» Fault Tolerant/Load Sharing

Auto-SM « Auto-SM Doctrine Qualification

» _ Fault Tolerant/Load Sharing

Auto-Special « SPY Auto-Special Doctrine Qualification

« AEC Auto-Special Doctrine Qualification

Fault Tolerant/Load Sharing and Active Replication

.

Engagement + Engagement Control
Server « Engagement Monitoring

« Tactical / WCS Sim Interface

« Target Engagement Status Server

» Primary/Shadow Fault Tolerance Capability
Doctrine/Plan |« Provides Doctrine Statements/Updates Server
Server » CORBA and Isis Interface Support

3.1.2.2 AEC Display

The tactical display capability is provided by the AEC Display Program and the AEC
State Data Server, as well as a reusable layer of code that facilitates use of the display capability
by the applications. The AEC Display Program provides an X-Windows based geographic
display of the tactical situation. AEC operators may sign-on to any of the implemented
sub-modes at any given display, allowing them to interact with the AEC system. The sub-mode
positions currently implemented are Anti-Air Warfare Coordinator (AAWC); Tactical Actions
Officer (TAO); Tactical Information Coordinator (TIC); and Computer Program Information
Supervisor (CPIS). Once signed on, an operator may perform any action allowed for that sub-
mode including listing, activating and displaying doctrine regions; initiating and monitoring
engagements; reviewing alerts; and monitoring program status. The display window contains
map display, alert and tutorial areas, a VAB/FAB panel, a close control CRO, a tactical CRO
area, and a menu for map actions such as re-centering and re-scaling. Most of the functionality
provided by the display program can be tailored via data files.

27

Ex.1009 / Page 36 of 280
TESLA, INC.

3.1.2.3 Display State Data Server

This server is a repository of information about the status of all AEC displays. It retains
data on the location of each sub-mode signed on and maintains a queue of unreviewed alerts
associated with the various sub-modes. It tracks display parameters, such as the most recently
pressed VAB/FAB, currently displayed CRO, and currently hooked track at each display.
Services are provided for the Display State Server clients to retrieve this information, allowing
tactical and support programs to update CROs or act upon VAB actions as appropriate.

3.1.2.4 Manual Engage Control

The Manual Engage Control program is the interface between the operator and the
engagement processing programs. It supports manual engagement of tracks, the subsequent
sending of engagement requests to the Engagement Server; and the processing of alerts. Manual
Engage Control is an Engagement Server client and receives updated target engagement status
information from that server. It is responsible for updating operator CRO displays with current
engagement status data as engagements progress.

3.1.2.5 Plan Server

a. The Plan Server maintains a data file of active and inactive doctrine statements and
provides those statements to client programs on start-up and by request. For Demo 98 the Plan
Server was extensively modified to incorporate Common Object Request Broker Architecture
(CORBA) technology. The main objective was to begin the process of assessing the feasibility
of using COTS-based DOC technologies for Navy mission-critical systems. The Doctrine/Plan
Server and its client processes were identified as an area where the use of the CORBA
technology could be investigated and demonstrated without adversely affecting any of the real-
time requirements of the overall system. Modifications were made to the Doctrine/Plan Server
program and its client programs (Auto-SM, Semi-Auto and Auto-Special) to use the CORBA
technology. Previously, the interface between the Plan Server and its clients used Isis group
communications middleware.

b. CORBA is primarily a distributed system object-oriented integration technology, and
as such, the Doctrine/Plan Server and clients are thought of as objects in the distributed system.
Client objects send requests and server objects respond to requests. In CORBA the Interface
Definition Language (IDL) is used to specify the interface between objects, that is, what services
the server provides to the clients. In this demonstration, the Plan Server and its clients were
legacy applications, so that the interface and communication style were already somewhat
decided. The interface consisted of the weapon doctrine data that the clients request from the
Doctrine/Plan Server. The communication style provided by Isis was asynchronous messaging.
At the time that this experiment was done, the latest standard was CORBA 2.0. This version did
not include specifications for asynchronous messaging. Therefore, in this demonstration, the
communication style used was synchronous request/reply where the clients request the weapon
doctrine data and then block while awaiting the reply from the Doctrine/Plan Server.

28

Ex.1009 / Page 37 of 280
TESLA, INC.

c. The Plan Server was modified to use CORBA to receive requests (via the Object
Request Broker (ORB)) from the clients for the weapon doctrine database. In addition, the
ability for non-CORBA clients to request the weapon doctrine data using Isis was left intact.
The clients were modified to use CORBA to make their requests (via the ORB) to the Plan
Server by invoking the IDL interface operation getWeaponDoctrine on the CORBA Plan Server
object. The ORB is responsible for ensuring that this invocation results in a call to the
corresponding remote CORBA Plan Server object method, and returns the results to the client.

3.1.2.6 Semi-Auto

Semi-Auto receives tactical weapon doctrine from the Plan Server, then evaluates tracks
against the currently active Semi-Auto doctrine regions. If a track's evaluated intercept point
qualifies, a Recommend Engage alert is queued for the AAWC sub-mode. Semi-Auto is an
Engagement Server client and as such, receives updated target engagement status information
from that source. Semi-Auto is a peer client replicated for fault tolerance and load sharing'®,

3.1.2.7 Auto-SM

Auto-SM receives tactical weapon doctrine from the Plan Server and evaluates tracks
against the currently active Auto-SM doctrine regions, It sends an engagement request to the
Engagement Server upon track qualification. Auto-SM is an Engagement Server client and
receives updated target engagement status information from that source. Auto-SM is a peer
client replicated for fault tolerance and load sharing. '°

3.1.2.8 Auto-Special

Auto-Special receives tactical weapon doctrine from the Plan Server and operates in two
independent modes, SPY and AEC. The SPY mode evaluates tentative track and resolution
messages reported by Track Correlation and Filtering (TCF) in response to the Auto-Special
Parameters messages sent to Sensor Sim by the Plan Server. Auto-Special attempts to qualify
the tracks supplied by TCF against the active Auto-Special statements. If a track qualifies,
notification is forwarded to the Engagement Server. Auto-Special also has an AEC mode that
periodically evaluates all tracks against the active Auto-Special doctrine statements and forwards
an engagement request to the Engagement Server if a track qualifies. Auto-Special is an
Engagement Server client and receives updated target engagement status information from that
source. Auto-Special is a peer client replicated for fault tolerance and load sharing with respect
to the AEC mode.'® With respect to the SPY mode, Auto-Special uses an active replication
model. Each Auto-Special replica acts independently on the tentative track and track resolution
messages received from TCF, and forwards engagement requests to the Engagement Server as
appropriate. The Engagement Server is responsible for filtering out duplicate requests. In this
way, rapid reaction to significant threats is possible even upon failure of an Auto-Special replica.

1 See HiPer-D Engineering Testbed Two (T2) Report, 30 Aug 96 for peer client architecture and implementation
details.

29

Ex.1009 / Page 38 of 280
TESLA, INC.

3.1.2.9 Engagement Server

a. A major addition to the HiPer-D system in Demo 98 was the replication of the
Engagement Server component. Prior to Demo 98 this component was not replicated and,
therefore, represented a single point of failure in the HiPer-D engagement capability. This
section describes this Engagement Server work and its affects and impacts on Demo 98. Table
3.1.2.9-1 briefly highlights the improvements made to the Engagement Server since the T3
Demo in August 1997.

Table 3.1.2.9-1 Engagement Server Improvements

T3 Demonstration (8/97) Demo 98 (9/98)
1 Engagement Server; single point | 3+ Engagement Servers;
of failure primary/shadow execution and

recovery model
No, or minimal, tactical state data | Critical engagement state data of

in replicas; (RTDS Track sets) system-wide interest

Fault injection precision was Precise fault injection capability

approximate; Ctrl C, Kill, etc. that is data file driven; application
tailored

No displays demonstrating JEWEL display providing a

consistency among replicated window into replica state and

components action consistency

b. Execution Model: The purpose of the Engagement Server in HiPer-D is threefold.
First, it validates engagement requests from clients and arbitrates any race conditions occurring
due to multiple engagement requests on the same target. Second, it generates engagement orders
to WCSSim for valid engagement requests. Third, it distributes engagement status updates to
clients as tracks progress through their engagement sequence. During normal operation, doctrine
clients (the Semi-Auto, Auto-SM, and Auto-Special applications) and tactical operators (the
Manual Engage Control application) generate engagement requests on threatening tracks. The
Engagement Server performs validation checks on these requests. Validated engagement
requests result in engagement orders generated by the Engagement Server to the WCSSim.
Finally, as the target cycles through the engagement sequence the engagement status for the
target is updated and distributed by the Engagement Server. As previously mentioned, prior to
Demo 98 the Engagement Server represented a single point of failure for the engagement
capability of HiPer-D.

The Engagement Server design and execution relies on several features provided by the
underlying group communications middleware. For Demo 98 this middleware was Isis, the

group communications toolkit developed at Cornell University. The relevant features are listed
below:

(1) FIFO message delivery between a transmitter and a receiver.

(2) Reliable and atomic delivery of message transmitted to a process group (i.e. all
surviving members or no members receive the message).

30

Ex.1009 / Page 39 of 280
TESLA, INC.

(3) Group membership events ordered with respect to the message flow in the group.

c¢. FIFO ordering guarantees that a receiver will receive messages in the same order that
a given transmitter sends them. Reliable and atomic delivery guarantees that either all members
of a process group will receive a message or none of them will. This is an important feature to
ensure that all group members have the same set of input messages. These two features together
guarantee that all members of a group see messages in the same order from a given transmitter to
that group. This provides an important guarantee of atomic ordering from a given transmitter.
The ordered group membership events guarantee that membership changes to a group are seen
by surviving group members at the same position in the message flow occurring for that group.
For example, assume one member of a group receives a message followed by a subsequent
membership change in that group. All surviving members of that group will see that identical
ordering. In other words, it is guaranteed that all members will receive the message followed by
the membership change. This is a critical feature to support fault tolerance in the presence of
process failures. These features will be discussed again in Section 4.3 describing lessons learned
in the Engagement Server work.

d. The Engagement Server design relies on these three group communications attributes
to implement a semi-active primary/shadow execution and recovery model. The primary/shadow
model requires that one replica be designated as primary. The primary replica is responsible for
carrying out all processing and initiating any resultant responses. All other replicas are
designated shadow replicas. The shadow replicas duplicate the computations of the primary but
do not initiate any output except when the primary fails. The execution model and its
dependence on group communications are discussed in the following paragraphs.

e. The first Engagement Server replica coming on-line assumes the role of the primary
replica. All additional replicas come on-line in the role of shadow replicas. Demo 98 ran with
three replicas, one primary and two shadow replicas. The design is not limited to this number,
but there will always be only one primary replica. The primary replica has these unique
responsibilities:

(1) Informs all shadow replicas that it has assumed the role of the primary replica.

(2) Informs all shadow replicas which message (i.e. input stimulus) to begin
processing.

(3) Transmits messages to other components, as well as to shadow replicas, that result
from processing an input stimulus. (These transmitted messages are called “resultants”)

(4) Informs all shadow replicas when time-out conditions occur with respect to
engagements in progress.

f. The shadow replicas have responsibilities that differ from the primary:

(1) Receives an indication of which replica has assumed the primary role.
(2) Receives and processes indications from the primary replica as to which input
stimulus to begin processing.

(3) Verifies that the primary replica successfully transmits all required resultants.

Ex.1009 / Page 40 of 280
TESLA, INC.

(4) Receives and processes indications of time-out conditions that occur at the
primary replica with respect to engagements in progress.

g. Table 3.1.2.9-2 summarizes the unique responsibilities of the primary and shadow
replicas. These responsibilities should be considered in parallel and will be discussed to
demonstrate the execution model. The first responsibility for both primary and shadow replicas
allows all replicas to know which process has assumed the primary role. This is done at process
initialization. The first replica detects that it is the only Engagement Server on-line and assumes
the role of the primary replica. Additional Engagement Servers detect that there are other
replicas on-line and wait to receive the indicator message from the primary replica. The primary
replica detects these new replicas and then transmits this indicator to each of them. This allows
the shadows replicas to properly identify the primary replica. This indicator is also transmitted
after a failure of the primary replica but this will be discussed in regard to the third responsibility
of primary and shadow replicas.

Table 3.1.2.9-2 Replica Responsibilities

Responsibility Primary Replica Shadow Replica
1. Assumption of Primary | Sends indicator to all Receives and processes
Role shadow replicas. indicator from primary

replica.

2. Stimulus Eligible for
Processing

Sends indicator to all
shadow replicas when it
begins processing a
stimulus.

Receives and processes
indicator from primary
replica. Initiates processing
of designated stimulus.

3. Transmission of
Resultant

Transmits resultant to
appropriate destination
components and shadow
replicas.

Receives and verifies
transmission of resultant by
primary replica.

4. Time-out Notification

Sends time-out notification

Receives and processes

time-out notification from
primary replica.

to shadow replicas.

h. The second responsibility forces all replicas to process messages in the same order.
Just prior to processing a message the primary transmits this information to the shadow replicas.
This informs the shadow replicas which message to begin processing. The shadow replicas, in
turn, are awaiting such an indicator to ensure that they process the identical message as the
primary replica. The first and second Isis features, previously discussed, guarantee that each
shadow replica will receive the specified message if they have not already. Once they receive
this indicator they can proceed to process this message at the best possible speed. This technique
of ordered message processing is an important step in ensuring that the replicas are staying in
synch with respect to the engagement state data.

1. The third responsibility for each ensures that every resultant from processing an input

stimulus does indeed get successfully transmitted. It is the responsibility of the primary replica
to actually transmit the resultants. When the primary replica processes a message it simply

32

Ex.1009 / Page 41 of 280
TESLA, INC.

transmits a resultant at each point where that is necessary and then continues processing. The
shadow replicas perform somewhat differently. When shadow replicas reach the identical point
in processing a message they store this resultant in a pending-outbound state and then continue
processing. The shadow replicas will receive each resultant transmitted by the primary replica,
because of the ordering and atomitity guarantees provided by the group communications
middleware first and second features of Isis. As they do so they are able to match these
resultants against ones they have stored in a pending-outbound state queue. Matched resultants
are subsequently removed. By this technique the shadow replicas can verify successful
transmission of the resultants.

j. Should the primary replica fail before transmitting all resultants, the Engagement
Server relies on the group communications guarantee of ordered membership change events with
respect to the message flow in a group. With this guarantee, all surviving shadow replicas will
know exactly which resultants the primary replica transmitted prior to failure. One shadow will
assume the primary replica role. It will transmit to the surviving shadow replicas an indicator
that it is now the primary replica. It will then transmit any resultants that remain to be sent and
continue on in the role of the primary replica. The shadow replicas will await this primary
replica indication. When they receive it they will then continue on in their role as shadow
replicas. But, they will now perform their activities, including the matching of resultants, by
looking for indicators from the new primary replica.

k. Finally, the fourth responsibility allows all replicas to be in agreement with respect to
time-out conditions. When an engagement order resultant is transmitted to WCSSim, the
Engagement Servers await a response from WCSSim. It is possible for this expected response to
time-out. Upon transmission of an engagement order the primary replica sets a timer. If this
timer expires before it receives the engagement response from WCSSim then the engagement
has timed-out. The primary replica will transmit a message to the shadow replicas indicating
whether the engagement response was received in time or it timed-out. In this manner, the
shadow replicas can determine whether they should continue the normal processing for this
engagement or proceed into the time-out processing. Either way, they will mimic the primary
replica via the indicator it transmits to them.

I Although the shadow replicas utilize the timeout notification from the primary
replicas, they each also set their own timer when an engagement order is queued in a pending-
outbound state. As long as the shadow replicas receive the time-out indicator message from the
primary replica they can ignore and clear their own timers. These shadow timers are only
needed when the primary replica fails. In this case, the shadow that becomes the new primary

replica will then use it’s own timers to determine all time-outs and send appropriate indicators to
all shadow replicas.

m. The responsibilities defined above allow the creation of a replicated engagement
service. This service is able to withstand process failures to any of the replicas, including the
primary. Even in the case of a primary replica failure the engagement service capability will
continue uninterrupted. This replicated engagement service is transparent to clients. Clients do
not need to know how many Engagement Server replicas are cooperatively executing to provide
this fault-tolerant service.

33

Ex.1009 / Page 42 of 280
TESLA, INC.

3.1.3 Track Data Services Components

The Track Data Server component provides a system wide unique track number through
the Track Number Server, distributes correlated and filtered track data to all clients requesting
the information via the Radar Track Data Server (RTDS), and provides the sensor feedback on
frequency of update for priority tracks during track data overload conditions using the Sensor

Rate Server (SRS). All track data service components are summarized in Table 3.1.3-1 and
described in the following subparagraphs.

34

Ex.1009 / Page 43 of 280
TESLA, INC.

Table 3.1.3-1 Track Data Services Components

COMPONENT FUNCTION
Radar Track Data |+ Open client-server approach to radar track distribution
Server (RTDS) « Provides client specific track groupings, report rate selection,

and latency specification
. Distributed implementation for scalability and fault tolerance

Z:EZ?;Z%” » Provides single number source for all components

Sensor Rate Server |« Provides desired report rate for each Track to sensor simulator
(SRS) « Graceful degradation during track overload conditions

3.1.3.1 Radar Track Data Server (RTDS)

a. The RTDS was designed to serve as a flexible central distribution point for the radar
track data produced by HiPer-D Correlation and Tracking (HCT). Its primary objective is to
shield the radar track data recipients (e.g., displays, engagement review functions, etc.) from the
excessive volume of sensor data produced by the TCF function, yet still provide the data
necessary to ensure timely system operation.

b. RTDS provides an extremely flexible interface to its clients, allowing arbitrary
groupings of tracks for specific track report rates and delivery latency needs. For example, when
changing the range or center of a display, the display can request received tracks be displayed at
a one-second rate, while other tracks (not even on the screen) can be updated at a five-second
rate to reduce overall load on the display program. In the case of Auto-Special doctrine
processing, where low track latencies are crucial, the RTDS client could request to receive track
reports at a low latency setting for all those tracks in the vicinity of qualification. This results in
very high responsiveness for critical needs, while reducing overall system processing and
communications. It also provides more traditional query/response services in which the clients
receive data only when requested. This is put to effective use by the sensor simulator which
must, on notification of an engagement by WCS, retrieve kinematic data on the targeted object to

compute properly an intercept trajectory and generate the contacts for the simulated ownship
missile.

c¢. The RTDS is implemented as a replicated server. The replication provides fault
tolerance, as well as distributes the communications load among all the server replicas. In the
event that one of the replicas crashes, the remaining servers assume its load with no effect on the

clients.

3.1.3.2 CORBA Track Number Server (CTNS)

CTNS is the Track Number Server (TNS) software adapted to utilize CORBA-based
communication. The goal was to take an existing system having a sizable amount of

35

Ex.1009 / Page 44 of 280
TESLA, INC.

communication with other processes, both local and remote, and utilize CORBA'" as the
interface methodology. A brief description of the CTNS architecture and a performance
summary are presented.

3.1.3.2.1 CTNS Overview

a. The CTNS provides a central location for managing unique track identifiers. The
underlying concept is to have a single source (CTNS) maintain the track numbers, assuring that
no number is ever used to identify multiple objects, that numbers do not get “consumed” never to
be reused, and that numbers are reused on a least recently used basis. The following terms are
useful when discussing CTNS functionality:

(1) Process Group Communications Layer — provides communications group
membership services and supports communication between distributed groups.

(2) Process Group — A communications group implemented via the Process Group
Communications Layer.

(3) CTNS Group — The CTNS Broker, CORBA_TNS, and CORBA_TNS Bridge
processes that work together to perform the TNS functions.

(4) TNSS Client — A TNS Service (TNSS) client that uses CTNS services.

(5) TNSS Group — A process group that contains all the members of the CTNS group
and a particular TNSS client. There is one TNSS group for each TNSS Client.

b. For a TNSS client to acquire track numbers, it must join a TNSS group. This is
accomplished through a request to the CTNS. The TNSS client is considered by CTNS to be a
b single entity for track number messages. Figure 3.1.3.2.1-1 shows two clients that have
established communications with the CTNS through separate TNSS groups. The Process Group
Communications Layer provides the functionality for joining a TNSS group and sending
messages within a TNSS group.

1 CORBA - Common Object Request Broker Architecture is an infrastructure that provides the services necessary
for distributed objects to communicate without the user having to deal with network programming details. The
CORBA. standards are maintained by the Object Management Group (OMG).

36

Ex.1009 / Page 45 of 280
TESLA, INC.

TNSS Group

Second
TNS
Client

TNSS Group

Figure 3.1.3.2.1-1 CTNS and TNS Client Relationship
3.1.3.2.2 Overall Architecture

a. CTNS was implemented using Iona Technologies Orbix CORBA environment.
CTNS comprises the following modules:

(1) corba_tns process ~ This is the main program in the CTNS. It is a C++ program
which is started by system control, and is responsible for managing the Track Number database.
When a TNSS client signs on to the TNS process group, corba_tns creates an object for the
TNSS client. This object is used for managing the client’s track number data.

(2) ctns_broker process — An ANSI C program that manages TNSS client messages
with the CTNS. This program is started by system control.

(3) corba_tns_bridge subprocess — A C++ program that provides an interface between
corba_tns and the ctns_broker. This program is launched by ctns_broker. It acts as a bridge
between the process group communications based clients (coded in ANSI C) and the CORBA-
based server (coded in C++).

(4) Object Request Broker (ORB) - The middleware that establishes the client-server
relationships between objects. Using an ORB, a client can transparently invoke a method on a
server object, which can be on the same machine or across a network. The ORB intercepts the
call and is responsible for finding an object that can implement the request, pass it the
parameters, invoke its method, and return the results. The client does not have to be aware of
where the object is located or any other system aspects that are not part of an object's interface.
The ORB is a standard component of CORBA.

(5) orbixd daemon — This is an Orbix-furnished process that initiates communication
between corba_tns_bridge and corba_tns. It provides an initial object reference'” to

'2 Object reference — The CORBA Object Request Broker (ORB) uses object references to identify and locate
objects so that it can direct requests to them. As long as the referenced object exists, the ORB allows the holder of
an object reference (client) to request services from it. It appears as if the client is making a local procedure call,
when in fact the object can be located on a remote processor.

37

Ex.1009 / Page 46 of 280
TESLA, INC.

corba_tns_bridge so that corba_tns_bridge can make method invocations on corba_tns. Orbixd
is launched by system control. Orbix requires that orbixd be collocated with each instance of a
CORBA server. While this process is specific to Orbix, other CORBA packages furnish this
capability in one form or another.

b. The CTNS architecture is illustrated in Figure 3.1.3.2.2-1:

orbixd

h

‘ Object Request Broker W
Object Object Refs Object creation
Adapter Client Track Num data Track Num requests

Server Registration . Client Object Regs
Client Object data

UNIX
Pipe

TNSS Client
C

Track Number
Requests/Resp

Track Number
Requests/Resp
Y

Obiject Request Broker W

- Member of CTNS group

Figure 3.1.3.2.2-1 CTNS Architecture

3.1.3.2.3 CTNS /TNSS Client Communications

a. Communication between the CTNS group and a TNSS client is via the ctns_broker

module. This is a process group communications based ANSI C program that is responsible for
the following:

(1) Initiating TNSS group sign-on via the process group communications layer
(2) Accessing the Track Number Server database (corba_tns module) via the
corba_tns_bridge subprocess

38

Ex.1009 / Page 47 of 280
TESLA, INC.

(3) Providing a destination for TNSS client track number requests made via the
process group communications layer

b. Process group communications layer based applications are multithreaded in the
sense that the process group communications layer will issue multiple up-calls in parallel in
response to messages in multiple groups. After initialization, ctns_broker threads are created for
starting a TNS reference group and processing client messages for TNSS group sign-on.
ctns_broker threads are created for each TNSS client that joins a TNSS Group. The threads are
responsible for processing requests made by the TNSS client as well as monitoring the group
status. All communication between the ctns_broker threads and a TNSS client is via the process
group communications layer.

3.1.3.2.4 CTNS Group Communication

a. The interface to the CTNS server is defined with CORBA’s Interface Definition
Language (IDL)." Based on an IDL file, the Orbix IDL compiler generates modules for the
CORBA server (Object Skeleton code) and client (Client Stub code) to interface with the ORB.
The Object Skeleton code is the framework for the methods to access the objects specified in the
interface. The developer provides the code for these methods in the Object Skeleton. The Client
Stub code is complete when generated by the IDL compiler. This code provides the mechanisms
needed by the CORBA client to access the server’s objects, either remotely or locally, via the
ORB. The ORB is part of the underlying CORBA infrastructure that handles the communication
between the CORBA server and client. IIOP™ is the protocol used for the communication
between the CORBA server and client. The CORBA server and client are not required to be on
the same processor nodes; communication between the two processes will function regardless of
their locations due to the ORB.

b. The CORBA server responsible for managing the track number database is corba_tns.
It creates objects for each TNSS client that joins the TNSS group via ctns_broker. The
corba_tns_bridge subprocess (CORBA client) invokes these objects in response to track number
data requests from ctns_broker. corba_tns and corba_tns_bridge are not required to be on the
same processor nodes, communication between the two processes will function regardless of
their locations.

c. In order for communication to be established between the distributed members of the
CTNS group, the following must occur. When corba_tns starts up, it notifies orbixd via the
ORB, that it is ready to receive data requests. corba tns bridge requests orbixd to provide an
object reference for corba_tns. The CORBA client / server communication is now established.

'3 IDL - A language similar to C++, nsed to specify the objects and object methods to be utilized in accomplishing
certain tasks in a distributed environment. An IDL specification is independent of the language used to implement
either the client or the server.

' This is the Internet Inter-ORB Protocol, which specifies interoperability between different ORB implementations.
TOP is the standard CORBA communication protocol. Under IIOP, an object reference is provided in the CORBA
Interoperable Object Reference (IOR) format. The main components of an IOR are the host name on which an
object’s server resides, the port number on which the server is listening for IIOP traffic, and an object key, which
uniquely identifies an object within a server.

39

Ex.1009 / Page 48 of 280
TESLA, INC.

As long as corba_tns has an object established, and corba_tns_bridge holds a reference to that
object, corba_tns can process data requests from ctns_broker.

d. Upon receipt of a TNSS client data request, a ctns_broker thread sends the
information over a FIFO pipe. The corba_tns_bridge subprocess is blocked on a read of the pipe.
The corba_tns_bridge invokes a method on the specified TNSS client object corresponding to the
data request it receives over the pipe. The corba_tns method is invoked and data is exchanged
based on communication between the Client Stub code, ORB, Object Adapter, and Object
Skeleton code. This communication is transparent to the CORBA server and client.
corba_tns_bridge passes the data it receives back through the pipe to ctns_broker.

e. Initially, it was intended that the ctns_broker program be a CORBA-based C++
application that would communicate with corba_tns via the ORB. It would still utilize the
process group communications layer to communicate with TNSS clients. This was not possible
due to incompatibilities with C programs calling C++ programs (the process group
communications layer is written in C). To get around this obstacle, ctns_broker remained a
Spread-based C program. It forks a CORBA-based C++ subprocess (corba_tns_bridge), with
which it can communicate over a Unix FIFO pipe. This allows a standard C application to
communicate with the CORBA-based C++ application (corba_tns), although it adds an extra
level of complexity and inefficiency.

3.1.3.2.5 Startup Processing

a. At startup, the corba_tns program registers with orbixd to establish its location and
identify an initial object reference'” to the ORB. It then awaits a data request. After
corba_tns bridge starts up, it requests an object reference for corba_tns, which is provided by
orbixd. After ctns_broker accepts sign on to the group of a TNSS client, it notifies
corba_tns_bridge of the new client. corba_tns_bridge then uses its initial object reference to
request that an object be created for the new TNSS client. corba_tns provides a client object
reference to corba_tns_bridge for the new TNSS client. Any data requests related to this TNSS
client are to be made using the client’s object reference. The passing of data and any method

invocations between corba_tns and corba_tns_bridge are handled by the ORB and are transparent
to the programs.

b. After corba_tns has started, the ctns broker program forks a subprocess that starts the
corba_tns_bridge program. Ctns_broker establishes a pipe between itself and corba_tns_bridge
to provide for communication between the two programs. It then calls the gms_join routine
which initializes TNS process group communications using the HiPer-D DCS/GMS interface
layers. It then registers routines with the tns_if module to accept TNS domain sign on messages
and TNS domain messages, and signs on to the TNSS Group. Control is then passed to process
group communications, which calls the above-mentioned routines when messages arrive from a

TNSS client. Ctns_broker places each message it receives in a FIFO pipe to be read by
corba_tns_bridge.

' The initial object created by corba_tns is a factory object. When corba_tns_bridge binds with corba_tns, it
receives an object reference for this factory object. The factory object provides methods for creating and destroying
client objects. When a new client object is to be created, corba_tns_bridge invokes a method on this factory object.

40

Ex.1009 / Page 49 of 280
TESLA, INC.

c. When the corba_tns_bridge program is started, it tries to bind with the corba_tns
program via the ORB. This provides corba_tns_bridge with the initial object reference that it
needs to communicate with corba_tns. Once successful, corba_tns_bridge blocks on the CTNS
message buffer waiting for a message from ctns_broker.

3.1.3.2.6 Performance

a. The CTNS interface was implemented with the capability to provide new track
numbers to a client and to release a track number held by a client.

b. The performance of the CTNS interface was evaluated with the CTNS processes
located on the same node, as well as distributed on different nodes. Distributing CTNS requires
that corba_tns and orbixd be located on the same node. The CTNS was tested with multiple
TNSS clients, and the maximum track number capacity (10,000) was verified for at least one
client. To determine if the CTNS interface was functioning properly, the following
characteristics were observed as tracks were entered in the system:

(1) The log files for ctns_broker, corba tns_bridge, and corba_tns were evaluated to
verify that:
(a) ctns_broker signs on to a group properly and a client object is created for each
TNSS client that signs on to the group
(b) Messages from a TNSS client are formatted properly within the CTNS group,
the client object is updated correctly for the given message, and results of the message are
returned to the client properly.

(2) The display (Ximp) was observed to verify that the number of tracks in the system
corresponded to what CTNS had allocated.

(3) Modelc log file showed a normal distribution of track reports while CTNS was
allocating track numbers to the system.

3.1.3.3 Sensor Rate Server (SRS)

The SRS provides an opportunity to use the available sensor bandwidth in an intelligent way.
For example, there may be limits in sensor or processing capabilities due to hardware and/or
software configurations. These limits may be temporary or permanent. The SRS adapts the
requested sensor data load by collecting information on sensor capabilities, desired track report
rates, and track importance. It then maps requested rates and priorities onto sensor capabilities
and issues commands to the sensor(s), specifying the rate at which each track is to be reported.

3.2 Land Attack and C*I Subsystem Functional Description
A land attack capability provided by the ATWCS Real Time Launch Control function is a

new component added to the test bed for Demo 98. The path for OTH tracks to be entered into
the testbed is provided through the JMCIS and AACT components. The ABMX component and

41

Ex.1009 / Page 50 of 280
TESLA, INC.

the data brokers providing the interfaces to these systems are part of this subsystem. These
components are highlighted in Figure 3.2-1 and described in the following subparagraphs.

3.2.1 Advanced Tomahawk Weapons Control System (ATWCS)

a. The ATWCS has a number of responsibilities. First, it is responsible for over water
route planning for Block IT and Block Il Tomahawk Land Attack Missile (TLAM) strikes
against predefined land targets. Secondly, ATWCS aligns the missiles inertial navigator and
downloads flight software and mission data, enabling the missile to navigate to the target. It
responds to Vertical Launching System (VLS) and missile fault conditions, maintains weapon
safety and controls missile launch sequence. In addition, it responds to VLS and missile fault
conditions, maintains weapon safety, and controls TLAM initialization and launch. Overland
routes and terminal attacks are planned external to ATWCS by Tomahawk mission planning
systems either ashore, at Cruise Missile Support Activities (CMSA), or on command ships at
Afloat Planning System (APS) Detachments. These preplanned missions are stored in a library
maintained by ATWCS. The library may be updated via either magnetic tape, or satellite
communications from CMSA or APS sites.

b. ATWCS is composed of several major subsystems, or Computer Software
Configuration Items (CSCI). The over water planning function is performed by the Engagement
Planning and Control (EPC) CSCI, supported by the Command, Control, Communication and
Intelligence (C*T) CSCI which provides the near real-time surface track tactical picture. The
missile initialization and launch function is implemented in the Launch Control (LC) CSCI,
supported by the Mission Data Process (MDP) CSCI which provides the preplanned overland
route and target data from the mission library. A System Management (SM) CSCI has overall
contro] of the ATWCS system and provides general-purpose services such as mode (tactical,
training or test) control and operator alert processing.

42

Ex.1009 / Page 51 of 280
TESLA, INC.

POYSIYSIY s19%0.g BIe(PUE XINGV A wetseiq Woo[g §6 0Wd([-Z7°¢ 2nS1y

Ao 440 Tviisig

A TYIOIISOLAY ADS

v

- WIS ONAD -

SNOILOV
TOHLINOD

INOATS FTISSIW

SIN3INo

v1iva

OHAD ‘O3 ONI SV
~ o H3QMO !
B.'{oNans

A vivaai

M]

SNOILOY A
HOLVHIO

HIAANTS
e

IS LHOMS.
WIS FUSSIN

Ba ox oo mm

- [FUI40VL

&

HovdL i
=R vy

A K ;
30vadn Viva ami- B
MOVHL yvavy v

> .

HIGWNN -
MOVL W

A “

g A

w

H

s

A

RS N

16| @04nosay - LA

] fiqejesg . T

| 9oURIsjO} Nk - %

. Ayoedesn . P

Y @suewIOuad .)
57805 L

4

000 00D 000H e DMAD GOSN RODE 6000 DG NGO 0500 MAN WG OOM SN s 0008

43

Ex.1009 / Page 52 of 280

TESLA, INC.

c. In support of the 98 Demo objectives, the following architectural concepts were
investigated as part of the ATWCS element of the demonstration:

(1) Open systems design

(2) Distributed architecture

(3) Hardware independence (a.k.a., software portability)
(4) Shared resource management

(5) Support of real-time processing

(6) Fault tolerance

d. The LC CSCI was selected as the prototype effort for Demo 98. This decision was
based on the following facts. The LC:

(1) Has an architecture that is conducive to supporting the demonstration objectives.

(2) Has well-defined real-time and non-real-time requirements.

(3) Was developed using multiple programming languages and operating systems.

e. Figure 3.2.1-1 presents a high-level view of the architecture of the operational
ATWCS, with the LC CSCI shown decomposed into its three major processes, the LC Human
Computer Interface (HCI), the LC Executive (Exec), and the LC Real-Time (RT). LC HCI
provides the graphical interface to the LC operator; LC Exec is the “brain” of the LC CSCI,
where the state of each active Tomahawk engagement plan is maintained. The LC RT process
handles the communication between the ship’s Inertial Navigation System (INS) (the forward
and aft WSN-5s) and the VLS Launch Control Units (LCU).

44

Ex.1009 / Page 53 of 280
TESLA, INC.

g
g
=
)

DN

ATWCS LC CSCI Components

O other arwes cscis

) Other Combat 8ystem Components

Figure 3.2.1-1. High Level Architecture of Operational ATWCS

f. With the exception of the LC RT process, ATWCS CSCls are designed to run on
TAC-3/4 (HP) processors with the HPUX 9.07 operating system. Communication between
CSCIs (and LC processes) is implemented by Application Program Interface (API) software in a
client/server architecture on a local area network. The LC RT process is designed to run on an
HP 743 single board computer under the HPRT operating system. Communication between the
= LC RT processor and the ship’s INS and VLS are point-to-point NTDS interfaces. In order to
provide a degree of fault tolerance, the LC RT process is normally running simultaneously in two
separate HP 743 processors. This configuration allows automatic recovery from HP 743
processor failure, loss of communication with the primary WSN-5, or loss of communication
with either VLS LCU. However, multiple failures may require operator intervention to
overcome, or may be unrecoverable. Figure 3.2.1-2 depicts the ATWCS/HiPer-D integration for
Demo 98.

45

Ex.1009 / Page 54 of 280
TESLA, INC.

Goals
+ Performance
» Network design

(

« Portability

+ Java

* Resource Mgt S
- Startup, Fault tol. i

Launch

M;astie
Control R-T

LCRT
| Throughput 3

Nav Data
Throughput

—

Total Alignment
Throughput l

Envitohment § Missite
S;mu a’aon ;

Fiighi Model

1 Based on OPTEVFOR
certified simulation

2 Based on Tomahawk
Simulation Mgt Board
certified simulation

3 Not recorded

Figure 3.2.1-2 ATWCS Network Connectivity

g. The LC version 2.1 tactical software, one of the developmental builds for ATWCS,
was selected as the baseline for the Demo 98 advanced computing prototype. The functionality
of the other ATWCS CSCls and combat system components was simulated. These simulations

satisfy all of the LC interface requirements, but do not provide all of the operational functionality
of their tactical counterparts.

h. Demonstrating portability was approached in two ways. First, the portable
programming language, Java, was used for the LC HCI software because it allowed software to
be developed on one platform and run on many platforms. The second approach was to identify
the hardware dependencies in the LC RT software, and isolate those dependencies in such a way

that only a recompilation would be needed in order to run the existing software on a Sun/Solaris
platform.

1. Demo 98 also demonstrated the fault tolerance of LC RT in a distributed architecture,
integration with the ship-wide computing Resource Manager, adoption of network connectivity
among mission critical elements of the combat system, and simulation of the Tomahawk missile
flight. In accordance with the vision for future combat systems, the point-to~-point interfaces

between ATWCS and simulations representing the ship’s INS and VLS have, in the testbed
architecture, been replaced with network connectivity.

j. Figure 3.2.1-3 illustrates the architecture of the ATWCS component of the Demo 98

testbed. None of the supporting infrastructure (NTP, JEWEL, RM, etc.) is shown in this
diagram. As can be seen, a Nav Sim program running on an SGI processor, and a Nav Data

46

Ex.1009 / Page 55 of 280
TESLA, INC.

Server application running on a Sun simulated the ship’s INS. The baseline LC Exec and LC
HCI processes, along with non-real-time components of the other ATWCS CSCI simulations,
were hosted on a TAC-4 under HPUX 10.2. In addition to a Sun for each of the prototype LC
RT and LC HCI processes, another Sun was required to host the real-time components of the

supporting simulations.

SEARX SuvSolans 26 SuvSolans 26 SuvSolans 26

Basefne ATWCS
& Simuabon SW

Sruishon SW SuvSolans 26

TACARPLUX102

Figure 3.2.1-3 ATWCS Demonstration Testbed Architecture

3.2.2 Joint Maritime Command Information System (JMCIS)

a. The JMCIS was the source for non-organic track data (often referred to as over-the-
horizon or OTH data). JMCIS is an automated C*I system that interfaces to a variety of military
communications and computer systems. JMCIS is designed to provide tactical situation
assessment, data fusion and display capabilities to battle group and force commanders.

b. JMCIS is made up of a variety of networked computers. The central processor is
known as JOTS1. JOTSI receives data from other IMCIS components including those designed
to handle communications interfaces. JOTS1 performs data correlation then distributes that data
to all other JMCIS processors. All JIMCIS processors communicate using the JMCIS TDBMS
protocol over Ethernet LAN connections.

¢. InDemo 98, there was a JOTS1 processor and a JOTS28 processor. JOTS28isa
general-purpose processor with no predefined role in the JMCIS network. In HiPer-D, JOTS28
hosted the Advanced Battle Management and eXecution (ABMX) software (formerly Advanced
Power Projection Planning & Execution (APPEX)).

47

Ex.1009 / Page 56 of 280
TESLA, INC.

d. Demo 98 did not contain the JMCIS communication processors. An interface was
developed to drive JMCIS that allowed tracks to be introduced into JMCIS using an Over-the-
Horizon Targeting Gold (OTHGOLD) interface. OTHGOLD is an ASCII file format that
contains track position information. OTHGOLD files are read by the IMCIS ‘COM’ program
which passes the data to JOTS1. To simulate a moving target, a process called OTHSIM was
developed. This process is illustrated in Figure 3.2.2-1 below.

Scenario DIS PDUs

OTHGOLD
@ New/ Lost
Track
A new file is o
created & copied Rermote . Remote
every 15 seconds Copy v Execution

i » JMCIS

Figure 3.2.2-1 - IMCIS Stimulation

3.2.2.1 DIS to OTHGOLD Converter

a. The program dis2othg is a software filter that reads DIS PDUs (as specified in IEEE
1278.1 - 1995) as input from a Unix socket. It examines each PDU as it arrives to determine its
type. Ifthe PDU is an Entity State (ES) PDU, it proceeds to convert the appropriate PDU data
fields to OTHGOLD message components. The program writes a file to disk containing the
OTHGOLD messages (the “OTHGOLD file”) triggered either by a timer or a certain number of
message components having been prepared for writing. The DIS to OTHGOLD Converter
architecture is illustrated in Figure 3.2.2.1-1.

b. Dis2othg has a companion Unix shell script, copy_oth_gold.csh, that copies the
OTHGOLD file to a designated computer that then runs the JMCIS import_file program to get
the OTHGOLD data into the JMCIS system.

¢. The program and shell scripts coordinate their operations by setting and examining the
file protection bits of the OTHGOLD file. This ensures that dis2othg will not overwrite the
OTHGOLD file before it has been moved to the JMCIS computer or while the shell script is
doing its copy operation. This scheme also prevents the shell script from attempting to copy an
incomplete OTHGOLD file as dis2othg is writing it.

48

Ex.1009 / Page 57 of 280
TESLA, INC.

d. The usual arrangement is to have dis2Zothg and copy_oth_gold.csh running on the
same computer. But this is not necessary. As long as the disk file can be seen by the computers
that run the program and shell script, the desired data from DIS will be moved to JIMCIS.

$LOCAL_OTH_FILE SIMCIS_OTH_FILE
cp
PDUs
Ly Dis2othg
l Copy_oth_gold.csh [rexec J> $IMCIS_FUNCTION
$LOCAL NODE $IMCIS_NODE

Figure 3.2.2.1-1 DIS to JMCIS Interface
3.2.3 Advanced Battle Management and Execution (ABMX) System

a. ABMX is a force-level mission planning, preview, and battle management system that
allows carrier-based air wings to plan, visualize and assess strike plans prior to the launch of
aircraft. ABMX began as an Advanced Combat Technology Demonstration (ACTD) and was
successfully deployed for six months aboard USS Theodore Roosevelt (CVN-71).

b. ABMX offers a two dimensional (2D) display on the JOTS28, and a three-
dimensional (3D) display resident on a Silicon Graphics workstation. The ABMX 2D is used for
mission planning, fine-tuning, and battle management. The ABMX 3D display provides a 3D
battle display. ABMX 3D in Demo 98 was used for visual deconfliction during the digital CFF
sequence.

3.2.4 Data Brokers — Legacy System Interface

a. The key aspect of integrating legacy systems into the testbed is the ability to establish
intercommunication among all the components. This was accomplished in Demo 98 with the
AEGIS Air Correlator and Tracker (AACT) and the CI broker. AACT provides the interface
between C41, JOTS1, and the RTDS AAW components. The C’I broker provides the interface
between HiPer-D combat systems and ABMX and Naval Surface Fire Support Simulator (NSFS
Sim). A track broker was developed to interface between AACT and the HiPer-D Track
Correlator and Filter.

49

Ex.1009 / Page 58 of 280
TESLA, INC.

b. This section documents the IMCIS / AACT / HiPer-D interface architecture and
software used in the HiPer-D 1998 Demonstration.

3.2.4.1 JMCIS/AACT/AAW Interface

Real-time track data and OTH track data flow through HiPer-D along two different paths.
Real-time tracks flow from local radar sources, through the ATCF, to the RTDS, which in turn
distributes them to its clients. JMCIS is the source for OTH tracks which are forwarded through
AACT, where they are associated with real-time tracks. AACT uses the CDX track file to store
both real-time and OTH tracks. The CDK track file record includes a field which is used to keep
the OTH and real-time data separately identifiable. The interface to AACT was implemented by

developing processes that accessed the CDK track file. This architecture is illustrated in Figure
3.2.4.1-1.

AACT CDK to HiPer-D Interface

Real-Time Tracks othrt_sender.c H—»

oTH unxee | OTH Data
Tracks Distribution
» readoth_|s.C

Real-Time

A

ADS_encoder

JMCIS

Csi

Y

JMCIS_decoder CDK Track

File

OTH Tracks

UNIXIPC

HiPer-D to CDK Interface
Figure 3.2.4.1-1 JMCIS / HiPer-D Interface

3.2.4.2 Real-Time Data AAW Track Path

a. AACT receives real-time tracks from the RTDS through the HiPer-D to CDK
Interface shown in Figure 3.2.4.1-1 above. This interface stores the real-time tracks in the CDK
track file. The Virtual Hypothesis Correlator (VHC) process in AACT finds associations
between these real-time tracks and the OTH tracks that are received from JMCIS.

b. The RTDS interface is implemented using HiPer-D support libraries, which are
written in ANSI C. The CDK track file is accessed using CDK libraries, which are written in
C++. C++ routines cannot easily call C routines. This forces the HiPer-D to CDK interface to
be composed of two modules that communicate using a Unix Interprocess Communications
(IPC) mechanism known as a Unix pipe.

c. The module on the ANSI C side, r#dsrt_c, registers with the RTDS as a client and
begins receiving real-time track information. It packages this information into the appropriate

50

Ex.1009 / Page 59 of 280
TESLA, INC.

track data structures (i.e., drop track, new track, or track update) and forwards them across the
Unix pipe to the C++ side. The module on the C++ side, readrt_c, listens to the Unix pipe and
decodes the messages that are received. The CDK track file is then updated with this
information. Data conversions are made, as data is stored in the CDK track file to adapt for
different units used by the RTDS and CDK. The ads_encoder process periodically scans the
CDK track file and sends any real-time tracks that it finds to IMCIS.

3.2.4.3 OTH Track Data Path

a. The OTH track reports are forwarded by JMCIS to the CDK track file via the JIMCIS
Combat System Interface (CSI) segment interface developed by International Research Institute
(INRI). The CSIis composed of an MDX process, which accesses decoder, and encoder
processes, which are defined by the MDX user. AACT defines the ADS encoder and the
JMCIS decoder routines to MDX. The JMCIS decoder process decodes the messages received
from JMCIS and writes the information to a file on disk. This disk file is then read by the VHC
process, which performs the association and inserts the OTH tracks in the CDK track file. The
CDK to HiPer-D Interface, as shown in Figure 3.2.4.1-1 above, reads these tracks from the CDK
track file and distributes them to clients in HiPer-D

b. The readoth_Is component of the CDK to HiPer-D Interface is written in C++, and the
othrt_sender component is written in ANSI C. These two processes use a Unix pipe to
communicate. Readoth Is periodically scans the CDK track file and picks out the OTH tracks by
examining the rack_type field for each track. This module keeps track of the existing OTH
tracks to be able to determine if any of the tracks processed on the current scan are new, updated,
or missing. Once this is determined, the appropriate new track, track update, or drop track is sent
via the Unix pipe to othrt_sender. Othrt_sender listens on the Unix pipe, decodes messages that
come across, and broadcasts them using HiPer-D's OTH data server communications group.

3.2.4.4 Aegis Air Correlator Tracker (AACT)

a. AACT interfaces between HiPer-D and JMCIS using the JMCIS CSI segment. When
JMCIS transmits updates, AACT receives the update and saves it in a temporary data store.
VHC uses an advanced correlation algorithm to associate JMCIS data with Real Time tracks
from the Aegis combat system. These associations are placed in the AACT track file where they
can be displayed by the Common Display Kernel (CDK) display. AACT periodically scans the
AACT track file and sends real time track information to JMCIS.

b. The AACT track file contains both real time and JMCIS tracks. This track file
became the focal point of the interface between C41 and AAW subsystems. This is illustrated in
Figure 3.2.4.4-1 below.

51

Ex.1009 / Page 60 of 280
TESLA, INC.

> Pre-existing T2A Components /v
New for T3 Demo

|] JMCIS
T anct

IMCIS S

I
}

Display

{
Y
5?
&

Figure 3.2.4.4-1. AACT to AAAW Interface

c. Every 20 seconds, the READOTH process scans through the AACT track file looking
for IMCIS data that has been placed there by the VHC process. When it finds new track data, it
acquires a HiPer-D track number from the HiPer-D TNS and assigns that number to the new
track. It then forwards that track number to the HiPer-D TCF process. The TCF forwards the
track to the RTDS which distributes it to other HiPer-D components. READOTH maintains a
list of IMCIS tracks that it has passed on to the TCF. Ifit fails to see a track in the AACT track

file during a scan, it assumes that the track has been dropped and issues a drop track message to
the TCF.

d. The READRT process is a client of the RTDS and receives all tracks issued by the
RTDS. READRT takes these tracks and places them in the AACT track file. This provides a
path for passing real time data back into JIMCIS.

e. During Demo 98, all inputs into both JMCIS and HiPer-D were scripted using
HiPer-D’s simulation capability. These scripts were deliberately designed so that IMCIS would
not report tracks that would also be seen by the combat system. No correlation of IMCIS tracks
and real time tracks was performed. (This was done because the architectural issues associated
with introducing non-real time tracks into a real time combat system are very complex, and could
not be resolved in the limited time available.) The architectural issues associated with properly
integrating the combined data are left for future efforts.

3.3 Simulation and Support Components

One of the technical objectives for Demo 98 was to add a physics based DIS compatible
wraparound simulation capability. This capability would allow the testbed to run more
operationally oriented scenarios and would provide the ability to interconnect with other
geographically dispersed organizations for future testing and demonstrations. The Environment
Simulation components and other simulation components presented in this section meet that
objective. The support components include time synchronization, near real time instrumentation,
and system startup. These components are highlighted in Figure 3.3-1. The support components
are summarized in Table 3.3-1.

52

Ex.1009 / Page 61 of 280
TESLA, INC.

6F

pa1ySyySig siwduoduwo)) Jreddng pue vonemung s weideiq Yooy g6 o [-¢°¢ 33y

uoHEUIS

SNOILOV

TOULINOD | m i

ffscomes 449 1vlioia

gffomoe TYIDIASOLNY AdS

INTL

‘034 'ON3 SV

JEENTRENT R

1va
YAV

Ny,

NEELn

w%mjo

TWvOolL

AUIAYAS

Y1Ya HLIO:

TIVOolL

mb%m:o

WIS LHOME
1 IS JUSSIW

1233

1B\ 801n0OSAY -
fngeress .

{ ooURlI9|0} Jjne -
] Ajoedes .
aouBWLIOMad

57805

53

Ex.1009 / Page 62 of 280

TESLA, INC.

55

Ex.1009 / Page 63 of 280
TESLA, INC.

Table 3.3-1 Support Components

COMPONENT FUNCTION
Simulation Control | . Scenario Input Driver
(SIMCON)
Sensor Simulator « Dynamic Track Generation Capabilities

+ Missile Track Generation for Intercept Simulation

» Distributed Implementation

+ Provides Ownship Speed and Course at Selectable Rate
KINED + Generates Periodic Reports on Tracks

+ Distribution Implementation

WCS Simulator « Minimal Simulation of Aegis WCS
+ Initiates Missile Fly-out Upon Engagement
« Probabilistic Kill / No Kill Assessment Decision
« Client of RTDS
IDU Simulator « Provides ID data to AEC upon Quick ID request or manual

change of ID by IDU Sim operator

» Client of RTDS

System Control + Controls start-up of Track Data Services components

« Monitors component health

« Automatically restarts components on failure

» Provides “plan language” for specifying component
interdependencies and start-up order

« Provides single point operator interface

3.3.1 Environmental Simulations (EnvSims)

a. Environmental Simulations (EnvSims) provide a wrap-around simulation capability
with which to drive the Advanced Computing testbed. The EnvSims in Demo 98 differed from
those used in previous demos in that, in Demo 98, physics based models were used. Secondly,
the simulations complied with IEEE Standard 1278.1-1995 for Distributed Interactive Simulation

(DIS) - Application Protocols. Complying with the standard will enable the EnvSims to interact
with other DIS simulations off-site.

b. The EnvSims are broken down into the three categories listed below.

Entity Simulations

Platform Generator
Missile Generator
NavSim & Helm Control
SM-2 Flight Sim
Tomahawk Flight Sim

54

Ex.1009 / Page 64 of 280
TESLA, INC.

Sensors

Multi-function Array Radar (MFAR)
OTH Filter
DIS to Rainform Gold Converter

Displays

Truth Display
Vertical Profile Display

c. Figure 3.3.1-1 shows the EnvSim elements.

Sanario = Engaegsmeni Mission Daie Tomahawk
— 1S 1 Aqund v N) o -
Ganerator zz;c ;:E:E Planning Sim Proe. Sim Flghd Sim »
| | 3
7 Dneplay et | B Toemehawk
1 el - = ;
Eﬁ Conired -—--———r! WS | | f.::‘Xm Mliss e Moced

&
¥

W I |.'\.-‘.L.j ‘ T l
L h

| | Platorm | o] | . :
Ganerator _. ATWCS ! HSFS Sim
Kingd o
bhisite e 1" - 14 -.--lnupm
R S vy Wl K
| I -
M;!\.H Symlam unchor lnel She-2
SISTIW | __} TaCFIRHE
RADD- Procesaol tinals
Vi lioel Prutle : " T ———
Chsplay [] ‘ 15U Sim }‘ r . m;-h-u.:
Envnounent S| | Tomanawh 8w | [===roe s mmm] [a0U PerD Sim | [NSWC HPerD S
— e hasees
Ringraums dwwwlpre Ly S oo Meliver NEWC D
Al T FITE I e e MIRINAUILCIE D te

Figure 3.3.1-1. EnvSim Elements Using DIS
3.3.1.1 Entity Simulations
a. Platform Generator: The Platform Generator simulates all the background tracks in
the scenario and initializes the NavSim. It reads in a data file specifying what platforms are to be

simulated and their waypoints. During a scenario, a track follows the path defined by the
waypoints. Tracks can perform the following actions:

55

Ex.1009 / Page 65 of 280
TESLA, INC.

(1) Change speed or course
(2) Change altitude
(3) Change IFF Modes
(4) Turn radars on or off
(5) Change radar modes
(6) Launch anti-ship missiles (ASMs)
If the appropriate command line argument is given to the Platform Generator at start up,

the Platform Generator will generate a Set PDU and send it to the NavSim. The following data
is included in the Set Data PDU:

(1) Force ID

(2) Entity ID

(3) Entity Kind

(4) Domain

(5) Country

(6) Category

(7) Subcategory

(8) Specific

(9) Extra

(10) Geocentric Coordinates —x, y, and z

(11) Velocity in Geocentric Coordinates
The NavSim in generating the ES PDU uses all the data in the Set Data PDU. The

Platform Generator sends out the Set Data PDU once every 5 seconds until the NavSim responds
to the Set Data PDU with an Acknowledge PDU.

b. Missile Generator: The Missile Generator simulates ASMs that have been launched
at ownship. The ASMs use proportional navigation during flight and are of four types:

(1) Type I ASMs have a low cruise altitude and are subsonic
(2) Type II ASMs are sea-skimmers and subsonic
(3) Type III ASMs are high-divers and supersonic

(4) Type IV ASMs are sea-skimmers and supersonic

56

Ex.1009 / Page 66 of 280
TESLA, INC.

¢. NavSim & Helm Control: Together, the NavSim and Helm Control represent
ownship. The NavSim is based on a Tomahawk WSN-5 simulation that has been certified by
Operational Test and Evaluation Force (OPTEVFOR). The NavSim generates position, velocity,
and attitude data for ownship. The attitude data is sent to the NavSim Data Server at a 16 Hz
rate. Position data is updated at a 1 Hz rate. The NavSim also generates an Entity State PDU for
ownship.

The Helm Control simulates the ownship helm and is used to send helm commands to the
NavSim. The commands are sent using a Set Data PDU. Figure 3.3.1.1-1 shows the Helm Panel
Display.

Current Spr.l - 12 kts j Hidg — 348 Deg T .

'-.......‘CmetoSpeed (kts) l
. i * Accelération I)

'A'_"""Turn' D’irecfiéh' A Port ¢ Starboard

- Turn Raté | DT o

........

- "No Helm Command Sent- -

, I Send Helm Changes ' Exit o

Figure 3.3.1.1-1 Helm Panel Display

d. SM-2 Flight Sim: The SM-2 Flight Sim simulates the SM-2 surface-to-air missile
once it has been launched. The SM-2 Flight Sim receives launch commands from the AEC.
After launch, the SM-2 Flight Sim generates an Entity State PDU during flight and uses
proportional navigation to intercept the target.

57

Ex.1009 / Page 67 of 280
TESLA, INC.

e. Tomahawk Flight Sim: The Tomahawk Flight Sim simulates the Tomahawk Cruise
Missile once it has been launched. The Tomahawk Flight Sim decouples the missile’s flight into
vertical and lateral equations of motion. The vertical equations of motion describe the missile’s
dynamics in the longitudinal plane as it transitions from its current inertial altitude above sea
level to its commanded inertial altitude. The lateral equations of motion update the missile
latitude and longitude as the missile navigates along the great circle path between waypoints.

The Tomahawk Flight Sim initiates modeling of the missile’s trajectory at the end of
boost conditions. The Tomahawk Flight Sim models the missile in one of 3 flight conditions:
performing a waypoint turn, flying the great circle distance between waypoints, or performing a
maximum acceleration pull-up terminal maneuver.

The Tomahawk Missile Model used in Demo 98 was written in C. It is currently in use
by Scenario Generation and Reconstruction (SG&R), the embedded Tomahawk trainer in
ATWCS, and by the Commanding Officers Simulated Tactical Display (COSTD), a BETT-
compatible submarine training system. The C missile model is derived from the Fortran

Tomahawk missile model, which was certified by the Tomahawk Simulation Management
Board.

3.3.1.2 Sensors Simulations

a. MFAR: The MFAR is the source of the real-time track data in the system. The
MFAR sorts all DIS ES PDUs to determine potential tracks. The MFAR determines which
tracks are detected based on radar horizon, sea clutter, standard atmospheric attenuation, specular

multipath, and the track’s radar cross section. Once a track is detected, it is passed on to the
MFAR Broker.

b. OTH Filter: Together, the OTH Filter and DIS to Rainform Gold Converter are the
sources of non-real-time tracks in the system. When the OTH Filter receives an ES PDU, the
OTH Filter determines if the entity is ownship, an OTH sensor or an OTH track. If the entity is
an OTH frack, the OTH Filter determines if it is above the radar horizon of ownship and any
OTH sensors. Once the identification is made, the OTH Filter determines whether to send, or
not send, the ES PDU to the DIS to Rainform Gold Converter. Table 3.3.1.2-1 provides a
criteria matrix for sending the Entity State PDU.

Table 3.3.1.2-1 Criteria to Pass Entity State PDU

OWNSHIP RADAR OTH SENSOR RADAR HORIZON
HORIZON Above Below
Above Not Sent Not Sent
Below Sent Not Sent
58

Ex.1009 / Page 68 of 280
TESLA, INC.

It should be pointed out that the OTH Filter is receiving ES PDUs on the same port as the
Platform Generator, Missile Generator, MFAR, SM-2 Flight Sim, Tomahawk Flight Sim and
NavSim. The ES PDUs sent to the DIS to Rainform Gold Converter are sent on a different port.

The TACFIRE Processor sends the OTH Filter an Event Report PDU containing data
received from Remote Digital Data Link (RDDL) in a Call for Fire (CFF) Message. The OTH
Filter uses the data in the Event Report PDU to generate an ES PDU which injects the CFF track
into the system as an OTH track.

3.3.1.3 Displays

a. Truth Display: The Truth Display shows the location and speed of the tracks in the
EnvSim, based on the ES PDU. The Truth Display operates in either absolute or relative mode.
In absolute mode, the tracks are displayed on a grid based on their longitude and latitude. In
relative mode, the tracks are displayed based on the range and bearing from a specified track

(polar display). Examples of the absolute mode display and relative mode display are shown in
Figures 3.3.1.3-1 and 3.3.1.3-2 respectively.

59

Ex.1009 / Page 69 of 280
TESLA, INC.

.

Hooked Trk: 2002

A—-—-—'_’.—('i‘"“
P AT b

i o e o s o e

2001
»

TH - 2002 1 DDY63

1lat 36:03:25.06 N

Ing 122:18:56.80 W
Rzt

C: 270 Degy

3:20 Kts

y
{
3
K
%
:
.
o
]
3
¥
i
¥
%
H
%
%
:
§
i

S o i s o e i o e i e e s

e e e e ot
o Bl AR Al S b LR]

RENTXXATETX T ATATRXTA

1
4]
4
i
11
]
1

+4Grid ‘Origin 2 1at 356:07:35:85 N Dey : Lng 122:00:03.50 W Deqy
Grid Size ¥ertical £.0 nmi f Horizontal 4.8 nmi / Syuare D.10D Degrees

L

Figure 3.3.1.3-1 Truth Display in Absolute Mode

60

Ex.1009 / Page 70 of 280
TESLA, INC.

o
S
=]
~
£
T

=
2

=

8
x

Figure 3.3.1.3-2 Truth Display in Relative Mode

61

Ex.1009 / Page 71 of 280

TESLA, INC.

b. Vertical Profile Display: The Vertical Profile Display displays the range and altitude
of selected tracks from a specified track which, in this case, is ownship. The range from ownship
is shown on the x-axis and the altitude above ownship is shown on the y-axis. The Vertical
Profile Display uses the ES PDUs as its source of data. An example of the Vertical Profile
Display is shown in Figure 3.3.1.3-3.

000 Tt _ e e ———————————
']] 1] [}
1] 1 |
1 ! 1 !
I 1 1 1
4500 ft. o el L !
I ! I i
H 1] H
1 I 1]
000 o oo Ao e e e X
\ | i !
]] 1 1
] 1 1 1
BEOO T - - - o e e e e)
I H] i
1 1 1 1
3 i ¥ I
§] t]
3000F Am e e — o e e e .
1] t] t
t \ I 1
1 1 1 1
]] I]
2500 ft)_ _ _ - _______ J o e - d o e Lo e)

] 1
i \ l :
1 [} 1 1
! 5100 /10 ' [
20007t - oo R —h e iieees !
I] 3
[} 1 il
H 1 1
15081t - oo oo TSI § S e ;
S X I
t 1]
1 1 1
[N SOOI 1 DU SN
I t ll
I 1 1
I] t
] 1 1
i 1 1
''''''''''' b Bl di o S et alie £ bl el il il it ittt §
1 t I
I 1 I
} smauu#s \ '
L 1]
16.0 nmi 32.0 nmi 48.0 nmi 64.0 nmi

Elapsed Time = 61.3 sec
Figure 3.3.1.3-3 Vertical Profile Display
62
Ex.1009 / Page 72 of 280

TESLA, INC.

3.3.2 Simulation Control (SIMCON)

a. The SIMCON program performs two major functions. It reads a specially prepared'®
script file from disk that it uses to schedule creation of tracks and maneuvers according to
absolute or relative timing information contained in the script file. It can also read DIS PDUs to
accept a command to create a ring, or torus, of tracks. This PDU interface and functionality are
new for Demo 98. Both modes of operation produce various HiPer-D internal messages that are
broadcast to appropriate communications groups.

b. If SIMCON is to run only a script, it will terminate normally after it has finished all
operations associated with the script. When SIMCON is to read PDUS, it will run indefinitely.

3.3.2.1 Modifications Description

a. Changes were made to the SIMCON program to allow it to create a ring of tracks in
response to the newly defined DIS Ring of Death (RoD) Program Data Unit (PDU). Only the
modifications to the functionality of SIMCON are described here. The new functionality is
limited to the PDU interface and processing of a new type of PDU, the RoD, which is defined
and used only by HiPer-D.

b. To receive PDUs, SIMCON creates a thread that opens a UDP socket and listens to a
specified port and IP multicast group address. When it receives a message, it decodes the PDU
header. If the PDU is a RoD PDU, it will decode the rest of the PDU. The RoD PDU is
considered a request to generate a ring or torus of tracks. SIMCON will only handle such
requests one at a time. The PDU interface thread will never exit.

¢. To create the tracks described in the RoD PDU, SIMCON will create another thread
that builds the data structures needed to create a new local track and puts them into the SIMCON
list that holds time-ordered new local track requests. When the thread has created all its new
local track requests and put them in the list, the thread exits normally.

d. If a second request arrives before processing of the first request (which includes
passing information to SENSIM for all tracks associated with the first request), the second
request will be rejected and never processed. A mutex is used to prevent simultaneous
processing of multiple RoD requests.

3.3.2.2 Restrictions

a. When SIMCON is executed only to run a script, the program will terminate after it has
fulfilled all the directives of the script. To run another script at a later time, one must run
SIMCON again. This can be done without disrupting an ongoing HiPer-D run.

b. When SIMCON is instructed to read DIS PDUs it will not terminate; it will run
indefinitely until aborted externally or through an error. It is possible for SIMCON to run a

'8 SIMCON reads a binary file that is created by running a Per script, simce, against an ASCII text file. This text
file is in an easily read table format that defines new tracks, track drop, and track maneuver operations.

63

Ex.1009 / Page 73 of 280
TESLA, INC.

script and listen for PDUs, but this execution of SIMCON cannot subsequently be used to read
another script. However, multiple copies of SIMCON can be run simultaneously so a second
copy can be started to read a script file if desired.

3.3.3 Kinematics Daemon (KINED)

KINED generates periodic reports on tracks. It receives track initiation and destruction
information from the SENSIM process and assigns unique numbers, obtained from the Track
Number Server, to new tracks entered in the system. Once established, tracks are updated at a
periodic rate specified by the Sensor Rate Server (SRS). KINED also inserts ownship data into
the system. It does not, at this point, support any maneuvering of ownship. Multiple KINED
processes may be run on different machines to distribute the load.

3.3.4 Weapons Control System Simulator (WCS Sim)

WCS Sim interfaces with the SENSIM to initiate and terminate engagements, and to
receive notification of their completion. The WCS simulator randomly predetermines the
success of the engagement and notifies SENSIM of this when the engagement is initiated. The
success/failure is based upon a random number generator that results in an 85 percent
probabilistic kill.

3.3.5 Identification Upgrade Simulator (IDU Sim)

IDU Sim provides identification information when it receives a quick identification
request from the AEC engagement initiation processing. These requests are made upon track
entry into the system and upon initiation of an engagement sequence for a particular target.

3.3.6 NSFS Simulator (NSFSsim)

a. NSFSsim interfaces with the Engagement Server and the C31 Broker processes in the
AEC system as part of the land attack engagement sequence. It additionally receives OTH
(Over-the-Horizon) track data from the OTH Data Server (OTHDS) that supplies positional
information in support of ballistic trajectory calculations.

b. The Engagement Server delivers the initiating message of the land attack request to
NSFSsim. This component then performs gun engagement checks and time-of-flight (ToF)
calculations against the selected OTH target. NSFSsim then initiates a simulated land attack
sequence by representing the firing of a 5” gun projectile via a Character-Readout (CRO) textual
display to the operator. The primary purpose of this capability is to provide a basic
approximation of the progress and status of the engagement sequence as might be witnessed at a
prototyped operator position. Target data, a countdown ToF field, and engagement status data
are represented in this output window. Subsequent spotter corrections are received by NSFSsim
who recomputes the required parameters, issues the reply back to the C31_Broker and
commences follow-on firing sequences.

64

Ex.1009 / Page 74 of 280
TESLA, INC.

3.3.7 Digital Call For Fire Support Components

There are three support components that are part of the Digital Call For Fire capability.
The Remote Digital Data Link (RDDL), the Tactical Fire Direction System (TACFIRE)
Processor, and the C31 Broker.

3.3.7.1 Remote Digital Data Link (RDDL)

a. The RDDL simulates the Forward Observer/Forward Air Controller (FO/FAC) and
communicates with the TACFIRE Processor via a TCP/IP connection using TACFIRE Fixed
Formal messages.

b. To initiate a Digital Call For Fire sequence, RDDL sends a FR GRID message
containing target position information. When the gun engagement is commenced and each time
a round is fired, a “shot” message is received from the TACFIRE Processor to let the FO/FAC
know that a round has been fired. Five seconds before round detonation, RDDL receives a
“splash” message to cue the FO/FAC that impact and detonation is imminent. If the round is off
target then RDDL will return a subsequent adjust (SUBQ_ADJ) message containing how to
place the next round. Once the spotting round is on target, RDDL sends a SUBQ_ADJ message
with the Fire For Effect bit set initiating several rounds from the ship onto the target. When the

target is destroyed RDDL sends an EOM_SURYV message declaring the target destroyed and the
Call For Fire mission complete.

3.3.7.2 TACFIRE Processor

a. The TACFIRE Processor is a message protocol converter that converts the Fixed
Format TACFIRE messages received from RDDL to the internal HiPer-D message format and
converts HiPer-D message formats received from the C31 Broker into Fixed Format TACFIRE
messages sent to RDDL. TCP/IP connections are used for both communication channels.

b. The TACFIRE Processor receives the FR_GRID message from the RDDL and uses
the information to send an Engagement Request message to the C31 Broker. Each time a round
is fired, a Time of Flight (TOF) message is received from the C3I Broker. The TACFIRE
Processor then sends the “shot” message to RDDL and at the appropriate time (five seconds
before impact) sends the “splash” message to RDDL. The TACFIRE processor receives the
subsequent adjust message from RDDL, converts to HiPer-D message format, and transmits it to
the C31 Broker. The same processing occurs with the Fire for Effect and End of Mission
message.

3.3.7.3 C3I Broker

The C31 Broker provides ownship and Call For Fire request information to ABMX, ties
the Call for Fire engagement request to an existing system track, passes the engagement

information onto the Engagement Server, and returns Time of Flight messages back to the
TACFIRE Processor.

65

Ex.1009 / Page 75 of 280
TESLA, INC.

3.3.8 System Control

a. System Control functions provide automated assistance in the start-up, restart, and
monitoring of the ATCF processes that are distributed across the computing environment. These
facilities include "agents" and "node managers" that reside on each machine, as well as a master
"controller" that implements a planned configuration. There is also a simple shell-like language
for describing the planned configuration (typically called "the plan").

b. On start-up, the controller reads and verifies the plan. It then establishes agents on
each machine (via the node managers), and doles out the appropriate portion of the plan to each
of the node managers. It then coordinates the overall start-up, assuring that applications
dependent on others are started after the components upon which they depend. The controller
also provides a simple user interface for monitoring system operation and effecting changes
(such as shutdown or start-up of a component).

¢. System Control provides for managing transitions that result from failed applications.
On failure, an application can be automatically restarted. In cases where it cannot be replicated,
and had dependent applications, those too would be automatically restarted. If however, it had a

replica that did not fail, the failed application would be restarted with no action on the dependent
components,

3.3.9 Clock Synchronization

a. A key to distributed processing approaches, and the use of COTS equipment in
mission critical systems, is the coordination of all the individual clocks located in the system. A
single time base is necessary for many of these applications and is required for instrumentation
of a distributed system. In order to obtain a single stable time base, a time service needs to be

provided. This time service includes the provision of time, the synchronization of time, and the
management of the time service.

b. For this demonstration, the Network Time Protocol (NTP) was used to achieve
synchronization of time. The NTP is a distributed clock synchronization protocol that provides
for the coordination of interconnected computer clocks using the existing communication
infrastructure. Dr. David Mills at the University of Delaware developed NTP for use by the
Internet community. NTP calculates clock offsets between two peer clocks, and provides
corrections to the appropriate clock system calls of the operating system. NTP uses a two-way
exchange of time information to estimate the actual clock offset better. In addition, data filtering
and clock selection algorithms are used to improve performance and stability.

c. For Demo 98, NTP Version 3 was installed on all platforms. The Alphas, Suns, HPs,
and SGIs used the public domain version of XNTPD, the NTP daemon. A synchronization sub-
net was constructed involving a single server with a backup. All other machines were clients to
either the server or the backup.

66

Ex.1009 / Page 76 of 280
TESLA, INC.

3.3.10 Near Real-time Data Collection/Display (JEWEL)

a. JEWEL is a distributed measurement tool developed by the GMD National Research
Center for Information Technology in Germany. JEWEL consists of a toolkit for low-
interference on-line performance measurement, integrated with an adaptable graphical
presentation facility, and a generic interactive experiment control system. Extraction points are
inserted into the applications where measurements are to be made. When these extraction points
are activated and executed, the appropriate data is collected, time-stamped, and placed in a
shared memory buffer via the JEWEL internal sensor. The JEWEL external sensor retrieves the
data and transfers it over the network (Ethernet used for this demonstration) to the JEWEL
collector or Graphical Presentation System (GPS), where the data is then graphically displayed in

a manner determined by the experimenter. The JEWEL instrumentation configuration is shown
in Figure 3.3.10-1.

\§\\%: \s N %\\
\%&, \é& §.5$ {sﬁi %

s e

%
A
e

R E ShatiaE R
ﬁ*&% A %5\“ e
N *«\ < \”\:‘Q&» T \\
\g& wQ\ AR ’% N B8 3

Ethemet .

//
/./
" s J

awsmanes “Tactical LAN
— Data Collection LAN

Figure 3.3.10-1 JEWEL Instrumentation Configuration

b. In order to provide robust instrumentation in the dynamic distributed environment of
the testbed several significant improvements have been made to the Jewel package. The basic
Jewel architecture is shown in Figure 3.3.10-2. There is a Jewel daemon component that resides
on each host where an instrumented application might be placed. The Jewel daemon is

67

Ex.1009 / Page 77 of 280
TESLA, INC.

responsible for starting up any other Jewel components which need to run on the host. The
component which sends control orders to the Jewel daemons is the Experiment Control System
(ECS) component. The ECS component reads in a set of configuration files and then orders the
startup of components as defined in these files. The key components that the Jewel daemon
starts up are.

(1) The External Sensor which creates a shared memory queue for instrumentation
events and reads events placed in the queue and forwards them to any of the other Jewel
components which need the events.

(2) The Graphical Presentation System (GPS) components which start up and control
the Jewel X/Motif instrumentation displays.

(3) The Collector components which serve as a broker interface for forwarding
instrumentation events to external applications. (The Collector serves as the interface to the
Resource Management components). In addition to these components, there is a library called
the Internal Sensor which is linked into each instrumented application through which the
application sends timestamped event data to the shared memory queue.

| HostN / ECS
Host A /J/ GPS
Application |'ternal JEWEL |a]
Sensor Daemon
/ GPS
®
g // |1
L1 JEWEL
. [internal External U " collector
Application Sensor Sensor [
— RM Monitoring¢
interface

Figure 3.3.10-2. Jewel Instrumentation Architecture

c. The most significant improvement made was to the shared memory interface between
the Internal Sensor and External Sensor. The original Jewel design required that all of the Jewel
infrastructure components be started and running prior to the applications being run. This has
been changed so that it does not matter whether the applications or the Jewel components are
brought up first. Further, the Jewel components can also be brought up and down during a run
with no impact on the behavior of the instrumented applications. The shared memory queue
implementation has also been enhanced to allow larger message sizes and more messages to be
stored. Much more reliable shared memory mutex capabilities have been implemented to ensure
that readers and writers are not accessing the memory simultaneously. Also, the format of the
instrumentation event messages have been enhanced to include the IP address of the host and to
allow larger event message sizes.

d. The Collector component has also been improved to allow it to better serve as a pass-
through for providing instrumentation events to external applications. To accomplish this, the
XDR (External Data Representation) interface between the Collector and external components
was considerably simplified. Also, an interface library was developed which allows a client to
the Collector to request that only specific events are to be forwarded. This has greatly simplified

68

Ex.1009 / Page 78 of 280
TESLA, INC.

that the interface for receiving instrumentation events from Jewel and has created a
“standardized” mechanism for requesting and receiving specific Jewel instrumentation events.

e. Also, changes have made to the Jewel Graphical Presentation System (GPS) X/Motif
widget library which allows better support for dynamic allocation / reallocation of applications.
This has been accomplished by adding features that allow the hostname and process id of an
application to be retrieved and used within the widget library. For the current Jewel displays,
this has allowed the legends to be updated to show the hostnames of the platforms where
instrumented applications are currently running.

3.3.11 Group Communications

One of the core technologies on which HiPer-D is based is process group
communications. Process group communications provide a mechanism in which applications
become members of a communications group. When a member sends a message in a group, all
other members of the group receive the message. In this respect, process group communications
are analogous to multicast communications. Process group communications extend the concept
of multicast by providing reliable communications, by guaranteeing different levels of message
ordering, and by providing operations associated with membership changes in the group. See

Appendix E for details of the group communications mechanism used in ATCF portion of
HiPer-D for Demo 98.

3.4 Resource Management.

a. During FY98, the Resource Management capabilities within the HiPer-D testbed have
been significantly expanded and enhanced. As shown in Figure 3.4-1, the scope of our Resource
Management efforts are aimed at effectively monitoring and controlling the configuration of an
interconnected shipboard network consisting of many general-purpose computing platforms.
Within the HiPer-D testbed, the Resource Management components continuously monitor the
state and performance of the system, determine when and if Quality of Service (QoS)
requirements (real-time deadlines, desired throughput, fault tolerance, etc...) are not being met,
and reallocate applications to resources as required in order to ensure that QoS requirements can
be met. The goal is to allocate and, when necessary, reallocate combat system functions (i.e.,
applications) to computing resources in a manner that ensures that the mission-critical real-time
requirements of the combat system are met. A paper presented at the 1999 IEEE Real-Time
Technology and Application Symposium describing the Demo 98 Resource Management
capabilities and results is attached as Appendix F.

69

Ex.1009 / Page 79 of 280
TESLA, INC.

SHIPBOARD COMPUTING
MANAGEMENT

- DISTRIBUTED
- FAULT-TOLERANT
- REAL-TIME
- SECURE

. SCALABLE

NEREERTE
Ny

MISSION NEEDS

COTS
Network Resource 1
STANDARDS Network Resource 2
System X
LEGACY SYSTEM System Y

Syste
TRANSITION SUPPORT

3

Figure 3.4-1. Resource Management Environment

b. The benefits of this approach include:

(1) It provides the ability to dynamically map resources based on changing mission
requirements which permits flexibility during changing tactical situations (as in the case of
transitioning from an open water environment into a complex, potentially hostile, littoral
environment).

(2) 1t provides the ability to maintain mission capabilities in the event of equipment
failure, software failure, damage, fire in spaces, flooding, or other catastrophic events.

(3) Perhaps most importantly, it provides the potential for significant life cycle cost
savings and manning reductions; by moving away from statically configured stovepipe systems,
system development, integration, and maintenance costs could be reduced, and by being able to
reconfigure around failed equipment, at-sea maintenance costs (and the number of required
maintenance personnel) could be lowered.

¢. The Resource Management capabilities developed during FY98 were a joint effort
between NSWCDD and Dr. Lonnie Welch at the University of Texas at Arlington (UTA) who
was funded under the DARPA Quorum program. Figure 3.4-2 shows the scope of our Resource
Management efforts.

70

Ex.1009 / Page 80 of 280
TESLA, INC.

MONITORING
» Instrumentation

«» Performance & Health Monttoring
« QoS Moritoring

» Resource Discovery

. *Resource Availability Monitors

MONITOR

Application Performance

S Berformance & Statuses
Fault/Failure/Overicad
Detection and Prediction

Configuration
Changes

App Profiles

SYSTEM & SOFTWAR

SPECIFICATIONS
« Application Profiling
» QoS Specifications

ADAPTIVE RESOURCE MGMTy&—00s specs - Fault Mgmt Specifications
DECIDE + QoS Negotiation ; app Profiles o Configuration Specificatio
+ Fault Mgmt/Recovery ¥ Fault Mgmt Spec e
+ Resource Allocation/Reallocatio RS
e Stability Analysis
Control Order VISUALIZATION
Result Config + System/Resource Configuration’,
Specs and Statuses t
PROGRAM CONTROL « Performance Statistics
CONTROL « Application Contral + System Specifications

.. * Resource Mgmt Reasoning
Rgocess & Decisions o
RS A

+ System Initialization and Cleanup
+ Dependency-Based Control ¢

Figure 3.4-2. Resource Management Scope.

d. The major functions of resource management are to monitor, to analyze, and to adapt.
The monitor function collects selected data concerning the behavioral and performance
characteristics of all layers of the computer system, from the application layer through the
computing and networking resources. The data collected during monitoring are analyzed based
upon the system specifications to determine when computing resources should be reallocated.
Reallocation will take place when a fault occurs or is predicted to occur. Reallocation will also
take place when an unacceptable imbalance of application distribution occurs across the
computing resources. The adapt function determines how to reallocate the application across the
resources. This determination involves isolating the cause of the fault or overload, discovering
available computing resources to overcome the fault or overload, and possibly, making tradeoffs
in the quality of service (QoS) to be delivered to various tactical applications (based on their
level of importance) in order to remedy the situation. A set of specifications are used to identify
the processing capabilities of each component of the computing resource pool as well as the
processing requirements of each of the applications and its level of importance. The Program
Control components will carry out the reallocation of the applications across the computing

resources. Also, a series of visualization displays were developed to enhance the monitoring,
decision making, and control capabilities.

e. The Resource Management architecture is shown in Figure 3.4-3. Extensive upgrades
were made to the Resource Management architecture and infrastructure which both provides new

and enhanced resource management capabilities and also provides an infrastructure that can be
built on and expanded in future years.

71

Ex.1009 / Page 81 of 280
TESLA, INC.

Specifications Adaptive Resource Management Joint Effort between :

- NSWCDD
By ' Performance Allocation - Univ, of Texas
- System - acation
y Ana!ysis& % Tradeoff Arlington (UTA)

s.Spemﬂcattons‘ Mamls |

Application Control

-~

Status . Resource
Corre{ation B Allocation

B e S R

\ 4 Monitoring

Momtormg and Instrumentatxon lnfrastructure

Figure 3.4- 3 Resource Management Arch1tecture

f. The key focus areas have been Monitoring, Resource Management Decision Making,

Control of the Applications, and the development of a QoS Specification grammar for defining
system and application requirements.

g. At the Monitoring level, there are host monitors resident on each of the UNIX boxes
to monitor operating system and network statistics. (Windows NT host monitors were also
developed but were not fully integrated into the testbed during Demo 98; this is indicated by the
gray shading in the architecture diagram.) For application-level instrumentation, a modified
version of the Jewel instrumentation package was used. (Jewel was originally developed at the
German National Research Center for Computer Science (GMD) in Germany.) Also, several
initial tests were performed to attempt to determine whether SNMP (Simple Network
Management Protocol) would be a viable candidate for real-time monitoring of operating system

data. (The preliminary results have not been promising and these capabilities were not fully
integrated during Demo 98.)

h. At the Decision Making level, the Resource Management components analyze the
system performance, diagnose the cause(s) of poor performance, consider tradeoffs between
potential resource allocations/reallocations when appropriate, and determine the best course of
action to take to recover from fault or overload conditions.

i. At the Control level, the focus has been on providing application-level controls on the
UNIX platforms. These capabilities include startup, shutdown, and configuration of both tactical
and infrastructure applications on the UNIX platforms.

72

Ex.1009 / Page 82 of 280
TESLA, INC.

j. A fourth key area has been the development of a QoS and System Specification
grammar that allows us to describe the capabilities and requirements of the software and
hardware components of the testbed. This grammar allows us to define the structure of software
systems and subsystems (e.g., AAW software components, ATWCS software components,
Resource Management components, etc...). It also allows us to capture dependencies between
components (such as startup order dependencies), information on how and where applications
can be started and configured, and QoS requirements (e.g., timing requirements) either within an
application or across an end-to-end path (consisting of multiple applications). The grammar also
provides the ability to define host and network capabilities. The purpose of the grammar is to be
able to precisely define the statically known structure, capabilities, and requirements of the
system. This allows the Resource Management Monitoring, Decision Making, and Control
components to use this information, along with dynamically monitored system status and
performance data, to make effective decisions concerning the allocation of applications to
computing resources.

k. As can be seen in the Resource Management architecture breakdown in Figures 3.4-3,
the Monitor, Decide, and Control functions constitute a classic feedback control loop.

3.4.1 System Monitoring.

a. Extensive system monitoring capabilities have been developed and enhanced during
FY98. The emphasis for FY98 has been the development of extensive monitoring and
instrumentation capabilities at the application, host, and network levels which form an
infrastructure that can be built on for future research.

b. The importance of robust, timely, and accurate monitoring at all levels in the system
cannot be overemphasized. In order to make effective resource allocation decisions, it is
imperative that the Resource Management components have access to accurate data on the status
and performance of applications, middleware components, hosts, and networks.

c. The major monitoring and instrumentation efforts for FY98 are discussed in the
remainder of this section. In particular, the major focus areas have been on UNIX OS and
network monitoring, Windows NT OS and network monitoring, application-level
instrumentation improvements, and status and history dissemination capabilities. A related effort
is an ongoing study to determine whether and where current SNMP (Simple Network
Management Protocol) standard MIB (Management Information Base) implementations can be
used for real-time monitoring; the major issues being addressed include the overhead (in terms of
CPU usage) of the SNMP queries and the latency and accuracy of the response data.

3.4.1.1 UNIX Operating System and Network Monitoring.

a. Early in FY98 it was determined that the various operating system status and
performance monitoring techniques available from Network Management / System Management
tool vendors were inadequate and/or inappropriate for use within the RM software infrastructure
due to requirements for extensive monitoring, real-time performance, scalability, and minimal
intrusiveness of the monitoring solution on the platform being monitored. What was needed was

73

Ex.1009 / Page 83 of 280
TESLA, INC.

a real-time system performance monitoring capability that could support a network-centric API
(Applications Program Interface), as well as provide a system-wide user process
monitoring/alarm capability. As a result of this need, a task was initiated to design, develop and
implement a software suite, which provided the needed performance and process monitoring
capabilities within the real-time requirements of the RM software framework.

b. One of the primary requirements was that the monitoring system software be capable
of operating within a multi-platform environment while still providing a platform-independent
AP], along with a standardized data representation of system parameters and statistics. More
specifically, the architectures and operating systems then under investigation were manufactured
by Silicon Graphics, Sun Microsystems and Hewlett-Packard Corp., and consisted of vendor-
specific Unix implementations based on the MIPS (IRIX 5.3, 6.3 and 6.5), SPARC (Solaris
2.5.1, 2.6 and 2.7) and PA-RISC (HPUX 10.20) machine architectures and operating systems.
These goals were met with the release of SSMD (System Status Monitoring Daemon) which
provided the requisite real-time performance statistics to the various software components of the
RM software infrastructure.

3.4.1.1.1 Methodology.

a. The development of SSMD began with an analysis of the underlying architecture of
whatever vendor-supplied system monitoring software was then currently available on the
various platforms. This analysis led to the development of an initial list of critical system
statistical parameters that SSMD would need to provide on a real-time basis. Once these
parameters had been identified, the process of identifying and isolating these parameters within
the various target Unix implementations began. This process consisted of an examination of each
vendor’s platform-specific system calls and their respective documentation. Where
documentation was inconsistent or non-existent, experimental software needed to be written to
allow the investigation of the actual behavior of the system call or parameter under investigation.

b. As aresult of this investigation, a number of general categories detailing system
parameters were isolated. These categories are as follows:

- System-wide process parameters

- Overall system process-handling performance parameters. Some of these
parameters are provided by the OS, and some are synthesized by SSMD during
its data collection cycle.

- Per-process parameters

- Performance parameters of individual processes on a specific system. Some of
these parameters are provided by the OS, and some are synthesized by SSMD
during it’s data collection cycle.

- System-wide CPU performance parameters

- The average CPU performance of the system. This usually consists of an average
of the performance of all the CPUs within the system. This value may be

provided by the OS, or synthesized by SSMD during its data collection cycle,
depending on platform.
- Per-CPU performance parameters

74

Ex.1009 / Page 84 of 280
TESLA, INC.

- The performance of each individual CPU within the system. This will consist of
items such as clock-tick and “percent” idle time, etc. The percentage based
parameters are synthesized by SSMD during its data collection cycle.

- File system performance parameters

- A description of each file system mounted on the system. The description
includes performance and utilization parameters for each individual file system.

- Network performance parameters

- A description of each active network interface on the system. The description
includes performance and utilization parameters for each individual network
interface.

- System Configuration parameters

- A description of the hardware and software components which make up the
system, including items such as number of CPUs, CPU architecture, OS version
numbers, etc.

/J/r SSMD Version 2.0 System Architecture \

ﬁha-md .
Memaory

:
N

<GemwwE@m Forked Process

e Shared memory attachment
TCPHP Tlient Connection

Figure 3.4.1.1.1-1. UNIX Host Monitor Design

c. A decision was made to build the SSMD server using an I/O model analogous to the
standard network FTP server implementation. This I/O model, based on the Berkley Sockets
model, would allow access to the SSMD server using a commonly available network
communications API. The system statistics collection and distribution tasks were separated into
two disparate processes, in order to minimize the impact of user API I/O on data collection
timing. The resulting design is illustrated in figure 3.4.1.1.1-1. As can be seen from this

75

Ex.1009 / Page 85 of 280
TESLA, INC.

diagram, the SSMD server consists of 2 major processes, and an indeterminate number of /O
processes. This allows the server to handle large amounts of I/O in a scalable manner.
Communications between the various processes within the server is handled via shared memory,
allowing the use of an efficient publish/subscribe methodology. The shared memory interface
also allows the server to be extended by allowing other platform-resident processes to attach to
the shared memory area and gain access to system performance parameters without paying the
performance penalty of using a sockets-based network interface.

d. Data collection timing is of critical importance. The server needed to provide system
performance data to client applications on a real-time basis. As a result of this, SSMD was
designed to allow collection, processing and distribution of system performance parameters
based on a user-supplied variable timebase. During our initial tests, the timebase value was set at
2.0 seconds. Later in our testing phase, the timebase value was decreased to 1.0 second. This
value provided performance data at a sufficient frequency to support the RM application
software’s needs at that time. The actual minimal SSMD timebase value, however, is much
smaller, (and usually limited by platform dependent issues.) For the user, the limiting factor is
the impact (or intrusiveness) of SSMD itself on system performance. With a data collection
timebase value of 2.0 seconds, SSMD uses less than 1.0 % of CPU time on most platforms. With
a timebase value of 1.0 second, the utilization is nominally less than 1.5%. If the user can
tolerate higher SSMD CPU utilization, much smaller timebase values can be used.

3.4.1.2 Windows NT Operating System and Network Monitoring.

The Windows NT Host Monitor development was a joint effort between the University of
Texas at Arlington (UTA) and NSWCDD. The NT Host Monitor software was written in Visual
C++ by researchers at UTA as part of the Desiderata project which is funded under the DARPA
Quorum project. The software was then modified by NSWCDD to add a graphical user interface
and a TCP/IP network interface for remotely retrieving the machine statistics. Although the
program was not used during the Demo 98 scenario, it was used for gathering information for

characterizing the overhead involved in monitoring host and network statistics on the Windows
NT platforms.

3.4.1.2.1 Windows NT Statistics Retrieval.

a. The NT Host Monitor is a Microsoft Windows NT 4.0 based program that provides a
Windows graphical user interface to allow the user to select areas to monitor and to view the
areas being monitored. Each area monitored has an icon associated with it. The user clicks an
icon to start monitoring and displaying the data associated with that area. All areas can be
monitored simultaneously or any subset of available data can be monitored. The icons act as a
toggle switch; clicking the icon toggles between viewing the data associated with it and turning
off the view. All data being displayed is updated at one-second intervals.

b. There are 5 main areas monitored by the NT Monitor. The first area is the processor
metrics. It collects and displays all information associated with the time the processor has spent
in each of the processor states (i.e., user mode, privileged mode, interrupt mode, and wait mode).
It also collects the interrupts per second rate and displays it. The second area monitored is the

76

Ex.1009 / Page 86 of 280
TESLA, INC.

process list. It collects and displays all information associated with each of the processes
residing on the system. It displays the amount of user mode and kernel mode CPU time used by
the process, the amount of memory used by the process, and the ID of the process and image
name including the path. The third area monitored is the system metrics. It monitors the data
associated with the overall system such as file system statistics, CPU usage statistics, interrupts,
and exceptions. The fourth area is the memory metrics. It monitors the overall usage of the
memory such as memory used, memory available, paging statistics, cache memory usage, and
memory available. The fifth area monitored is the network metrics. It monitors the overall
network traffic. The network traffic is broken up into three categories: 1) network interface, 2)
TCP interface, and 3) UDP interface. The network interface monitors the bytes sent and
received and the packets sent and received. The TCP interface monitors connection statistics and
the segments sent and received. The UDP interface monitors datagrams sent and received.

c. All data being gathered by the NT Monitor is collected from within the Windows NT
Registry. The Registry data is maintained by the NT Operating System and updated at various
rates by the Operating System. Our tests confirm that for the data being monitored and the
polling rate currently being used (one second), the Registry is being updated frequently enough
that problems with “stale data” have not been seen. Preliminary testing appears to indicate that
monitoring of the system statuses and performance statistics on NT results in a much higher CPU
load than for comparable system monitoring on Sun, SGI, and HP UNIX platforms. Initial tests
shows CPU loads of 3 to 10% on the NT platforms as opposed to 0.2 to 1.5% for the UNIX

platforms. However, additional testing is required before any definitive conclusions can be
stated.

3.4.1.2.2 Network Interface.

The network interface to the NT Host Monitor was added by NSWCDD. The network
interface is implemented as a TCP socket which listens for connections and sends out all
currently monitored data at a one second rate when a remote connection is established.
Currently, the format of the data being sent out is formatted ASCII strings which can be easily
parsed by the receiver. The network interface can also be controlled via a tool bar entry that can
be used to turn on or turn off the network connection.

3.4.1.3 Monitoring Status and History Servers.

a. The Monitoring Status and History Servers are data brokers between the host monitors
and the other components of Resource Management. The Servers connect to the UNIX Host
Monitors on the SGI, SUN, and HP platforms and collect and maintain both current and
historical information about the systems, including processes running on the system, CPU
information, network information, and file system information. The status and performance data
and histories are provided to any of the Resource Management components (and potentially to
other components) which need the data. In data is also filtered and reformatted as required by
the client applications. Statuses and performance history data are currently being requested by

and sent to the Resource QoS Monitor, the Host Display, the Graph Displays, and the Path
Display.

77

Ex.1009 / Page 87 of 280
TESLA, INC.

b. In the current implementation, approximately 30 minutes of performance and status
history data are maintained by the Servers for each monitored host in the testbed. For Demo98,
there are a total of 37 hosts being monitored; 18 SUN Solaris 2.6 hosts, 2 SUN Solaris 2.5.1
hosts, 10 SGI IRIX 6.4 hosts, 1 SGI IRTX 6.3 host, 1 SGI IRIX 5.3 host, and 5 HP HP-UX 10.20
hosts.

3.4.2 Dynamic Resource Management.

a. The approach to adaptive resource and QoS management is based on the dynamic path
paradigm. A path-based real-time subsystem typically consists of a detection & assessment path,
an action initiation path and an action guidance path. The paths interact with the environment
via evaluating streams of data from sensors, and by causing actuators to respond (in a timely
manner) to events detected during evaluation of sensor data streams. A system operates in an
environment that is either deterministic, stochastic, or dynamic. A deterministic environment
exhibits behavior that can be characterized by a constant value. A stochastic environment
behaves in a manner that can be characterized by a statistical distribution. A dynamic
environment (such as a war-fighting environment) depends on conditions which cannot be
known in advance.

b. For example, an air defense subsystem can be modeled using three dynamic paths:
threat detection, engagement, and missile guidance. The threat detection path examines radar
sensor data (radar tracks) and detects potential threats. The path consists of a radar sensor, a
sensor data stream, a filtering program and an evaluation program. When a threat is detected and
confirmed, the engagement path is activated, resulting in the firing of a missile to engage the
threat. After a missile is in flight, the missile guidance path uses sensor data to track the threat,
and issues guidance commands to the missile. The missile guidance path involves sensor
hardware, software for filtering, software for evaluating & deciding, software for acting, and
actuator hardware,

c. The approach described pertains to detection & assessment paths. This type of path
continuously evaluates the elements of a sensor data stream to determine if environmental
conditions are such that an action should be taken. Thus, this type of path is called continuous.
Typically, there is a timeliness objective associated with completion of one review cycle of a
continuous path, i.e., on the time to review all of the elements of one instance of a data stream.

(The data stream is produced by sampling the environment. One set of samples is the data
stream instance.)

d. The threat detection path of an air defense system is an example of a continuous path.
It is a sensor-data-stream-driven path, with desired end-to-end cycle latencies for evaluation of
radar track data. If it fails to meet the desired timeliness quality of service in a particular cycle,
the path must continue to process track data, even though desired end-to-end latencies cannot be
achieved. Peak loads cannot be known in advance for the threat detection path, since the
maximum number of radar tracks that may exist in a battle environment cannot be known a
priori. Furthermore, average loading of the path is not a useful metric, since the variability in the
sensor data stream size is very large - it may consist of zero, 10s, 100s or 1000s of tracks.

78

Ex.1009 / Page 88 of 280
TESLA, INC.

3.4.2.1 System Model.

a. A demand space model based on the dynamic real-time path paradigm has been
developed. A software subsystem, SS, consists of (1) a set of applications (SS.A = { ay,a,,...}),
(2) a set of devices (sensors and actuators) (SS.D = { dj, da,... }), (3) a communication graph
defining the connectivity between applications and devices (I'(SS) € IT((SS.D w SS.A) x (SS.D
w SS.A))), and (4) a set of paths (SS.P = {P; P2, P; ...}). (Note: IT denotes the power set).

b. Each continuous path P; is represented as (1) a set of applications Py A = {a;) ai2,.....}
(where PLA < SS(Py).A), (2) a set of devices PiD = {d;,diz,.....} (where P.D < SS(P;).D), 3) a
communication graph y(Py) € II((P.D w Pi.A) x (PiD U Pi.A)) (note that y(P;y) < T'(SS(Py)),
and (4) a data stream P, DS. (Note: SS(P;) denotes the subsystem in which path P is contained.)
Profile(a;) is the set of hosts where application ‘a;’ is eligible to be run (i.e., the set of hosts for
which a; has been compiled). For the communication graph y(P;), the head node of the graph
(which is the application which receives the initial input data stream) is represented as
ROOT(P;), and the last node of the graph (which is the application which communicates with
other applications or paths outside of P;) is represented as SINK(P;). The type of Py’s data
stream is defined as T(Pi.DS)e {dynamic, stochastic, deterministic}. (For the remainder of this
paper, it is assumed that the all data stream types are dynamic).

c¢. The real-time QoS requirements of a continuous path include one or more of the
following: (1) required latency of Argo(Ps) seconds, (2) required throughput of Oreo(P;) data
stream elements per second, and (3) required data inter-processing time of drro(P;) seconds (the
maximum allowable time between processing of a particular element of Pi.DS in successive
cycles). To mask transient QoS violations during QoS monitoring, a specification may also
define a sampling window and a maximum number of QoS violations to be tolerated within the

window; o(P;) models the sampling window size and v(P;) represents the maximum allowable
number of violations within the sampling window.

d. The demand space model also captures information that must be obtained a posteriori.
Some application programs can be replicated for load sharing. The set of replicas of application
‘a;;” during cycle ‘¢’ of P; is defined as REPLICAS (ajj;c) = {ajj1, aij2, ... The host to which
application ‘a;;x’ is assigned during cycle ‘c’ of path P; is defined as HOST (ayjx.c,P;).

e. The set of elements that constitutes a data stream can vary dynamically.
P.DS(c)={Pi.DS(c)1, PiDS(c)s,...} represents the set of elements in P DS during cycle ‘¢’ of P;.
The tactical load (in number of data stream elements processed) of a continuous path P; during
it’s ¢® cycle is [P DS(c)|. The processing of elements of a data stream may be divided among
replicas of an application to exploit concurrency as a means of decreasing execution latency of a
path. In successive stages of a path that has non-combining applications (applications which,
after processing data received from a single predecessor, simply divide the data among their
successors), data will arrive in batches to applications; hence, each application may process
several batches of data during a single cycle. Thus, the model represents the set of elements from
all batches of data processed by application/replica ‘a’ during cycle ‘c’ as P, DS(c, a)={P;.DS(c,
a)1, PiDS(c, a),...} The cardinality [P;.DS(c, a)| is the tactical load of ‘a’ in cycle ‘c’. The data

79

Ex.1009 / Page 89 of 280
TESLA, INC.

stream elements contained in the j"™ batch of ‘a’ are denoted by P; DS(c, a, j)={P:.DS(c, 2, j)1,
P;.DS(c, a, j)a,... }.

3.4.2.2 Adaptive QoS and Resource Management,

This section defines metrics and techniques for reasoning about the mapping of demand
space onto supply space, i.e., for resource and QoS management. The approach (depicted in
Figure 3.4.2.2-1) works as follows. Application programs of real-time control paths send time-
stamped events, via the Application Instrumentation component, to the Path QoS Monitor
component. The Path QoS Monitor component calculates path- and application-level QoS
metrics, compares observed QoS to required QoS, and notifies the QoS Diagnosis component
when QoS violations are detected. The Host & Network Monitoring component collects
operating system and network performance, status, and load information, which is then provided
to the Resource QoS Monitor component. Here, host and network statistics are correlated,
performance and load histories are maintained, and load metrics are calculated. This information
is made available to the QoS Diagnosis component for use in determining resource loading, and
allocation tradeoffs. The QoS Diagnosis component determines the cause of QoS violations,
analyzes and ranks potential reallocation actions for restoring required QoS, and provides this list
of recommended actions along with associated host and network load metrics to the Resource
Allocation component. The Resource Allocation component determines the most beneficial
allocation of resources for restoring required QoS. The allocation actions selected are then
implemented by the Application & Resource Control components. The major components in
Figure 3.4.2.2-1 are explained in more detail in the remainder this section.

80

Ex.1009 / Page 90 of 280
TESLA, INC.

*QoS negotiation
«Allocation tradeoff analysis

System R “bestit
Specifications b
*HW resouice) Resource 3 Application
speii‘f;@;tions Allocation 3 Control Orders
pathiApp | e g
specifications 00 QRO
*Qo$ requirement o
specifications '»-..,_'.
3 h .., i «Determine cause of
"M A QoS) 3 QoS violations
Diagnosis i ~Analyze potential
i1 recovery actions

DAL

z +Correlates host &

sCorrelate QoS metrnics Path '2 Resource % network resource
for paths / apps QoS Monitor & QoS Monitor 31 performance metrics
*Determine QoS i % +Calculates resource
violations o Jarnes RS i SLRRIANIAN" " r fitriess
- %
Collects applicati Application i Host & Network % JCollacts
QoS metrics Instr tation Monitoring $ performance and
3 % load statistics

o | B 2 T RIS RBAZREEES

!
‘ : Filter P Evaiuate > Act
s e T_ H { 1 i

\ { I l

...

i Distributed !
H ! Hardware \

]

]

.....................

Figure 3.4.2.2-1 QoS and Resource Management

3.4.2.2.1 Path QoS Monitor.

a. The Path QoS Monitor component works as follows. Monitoring of real-time QoS
involves the collection of time stamped events sent from applications. The times when
application/replica ‘a’ starts and ends processing of the data stream for cycle ‘¢’ are represented
as s(P.DS(c, 2)) and e(P.DS(c, a)), respectively. The times when application/replica ‘a’ starts
and ends processing batch ‘j’ of data during cycle ‘c’ of P; are denoted by s(P..DS(c, a, j)) and
e(Pi.DS(c, a, j)), respectively.

b. Observed real-time QoS metrics are defined in terms of these basic events as follows:
(1) latency of path P; during cycle ‘¢’ is = Aops(Py,c) = max({e(Pi.DS(c, ajmn, j)) — s(Pi.DS(c,
aix1, 1)) | aim = SINK(P), aix = ROOT(P;)}) (note that Aops is the maximum value from the sef
of latencies of all batches of data processed by all replicas of SINK(P;) during the cycle), (2)
data-inter-processing time of application ‘a’ in path P; during cycle ‘c’ of data stream P;.DS(c,a)
is approximated as 6ops(P.DS(c,a)) = {s(Pi.DS(c,a)) - s(P.DS(c-1,a))}, for ¢ > 1, (3) data-inter-
processing time of path P; during cycle ‘c’ for data stream Pi.DS(c,a) is Sops(Pi.DS(c)) =
doss(Pi.DS(c,a)), where ‘a’ = ROOT(P;), (4) observed cycle throughput of path P; during cycle
‘¢’ 15 Ooms(Pi,c) = [Pi.DS(c)] / Aoms(Pisc), (5) workload of application/replica ‘a’ of path P;
during cycle ‘c’ is Wogs(Pic,a) = [P DS(c,a)| / dops(Pi.DS(c,a)), and (6) workload of path P;
during cycle ‘c’ is Wops(Pi,¢) = |Pi.DS(c)| / Sops(Pi.DS(c)) = (Z|PiLDS(c,ain0)]) / Sons(Pi.DS(c)),
for all replicas & of ROOT(P;).

81

Ex.1009 / Page 91 of 280
TESLA, INC.

c. Analysis of a time series of the real-time QoS metrics enables detection of QoS
violations. An overload of a path or application occurs in any cycle ‘c’ where the number of
violations within the sample window o(P;) equals or exceeds the maxinmum number of violations
v(P;). As an example, detection of a path-level QoS latency violation occurs when the observed
path latency Aops(P;) exceeds the required path latency Areo(P;) for v(P;) samples within the
sample window of the most recent o(P;) samples. This can be expressed as v(P;) < |{d: (c-d)+1 <
o(P;) A [(Areo(Py) - Aoss(Pid)) < 0)]}|, where ‘¢’ is the current data stream cycle and ‘d’
represents data stream cycles within the sliding window [c-(o(Ps)-1), c]. For the experiments
described in the subsequent section, path latencies (Aogs(P;, ©)) are used for determining QoS
violations.

3.4.2.2.2 QoS Diagnosis.

The QoS Diagnosis component works as follows. When a path-level (end-to-end) real-
time QoS violation occurs, diagnosis determine the cause(s) of the violation (i.e., identifies
subpaths (application programs) that are experiencing significant slowdown). One diagnosis
technique declares an application/replica ‘a’ to be unhealthy during cycle ‘¢’ of path P;if there
exists another cycle ‘d’ such that the following conditions hold. Condition 1: d < c. Condition
2: HOST (a, ¢, P;) = HOST (a, d, P;). Condition 3: [P;.DS(c, a)| = |[P;.DS(d, a)|. Condition 4: Vf:
(f<c) A[HOST (g ¢, P;) =HOST (a, f, P)] A [[Pi.DS(c, a)| = [P.DS(£, a)|] A max(Aops(Pif)) >
max(hoss(P; d)). Condition 5: max(Aops(P;d)) < max(Aoss(Pic)) - €. Note: € is the minimal
difference between cycle latencies that is considered significant.

3.4.2.2.3 Resource QoS Monitor.

a. The Host & Network Monitoring component and the Resource QoS Monitor
component model the supply space a posteriori as follows. A hardware system, HS, consists of
(1) a set of hosts HS.H = {hy, hy, }, (2) a set of Local Area Networks or LANs, HS.L =
{Li,Ly,}, and (3) a set of interconnecting devices HS.I = {ij,iz, }. The system model
captures several hardware load metrics. The paging score of a host 7, at time 7 is defined as
PS(h;,t), and is calculated as the number of page faults per second averaged over the time
interval t;, divided by a maximum page fault threshold. The cpu score of a host A, at time 7 is
defined as CS(hy,t), and represents the average percent CPU idle time over time interval t;. The
network score of a host /4, at time 7 is defined as NS(h;,t), and is calculated as the number of
packets received plus the number of packets sent averaged over time interval ts, divided by a
maximum network packet threshold. (All scores fall within the interval [0,1].)

b. Fitness scores for each of the host load metrics are calculated as follows: The paging
Jitness is calculated as PF(hy,t) = (1 — PS(h;,t)). The cpu fitness is calculated as CF(h;,t) =
CS(hy,t). The network fitness is calculated as NF(hyt) = (1 — NS(h;t)). These fitness score are
used to calculate the aggregate fitness indices. The notation FI(h;,t) denotes the aggregate
fitness index of host %, at time 7. One fitness index function that we have found useful is: FI(h;,t)
= (wy * PF(h,t)) + (w2 * CF(h,t)) + (ws * NF(hy,t)), where w; is the weight given to the i load
metric, and £ w;=1.0. The fitness index is a relative measure of host load: the higher the fitness

82

Ex.1009 / Page 92 of 280
TESLA, INC.

index, the lighter the load on the host. When making resource allocation decisions, hosts with
higher fitness scores are preferred over hosts with lower fitness scores.

3.4.2.2.4 Resource Allocation.

The Resource Allocation component works as follows. Its kernel is the best-host
algorithm, which determines the “best” host on which to re-start or scale a candidate application.
The algorithm only considers the set of hosts that are eligible. An eligible host is a host where an
application is prepared for execution. The set of eligible hosts of each application is obtained
from the system specification. The best host is determined using a “fitness” function. The host
fitness index function used is FI(hyt) = (w1 * PF(ht)) + (w2 * CF(hgt)) + (w3 * NF(hgt)).

3.4.2.3 Results.

a. The ability of the RM components to provide survivability services to real-time
application systems in a timely manner was tested. In these tests, one replica of the AutoSpecial
application was faulted, requiring that the RM compoments

(1) detect the failure

(2) restart a replica on the “fittest” of the eligible hosts.

b. These tests were performed a total of 17 times, and the reallocation decision times and
total recovery times were measured. The average resource allocation decision time was
0.00097059 seconds, with a standard deviation of 0.00041648. The minimum, average and
maximum total latencies of the recovery actions were 0.1296, 0.19401765, and 0.2379 seconds,
respectively, with a standard deviation of 0.04376704. Thus, across all tests, the total response
time for application fault detection and recovery services was far less than one second, providing
adequate response times.

3.4.3 Resource Control / Program Control.

The three major areas of Dynamic Resource Management are monitoring, decision-
making, and control. Program Control is the Resource Management “control” solution that
provides a mechanism to change the status of a software system and the power to reach into a
resource pool of many hosts and processors. To be put in perspective, Demo98 contained
approximately 150 applications started through Program Control distributed across eleven
Silicon Graphics workstations, eighteen Sun workstations, and five Hewlett-Packard
workstations. In addition, Program Control is the entry-point for human-operators and
automated functions, such as the resource-manager, for interaction with the computing-plant.
The architecture is broken down into three major components:

3.4.3.1 Graphical User Interface.

a. The concept behind the Program Control interface is to provide a console that
operators can log in to and gain access to a resource pool for startup and shutdown of any
number of applications with a simple point and click. The display can create new configurations
or continue pre-saved configurations. To create a new configuration, the operator can choose

83

Ex.1009 / Page 93 of 280
TESLA, INC.

from existing systems and components already defined in the System / QoS Specifications files
or create their own entries. Figure 3.4.3.1-1 shows a typical edit window for selecting and
customizing applications for a configuration. Once a configuration is built, the operator can save
the startup order, static host-allocations, command-line arguments, etc... to a file for future runs.
Since configuration files are ascii-text, users can easily create their own configuration files
offline. Here is a configuration file example for the AutoSpecial doctrines used in Demo98:

Application AAW:Doctrine: Auto_Special(1)

Host altair4

Auto_Start 1

RM_Start 0

Directory "$HIPERD_AAW_VERSION/exes"

Startup "auto_special.solaris2.6.exe"

Time_Delay 2

Args "%(UNIQUE, 1, 32) A_Spcl_%(UNIQUE, 1, 32) -jewel -rstat —splot "
Process "auto_special.solaris2.6. exe"

Shutdown SIGKILL

b. A description of each field is as follows:

Application: Unique application name

Host: Static host allocation

Auto_Start: Should this application be part of a one-button startup
RM_Start: Should the host be dynamically allocated

Directory: Run-time working directory

Startup: Name of application binary/script

Time_Delay:; Number of seconds to delay before starting this application
Args: Command-line arguments to pass to the startup binary/script
Process: List of processes expected to be seen by this application
Shutdown: Name of kill signal or script to shutdown this application

84

Ex.1009 / Page 94 of 280
TESLA, INC.

er‘Syle-ln Application

AAW -] Add1o System

oebug,uus] APL] Dupms] 1acuca[_m|css] Tacuca«_sm] oocm] Trad(_conml] [

Engagemen:_swer@] Doqm_Swer@]] Tndﬁﬁlu@]

.| Add Application
Hast Selaction: _:E_J Time Delay: [z_'
Host" altair] (SUN-Solars 2.6)
Display r#—“
Start: /™ SHIPERD_AAW_VERSION/axes/manual_engape.solans?. exe
w User specified

Arguments: [WUNIGUE, 1,3 -ewel ~splot > st Amp 4(USERID) man o

Stop: A SIGKILL
« User specified
App Depd 1: AAW Displays:Siate_Server Time Delay: |0 R
AppDepd2: AAW.Tactical Services:Engagement_Server TimeDelay: |0
AopDend: | Time Delay.

Processes: mantsal_engage.solais2.6axe

Start Flags: T Auto Star

f/

~ 7 -
| ot |
Figure 3.4.3.1-1. Program Control Edit Window.

c. Host selection/allocation can be done manually by the operator or automated by the
resource-manager by simply changing a flag in an applications configuration. For manual
operation, the user is given a list of “eligible” hosts to choose from. For a host to be “eligible”, it
must satisfy the conditions set forth in the System Specifications file. Of course, if the
application isn’t pre-defined in the specs, the operator must choose from the entire resource pool.
Dynamic, or automated, host allocations are performed by the resource-manager upon the
application start request being initiated.

d. Before any applications can be started, the rest of the Program Control structure must
be started. Therefore, the operator presses the “Start Managers” button on the display. This
causes hosts to be selected from the Hardware Specifications file to run managers. Currently,
each manager will handle up to ten hosts, or agents. Once the managers are started, the operator

presses the “Start Agents” button on the display to send a request to each manager to start its
corresponding agents.

e. The display then provides a “view” into the computing plant by showing the status of
applications: running, failed, stopped, or simply waiting to be started. Since no one view
satisfies all operators, three view options are available: system-level view, application run-order
view, and host view. The first displays applications associated with their relative systems and

85

Ex.1009 / Page 95 of 280
TESLA, INC.

subsystems; refer to figure 3.4.3.1-2. The second shows the order that applications should and
will be started based on dependencies specified in the System Specifications; figure 3.4.3.1-3.
And the last shows applications associated with the host they are/were/will be running on; figure

"
3.43.1-4.
Program Controf - e . “'T ‘} 1
File
Avaizble Hosts: Strtal | stopAd | RunAl Process ot | | SystemFuncView — |
Serthngers | Swopbogers] State_Server |- o] wpalia]— state serversotansz axe x
StartAgents | Stop Agents [2] fetarm(f)}— £ blafeld|— tescriptblotekl
Hosls |- 2 AW Dislays|-- 21 Yacoeal Pleture()|— B4 bloted]— diplovsolagszs cxe
Host Neme ow:g 5 5] feterm(2)|—— 2 amdiia]-— tescnptaqudla
:‘*‘:} mgj 24 Tocueal Prcture(y)|— s=} sguito|— disphay solas? 6 exy
ect
elecirs3 IRIX 65 2] Engagement_Server(1)|— &2 altari|— engagement serverselrris2 exe
st RIXGE -
sectras RIX63 2] Engagement Server(@)-—] aitay]-— engragemert serversobvistiove
s e - gt v o4 RN — = o — N
IR,
m RIX64 2] Dactne Servar|-— 2 witow] |- doxinne servor sokinn? $.610)
jursa IRIX64 — —
s RIX64 £ Marnuai_Engage]— 2] aRkawfi|— mamm engage solans2 exe
capets IR 5 21 100_Smulator}-— g atabt|— Kauabnsoluris2bexe]
altairn Solaris 26
altair? Solaris 26 of A & WCS_Smuator|— @) aitart|— scssimsolans2 b axe]
J s Sohuis 28 "“Jw—g—J ARV Tactical Sins |-} @] NSFS Simulator|— 24 |- nstosemsolatis2 6o
altalrs Solais 2.6 2] C3I_Brokerj— & aitab1|— 3 brokersolans26.exe)
:::13 3:3:’1‘2 2] OTH_sin |-~ &3] pitart |- jaka_oth_ds.aolarisnb.ese]
altare Solaris 26 2| Aute_Specsalll)i— ©f altaird|— auto spectsl solans2 i exe|
altar? Selans 2.6
atarl) Solans 26 2l Auio,Spedal(Z}[«gJ altalrlil— suto speced sobmli exs
:z:; g:::;:g) i 2l Auto_Spedalf$)|— e nitsri|— mito spacidl solaris2 exe
blofeld ::““;—g o 2] Autto_Spoctal)| =] uitant2]-— auto spactai sofars2i exel
0 ans
mh Solarls 26 & Auto SMU)!—‘EI witard |— outo_smsolansLy.exe!
oltel Solarls 26 L - e L
 sotara Solads 25 L o) aaw ol =) Aute SM)L-- gx] aiatrd auto_smsalarisf exe
aquaius Solaris 25 —'——, 2] Auto_SME3}|— ! altes1|— mute_stnsolarisz6 exe
k. 1
v::.m :;j§13 f &2 Auto SME)— = aaet! |~ auto smsokwsddexe
e Hpuxie |- 21 Soml_Autot)|— 24 sisrd]— semintosolansz dase
jots28 HP=UX/ i 2] Seml_Autold) |—] rm%n’zlw semraatogolars2.Aexe
L @ semi_Aute)|— & aitakt | seminito solans 6 exe
- 24 Sam_Autald) |~ 2f altatr1] |-~ surusuite solans? Saxol
L L 2] AAW Track Controt]~—] NavData Server|~— @ bisteld[-— navdata ssrver solans2s exe|
| R - & navsim|-— 24 decrat]— navern] ’
= |

Figure 3.4.3.1-2. Program Control System-Level View.

f. Upon establishing a “configuration” and starting the infrastructure components, the
operator has two options to point and click the applications and systems they wish to start from
any of the three views. First, there is a manual mode that allows the operator to select the set of
applications they wish to start and then initiate the request. In addition, there is a one-button
startup capability that allows an operator to start a pre-defined default set of applications.

g. Since not all control functions are performed by the operator, a socket-level interface
is provided to the display for the resource-manager to connect to and issue startup, shutdown,
and allocation commands. This feature relies heavily on the System Specifications files. These

files provide all the information the resource-manager needs to allocate, start, restart, and stop
applications.

86

Ex.1009 / Page 96 of 280
TESLA, INC.

Pragiam Comrol

Flie

Avaliabl Hosts: StaiAl | StoAl | Bunfl Procass i | | AppPunOnderViow —i |
iy

Mﬁ?—' w-;-]) M| — e Dissinya|— I Stats Server|— 1 1|— 2 asslis|— state serversolaris2 6ol
Swsthgans | Stopagonts |] pav|— e Dspinyal— 2 fetemif— o t}—) blofod— seserptaioeiaf

Hosts 21 aavi|— 2| Displays|— 2 Tactical Pieture(t){— I 2|— = blotea]— dspiavsoiaris2bexe)
‘Hmmme Opu-ag&\g =1 B A0~ | Unsplnys|— & fetam(l"'-‘?—] g[—ggj AN - frsEnptacula

electral IRIX 65

e RIX§5 B AWW— & Dssirys|— 21 Tactical Picture{2)|— & _Zj«—g! atguia)—— dlaplav solans2.b exe!
docirad IRIX 65 £ AW) Toekal Services|— 21 Engagement, Servos(t)|— @ 2]-— 2 aftavs|— engagoment server.sofaris exef
:21‘::‘5 :g:ﬁg B pv|—) Tacteat Sovdess|— 21 Server(s)[- 2J 2| @i aab3|— ongagamont serversolansL exe
e 065 ||| o a1 Tocte S o SRR — =1 2| — = o012/ —
el IRIXGE !
potans: IRIX B4 2 AW |—] Tactieal Sims|-— 2] DU Skodiator|~— 2] }_j—*?.] et | ldusan Wamzmze'
atins RIX 64 o) WV — @ Tastical Services|— 21 Doctring Server|— f 2|— 4 pitol1|— doctone serversolaris2 fexe
ﬁ‘;ﬁh IRIX 6.5 & AW 2 Tacticat Seraus|~— gof Manual Engage|— | .2J"",?J altaws |~ manual_engagesolans2.6.6xe
altalrl
i Solats 26 | 1 1] @1 AAW]— 2] Tactest Sme|— 24 WeS Smustor]— g1 2| 2] aatrl|— wessmsolans26 swe|
vl Setag | 1] &) As]m o) Docirne]-— 2] Auto Spect |2 2 2 st — puto soeciabmokisz G
altar5 sots26 | |1 2 2av|— e Doctime]— of Auto_Spectaip)|— 24 3] 24 aRahs|— auto soscueotaris2s oxef
a2 ||| et 2] 23 et o] Ao Spociaf—) 2| 21 o auto sttt o]
:‘;g zgmtig 1 M| — 2! Docine|— o Auto_Specai(l)]— 2] 2 — 2J shariz|— suto speeatsainstia|
3
dtairt 0 Solaris 26] AAW| E2] Dot |—— 2] Amo_sl.!((]lng_‘df:&] talrdj— auto_stmeelisl § exe
i sumeas || 21 Anv— e Doctme|— = uto SM)|— I 2 — e dtars|— s smseirist o
olofeld Solans 26 2 A |— &) Dot -— @i Aute SUR)|— 21 2} & start— o _sm o2 § exel

e

pavo Solans 26
aquil Solaris 26 21 AAW | 2] Doctrme | el Mute, SME)|— 5] 2| i altairt |- mrto smsvioriad v
eltel Solaris 26

o sutoas |1l 21 a3l e Doctme|— o1 Seml Awtoli)— 21 2|— 1 Atae|— semininosoluris2s ane
aquans Solais 25 2 AW 2] Doctme]- 2] Somi Auto(f— @ 2| @] Was|-— ssmautogonstsats|
myra HPUX 10 =1 A88|— | Doctim|— o Semi futofd)]— 2 2|— @I stk (| — semisurto sokms2s exe]
m :Ejﬂ; B A) p_nglﬂej-— &f Seml_Auo{®]~~ 24 z]— 2] Hltast | surrieuto solansi oxo
otszs HP-UX | (|| &) BvSite|— i Avps|— o navtin}— & 1f- of dectat]— navsmf

2l ENVSI|—— gl Dispinya]—) VorticuProfile|—- @4 1|~ 2 capdlla]~— sprotic]

21 BAYSIH |)] — g | 1 — g | — mir s

}7 &) ENVSIME— & Displays|— &l miar dsplay|—— lj—z}_aﬁf_z_]m aut®_dispiay
s | st Bersinl— 2 Aspsl— 2 s\eRyoutl— 21 1} | doctiaz}— sinz_sin]

Figure 3.4.3.1-3. Program Control Run-Order View.

h. One important Program Control feature necessary for the resource-manager to
dynamically start applications is the support for dynamic arguments in application command-line
argument lists. Note the AutoSpecial command-line arguments from the configuration file
example used earlier: “%(UNIQUE, 1, 32) A Spcl %(UNIQUE, 1, 32) jewel -rstat —splot".
This argument list requires AEC components to pass in a unique node number. In order for
Program Control to know this on startup, we use the UNIQUE dynamic argument to generate a
unique number between 1 and 32 within the AEC system. Other dynamic arguments include
inserting date, time, and hostnames for other applications already running. The latter is
important for client-server architectures that do not use location-independent mechanisms for the

location of the server. Therefore, clients can use dynamic arguments to find out where their
server is located.

87

Ex.1009 / Page 97 of 280
TESLA, INC.

Pl 1
Avalabie Hosts- stwtdd | stopAl | Ry o} Procoss | [HostAppView |
i

StartMngers | Stop Mngers l

- E21 M_Infrastryctura:SSMD Server(i2)| — host monstorsotars2,3f

_Strtagents | stopagents | Iy ——
Hosts . - 2| SUPPORT-ORBIX-orblx_daemon|— orbred|
[Fosttoms_Operati |3 |- 21 SUPPORT:NODS:ndds dasmon(3]-— ndds dnamen|
:ﬁ';‘z }::’)i 2; |- 21 A&W-Dabug Utks:Mimum Pebug|-— mional detbug|
ot §§:§ :é | 1 AA¥Debup Utha:Fuk Debug|— sl detuss
eiectras IRIX 85 | 521 AAW-Debug Utk Extreme Debug|— extreme debug]
it s o |2 AT S0, Sdtr|— o x|
potasis IRIX 64 - 2§ AAW.Taghical Services:Doctnne_Server|— docinno sunarsolans26axe
la’;:s m gﬁ b 228 AAW Tacheal Sins WS Sbater{— wesanngolans?s cxal
capela IRIX 65 | o1 AW Doctinedut Spocald]— o, s |
:g’r‘l 22:3: ig L 2] AAWD _SME]-— auto_srasolaris2.exe]
[[==———— - 24 Aa Docttw som, Ao | — stz
::g :;‘::g | 2 AAW Toctesl SmeNSES Smuator |— rxtssm gotns2 e
aitar? Solas 26 21 AW Tactical Sims-CI|_Broker|— e broker solaris? .cxe
it Solms 24 [,@J ANW TacticdSens:0TH_skn]— take ot g solaris2 ex
:“:‘n‘:‘ :::":i: I~ { & RM_INfrastructure SSMD.Server{13)|— host monttorsorss 6]
a2 Solais26 2 EWELDAEMON:Daeman(p|— duatven]
:l:v':m ::::g o] { B AW Infrastructure SSMD:Server(1)| — host inontier suiist 3|
agullia Solais 26 ©] EWELDAEMONDasmon(s) MM
:S:In 33333 2 RV Infrastructurs SSMD Serven(i8)|— host mottee selaree2 5|
S 2] EVELDAEHON Dannty — e
x ::j;((}z sz] 2! SUPPORT-NDDSmdds_daemonid)|— ndds duemen}
[ot51 HP-UX/M Bf AW Dectrine:Auto_Special(l)]—— nuto. upeddsnkv!sﬂxcxc]
jots28 HP-UXi I AAWDoctrineute SKiH)|~— mto_smasofars2boxe|
Sz AMWDostnha:Semi AIM(’Q e smaito solaris 2. uxel
=] RM] D Server16)[-— host imotlior bakels B
F {g} JEWELDAEMONDaemon(s)]— daseron|
N — - 28 HIPDORTANNnde_dramantBl— adde_ dnomanl Al

Figure 3.4.3.1-4. Program Control Host View.
3.4.3.2 Subsystem Managers.

In order to maintain a tiered architecture, the graphical-interface communicates with a set
of managers. The purpose of each manager is to start its corresponding agents. Each manager is
configured to handle up to ten agents. Currently they act as a “pass-through” in order to reduce
the number of open sockets seen by the display process, yet capable of performing more
functionality in future development.

3.4.3.3 Host Agents.

a. The Program Control agents are daemon servers that reside one per host. Their main
function is to provide a socket interface allowing remote startup and shutdown of various
application binaries. In addition, they provide feedback as to the up/down status of the processes
they are controlling.

b. Demo98 support was restricted to the UNIX platforms Sun, SGI, and HP. This
solution used the “fork” and “exec” system calls to create new application processes and
captured UNIX SIGCHLD signals to detect application shutdown.

c. Special care must be taken when capturing asynchronous signals (SIGCHLD) and

updating static tables. Race conditions are very likely to occur such that when the process

88

Ex.1009 / Page 98 of 280
TESLA, INC.

returns from a signal handler, recovery is not transparent. The best solution to this problem was
to queue process shutdowns and handle them in a synchronous loop.

3.4.3.4 Summary.

Figure 3.4.3.4-1 represents the architecture with all three components. IP Multicast was
selected as the form of socket communications. It proved to be fast and efficient, but
occasionally unreliable and tricky to fragment packets by the sender and rebuilt by the receiver.
Reliability was improved by increasing the socket send and receive buffers up to 256k bytes.
This allowed processes to get further behind and still have free buffer space for newly arriving
packets, or packets waiting to be sent over the wire. Future development will explore a TCP/IP

solution.
Socket Program Control
Interface Display
3
, | l
Manager Manager Manager Manager Manager

A A 1F F N A

A h A

.
Agent E Agent Agent E Agent Agent

Figure 3.4.3.4-1. Program Control Architecture.

89

Ex.1009 / Page 99 of 280
TESLA, INC.

3.4.4 QoS and System Specifications.

To effectively manage a pool of computing resources, the Resource Manager must have
some means of determining the capabilities and configuration of the computing resources under
its control, of determining the software components that need to be executed and the
dependencies of these software components on both hardware and software resources, .
determining what mission-level and application-level requirements are expected to be met, and
determining what control capabilities are available to be used to attempt to recover from fault or
QoS violation conditions. To address these needs, a System and Software Specification
Grammar has been developed to attempt to capture the “static” information needed by the
Resource Manager for effectively managing a pool of distributed resources. See Appendix G for
details of the Grammar.

3.4.5 Visualization.

For Demo98, several new displays were developed and/or enhanced to showcase new
Resource Management capabilities. The main display efforts for Demo98 consisted of
enhancements to the Host Display, the Graph Display, the Path Display, and the development of
the Resource Management Decision Review Display. Each of these display efforts is described
below. (Several enhancements were also made to the Jewel Instrumentation Displays, in
particular the Multi-AutoSpecial Doctrine display. These enhancements will not be discussed in
this section since they have been described in detail in other sections of the report.)

3.4.5.1 Host Display.

The Resource Management host display depicts the layout of all machines that are
stationed in either testbed and shows the processes that are running on each of the hosts along
with each host’s connections to the three networks: ATM, Ethernet, and FDDI. The information
from which this picture is constructed is received from the data server using the ATDNET
communications package. The data server collects information from the host monitor and passes
the information along to the host display. Figure 3.4.5.1-1 is an example of the Host Display
from the SCL. Another function of the host display is to allow the user to choose up to twelve
hosts and submit requests to the data server for information collected from host monitor such as
CPU usage, memory usage, packets in, packets out, and paging information. These parameters
are displayed with respect to current time as line graphs by the graph display. Figure 3.4.5.1-2 is
an example of a graph display from the SCL. The code for the host and graph displays was
written in the C language. This code utilizes OpenGL libraries for drawing graphics and Motif
libraries for user interface.

90

Ex.1009 / Page 100 of 280
TESLA, INC.

AN ST
wessin
Astssin

i3

3 frakay b

i
mﬁzlli“
pre
s
 Fed
Kined graker
At
track grocessor
it]
5 prucissor

Yz
Wi Siee Xt
Vi iroker
spread

auta_specral
il sin

P HSLNA
e Rundnea

aqansnent_werver
W KT
.!ﬁm HT S

Bt 431 1743

whitly

Stargate
i 1™

oth_iter
e Ry

navsiy
o snariager

targat_controker

Fe_cono)
Deneb2
miar $hy
fiavyin Heim
Denchb1
i
server
l‘ .

1cimm Staw_seroer

ot

i il SESE— ’mj

Blofeld Aquila urus

- csecon saoms | JOTSZ0
Sl

0
displa prarey
z»&dn_xmn dispiay

| — 2
TSoara
Vela
il
Loy
SI10S1 n’lﬂﬂ"‘

CAELON Mirmis e

‘Gt Jotsl
T
COEMents

Figure 3.4.5.1-1 Host Display

PACKETS DUT

Figure 3.4.5.1-2 Graph Display

91

coliine
imeis_nteriace

Crux - Ll
koo ™ “
iy
oy~ M
{mess decoter
Thiset chenl

]

o

ais_encoder i
ey Tatles
M GsURY

P
Gy ity

g
Ll

Capella

ATV FDDN ETHERNET

altaird,
altairs-
altairg

altairi2

Ex.1009 / Page 101 of 280
TESLA, INC.

3.4.5.1.1 Host Display Design.

The host display initially reads an ASCII text file that contains information on all the
hosts that are situated in the testbed. A separate file is created for each location listing
information on each host such as the host name, host platform, host operating system, and
statuses of host’s network connections. Using the information in the file, the display shows a
layout of all the hosts with boxes representing the hosts and color-coded lines illustrating the
possible connections of each host to the three networks. This display is then updated on a
continuous basis, based on messages received periodically from the data server. During this
update process, box color is used to indicate the current status of each host and each color line
drawn to a box indicates the host’s specific network connection. There may be up to six
processes listed next to each box denoting the processes being executed on the host. The process
name color is used to indicate the status of each process (i.e. initializing, running, or faulted). As
the display is running, the user may request to see actual system information for each of the
hosts. This is accomplished by selecting up to twelve hosts and may be executed by clicking the
left mouse button on each host box. After all the required hosts are selected, the middle mouse
button is pressed to bring up a dialog box showing five different toggle buttons for selection of
CPU, memory, packets in, packets out, and paging information. As each button is toggled, a
request is made to both the data server for the specified information and the graph display for
graphing of such information. The graph display may show up to four line graphs (arranged
vertically). Untoggling a button allows the host display to send a stop data request to the data
server and the graph display disabling both the transmission and graphing of data.

3.4.5.1.2 Data Formats.

This section illustrates the configuration information that the host display utilizes in order
to render a layout view of all the hosts, their respective network connections, and the processes

that are being executed on them. The information comes initially from a configuration file and is
then periodically updated from the data server.

3.4.5.1.2.1 Host Configuration File.

a. To initially depict the layout of the hosts, the host display must read in a host
configuration file and keep track of the information in a database based on the host name. The
host display updates its database with the host information. Each host box initially comes up
gray with only the host name in the box, and no network connections is displayed. An example
of the configuration file is shown in Figure 3.4.5.1.2.1-1.

Host Configuration File

Taurus ALPHA 200 DIGITAL UX 180.010 1
Aquilla SPARC_2 SunOS_5.6 180.011 1

Leo ALPHA_200 DIGITAL UX 90.0101
Stargate MICRON WINDOWS_95 180.0 100
Carina SPARC_1 SunOS_5.690.010 1

Pluto INDIGO IRIX 53270.0101

Myra HP_J210 9000 HP-UX B.10.20270.010 1

92

Ex.1009 / Page 102 of 280
TESLA, INC.

Electral ORIGIN_200 IRIX64 6.4 90.0110
Altair] ENTERPRISE 2 SunOS_5.6270.0 110
Whitty PENTIUM_90 WINDOWS_9590.0 100

Notes:
1* parameter — host name
2™ parameter — host platform [defanlt]
3" parameter — host operating system [default]

4™ parameter — network connection side (0.0 - top, 90.0 - Ieft, 180.0 — bottom,
270.0 - right)

5™ parameter — ethernet network status (0 - down, 1 -up) [not used]

6 parameter — atm network status (0 - down, 1 - up) [not used]

7% parameter — fddi network status (0 - down, 1 -up) [not used]

Figure 3.4.5.1.2.1-1 Host Configuration File

b. Each line in the configuration file contains information pertained to a host. The first
three parameters identify the host’s name, platform, and operating system respectively. The
fourth parameter indicates the side of the box where the network lines are to be drawn. A
number 0.0 indicates lines will be drawn from the top of the box, 90.0 means from the right of
the box, 180.0 means from the bottom of the box, and 270.0 indicates from left of the box. The
last three parameters show the statuses of the Ethernet, ATM, and fddi network connections
respectively.

c. The host display allows up to fifty hosts to be shown so the configuration file may
contain up to fifty hosts. The locations of all fifty boxes have already been configured and saved
to a default config file, but the user may change these locations by invoking the config option in
the display and providing new location values. The user can toggle the “i” key in the display to
show the numbering of host boxes corresponding to the ordering of the hosts in the configuration
file. This process may be helpful in creating a host configuration file.

3.4.5.1.2.2 Interface to Data Server.

There are two messages that are received from the data server. These consist of the host
config message and the host process message. The host config message provides the name,
status, platform, and operating system of each host. The host process message provides the three
network statuses of each host and the status of any processes that are running on that host.

3.4.5.1.2.2.1 Host Configuration Message.
a. Figure 3.4.5.1.2.2.1-1 shows the structure that the host display uses to indicate

whether the host is up or not by box color and to show the host name, platform, and operating
system in the box.

93

Ex.1009 / Page 103 of 280
TESLA, INC.

Host Configuration Message

Typedef struct

{
char hostname[GRAPH_HOSTNAMELEN];

int status; /* Host status (0 = down, 1= up) ¥/

char hosttype] GRAPH_HOST TYPE_LEN]; /* Type of machine */

char os_type[GRAPH_OS_TYPE_LEN]; /* Operating system and version */
} graph_host_config_message;

Figure 3.4.5.1.2.2.1-1 Host Configuration Message

b. As the host display receives the message, it checks to see whether the host is in its
database. If the host is in the database, then the host display updates the database with the
information and changes the display accordingly. If the host is up and running, the display
changes the box color to blue and shows the host name, platform, and operating system. If the
host is not responding to monitoring, then the box color is gray and shows only the name of the
host in the box.

3.4.5.1.2.2.2 Host Process Message.

a. Figure 3.4.5.1.2.2.2-1 shows the structure of the host process message that the host
display uses to illustrate network connections along with the any processes that are being
executed on all the hosts.

Host Process Message

Typedef struct
{
char process_name[GRAPH_PROCESS NAME LEN],
unsigned pid; /* Process 1D */
int status; /* Process status */
/* 2 — process is new */
/* 1 — process is running */
/* -2 — process just died */
/¥ -1 — process is dead */

unsigned long int mem_size;
float cpu_time;
} graph process_data;

typedef struct

{
char hostname{GRAPH_HOSTNAMELEN];
int status; /* Host status (0 = down, 1 =up) */
int ether_status; /* Ethernet connected (0 = down, 1 =up) */
int fddi_status; /* FDDI connected (0 = down, 1 =up) */
int atm_status; /* ATM connected (0 = down, 1 =up) */
double timetag;
int num_processes;

94

Ex.1009 / Page 104 of 280
TESLA, INC.

graph_process_data processes[GRAPH_NUM_PROCESSES];
3+ graph_host_process_message_format,

Figure 3.4.6.1.2.2.2-1 Host Process Message

b. As the host display receives the message, it checks to see whether the host is in the
database. If the host is in the database, then the host display updates its database and makes
changes to the display accordingly. The host box color changes according to the host’s status,
and network lines are drawn to connect to the host box if the statuses of the networks are up. For
the host’s processes, a yellow color process name indicates that process is new, a green color
indicates that process is running, and a red color means that process has faulted.

3.4.5.1.3 Graph Display Interface.

a. The host display has an interface to the graph display to enable graphing of CPU
usage, memory usage, packets in, packets out, and paging information. Once the graphs are
enabled by user input from the host display, the graph display shows the information received
from the data server as line graphs with respect to current time. The graph display keeps track of
the information in databases. Up to four graphs may be displayed at any time, and within each
graph, there’s a limit of up to twelve host lines presenting the actual system performances. Each
of these lines is drawn from a database containing info on up to 500 points.

b. The graph display has a user interface that allows the user to change such
configuration items as y scaling of each graph and time length shown on each graph.

3.4.5.1.4 User Interface.

The user may change colors, fonts, and configurations of the components of the display
by selecting color button, font button, or config button in the popup menu. To enable/disable
graphing of CPU usage, memory usage, packets in, packets out, and paging information in the

95

Ex.1009 / Page 105 of 280
TESLA, INC.

graph display, a dialog box may be invoked to allow toggling of the five buttons. The following
shows the effects of entering key inputs:

“d” - toggle debug mode

“{” - toggle show numbering of boxes

“n” - toggle show network connections

“p” - toggle show processes

“r” - clear the toggle buttons of graph requests
“t” - save process names to file

“u” - toggle show last update time of host box.
“w” - toggle show time when display is updated
“BSC” —exit

3.4.5.2 Path Display

The Resource Management path display shows the flow of data and scaling of processes
for five different paths: Auto-Special Periodic Review Path, Spy Declared Auto Special Path,
Semi-Auto Periodic Review Path, Auto-SM Doctrine Path, and ATWCS Path. The purpose of
this display is to demonstrate the distribution of data and its effect on process scaling for each of
these paths as track load is varied. Using the ATDNET communications package, the path
display receives the information from the data server, which collects the data from the host
monitor. The path display also shows application performances of certain processes within each
path. This information is received from the QoS monitor. The code for the path display was
written in the C language using OpenGL libraries for drawing graphics and Motif libraries for
implementing user interface.

3.4.5.2.1 Path Display Design.

The information to construct the path display is received from two interfaces, the data
server and the QoS monitor. The upper half section of the display shows information obtained
from the data server. It consists of process names in the order that forms the data flow for a path
and boxes underneath each process name representing the number of copies (up to six) of
process running on all the host machines being monitored. The color of the box is used to
indicate the status of the process (i.e. running and faulted), and the name on the box is the host
on which the process is being executed. Arrows are drawn from the left to right direction of the
sequence of boxes to indicate the data flow of the processes. At the lower half section of the
path display, application performances obtained from the QoS monitor is presented as line
graphs with respect to current time. Up to two graphs may be invoked by the user with key
inputs or selecting the time lines underneath the specific process.

3.4.5.2.2 Data Display

This section deals with two types of information being shown on the path display. The
first pertains to data flow of process scaling, and the second includes application performances.

96

Ex.1009 / Page 106 of 280
TESLA, INC.

3.4.5.2.2.1 Data Flow

a. There are twelve processes that comprise the five different paths: Auto-Special
Periodic Review Path, Spy Declared Auto Special Path, Semi-Auto Periodic Review Path, Auto-
SM Doctrine Path, and ATWCS Path. These processes are as follows: track processor, rtds,
auto-special, engagement server, wes_sim, track control, semi-auto, auto-sm, nav_sim, navdata
server, lc_rt, and vls_sim. Figure 3.4.5.2.2.1-1 shows the data flow for all the five paths.

AUTO-SPECIAL PERIODIC REVIEW PATH

TRACK - RIDS - AUTO-SPECIAL - ENGAGEMENT -> WCS_SIM
PROCESSOR SERVER

SPY DECLARED AUTO SPECIAL PATH

TRACK = AUTO-SPECIAL - ENGAGEMENT -> WCS_SIM
CONTROL SERVER

|| SEMI-AUTO PERIODIC REVIEW PATH

TRACK - RIDS - SEMI-AUTO -> ENGAGEMENT -> WCS_SIM
PROCESSOR SERVER

AUTO-SM DOCTRINE PATH

TRACK - RIDS - AUTO-SM -> ENGAGEMENT -> WCS_SIM
PROCESSOR SERVER

ATWCS PATH

NAV.SIM > NAVDATA > LCRT > VLS SM
SERVER

Figure 3.4.5.2.2.1-1 System Path Data Flow

b. As the data server reports the number of copies for each process observed to be
running on host machines, the path display updates the view by drawing the corresponding
number of boxes with the host names in the boxes underneath the process name. Box color is
blue when the process is observed to be running, and box color is gray when process has faulted.
The box goes away completely when the data server notifies the death of a process. Figure
3.4.5.2.2.1-2 shows an example of a Semi-Auto Periodic Review Path display.

97

Ex.1009 / Page 107 of 280
TESLA, INC.

SEMI-AUTO PERIODIC REVIEW PATH

ENGAGEMENT
PRE)%%%%OR RTDS SEMI-AUTO SERVER WCS_SIM

— N e attaics [alcairi |
. [] .)
altair3 altairlO altair5 altairg
-altairll

altairl2

Raview
Pariodic.
Review
Time

Tlart

start

% CPU (Semi-Auto)

(L RN TRTARPIRTRRRT SR AT SRR RPARR S R YRR TSR
Time (min)

Figure 3.4.5.2.2.1-2 Path Display

3.4.5.2.2.2 Application and Path Performance Data

a. Figure 3.4.5.2.2.2-1 shows the available application and path performance data for
each path. The figure also shows the application component(s) from which the data is being
measured.

AUTO-SPECIAL PERIODIC REVIEW PATH

PROCESSES PERFORMANCES

Track Load
AUTO-SPECIAL Review Time

% CPU
Review Periodicity

SPY DECLARED AUTO SPECIAL PATH

PROCESSES PERFORMANCES
TRACK CONTROL Review Time
AUTO-SPECIAL % CPU
ENGAGEMENT SERVER

TRACK > ENGAGEMENT Path Review Time
CONTROL SERVER % CPU

SEMI-AUTO PERIODIC REVIEW PATH

98

Ex.1009 / Page 108 of 280
TESLA, INC.

| PROCESSES PERFORMANCES
Review Periodicity
SEMI-AUTO Review Time

% CPU

AUTO-SM DOCTRINE PATH
PROCESSES PERFORMANCES

% Late Tracks
% CPU

ATWCS PATH

PROCESSES PERFORMANCES
NAV_SIM > VLS_SIM Nav Data Delivery Latency
Missile Alignment Latency

% CPU

Figure 3.4.5.2.2.2-1 Path Performance Data

b. The user may submit requests to the QoS monitor to see specific application
performances by key inputs or by selecting the time lines underneath the processes. From the
information that is received from the QoS monitor, the path display keeps these parameters in
databases in order to update the line graphs.

3.4.5.2.3 User Interface.

The path display provides a user interface to allow some flexibility in displaying the
view. The ability to change the colors, fonts, and configurations of various components of the
display is accomplished by selecting the color button, font button, or config button in the popup
menu. Specific to the path display are the following user interface capabilities: selection of each
view of the five paths by selecting the corresponding button in the popup menu, selection of
graphs by selecting the time lines drawn specifically for the processes, and key inputs for
specific events. The following are the effects of entering these keys:

“1” - show AUTO-SPECIAL PERIOD REVIEW PATH

“2” - show SPY DECLARED AUTO SPECIAL PATH

“3” - show SEMI-AUTO PERIODIC REVIEW PATH

“4” - show AUTO-SM DOCTRINE PATH

“5” - show ATWCS PATH

“a” - show first graph of path

“b” - show second graph of path

“c” - show third graph of path

“d” - show fourth graph of path

“e” - show fifth graph of path

“f” - show sixth graph of path

“g” - show seventh graph of path

“h” - show eighth graph of path

“0” - set the y scale of the displayed graphs to default y scale value
“8” - set the y scale of the displayed graphs to 4 times the default y scale value

99

Ex.1009 / Page 109 of 280
TESLA, INC.

“9” - set the y scale of the displayed graphs to 2 times the default y scale value
“+” - increase time length of the graphs by 1 minute

“.“ - decrease time length of the graphs by 1 minute

“BSC” — exit

3.4.5.3 Resource Management Decision Review Display.

The Resource Management Decision Review display (Figure 3.4.5.3-1) shows Resource
Management control events such as selection of where to start an application, recovery of a
faulted application, and scaleup of an application in response to overload conditions. A scroll
list displays a history of the Resource Management events. Host load information for the five
best potential hosts for where to place an application to recover from a fault or overload
condition is displayed as a set of bar graphs. A text display of the last three events 1s also shown.
The information displayed is received from the Resource Manager. The Decision Review
Display is written in C using OpenGL libraries for the graphics primitives and Motif libraries to
implement the user interface for the display.

3.4.5.3.1 Design.

The layout of the RM justification display is assembled into three different sections. The
first (top left) section shows a list of the events history (the last 256 events) divided into five
columns: Event #, Action Type, Application Name, Host Event, and Host Action. The list has
scrollbars along the right and bottom edges that allow vertical and horizontal scrolling, and the
portion of the list data that is visible pertains to the last few events. Also, single selection of the
events in the list is supported to allow the second section to display information pertaining to the
selected event. The default selection of an event is the current event. The second (bottom left)
section shows four bar graphs displaying such information as aggregate score, CPU score,
network score, and memory score for up to five hosts as each event is received from the resource
manager. The second section may also show a line graph depicting scale up information if an
event selected from the list is an action type of application scale up. This graph may be invoked
by toggling the “Scale-Up Plot” button at the top of the history of events list. The button is
sensitized for toggling only if the selected event in the list contains the scale up application
action. The third (right) section shows a text display of the last three events. The order of the
three events consists of the current event being placed at the top, the previous event in the
middle, and the event previous to the middle event at the bottom of the section.

100

Ex.1009 / Page 110 of 280
TESLA, INC.

<a| Resource Managemen! L w]

: Sem Auto(2) EVENT#: 16
| EVENTSHISTORY

ACTION TYPE APPLICATION NAME HOST EVENT HOSTACTION

Application Started Aute_Speeiai3) altawd

Appiication Srarted Aute Speeial({) altairl PR]

Application Started Somi_Auto(2) altair§

Application Started Auto Special(2} altairlt

Application Staned Auto Special() altairs LHON: Application Started
Application Started Auta_Special(d) altani2 PID:ZZAMONHDST Ritain2
Application Started Auto SM(2) altaird
Application Started Auto_SME) altairl A " "
Application Started Auto SME) alairl] ACTIOHTIME: 12:41336525 12:41.35.6661
Application Started

Host Selastion Request

RESPORSETIME: RODW 20048

e et e~ | APPLICATION: Auto, SM(4) EVENTH: 15

%
EVENT: Host Selection Request

Aggregate Score CPU Seore

EVENTTIME: 12:41:318753
ACTION: HFopligation Stanted
akairz PID:35¢8 OMHOST aMainl
| ALTIDHTIME ¢ 1241315762 12:41:33.5601
| RESPONSETIME: 00009 20848

Netwark Score Pags Faults aleairt APPLICATION: Auta_SM(Y EVENTH: 14

| EVENT: Host Selaction Retuest
altalrty EVENITIME: 12:01235057
0
ACTIDN; Applisation Stated
PID 22523 QN HOST aftain

ACTIONTIME: 1240285062 12:41315737

RESPONSETIME: 0.0005 19680

Figure 3.4.5.3-1. Resource Management Decision Review Display

3.4.5.3.2 Data Formats.

This section introduces the two messages received from the resource manager to depict
the RM justification display.

3.4.5.3.2.1 Event Message.

a. Figure 3.4.5.3.2.1-1 shows the structure of the event message that the RM justification
display utilizes to draw all three sections of the display.

EVENT MESSAGE

typedef struct
{
char event_app_name[MAX CHARS]; /* application name associated w/ event */

mt event_pid, /¥ UNIX pid of event */
char event_host_name[MAX CHARS]; /* host on which event occurred */
double event_time; /* time event occurred in seconds */
int event_numy /* event id number */
int event_type; /* event type

0 = request start of application

101

Ex.1009 / Page 111 of 280
TESLA, INC.

1 = failure of application
2 = application overload */
int action_type; /* action type
0 = application started
1 = application restarted
2 = gpplication scale up */
char action_host_name[MAX_ CHARS]; /* host on which action occurred */

int action_pid; /¥ UNIX pid of action */

double action_time; /* time action occurred in seconds */

double response_time; /* time it took the RM to response
defined as action_time — event_time */

double total_action_time; /* time tag for Program Control’s
response to RM */

double total_response_time; /* delta time between Program Control’s
response to RM and the event time */

char hostnames[5][MAX_CHARS}; [* array of 5 best host choices */

float agg_data[5]; /* aggregate score data for 5 hosts */

float cpu_data[5]; /* CPU score data for 5 hosts */

float net_data[5]; /* network score data for 5 hosts */

float mem,_data[5]; /* memory score data for 5 hosts */

} event_message type;

Figure 3.4.5.3.2.1-1. Event Message

b. The first section of the display lists the events as they are received showing the
following information taken from the parameters of the event message structure: the event
number, the action type (application started, application restarted, or application scale up), the
application name, the name of the host on which the event occurred, and the name of the host on
which the action occurred. The events are stored in a linked list of up to 256 events so only the
last 256 events are displayed in the list. The ability for the user to select an event in the list is
implemented to allow the second section to display information pertaining to the selected event.
The default selection of the current event may be invoked by pushing the “Display Current”
button from the popup menu.

c. The second section of the display uses the parameters (hostnames, agg data, cpu_data,
net_data, and mem_data) of the event message structure to display the four bar graphs showing
aggregate score, CPU score, network score, and memory score of up to five hosts for the selected
event. Information of the hosts may be displayed with different colors of the bars representing
different hosts. As an event is selected in the list of the first section of the display, the bar graphs
alter to show the information for the selected event.

d. The third section of the display uses the parameters of the message structure to fill in
the information shown in Figure 3.4.5.3.2.1-2. The current event information is placed at the top

of the section, the previous event is placed in the middle, and the event previous to the middle
event 1s placed at the bottom of the section.

102

Ex.1009 / Page 112 of 280
TESLA, INC.

APPLICATION:

EVENT:
ON HOST

EVENT TIME:

ACTION:
ON HOST

ACTION TIME:

RESPONSE TIME:
Figure 3.4.5.3.2.1-2. Event Text Display

3.4.5.3.2.2 Scaleup Message.

a. Figure 3.4.5.3.2.2-1 represents the scale up message that the RM justification display
receives from the resource manager.

SCALE UP MESSAGE

typedef struct

double timetag;
float value;
} event_plot_type;

typedef struct
{
int event_num,
double start_time;
double stop_time;
double event_time;
float min_value;
float max_value;
float threshold;
char threshold_stringfMAX_CHARS];
char axis legend[MAX CHARS];
char titlefMAX CHARS];
int num_data_points;
event_plot_type event_datalMAX DATA_POINTS];
} scale_up_message_type;

Figure 3.4.5.3.2.2-1. Scaleup Message
b. This information is displayed in the second section of the display if the “Scale-Up

Plot” button 1s toggled. The second section consists of texts showing the event time, start time,
stop time, minimum value, maximum value, and threshold value of the scale up action event.

103

Ex.1009 / Page 113 of 280
TESLA, INC.

The second section also shows a line graph of the scale-up values for the time tags along with a
line at the threshold value running across from the start time to the stop time.

3.4,5.3.3 User Interface.

The RM justification display implements a user interface to allow changes to the colors,
fonts, and configurations of the components in the display. The user interface also allows the
user to clear the events shown on the display by pushing the “Reset Button” button in the popup
menu. Also, to set the current event to be selected, the user pushes the “Display Current” button
in the popup menu. Another user interface of the RM justification display is the “Scale-Up Plot”

toggle button allowing the user to see the scale up information of an application scaleup action
event.

3.5 Demo 98 Hardware Configuration

Al] the hardware used in Demo 98 was COTS equipment. The hardware configuration
and computer program allocation are shown in Figure 3.5-1. This is a very heterogeneous

system composed of equipment from four vendors, using four operating systems and three
networks.

104

Ex.1009 / Page 114 of 280
TESLA, INC.

“
_
#

=
|
—
|
|
-

uonRINIU0;) SIBMIJOS PUR SIBMPIRH] 86 OWA([-S ¢ 2INSI]

. 13NU3HIT 1G4 KLY =

suuan iGd
Sottieiioyres
LSIOF | sudanx HO3IED
snjan)

A8ANQIISTIS
WEWIESI0HIT
JASASONG

I g
ERA L i toosa

XI¥l %8 unug *
=

w&f.—?a

Aejdsp yiledats Bsin

wawsas ___1oM3[7]

1403”34
Aejdsip ad

: |
:aEmuﬂ
quw

appada
(elsip

._B‘Bau:b spe
S lupesd

Lmz.str .
Bt 32 _ub:cu uRuod

aafieusw od
wisARy

aafimmuy ad
404y wo

soyoud E
ajeburiS

iy 3
wis Zws

Aeplsip duadas”eepAEY
1Huayd)

8a43S 3RS uua}a}

BHINDY _o_a»o__m a

SIUANA0D o
Jafivy
aggedaush

=.
oLiEyE

prasds

AUYR_Stn_

Auix jeR_disuino
ARLHUCT I}
sHM

PKRitUn

peadds

tus u

JUaLT S
4BOHUDD Hoen
auyx spa

spd

Agasiuy

RECEME
ocasd’ Yo~ samye

Umxw BE-] wwmm:m

wARuLY
HIsISH uny

105

x::_ _sdfi
m~ Ha_ fenueul
Jansas juawsbieliua

ur-u& 5 -:n_-\

prasds

ABNOAG TepLU
Augx astls one
4nssaanid yora

peauds
..amw.wuoi Hied

-._DJ us,
ATHOAE PoUR}
LG

eails

ULOZSHY
jun st

Ex.1009 / Page 115 of 280

TESLA, INC.

3.6 Demo 98 Scenario

a. The scenario for Demo 98 was developed based on the Surface Combatant-21%
Century (SC-21) Cost and Operational Effectiveness Analysis (COEA) scenario. A description
of the geographic setting and tactical objectives follows.

b. In 20135, the Korean Peninsula is invaded. In one of the responses, a surface battle
group consisting of ownship, one CG and two DDGs is dispatched as shown in Figure 3.6-1.

V==| 730 Eye - ECR, Look = HoPerD 132 e |0
|_\Aﬁndow Eye Look View Communicaton: Platiorms Regions Afrspaces Demon

13:45:35.46

Figure 3.6-1. Surface Battle Group

¢. The battle group’s mission is two-part: to gain sea battlespace dominance, and to
support land attack. Ownship mission is to coordinate Naval surface fire within the battlegroup.
This will entail strategic attack and invasion slowing missions accomplished with the Advanced
Tomahawk Weapon Control System (ATWCS); scheduled and unscheduled digital calls for
Naval Surface Fire Support (NSFS); AAW self defense; and air space deconfliction.

106

Ex.1009 / Page 116 of 280
TESLA, INC.

3.7 Integrated System Demonstration

The Integrated System Demonstration began with a demonstration of the new physics
based DIS compatible Environmental Simulation capability. This was followed by two ATWCS
land attack strike missions with the second mission including a fault detection and recovery
sequence. Next the Fault Tolerant Engagement Server was presented and the impact of its
faulting during an Aegis SPY Auto-Special engagement was shown. Then a Digital Call for Fire
sequence was demonstrated. Finally the system track capacity was scaled up as Resource
Management functionality was demonstrated. It was shown that some of the RM components
are themselves fault tolerant, that RM recognizes components not meeting their specification as
track load increases, and reallocating to allow the system to regain expected performance, and
that RM recognizes software faults and reallocates the faulted process to a different processor.
At the end of the demo with a track load of approximately 7500, a series of Auto-Special
engagements were run showing that the system still met critical timeline requirements even
under very heavy loads. The following subparagraphs describe these demo events in detail.

3.7.1 Environmental Simulation

a. The integrated demonstration began with an Environment Simulation scenario that
entered ownship, three ships in company, an AEW aircraft flying a race track pattern, and eight
land sites detected by the AEW aircraft. These tracks are shown in the OTH Filter display in
Figure 3.7.1-1. This portion of the demonstration was used to introduce the various Environment
Simulation displays such as the Truth displays, the Helm Control display, the Vertical Profile
display, the MFAR display, and the OTH Filter display. Also the AAW Tactical display was
compared with the JMCIS display to illustrate that a consistent track picture was provided by
both. The AAW and OTH tracks were received and displayed by both systems.

b. A second EnvSim scenario depicts an enemy aircraft attack against ownship. As
depicted in Figure 3.7.1-2, an enemy aircraft starts 37 nmi from Ownship at an altitude of 50”.
At this point it is detected by the OTH sensor (the AEW aircraft), but not by the ownship radar
(MFAR) as the enemy aircraft is below the MFAR radar horizon. It is displayed on both the
AAW Tactical Picture display and the JMCIS C4I display as an OTH track, the track being
provided by the OTH sensor to IMCIS and then onto the AAW Tactical Picture. As it moves on,
the enemy aircraft pops up to 2000’ at 33 nmi for 35 seconds to target ownship. When it pops
up it is detected by the ownship MFAR and displayed on the AAW Tactical Picture as an AAW
track with the AAW track information passed on to JMCIS. On the AAW Tactical Picture
display the OTH track symbol is replaced with an AAW track symbol.

107

Ex.1009 / Page 117 of 280
TESLA, INC.

: 4;;100410 010~ .

l
t
1 ° A
'

"m S
sgmi 117100710
T .

?1‘112{11'!10 !

&0 .- B0
. u%,.mnfm

00 £10

R EESLIRAT
¥ » e 1

[

i

U .

] *
e A - -

Grid Ogin & Lt 38.253531 Dey : mpzmssasy"ln» -

! Grid Size ifamraj 450 umi f Harizontad 323 nimi

Suare i 750 Dagrep';

Figure 3.7.1-1. OTH Filter Display

108

Ex.1009 / Page 118 of 280
TESLA, INC.

Radar Horizon wwea F-1 Alt wwee Missile Alt

2500

2000

1500

1000

' Nohrealtine Track .
Reported by DTH Filter -

Range from Ownship (nmi)

Figure 3.7.1-2. ASM Launch Scenario

c. The enemy aircraft then descends back to 50° (below MFAR horizon) and launches
two ASMs against ownship. Once the AAW track is lost by MFAR the AAW track symbol on
the Tactical Picture display is replaced with the OTH track symbol as the OTH sensor is still
reporting the track. The two ASMs launched at ownship appear at first as OTH tracks on the
AAW Tactical Picture as they are initially below the MFAR horizon. At 16 nmi from ownship
the MFAR detects the two ASMs as SPY Auto-Special tracks, the OTH symbols are replaced
with AAW track symbols on the Tactical Picture, and ownship using the auto-special doctrine
automatically launches a SM-2 missile against each incoming threat. The environment
simulation vertical profile display shows this attack sequence and the ownship response.

d. This scenario segment illustrated the OTH track input into the system via JMCIS and
the AAW track being entered into the system via the physics-based MFAR simulation. It also
demonstrated how the OTH and AAW tracks were shown on the Tactical Picture during the
phases of the scenario segment. The Vertical Profile display was used to show the attack
sequence and thus allowing correlation between what the scenario was doing and what the AAW
Tactical Picture and JMCIS were showing. The defense of ownship via the Auto-Special
doctrine was also illustrated.

e. In the third EnvSim scenario, the CVBG (east of ownship) launches several strike
forces and an Air Force strike force approaches from the south of ownship. This is shown on the
truth display in Figure 3.7.1-3. This scenario continued for the length of the demonstration
providing background tracks for system processing. The total number of tracks being processed
and entered into the system by MFAR reached over 200 during the demonstration This was done
to illustrate that Environmental Simulation could generate and process a realistic capacity of
tracks in its initial entry into the testbed. Larger capacities could have been demonstrated and
are planned for future demonstrations.

109

Ex.1009 / Page 119 of 280
TESLA, INC.

-==4 Truth Display - ﬁsz'm}ng fo Pm 327 4 te i0]1

.

E1apseu Tinke = 3644.8 sec

L9600 1 ’ 1

l ~30280 ' 5
s tmnam .
L iﬁfmmwgl f’l‘iﬂuﬁ*ﬁﬁ; A
.6 £ 108 {g‘@ftﬂuumn l{ 0 Py \
& ,i‘am)— n . !
2 M
& 106710 BeoLam
P00 100 BiausERE
= | a0

~3f 100 /15 | C:ON8 n

i
|
]
;
;

- -

83

T
R
f

Figure 3.7.1-3 Truth Display Showing Air Targets

110

Ex.1009 / Page 120 of 280
TESLA, INC.

3.7.2 ATWCS Launch Control Real Time Group

a. The next segment of the demonstration was ATWCS which involved launching
Tomahawk Land Attack Missiles (TLAMS) at predefined targets significant distances inland.
The Tomahawk weapon system does not “target” hostile tracks, and does not rely on any real-
time sensor system for targeting. (Real-time track reporting is essential for performing over-
water routing by the launch platform. That part of the Tomahawk weapon system was not
available for the demo.)” Currently, targeting is accomplished in advance of the launch,
typically at a Cruise Missile Support Activity (CMSA) ashore. Using available imagery and
intelligence data, the CMSA plans the overland route to the target from a point (the First
Preplanned Waypoint, FPPWP) just prior to landfall. Included in the “mission” is the terminal
attack profile, selected by the planner to maximize damage to the target.

b. The launch platform’s responsibility is to:

(1) Meet any launch time and position requirements established by the tasking
authority.

(2) Define the route from the launch point to the FPPWP.
(3) Initialize and launch the weapon.
c. The over water routing must consider the tactical surface track picture to avoid

unintentional intrusion into “no-fly” zones, and to avoid collision with any hazards along the
route.

d. To show the successful integration of the ATWCS LC capability into the
demonstration, four engagement plans were created and executed. The first three plans specified
the launch of two TLAMSs each, with launch times set to require overlapping initialization of the
six missiles. This allowed the demonstration to show that the testbed architecture and prototyped
LC software successfully achieved the real-time performance required for TLAM launch. Figure
3.7.2 -1 shows the console display during missile alignment.

111

Ex.1009 / Page 121 of 280
TESLA, INC.

NSWC USS LC-Delver

EPCSimustor Intarfacs Options SM Options LT Saiator Prohlbitions* ON sysumunu Tacticat
s et
o] EPC Simuiator Man Wncow 1] T B uncent aears
Help l Help ' o
e
TN Lt t l Py - ooy
AVAILABILITY AND STATUS -1
Help
+ Laoncher A Communications “System Status]
*‘ 03 EXEC-FL EXEC RECM-EXEC LAC-C 02n¢ co NICATIONS
! VLS INS
i Prlmar&ﬁUl. N 1Acll Primary INS: Forward -
H ve
! 1ous @ Loc Forward: + Good Dataon LCRT1
. LCU ToICU: + ©p Aft: [3 LOC on LCRT
INS ToINS: 1 Active
LCRT
Primary LCRT, + 1 Update Source: GPS
SctMissils .| FrecuwPlan | ExacwteRaySpr. | LORT 1 ¢ Active Updute Time: 25 1303 36Z SEF 96
LCRT 2: I3 Inaclive
‘ LCRT To LCKT: [Down
cen. ¢ Actve
I EPC ¢ Active velahiper
MDP + Active velahiper
oy . i oot et
| MISSILE STATUS l 1]
ons
Op Close
Mmih :P)m pFs prs MSN ALM Copo DTW Algn Alen
ID Mlks Data Daa Daa Dma Mode Thme Sums Slauu
CHLLAG-C Enwbisd R T i N 400458 |
(o e o Evabist N N — -
F2L LAC-C a2 v.; Enabisd S EEEEE R N e 0 o Sw"e s -002:33
CF# LAC-C 002 Ve Enobled)M A DO RN B ¢ o0 Sate Sel -oizas |- Manawic $oter
(FROLAC-C 000 Ve Enablal R SN BN MR BN 7 0 S Sd ol R
P LAC-C 003 Ve Enablod [N T DN BN BN 7 o s Sd -002®
¢ Pl LAC-C No Enabled 0 Unk Unsel
i pe LaC-C No Enshlad 0 Unk Unsel
'Sl LAC-C No Enablal] Unk Urse
L EFSE LAC-C Yes Ensblal 0 Unk Unsd
Display AAUMusiles +Powered-Up Missiles _Missile Information.. Abort Loaoeh Cose | et
- g
Provious
@. e

Figure 3.7.2-1. ATWCS Display Showing Missile Alignment

e. The fourth plan, calling for three missiles, was then executed to demonstrate the fault
tolerance of the LC RT process, in conjunction with RM. During the missile initialization phase
for this plan, the LC RT process was abnormally terminated to simulate a fault condition. This
event was automatically detected by RM, which immediately issued a restart of the LC RT
process. The restarted LC RT re-established communications with the LC Exec, the simulated
INS, and the simulated VLS, then resumed the missile initialization process. As is seen in Figure
3.7.2-2 this resulted in the successful launch of the three TLAMs with a delay of a only few
seconds.

112

Ex.1009 / Page 122 of 280
TESLA, INC.

51

— .0 ¥ I A/ levdlofdenk D
Moy Dats Devery Latency(NavBin th ATWGS LGRT) One-Ghot Nav Data Delivery
Forcs %
‘ 2
2
l |
R e e e T P P S 5 P ™ Ohin ™ P R Fex
Otho tatenas Burrant Wtias Laterey Histagren Logend in Ksllissoonds
Glock Offaetistation-to~-station Missie Alignment Latency Summory
Fesy
100,68
00
X 1
F
rorCell F38
6 5HW GO G400 GRS BAI0 GHME G20 636 GM® GE B el B8 t}‘;:::
MATHES Upper Spec Lintt ONTIES Lover Spea Lants Fwrent Hastagon Logord 1n Kiidiseconds

Artiuxde Daca Delivery Aaxe Spectrum

3,524,438 Rad.515,48 W15.5-16,44 [s.5-17,48 §17.5+48,49 | FCASLR)
Hlgtagran Logandt 10 Hz

Figure 3.7.2-2 JEWEL Display Showing LC RT Fault and Re-start
by HiPer-D Resource Manager

f. Had the LC RT not been restarted and communications with VLS resumed within an
80 second timeout period, VLS would have automatically deselected and safed the three
TLAMSs. This would have required the ATWCS operator to edit the engagement plan and restart
missile initialization from the beginning, with a significant delay in launching the TLAMS.

3.7.3 Fault Tolerant Engagement Server

a. Prior to Demo 98 the Engagement Server component was not fault tolerant and,
therefore, represented a single point of failure in the HiPer-D engagement capability. The
purpose of the Engagement Server in HiPer-D is threefold. First, it validates engagement
requests from clients and arbitrates any race conditions occurring due to multiple engagement
requests on the same target. Second, it generates engagement orders to WCSSim for valid
engagement requests. Third, it distributes engagement status updates to clients as tracks progress
through their engagement sequence. In fulfilling these responsibilities the Engagement Server
creates and maintains engagement state data critical to the HiPer-D system. It is imperative that
this state data is synchronized among replicas when there is more than one Engagement Server
executing in the system. The engagement servers use a Primary/Shadow scheme to enforce this
synchronization and provide for fault tolerance.

113

Ex.1009 / Page 123 of 280
TESLA, INC.

b. During Demo 98 this new Fault Tolerant Engagement Server was demonstrated to
properly handle engagements prior to, during, and after a fault of the primary replica. A fault
resulting in a process failure was precisely injected into the primary Engagement Server during a
SPY-declared Auto-Special engagement. This is the most demanding timing requirement in
(C&D). The intentional failure was generated in the primary Engagement Server after validation
checks had been performed but before the engagement order was sent to the WCSSim, (the worst
possible time since it falls within the SPY-declared Auto-Special timing requirement). This
failure location in the Engagement Server was chosen to demonstrate state data consistency

among the surviving replicas as well as performance impact to the SPY-declared Auto-Special
timeline.

¢. To demonstrate the features of the Fault Tolerant Engagement Server a new JEWEL
display was created which provides a visual window into the replicated Engagement Servers.
This new display highlighted the consistency among the replicas with respect to their state as
well as to the resultants of any input stimulus. Figure 3.7.3-1 shows an image of this display
captured during one of the live Demo 98 executions. It was captured immediately after the
replicas processed an engagement request for a SPY-declared Auto_Special contact.

d. There are three rows of colored bars on the display, one row for each of the
Engagement Server replicas. The top row indicates the primary replica; the bottom two rows are
shadow replicas. Each of the colored bars indicates a unique resultant that must be transmitted in
response to processing this most recent engagement request. Time is moving from left to right
across this display, therefore the resultants shown from left to right indicate a sequence of
activity occurring at each replica. There are four resultants for Auto_Special type engagement
requests. Notice that the colored bars are taller for the primary replica. This indicates that it has
actually transmitted the resultants. The half-height bars for the shadow replicas indicate they
have verified that the primary replica has successfully transmitted the resultants. Notice that
each replica either transmits or verifies the same set of resultants. This is an important insight
given by this display. This indicates that the replicas are coming to the same conclusions about
the processing steps that must be completed for this engagement request. They are “in the same
state” with respect to this engagement request. If this display ever indicates colored bars that
lack this “vertical harmony” among the replicas it would mean that they have inconsistent state.

114

Ex.1009 / Page 124 of 280
TESLA, INC.

- 2l ¥ 3 . s levelof detal 0

Enagement Fequest

WEnDrder/PERF {Jvab Ack/ke

Figure 3.7.3-1 JEWEL Display
3.7.3.1 Fault Injection Control

a. Prior to Demo 98 the HiPer-D project did not demonstrate precise fault injection
capabilities. HiPer-D has dealt primarily with process failures and, on a more limited basis, with
hardware failures. Process failure was accomplished through the use of Ctrl-C and Unix level
Kill signals. This did not provide the capability to inject a fault, resulting in a process failure, at
a precise point in time or a precise location in a process. It was necessary to hand tailor a fault
injection capability to provide this level of control. This was accomplished through the creation
of a data file that specified the fault injection parameters. It also required application changes to
read and respond to the fault injection parameters in this data file.

b. The data file contains the following information:

(1) Propagate True
(2) Replica 0 Trigger 2 Skip 2

c. The first line indicates whether automatic generation of a fault is enabled or not. A
value of True for the Propagate variable specifies that fault injection is enabled. This allows the
injection to be enabled and disabled at runtime. The second line provides the details of the fault
injection. The Replica variable specifies which of the replicas is to fail; 0 is the primary replica
and 1+ are Shadow replicas. This allows failure of any replica to be tested and demonstrated.

115

Ex.1009 / Page 125 of 280
TESLA, INC.

The Trigger variable specifies which location in the process is to generate the fault. There are
several locations encoded in the Engagement Server component that correspond to unique
Trigger numbers. This allows the server to proceed to the specified point in the processing
before the fault is generated. The Skip variable indicates the number of engagement requests to
skip over before the Replica and Trigger values become active. This allows finer control during
testing and demonstration.

d. All Engagement Server replicas read this specification file at a %2 Hertz periodic rate.
Currently there are five locations in the replicas where code has been modified to test for fault
generation. These correspond to Trigger values 1-5. At each of these five test locations the
following conditions must be satisfied before a fault is generated:

(1) This is the correct Replica number

(2) This is the correct Trigger location

(3) Fault injection Propagation is True

(4) The proper number of engagement requests have been Skipped since Propagation
was enabled.

e. When all conditions are satisfied then a fault is generated. The fault is in the form of
an Ada exception that propagates to the main procedure of the engagement server process. At
this point a process failure is generated. While this technique is somewhat rudimentary in
nature, it does allow a precise and repeatable fault injection capability. It can be used to fail a
process at a user-specified location thereby allowing visualization and measurement of the
resulting impact.

3.7.3.2 Fault Recovery and Performance Impact

a. During Demo 98 a fault was intentionally injected into the primary Engagement
Server replica using the control described in the preceding section. This resulted in a primary
replica failure that occurred during an engagement request originating from a SPY-declared
Auto_Special contact. The SPY-declared Auto_Special engagement path is the most stringent
timing requirement in the C&D Element. The time allowed between the initial SPY qualification
and the engagement order generated to WCS is very short.

b. Figure 3.7.3.2-1 illustrates how this path, or timeline, corresponds to components in
the HiPer-D system. There are four components involved in the SPY-declared Auto_Special
path; Track Control, Auto_Special, Engagement Server, and WCSSim. The green and red
arrows indicate messages that flow between these components in executing this path. The wall
time taken to process this engagement is shown as the bar with “Begin Review Path” and “End
Review Path” at each end. The last activity in this path is the transmission of the engagement
order to WCSSim, i.e. the red arrow in the diagram. The wall time to execute this path must not
exceed the C&D timing requirement.

116

Ex.1009 / Page 126 of 280
TESLA, INC.

Engagement

Track_Control Auto_Special WCSSim
Server
L M L____,,_,& }._.‘........,gy
&
Begin I End
Review [1 Review
Path Path

Fault Injected */i;/
Into Primary :
Engagement

Server

Figure 3.7.3.2-1 SPY-declared Auto-Special Review Path

c. The blue arrow indicates that a fault will be injected into the primary Engagement
Server during this stringent path. Again, this will result in a process failure of that primary
replica. This is by intent and allows analysis of two important attributes:

(1) The successful completion of the engagement request even during failure of the
primary replica.
(2) The impact on performance in meeting the Auto_Special timing requirement.

d. The JEWEL display, previously described in Figure 3.7.3-1, allows insight into the
first of these attributes. Figure 3.7.3.2-2 shows another image of this JEWEL display. It shows
this display captured during a live Demo 98 execution shortly after the primary Engagement
Server has been intentionally failed. The primary replica failed just before transmitting the
engagement order to WCSSim; (the blue box would have been this resultant). Both shadow
replicas detected this failure. The oldest shadow replica assumed the primary role. This is seen
in that this shadow replica verified the first resultant from the failed primary replica, i.e. the red
box, but it transmitted the remaining resultants after taking on the primary role (remember that
verifications are half-height and transmissions are full-height). The other shadow replica
remained in a shadow role even after recovery from the failure. It verified the transmission of all
resultants regardless of whether they originated from the failed primary replica or the new
primary replica.

117

Ex.1009 / Page 127 of 280
TESLA, INC.

- & Y i v Level of detal ©

Engagement Foguest
Eng Server:
180

[

50!

v
Bstererer | [ZEarge) Dihortm Dute [osn Akt

Engagomont Bocaest

o
Wstatervik | G Briervrer Dutovresr vs rore. |

Figure 3.7.3.2-2 JEWEL Display Hlustrating Failure of Primary Replica

e. This display showed that the current engagement completed successfully in spite of
the process failure. This is an important feature of the Engagement Server in that it provides
automatic continuation of an engagement in progress even if a replica is lost. This display also
showed that only one resultant of each type was transmitted, i.e. no duplicates or lost messages.
This is also important in that lost or redundant messages can create error conditions in other
components that are expecting to see one and only one such message.

f. The second attribute is the ability to assess the performance impact on the
Auto_Special path. Figure 3.7.3.2-3 shows an instance of the Auto_Special JEWEL display. It
was captured during a live Demo 98 execution shortly after the primary Engagement Server
suffered a process failure. There are five charts on this display. The upper four visualize aspects
of the Auto_Special doctrine clients’ periodic activities. The bottom chart that extends over the
full width of the display is the only one of relevance to this particular discussion. Figure
3.7.3.2-1 showed the SPY-declared Auto_Special review path. The bottom chart on this JEWEL
display in Figure 3.7.3.2-3 is a visual representation of the wall time required by the HiPer-D
components to successfully process this path.

118

Ex.1009 / Page 128 of 280
TESLA, INC.

Level of detadl, 0

Auto Bpecel Doutrine Baview Pariodiciky Auto Bpecial CPU Utication
H
1 [) 11
0000 ‘ 3o
]
4
256,00
|
e
0060 JOOBE G0 DG IO BOTB JR)S0 JBXE JEDG0 75086 BLOD 7BI06 L0 LIS
i
Raltard | B
huto Special Doctrine Review Elapsed Time Tracks Reviewed
1] L 1 P
I l { \l 10" i‘ 7 R
pEHE: EEnE K177
) % LY I sw\ /::w
A 1Y pi ILLE J
i 2.50 At [Sor— T
43 e ——ip
1 e g
Mesh 76085 76050 8IS TE0N0 075 760BS 780BS 7600 595 78100 75005 M6 7eLdS . \znm
Raltara
3
Auto Special Timeline
200,00
il
L1
[
i
| 100.00 o=
] [
]
| |
Tt ! I
TEUS0 05 780850 TEES 00 Te7s TH0E0 TEOES TEC80 78085 76100 TBIE FELI0 7EDS
i pee [ers | 173 WHiPer D w/onns

Figure 3.7.3.2-3 Auto_Special JEWEL Display

g. The C&D timing requirement is represented on this chart as 100%. In other words, as
long as the HiPer-D components collectively take less than 100% to process a SPY-declared
Auto_Special contact then the requirement is being met. Typically the HiPer-D components
consume ~10-20% of the requirement, well below what is allowed. Notice that the blue line
drawn from left-to-right across this chart rises sharply about halfway across the chart. This is the
impact due to the primary Engagement Server failure. Prior to that failure the components were
using less than 20% of the allowed time. This can be seen by the fact that the left-most scale
shows numbers at 100% and 200%. The 100% mark is on the fifth gridline. The blue line
initially starts below the first gridline, a value less than 20%.

h. At the point where the failure occurs the line increases to ~180%. This is a violation
of the requirement as specified in C&D. But, three important points must be stressed here. First,
there is not actually a C&D requirement specified for the SPY-declared Auto_Special path under
failure conditions. HiPer-D has taken this stringent requirement and attempted to meet it even in
the presence of process failures, an aggressive and challenging undertaking. Second, the visual
impact and analysis of this performance hit is only enabled by the precise and repeatable fault
injection capability tailored by HiPer-D. This stride is essential for analysis of both performance
and resiliency of distributed systems. Third, if C&D is lost in AEGIS, Baseline 5, it must be
restarted in the N+1, ACTS computer (a cold restart). It must progress through the complete

119

Ex.1009 / Page 129 of 280
TESLA, INC.

initialization phase before it is ready to process Auto_Special engagements; not counting the fact
that the Auto_Special engagement in progress during the failure could be lost. The recovery
time for this restart operation is significantly longer than the 100% mark specified for the
requirement.

i. There is a hot restart mode in AEGIS that takes advantage of the shadow memory
feature of the UYK-43 architecture. This failure and recovery mode in C&D is much faster than
the cold restart mentioned above. Even so, it still could take up to 500% of the Auto_Special
time we have been discussing to perform a recovery in this manner. With these points in mind it
follows that 180% of the requirement during a loss of the primary replica is very good
performance by these HiPer-D components. Nevertheless, it is one of the goals of HiPer-D to
continue to analyze and improve recovery performance in the presence of failures.

3.7.3.3 Summary and Future

a. Adding fault tolerance to the Engagement Server component for Demo 98 created a
completely fault-tolerant engagement path through the HiPer-D system. The Engagement Server
design allows these replicas to keep the critical engagement state data consistent among all
replicas. The engagement state data is potentially affected by messages from several
communication groups making the design to guarantee consistency a challenging problem to
solve. The new JEWEL display provides a window into this state and action consistency among
the replicas. Finally, the precise fault injection addition allows repeatable fault testing as well as
measurements of system performance.

b. Inthe coming year Engagement Servers will have the capability of coming on-line
even in the middle of an engagement request. Currently, redundant servers can be added back
into the system, but only when there is no engagement related activity. It is import to ensure that
a new server recetves the proper state as it comes on-line in order to know where in the
processing sequence it should begin. This is an interesting problem if an engagement request is
in progress. An additional factor is that multiple communication groups can be involved during

the processing. Transference of the proper state to this new server under these conditions is a
challenging endeavor.

3.7.4 Digital Call for Fire (CFF)
a. One of the enhancements to the HiPer-D testbed for Demo 98 was the development
and integration of a remote interface to support simulation of an external digital CFF capability.

The Demo 98 scenario was designed to demonstrate the expanded CFF capability for both
scheduled and unscheduled digital calls for Naval Surface Fire Support.

b. This capability encompassed several major components and processing elements
within the total system, including:

(1) The creation and utilization of a remote Forward Observer / Forward Air
Controller (FO/FAC) simulation subsystem.

120

Ex.1009 / Page 130 of 280
TESLA, INC.

(2) Visual deconfliction of the air picture.

(3) The insertion of an OTH CFF track into the HiPer-D system, representing the
target aim point of the CFF engagement.

(4) The transmission of engagement requests by the Tacfire Processor to the
Engagement Server.

(5) The prosecution of the engagement by the NSFS Simulator (NSFSsim) with
subsequent spotter adjustment(s) provided by the remote FO/FAC.

(6) Successful completion and termination of the CFF engagement.

¢. Each of these functional areas required substantive new design, development or
upgrading of the software base in the testbed. A high level graphical summary of the system is
provided in Figure 3.7.4-1.

3.7.4.1 FO/FAC Subsystem

a. Figure 3.7.4.1-1 provides details on the FO/FAC components. The drawing highlights
two areas:

(1) It illustrates the actual connectivity between the main testbed in Building 1500
and the remote CFF FO/FAC operator in Building 180, both within the NSWCDD complex.

(2) It also provides an indication of the CFF interface message flow between the two
sites and supporting Tacfire/RDDL components that emulate the prototyped FO/FAC capability.

b. One of the objectives of the demonstration was the creation of a remote FO/FAC
capability to simulate a spotter on land transmitting CFF requests and corrections digitally to a
combatant supporting the land attack mission. To achieve a certain degree of reality, the
following design decisions were made:

(1) The fixed format Tacfire message specification was selected in accordance with
“Interface Specification for Maneuver Battalion Fire Support Element (Advanced Field Artillery

Tactical Data System)” (FSSIS-IS-0093 Rev. A, dated 1 December 1993) as representative of
this interface.

(2) The militarized AN/GRA-39 transceiver set was integrated into the remote
FO/FAC environment.

(3) Supporting components, Scenario Injection Stimulator (SISTIM) and a Remote
Digital Data Link (RDDL) provided both the CFF scenario mechanisms and the TCP/IP network
protocol encoding of the CFF messages.

121

Ex.1009 / Page 131 of 280
TESLA, INC.

c. The result of these efforts provided the infrastructure approximation that represented
a remote CFF operator in the HiPer-D Demo 98 testbed.

122

Ex.1009 / Page 132 of 280
TESLA, INC.

€Tl

weaSer 241 10J [[6D (¥NBIQ 1-pL ¢ SN

IdYINHr ‘emo1d Bnog pue owsp /661
aaoMsN ‘siliN sukepm Aq padojenap weibelq woy payipowun

<4 > sid
«-p- difdOlL

Buusyli4 B
uoneali0) yoell

v

sAe|dsip ‘68
‘SJUSIo yord]

jseopeolq
slor

b1y Jo sl -
joys jo jied -
sjuawsnipy .
:ejeq juswebebuz
yoepy pue’]

13}18AUO2 3JEUIPICOD
pue Jspooap aljoe]

S

R R SR s R ks SIS
uopenwis
S4SN

jsenbai
abebugy

jsanbai
abebug

UOISSIN o pu L —
10813 10} 2114 'Q [oocj0ud «mm:www T vonepoion
= : ; abessaw anyoe| uoiejaliod
isnipy wenbssqang ‘g \] aw-feat [H1O -
(ysedspoys) sbebus v mm-..mwmﬁ uot
‘ joyuosaqg -
uonoluosa ‘e T 440 1eybig -
1senbay 449 (B16Id 2 ¢ dZ XINgVY .
uolssIpy 1eis ‘L s[eoy

uoljesuowng

123

Ex.1009 / Page 133 of 280

TESLA, INC.

NILSIS |

ISOS

sjueuodmwo)) wsAsqng DVA/OA 1-T'd'L € 3131

€4

Nur eyeq [eybiqg sowsy - 1AAY

6E-VHO/NY

| WL

Od SOO-Si

1add

JHId0VL
jewio paxi4

D —
S19M008

dli/dOL

(180 saiunbay)

1OVvY —

L S10r

10sS800.1d

€ S10f

]

qnH

=> UOISSI JO puz

€ yse|dgnoys -

= 109443 40} Bl

€ Useidsnoys

> 1snlpy aii4 -

€ ysejdsnoys

= 440"

€ UOISSIN HBIS OLN

O/4 uiayig sqi Ol

TN S WO N0

i9]nol Jsinol

alljoe |

g¢ slor

124

Ex.1009 / Page 134 of 280

TESLA, INC.

3.7.4.2 CFF Initiation Sequence

a. To facilitate the testing and demonstration of the CFF capability, the testbed-specific
Message-to-Observer (MTO), Start Mission, was defined consistent with the Tacfire
specification. This initiated each engagement and alerted the remote FO/FAC that the testbed
was ready to conduct a test mission.

b. Upon receipt of the Start Mission message, the FO/FAC then selects and executes a
defined CFF target scenario from the SISTIM. This results in the RDDL transmitting the
initiating Tacfire CFF Request message. This flow initiates with the remote FO/FAC and is sent
to the Advanced Computing testbed’s Tacfire Processor and ABMX subsystem over a TCP/IP
socket connection. At this point, a single land attack mission is in progress.

3.7.4.3 Visual Deconfliction

The Air Battle Management and Execution (ABMX) element supplied by the Naval
Research Lab (NRL) was integrated into the testbed, primarily to provide a deconfliction facility.
Upon receipt of the initiating Tacfire CFF Request message from RDDL, ABMX computes and
plots the start and endpoint of the anticipated ballistic flight path of the land attack mission. This
data is displayed in both 2-D and 3-D on the ABMX displays. In particular, the 3-D
visualization, along with the receipt and presentation of the complete track picture from the
GCCS-M (ak.a. IMCIS) Jots-1 platform, allows rudimentary visual deconfliction of the air
picture with the intended projectile flight path. In this version of the prototype, voice
communications are used as the mechanism for communicating information should safety
conflicts be detected.

3.7.4.4 OTH Track Injection

a. Concurrent with ABMX performing its deconfliction processing, the CFF Demo 98
design called for the injection of an OTH track into the system to permit the AEC to prosecute
this target. Upon receipt of the CFF Request from RDDL, the Tacfire Processor decodes the
UTM coordinate data of the Tacfire message and sends a DIS Entity State (ES) PDU packet to
the OTH Filter component in order to initiate this sequence. The fundamental flow of data
proceeds through the bottom left section of Figure 3.7.4-1:

OTH Filter - OTH Message Generator = JMCIS - AACT - OTH Data Server.

Ultimately, the OTH Data Server broadcasts the newly created CFF target track to all registered
clients of this process.

b. This represents a departure from the T3 Demo (August 97) CFF approach in that in
the previous milestone, a simulated fire control sensor was used to designate and create a target
for this type of engagement. The Demo 98 redesign in this area is considered to be a more
realistic representation of this capability.

125

Ex.1009 / Page 135 of 280
TESLA, INC.

3.7.4.5 CFF Engagement Transmission

a. Once the OTH track DIS ES PDU packet is sent, the Tacfire Processor transmits the

Engagement Request message to the C*I_Broker. This step begins the functional processing
within the AEC system.

b. The C*I_Broker receives the Engagement Request message and waits for the arrival of
the CFF target track before it forwards the engagement. Using basic positional computations, the
C’I_Broker performs rudimentary comparisons of the engagement endpoint against the list of
available OTH target tracks. Once a match is determined, the sequence proceeds with the
transmission of the request to the Engagement Server. In the case that C3I__Broker does not find
a matching track for the requested target within a user-specified time period (defined in an
adaptation data file), the engagement is terminated with a Cannot Comply (CANTCO)
acknowledgement in the Time-of-Flight response message sent back to the Tacfire Processor.

3.7.4.6 Engagement Sequence

a. After C*1 Broker sends on the request, the Engagement Server queues a CFF alert to
the ASUWC (Anti-Surface Warfare Coordinator) submode position. The operator reviews the

alert with the OTH track hooked, and approves the engagement of the target. This event causes
an internal AEC message sequence of:

Manual Engage - Engagement Server - NSFSsim

which delivers the engagement request to NSFSsim. This simulator performs engageability and
time-of-flight (ToF) calculations and provides the data directly to the C’I_Broker. As this
message is delivered, NSFSsim initiates a simulated land attack sequence representing the firing

of the shipboard gun system. Figure 3.7.4.6-1 shows the ABMX 3-D graphical depiction of the
projectile.

126

Ex.1009 / Page 136 of 280
TESLA, INC.

Figure 3.7.4.6-1 ABMX 3-D Display Showing Projectile Ballistic Flight Profile

b. C’I_Broker responds to the Tacfire Processor indicating that an engagement is in
progress, and sends along the ToF value. It follows this action with a similar notification to
ABMX that allows this subsystem to set its displays to change the color and status of the

engagement to “red,” indicating that a firing is currently in progress (i.e., zone is “hot”) as shown
below in Figure 3.7.4.6-2.

resl 1= 3D - by = ECA, Look = BiPerD 132

| Wicow Eye Lok Yew Commacabons Platforms Regons Acspaces Demon

., ; gt . o [Z6dani999 1773566 08
.40m y 7 Current Tine ZCURRTTIN5_17 40_EA 70
I3 . -

{PTFeE-1889 17 39,06 00
Hultiplier T a0 00:05 0
Stes

ten tove [Sinulited w/Amsl Tine Botes

Rodrew Intevval 1

Figure 3.7.4.6-2 ABMX 3-D Display Showing “Hot Zone”

127

Ex.1009 / Page 137 of 280
TESLA, INC.

¢. Tacfire Processor provides a 2-message sequence back to the FO/FAC:

(1) Indicating the “Shot” has just left the ship; and

(2) A “Splash” message 5 seconds prior to computed projectile impact.

d. These notifications permit the forward observer to assess fall of shot on target. The
FO/FAC then provides adjustment, based on assessed error of the previous shot. This data is
transmitted in a follow-on Spotter Adjust message to the Tacfire Processor which in turn
forwards the data to the C’I_Broker. C°I_Broker sends the correction to NSFSsim who
recomputes the required parameters, issues his reply back to the C’I_Broker and commences the
firing sequence. C’I_Broker transmits the ToF data back to the Tacfire Processor who proceeds
to issue the “Shot” / “Splash” 2-message sequence to FO/FAC.

e. This series of shot and spotter correction can be repeated as necessary in order to
allow the FO/FAC to place the fall of shot on target. The corrections and number of spotter

rounds are completely driven by the commands issued by the remote spotter simulated in
building 180.

f. Once the FO/FAC is satisfied that spotter rounds are on target, he issues a fire-for-
effect request. In Demo 98, this was done to allow multiple rounds to be fired at the CFF target
in rapid succession, under remote spotter control, in order to destroy the mission objective. The
specific messages are identical to the ones discussed above, with the only exception being that
the final series of “Shot” / “Splash” messages back to the FO/FAC represent the starting and end-
point times of the multi-round sequence.

g. Once the spotter is satisfied that the target is destroyed, he issues a Tacfire End-of-
Mission (EoM) notification. This message permits both the ABMX subsystem and the AEC
system to clear the engagement from their databases. The Tacfire Processor forwards the data to
C*I Broker that sends an Engagement Termination message to Engagement Server. Engagement
Server issues internal status messages to its clients and queues a Kill information alert to the
ASUWC operator to complete the termination processing. At this point, the system is ready to
receive another remote CFF request against a new target.

h. The defined sequence of events and messages is shown in Table 3.7.4.6-1.

128

Ex.1009 / Page 138 of 280
TESLA, INC.

Table 3.7.4.6-1 CFF Primary Message Processing Flow

o o SOURCE ..|.. DESTINATION. ..}... MESSAGE ..

0 | Tacfire Processor FO/FAC MTOQ: start mission

1 | FO/FAC Tacfire Processor, Tacfire CFF request

ABMX (info)

2 | Tacfire Processor OTH Filter DIS entity state (Create Target)

3 | Tacfire Processor C’I Broker Engagement request

4 | C’I Broker Engagement Server NSES land attack engagement

(waits on receipt of request
OTH track report)
5 | Engagement Server | NSFSsim Target engage request
(operator initiated via
Manual Engage)
6 | NSFSsim C’1 Broker Land attack engagement data
7 | C’1 Broker Tacfire Processor, Time-of-flight (ToF) (MT-99)
ABMX (info)
8 | Tacfire Processor FO/FAC Shot/Splash (2 msg sequence)
9 | FO/FAC Tacfire Processor, Spotter adjust (5-10 secs after hit)
ABMX (info)

10 | Tacfire Processor C’1 Broker Subsequent adjust (MT-100)

11 | C’I Broker NSFSsim Shot adjust

.o (repeat 9-11 then 6-8 as required for multiple spot adjustments)

12 | FO/FAC Tacfire Processor, Fire for effect

ABMX (info)

13 | Tacfire Processor C’1 Broker Subsequent adjust (MT-100) (# of
effect rounds in originating CFF
message)

14 | C°I Broker NSFSsim Shot adjust

15 | NSFSsim C’I Broker Land attack engagement data

16 | C’I Broker Tacfire Processor ToF (MT-99) (for first effect
rounds)

17 | Tacfire Processor FO/FAC Shot

18 | FO/FAC Tacfire Processor, End-of-mission (EoM)

ABMX
19 | Tacfire Processor C’1 Broker Engagement complete
20 | C° Broker Engagement Server Engagement termination

129

Ex.1009 / Page 139 of 280
TESLA, INC.

3.7.5 Demo 98 Resource Management Scenario

a. The Resource Management efforts for FY98 resulted in the development of many
capabilities and features that could have been demonstrated in Demo 98. Due to time
limitations, however, it was decided to focus on only a handful of key capabilities. This section
describes the Demo 98 Scenarios which highlighted several key Resource Management
capabilities.

b. During the demonstration, the following three key capabilities were demonstrated:

(1) Fault Tolerance of Resource Management Components (survivability of Resource
Management)
(2) Scalability of the AAW Doctrine Processes (load-balancing for handling
increasing tactical load and changing mission requirements)
' (3) Fault Tolerance of the AAW Doctrine Processes (ability to continue to meet
mission requirements in the event of software failures)

¢. In addition to the demonstrated capabilities, the following capabilities were also
shown but not specifically focused on:

(1) Monitoring and control across all UNIX platforms in the testbed.

(2) Startup and shutdown of infrastructure components (RM, displays, etc...).

(3) Initial host selection by RM for selected applications.

(4) Startup, shutdown, and configuration of applications based on QoS Specifications.

d. The remainder of this section discusses each of the Resource Management
capabilities and scenarios that were demonstrated during Demo 98.

3.7.5.1 Overview.

a. The Resource Management portion of the demonstration was the concluding section
of Demo 98. The capabilities demonstrated were broken down into four main sections.

b. For the first section of the demo, some of the fault tolerant capabilities of the
Resource Management components themselves were demonstrated. Since Resource
Management is envisioned as controlling the configuration and allocation of other shipboard
systems, in order to be effective, it must be survivable. This year, restart fault-tolerance for most
of the Resource Management components was implemented; almost any component of the
architecture and infrastructure can be faulted and restarted with the exception of the Resource
Manager itself. In particular, multiple host monitors, being faulted and restarted, were
demonstrated. The key point was to demonstrate the kinds of survivability capabilities needed

by the Resource Management components to handle and recover from hardware or software
failures.

c. For the second part of the demonstration, the AAW AutoSpecial and SemiAuto
Doctrine processes were scaled up based on detection of overload conditions by Resource

130

Ex.1009 / Page 140 of 280
TESLA, INC.

Management. The doctrine processes themselves are designed to perform load balancing
between replicas. This capability was demonstrated as well as demonstrating Resource
Management detecting the existence of overload conditions (based on increasing tactical load),
and deciding when and where the scaled up doctrine processes should be started. The key point
was to demonstrate the ability of the Resource Management components to dynamically detect
overload conditions and effectively scale up in order to continue to meet mission requirements.

d. During the third section of the demo, several AAW Doctrine processes (AutoSpecial
and SemiAuto) were faulted in order to demonstrate fault detection and automatic restart of the
AAW Doctrine processes by the Resource Management component. During this part of the
demonstration the reconfiguration and load-balancing capabilities of the AAW applications were
highlighted. (Also, earlier in the Demo, during the ATWCS section, the ability of the Resource
Manager to detect the failure of an ATWCS application, the LC-RT component, and
automatically restart it was demonstrated.) The key point was to demonstrate the ability for the
Resource Manager to reconfigure the system to continue to meet mission requirements even in
the event of software failures.

e. The fourth section of the demo involved ramping up the track load to over 7000
tracks and scaling up to five copies each of the AutoSpecial and SemiAuto Doctrine processes.
While this was being done, the Resource Management sections were summarized, and the
overall demo summary was presented. The demo concluded, as it has in previous years, by

demonstrating that even at extremely high system loads, the AutoSpecial engagement timelines
still fell well within spec.

f. The next three sections look in detail at each of the three main Resource Management
capabilities that were demonstrated:

(1) Fault Tolerance of Resource Management Components
(2) Control of Application Scalability of the AAW Doctrine Processes
(3) Application Fault Detection and Recovery

3.7.5.2 Fault Tolerance of Resource Management Components

a. The first section of the demonstration involved faulting several (arbitrarily selected as
five) UNIX host monitor components of the Resource Management infrastructure. The Host
Monitors selected to be faulted were running on a mix of SGI, SUN, and HP workstations.
Before the Host Monitors were faulted, they were hooked on the Host Display (Figure 3.7.5.2-1),

and data being collected by the Host Monitors was displayed in real-time on the Graph Display
(Figure 3.7.5.2-2).

b. When the Host Monitors were faulted, depending on the timing of the faults, several
of the hooked boxes on the Host Display would turn gray for a short time and then turn back to
blue when the Host Monitors had been restarted. (Typically, the Host Monitors would be
restarted and reconnected into the Resource Management system within a couple of seconds.) In
other cases, depending on the exact timing, the restart of the Host Monitors and reconnection of
the Host Monitors back into the Resource Management Infrastructure would result in no color

131

Ex.1009 / Page 141 of 280
TESLA, INC.

change, which indicates that from the display’s perspective, no interruption of data was even
noted.

il

H i Blot Adquila
' ‘

—

l {electra3
T

clectna
|
!

i il

s I

alrdin'l I

aitar 2
=

|

9

ATM FOOE ETHERNET

Figure 3.7.5.2-1 Hosts can be hooked for display.

allaird
altairs
AN

R e B M e S altaire
1944 1M

TUME

PAGING e altair12

PACKETS OUT

T

TIME

PACKETS IN

13:40 1441
TivE

Figure 3.7.5.2-2 Performance data plotted from hooked hosts.

Ex.1009 / Page 142 of 280
TESLA, INC.

c. When the Host Monitors were faulted the application failure was detected by the
Program Control agents. The agents then passed this information to the Program Control
components which informed the Resource Manager that the Host Monitors had abnormally
terminated. At this point the Program Control component also informed the Program Control
Display (Figure 3.7.5.2-3) that the Host Monitors had been faulted and the corresponding
element on the Program Control Display was turned red to indicate

the failure.

Ao
Swtdl | SwpAl | RnAl af Process System Func View
sutigns | S FE I 5 s I F
StatAgents | Stop Agents I 21 Server)] — | eectrs|— host mondormxh 5|
W Hosts 21 Sorverth|- 2 ercuns|-~ host morvtorixs 5
Fiost e Opsraing b 221 Sarveellf—) ectra?— host mormtorks 5
ectrat mlx:ﬁ -2 Sorvertf)]-— gl potans]~— host mondtorumdt 5]
:m 52{1&2 2] Servani)] - 3§ rsa|— Dost monorixs 8
ectrad IRIX 65 |- 23 Servarto)|— 2 stias]— host monitoroms3|
woctras IS
herat 1RIXES -2 TN =) cects|— [
p‘::: mﬁ 23 Servee(iz)|—~ 2] startf— host monnorsolnady)
e ke |- 2 Servarl19)|— 2 atabz}— host monocsoniad
capelta {RIX65 - 221 Sarvertti)|— o) shiawa]—- hot_ moriocsniuis2
okl S F of Svety]|— ef st — host monocschnst]
a3 Soarszb b 2 Servarl1)]— g2l sitand - hott monicesobim?
tskd] - -
attars Solaris 26] RM_InfrastructureSSVD |~ b1 Servee(I|— 2] altard|— host_morstor.sotans2 §}
el Pawiod 21 Sorverq1g)|— 2 wtar7f— ot mamor solwaz
s Samtat SN
mu Sotxk?z.: 22 Servai2n)|-— 21 et host mornor solans2 7f
atta 11 Solaris 2.6 L }— e
i 6 B Swrvertin) |- B RariG] host monitorsolrict 6]
[bloteid Sotans 25 L i Servartz|— et shaw11]— host momtorsokns26
s Sohun2t 221 Servay | 2] starizf— host montorzainsz
stel Solais 26 - 224 Sarvar(zejj— cuf Mofeid]— host monhor a2
sowa o5 | |||) ped Infastucte- 1 ool o vt
quakn Ses 25 - 21 Sorvim]— 2 pavo|— host monter soket2d
:r‘y;a ﬁiﬁiﬂ - 531 Serves(2t){- e} acnllal-— host, moriiorzorisds)
e i = T =) S| — I
sl
jotszs HO-UXAR |- 21 Saevtef sl sesafmr sty |
]
- 2} Sorvet|— e crux] - host morktortpuxto)
{4 b 2f Servafasy|—) pisi f-— host monitor hpux10 22
E — 21 Servers6)|— 2 ps22]— host manltorpuxi o2 ,

Figre 3.7 ..2ogram Control Display with faulted host monitors

d. The Resource Manager then determined from the QoS Specification information that
the Host Monitors were restartable and should be restarted. The Resource Manager then ordered
Program Control to restart the faulted Host Monitors. The Program Control component then
consulted the QoS Specifications to determine exactly how to start the Host Monitor, and passed
the order to the Program Control agents. The Program Control agents then started the Host
Monitors. Once the Host Monitors successfully began executing, the Program Control agent
informed Program Control that the Host Monitors had been restarted. Program Control then
informed the Program Control Display that the Host Monitors were back up and the
corresponding element on the Program Control Display was turned back to green. Program
Control also informed the Resource Manager that the Host Monitors were successfully restarted.
At the same time the Host Monitors were reconnecting back into the Resource Management
Infrastructure and once again began sending data which was reflected on the Host Displays and
the Graph Display.

e. All of this occurred extremely quickly and automatically with no operator
intervention. The Program Control Display typically blinks red and back to green so fast that it
is hard to be seen. On the other hand, the Graph Display typically shows a second or two of
missed data, and the Host Display may show the Host Monitor being down for several seconds.

133

Ex.1009 / Page 143 of 280
TESLA, INC.

APPLICATION : HostMonitor EYENT#: 1

EVENT: Application Fault
PID:3924 ONHOST altair8

EVENTTIME: 14:50:33.0278

ACTION: Application Restarted
PID:3957 ONHOST altair8

ACTIONTIME : 14:50:330290 14:50:33.1975

RESPONSE TIME: 0.0012 D.1697

Figure 3.7.5.2-4 Resource Manager Decision Display response times for fault/restart

f The exact fault detection and recovery timing can be seen on the Resource
Management Decision Review Display (Figure 3.7.5.2-4). This display typically shows that
from the time the fault is detected and reported to the Resource Manager to the time the
Resource Manager decides what to do usually takes between 0.2 and 2.0 milliseconds. The
display also typically shows that from the time the fault is detect to the time the Host Monitor is
restarted and begins executing is typically 0.1 to 0.3 seconds. These are extremely fast fault
recovery times, however they do not include the time required by the application to reinitialize
and rejoin and reconnect back into the rest of the system. Hence, it sometimes appears that from
the Host and Graph Displays that several of the Host Monitors are down for several even though
they have actually been restarted almost immediately.

g. The key point of this section of the demonstration is to show the types of fault
recovery capabilities needed in order for the Resource Management components to effectively
handle and recover from hardware and software failures.

3.7.5.3 Control of Application Scalability.

a. For the next section of the RM demonstration, Resource Management monitored and
detected AAW Doctrine process overload conditions, and responded by scaling up additional
load-sharing replicas of the processes to being the timing requirements back within
specifications.

b. The demonstration began with a background track load of about 500 tracks. As
shown on the Jewel Multi-AutoSpecial Display (Figure 3.7.5.3-1), there was one copy of the
AutoSpecial doctrine process running which was reviewing all of the tracks on a periodic basis
to determine if any of the tracks met engagement criteria. The AutoSpecial doctrine review time
for the single AutoSpecial typically takes about 50ms to complete. Also, on the Path Display
(Figure 3.7.5.3-2), multiple copies of the Track Processor which forms the tracks in the system,
multiple copies of the Radar Track Data Server (RTDS) which distributes the track data to
clients, 1 copy of the AutoSpecial Doctrine Process which periodically (about every half second)

134

Ex.1009 / Page 144 of 280
TESLA, INC.

checks the tracks against doctrine criteria and if the criteria is met sends out an engagement
request, multiple copies of the Engagement Servers, and 1 copy of the WCS (Weapon Control
System) simulator which actually performs the engagement are seen.

-l ¥ T W 4 Lbvel of detall O
o Special Doctring Rewiew Pariodicity Auto Spaczal GRU Utikzation
x
e TTT I I I T T ”
801
0]
B0 T
| I IREN] o
T | i T T
T AN Tt I
! ISNNARESNASISNENNENAN] T)
7036 T040) 105 76410 1S 70420 T4 0430 TS 70440 o845 Toas TS5 70460 o
[Battasrd) RS Bleand Yolraar§
Arta Spocial Doctrine Review Bapeed Thea Tracks Buviowed
0w
T f 1] 1T s 150
1 19 \ / / 20
At i N /
™ ~ 7
- LN et 2
1 ANRRRAN AR e ™
%
I Z 17 MR wr” S
3% R 4% 430 415 ari kg 430 20438 o440 H4dS 5 55 0450 v/ \W
| RO Faruics
o
Auto Specal Timelme
b T T T T T T I
1 T i 1 1 T
1 T T
I
ma
xw I
! ! |
1 I T
° 5 10 18 3 30 3 a0 “ 50 %5 B =3 *
o [s [PerD Soomme

Figure 3.7.5.3-1 Jewel Multi-AutoSpecial Display

¢. The doctrine review time requirement for the AutoSpecial doctrine process, as
specified in the QoS Specifications, is 65 ms. As an additional 200 tracks are entered into the
system, the doctrine review time steadily increases until it is violating the 65 ms threshold
defined in the Specifications. The Resource Manager is monitoring the doctrine review times
and when a certain number of samples within a sliding window (i.e., 10 of 20 samples) exceeds
the threshold, the Resource Manager orders an additional copy of the AutoSpecial process to be
started. As the second copy joins the system, the track load is redistributed among the two
replicas, with each replica handling approximately half the track load, and the Multi-AutoSpecial
Display (Figure 3.7.5.3-3) shows that the review time drops from a high of about 80 ms to about
40 ms for each of the replicas.

d. Also, as the new replica is started, the new AutoSpecial application shows up in

yellow on the Host Display when it is first started (to indicate that a new process has been -
detected). The new copy of AutoSpecial also shows up on the Path Display.

135

Ex.1009 / Page 145 of 280
TESLA, INC.

AUTO-SPECIAL PERIODIC REVIEW PATH

NGAGEM
OLLaS E SERVERENT WCS_SiM

PROCESSOR RATDS AUTO-SPECIAL

nTy e | cicoco JE caios]
21ca2c10

altaixl®

reack
Loan

Tino
% oen

Review
At ramam— N

Raview Time (Auto-Special) % CPU {Auto-Special)

+006 : 38TP: 007 - 08 : G0 = 30 1 3e2: ee’: 3o’ o' 304 @i’ w5

Figure 3.7.5.3-2 Path Display showing Auto-Special path

AUTO-SPECIAL PERIODIC REVIEW PATH
ENGAGEMENT

TRACK
PROCESSOR RTDS AUTO-SPECIAL SERVER WCS_SIM

{

" N

s epu

Wav:w:l
Fariontedgr—3,

e. To accomplish this the AutoSpecial application sends out instrumentation events (via
Jewel) indicating how long it is taking to review its track load. These events are correlated and
forwarded to the Path QoS Managers which determines (using a sliding window algorithm)
whether or not the AutoSpecial doctrine review time requirement (as read from the QoS
Specifications) is being violated. If a violation is detected and the AutoSpecial application is

136

Ex.1009 / Page 146 of 280
TESLA, INC.

specified as scalable (in the QoS Specifications), the Path QoS Managers inform the Resource
Manager that the application is overloaded, and the Resource Manager in turn attempts to find
the best host on which to run the new application. If a suitable host exists, the Resource
Manager orders Program Control to start up a new copy of the application on the specified host.
Program Control then starts up the new replica which joins into the system and triggers the
RTDS’s to redistribute the track load between the replicas.

f. The Resource Management Decision Review Display shows that the typical time
from when an overload is detected to the time the Resource Manager decides where to scaleup an
additional replica takes approximately 1.0 to 2.0 milliseconds. Typically, from the time the
overload is detected to the time that the new replica is actually started and begins executing is
about 0.1 to 0.3 seconds. Once again, as was noted for the faulted Host Monitors, application
startup times are extremely low. However, from the Jewel data on the Multi-AutoSpecial
Display, it is shown that it takes up to several seconds for the application to initialize and join
into the track client group and several additional seconds for the redistribution of the track load
to occur.

g. On the Resource Management Decision Review Display the gold bar represents the
host where the replica was selected to be started (i.e, the host with the “best” host load score).
The other bars indicate the next best hosts that could have been selected. As can be seen on the
display, the aggregate host load score is a roll-up score based on CPU, network, and paging
scores. The host load data being used is being generated by the Resource QoS Monitor

components which is receiving the “raw” data value from History Servers (and indirectly from
the Host Monitors).

h. At this point in the scenario, an additional 700 tracksare entered, which once again
pushes the AutoSpecial review times above the 65 ms threshold and triggers a second
AutoSpecial scaleup. Also, the SemiAuto Path Display, (Figure 3.7.5.3-4), shows that there is a
single copy of the SemiAuto Doctrine process. As the SemiAuto review time approaches and
then exceeds the 20 ms SemiAuto review time threshold (as defined in the QoS Specifications),
the Path QoS Managers detect the overload and the Resource Manager triggers a scaleup of the
SemiAuto Doctrine process. (The mechanism by which the SemiAuto scaleup occurs is identical
to that of the AutoSpecial scaleup.)

1. What this demonstrates is the ability of the Resource Manager to dynamically detect
application overload conditions and effectively scale up additional load-sharing replicas in order
to continue to meet mission requirements.

137

Ex.1009 / Page 147 of 280
TESLA, INC.

SEMI-AUTO PERIODIC REVIEW PATH

ACK ENGAGEMENT
PHE%ESSOR RTDS SEMI-AUTO SERVER WCS_SIM

™, Lcaize
. L] .
altair3 altairl0 altair5 altair8
-altaizs altairl2
-altaitll
altairl2

Review Time (Semi-Auto) % CPY (Semi-Auto)

g !\»,I\J\v’\il\ —
t / / \,

e
T 041 209 081 - 305 0453 M- 0K 307: 00
Time (min)

Figure 3.7.5.3-4 Path Display showing Semi-Auto Scale-Up
3.7.5.4 Application Fault Detection and Recovery.

a. Inthe third segment of the RM demonstration, AutoSpecial and SemiAuto Doctrine
processes were faulted and automatically restarted by the Resource Manager. This section of the
demonstration highlighted the ability of the Resource Management components to both detect
application faults and to automatically determine where to restart the failed application.

b. For this part of the demonstration, there were three copies of the AutoSpecial
Doctrine process running and two copies of the SemiAuto Doctrine process running. One of the
copies of AutoSpecial was faulted and the Resource Manager detected the fault, determined that
the application should be restarted, decided where to restart the application, and restarted the
application. When the AutoSpecial application was restarted, the track load was redistributed
properly and the review times remained at about the same times as before the fault.

c. During the fault and restart, the faulted application turned red on the Host Display (to
indicate loss of the application), and the process turned gray on the AutoSpecial Path Display.
On the Jewel Multi-AutoSpecial Display, the bar and line color corresponding to the faulted
copy went away (and the colors assigned to the remaining copies may have been remapped).
When the new AutoSpecial application was restarted, the new application appeared in yellow on
the Host Display, and the new copy of AutoSpecial appeared on the Path Display. Also, the new
AutoSpecial was assigned a new color on the Jewel display and the data was plotted.

d. All of this happened very quickly as determined by the timing information on the
Resource Management Decision Display. The fault detection and recovery times are equivalent
to the response values in the previous segment, typically about 1.0 to 2.0 milliseconds from the
time the fault was detected until the Resource Manager decides where to restart the application,

138

Ex.1009 / Page 148 of 280
TESLA, INC.

and typically between 0.1 to 0.3 seconds from the time the fault was detected until the
application was restarted and began executing. Again, the same caveats as in the previous
sections apply, these times do not include the time needed for the application to initialize itself
and join back in which the rest of the system.

e. Once again, the sequence of what happened is that the application fault was detected
by the Program Control agent. The Program Control agent then informed Program Control.
Program Control in turn informed the Program Control Display which turned the corresponding
display element red. Program Control also informed the Resource Manager of the application
failure. The Resource Manager then determined from the QoS Specification that the application
was restartable and should be restarted. The Resource Manager than determined from the QoS
Specifications the list of hosts where the application could be restarted. The Resource Manager
then picked the “best” host based on host load scores provided by the Resource QoS Monitor,
and sent the order to restart the application to Program Control. Program Control then sent the
order to the Program Control agent which started the new application. Once the application had
successfully begun executing, the Program Control agent informed Program Control that the
application had been started. This information was then passed to both the Program Control
Display (where it was used to update the corresponding display element) and to the Resource
Manager (to verify that the order had been successfully enacted).

f. After the AutoSpecial application had been faulted and successfully restarted, a copy
of the SemiAuto Doctrine process was then faulted. (The same Resource Management detection
and recovery mechanism that was used for the AutoSpecial fault and restart was used for the

SemiAuto fault and restart.) The SemiAuto doctrine process was successfully restarted with the
same typical response times.

g. This part of the demonstration showed the ability for the Resource Manager to

quickly reconfigure the system to continue to meet mission requirements in the event of software
failures.

3.7.5.5 Summary.

a. Many features and capabilities of the enhanced Resource Management architecture
were shown during the demonstration. In particular, significant improvement in fault detection
and response times were demonstrated. In the FY97 T3 Demo, fault recovery times were in the
range of 5 to 12 seconds; they are now typically in the sub-second range. First-step fault tolerant
capabilities of the Resource Management infrastructure itself was demonstrated. Also, improved
monitoring and control capabilities were shown; building this part of the infrastructure has been
a key goal for this year since extensive near-real-time monitoring and control capabilities are
essential for effective management of distributed mission-critical systems. The utility and
effectiveness of our QoS Specification has also been demonstrated; the QoS Specifications are
currently integrated throughout the Resource Management architecture.

b. Application fault detection and recovery capabilities have also been demonstrated.
This was shown earlier in the demonstration with the restart of the failed ATWCS LC-RT
component and was shown in the RM part of the demonstration using the mission-critical AAW

139

Ex.1009 / Page 149 of 280
TESLA, INC.

Doctrine processes. Host selection for the restarted components, based on host load metrics
within constraints defined in the QoS Specifications, was demonstrated.

c. Resource Management detection of application overload conditions and Resource
Management control of application scalability in order to continue to meet mission requirements
was also demonstrated. This was demonstrated using the AAW Doctrine processes using
review time thresholds defined in the QoS Specifications.

4,0 LESSONS LEARNED
4,1 CORBA Plan Server Lessons Learned
The goals to be achieved by investigating the CORBA technology were to:

(1) Gain first hand working knowledge of the CORBA technology standard.

(2) Gain experience in developing code that uses many of the key features that
developers need to know to make effective use of CORBA.

(3) Gain experience in Object-Oriented distributed computing paradigm.
(4) Gain experience in “wrapping” legacy systems to use CORBA technology.
(5) Keep abreast of the latest CORBA standards and state of the market.

4.1.1 Advantages Offered by the CORBA Technology

CORBA is an object-oriented distributed system integration technology standard. Many
distributed applications operate by passing messages. Message passing in distributed computing
is very similar to method invocation on an object in object-oriented programming. CORBA
offers distributed applications with many of the same benefits that object-oriented design
provides to non-distributed computing; mainly reusable software, encapsulation, inheritance, as
well as portability and extensibility. A primary objective of CORBA is to enable developers to
program distributed applications using familiar techniques such as method calls on objects. In
order to do this, CORBA significantly raises the level of abstraction, so that programmers do not
have to deal with the low-level communication details. This results in ease of use for the
programmer. However, keep in mind that this ease of use in programming is gained at the
expense of some control and performance that is available at the lowest levels of
communications programming.

4.1.2 CORBA Learning Curve

CORBA is more than just another middleware, it is an entire object-oriented distributed
computing infrastructure with many components; for example; an ORB, IDL compilers,
implementation repository, interface repository, Naming Service, Events Service, daemons,
libraries, etc. just to mention a few. There is a substantial learning curve involved in effectively
and proficiently use CORBA to design and build systems. This includes learning about object-
oriented design and distributed object computing. In addition, depending on the CORBA
implementation that is being used, there will be vendor specific features that must be learned.

140

Ex.1009 / Page 150 of 280
TESLA, INC.

4.1.3 Difficulties with Legacy Systems:

Many large, complex distributed computing systems already exist, many of which were
not designed using object-oriented techniques. As a result, the task of migrating these systems
from their existing middleware infrastructure to CORBA will be substantial. Some of the
components may not be able to be treated as objects. It is important to keep in mind that it does
not necessarily make sense to force an object-oriented middleware (such as CORBA) on non-
object-oriented applications. Also, in migrating existing systems to CORBA, or even in
designing and building systems from scratch, there are new and challenging design issues that
will arise and must be addressed when an object-oriented middleware is used.

4.1.4 CORBA Specifications versus Available ORB Implementations

The OMG, which is the organization that oversees the adoption of new CORBA
standards, states that on average, the length of time to approve and adopt a new specification is
from 12 to 15 months. This is probably on the optimistic side. In reality, it can take much
longer. In addition, availability of CORBA products that implement the specifications lag by
many months and even years, if implemented at all. To be considered CORBA compliant,
vendors must offer the CORBA core features. Although the elements that make up the CORBA
core specification are very useful, they basically constitute a framework, and many of the
additional features and services specified by the standard are not mandatory. Many of these
optional services and features could be considered essential for developing large complex
distributed systems. Initially, ORB vendors provide the features that most customers want and it
varies as to which optional specifications are implemented. Also, because of the length of time
required to adopt new standards, many vendors will offer proprietary solutions for features
demanded by the market. As a result, different ORB vendors provide value-added services and
functionality to the core in different ways which limits the portability of CORBA based
applications. These proprietary features may even persist after standards are approved. Often

these proprietary features provide important functionality and cannot be ignored when selecting
an ORB.

4.1.5 CORBA in Perspective

a. For most large-scale, complex, distributed computing systems, it is highly unlikely
that there will be a single middleware product that can provide all of the services needed with the
required quality of service and performance. Many systems will most likely require a
combination of different middleware products — both object-oriented and non-object-oriented
— using each where it makes the most sense. Also, even if an object-oriented middleware such
as CORBA is used, it may very well be that a single ORB will not be available that meets all of
the requirements. Therefore, the system may have to use multiple ORB implementations that
provide different features and levels of performance. The CORBA standard does provide for
interoperability between different ORBs. Basically, in designing large, complex, distributed
systems, CORBA should be considered along with message-oriented middleware and other
object-oriented middleware.

141

Ex.1009 / Page 151 of 280
TESLA, INC.

b. For Demo 98, the Doctrine/Plan Server was modified to use CORBA to receive
requests (via the ORB) from the clients for the weapon doctrine database. In addition, the ability
for non-CORBA clients to request the weapon doctrine data using Isis was left intact. The
clients were modified to use CORBA to make their requests (via the ORB) to the Doctrine/Plan
Server by invoking the IDL “interface” operation getWeaponDoctrine on the CORBA
Doctrine/Plan Server object. The ORB is responsible for ensuring that this invocation results in
a call to the corresponding remote CORBA Doctrine/Plan Server object method, and returns the
results to the client.

¢. This experiment proved the feasibility of using CORBA in conjunction with group
communication middleware such as Isis and provided insight into the practical aspects involved
in using CORBA with legacy systems. Also, by choosing a non-critical area without strict
real-time characteristics, it was possible to demonstrate successfully the use of the CORBA
technology without affecting the overall system performance. The CORBA implementation (or
ORB) used in this experiment was IONA Technologies Orbix MT 2.3¢ for SUN/Solaris2.6
which is CORBA 2.0 compliant. However, since CORBA is a standard, the lessons learned and
knowledge gained should be applicable to other ORBs that follow the standard.

4.2 CORBA TNS Lessons Learned

a. The current CTNS architecture occasionally has difficulty shutting down all CTNS
processes during HiPer-D shut down. Experimentation led to the discovery that the GMS
communication layer thread (GMS_listen_thread) created for the CTNS_Broker application is
often the receptor of the RUN.csh “termination” signal. This thread is created before an
application’s main function is executed, so that the application cannot control what action takes
place when it receives a signal. The following conditions were observed:

(1) When CTNS_Broker (parent process) is started in an xterm, it and
CORBA_TNS_Bridge (child process) both shut down most of the time. Occasionally, the child
process does not shut down. This seems to occur whenever GMS is doing a great deal of
logging.

(2) When the parent process is executed without an xterm, the child process does not
shut down at all.

b. The xterm is not being utilized, except for allowing the parent and child to shutdown,
because no output is being generated to the xterm by either the parent or child process.

c. A related issue has to do with the Orbixd debug modes. The default mode is non-
silent, resulting in some output. The debug mode can also be specified in the application code.
If a non-silent mode is specified in the code, launching Orbixd in silent mode does not override
the mode specified in the code. If Orbixd is running with a non-silent debug mode, a destination

for the output must be specified; otherwise CORBA applications will crash, with no indication
why.

142

Ex.1009 / Page 152 of 280
TESLA, INC.

d. The Orbix version 2.2 documentation describes the ability to have different users
launch and access a CORBA server, regardless of which user registered the server (using the
putit utility) with the Orbix daemon. Supposedly, this was possible by using the chmodit utility
to allow universal access to a server. As it turns out, this never seemed to work. Whichever user
registered a server using putit had to be the user to launch the client application. This meant that
each time HiPer-D was run, the user had to register the server, and then unregister the server
when the run was complete. Otherwise, no other users would be able to run HiPer-D
successfully. This problem was discovered just prior to the first scheduled on-site CORBA TNS
test and delayed on-site testing for CTNS. Fortunately, the Orbix daemon under version 2.3

comes with an option to manage an unregistered server, so that use of the Orbix putit utility can
be avoided.

e. Using a Naming Service is the CORBA-compliant procedure for connecting a client
and a server. Orbix provides different versions of its Naming Service. The older, free version
(OrbixNames version 1.03) was requested from Orbix, but there were substantial delays in
receiving it. Because CORBA is not widely used on HiPer-D, the delays in receiving
OrbixNames, and the difficulty in migrating from version 2.2 of Orbix to version 2.3, the
Naming Service capability was not implemented. Instead, the Orbix-specific method was used
to bind the client to the server, with the object reference returned to the client in the IIOP format.
This method was much simpler to implement and seemed sufficient given the limited scope of
CORBA applications on HiPer-D. Experiments with the Naming Service should run in future
CORBA development, to achieve CORBA compliance.

f. When running Orbix 2.3 applications, there are a few very important environment
variables to specify as follows:

(1) IT_CONFIG_PATH -~ This specifies the location of the Orbix configuration file
(Orbix.cfg) which contains initialization for the main Orbix environment variables. To use a
customized configuration file, this variable should point to location of user’s personal Orbix.cfg.

(2) IT_ERRORS - This variable specifies the file containing the standard Orbix error
messages. This is very useful during debugging.

(3) IT_DAEMON_PORT - This variable specifies the port on which Orbixd listens
for requests. This variable is important because multiple users can run without interfering with
one another, by choosing unique variable values other than the default value (1570).

(4) LD_LIBRARY_PATH ~ Include the Orbix lib directory here; otherwise there is
no CORBA functionality.

4.3 Engagement Server Lessons Learned
The Engagement Server design depended on several features of the Isis middleware tool.

A goal in the Engagement Server was to identify the minimal set of Isis features required to build
a fault tolerant engagement service. This was especially pertinent in light of the ensuing Isis

143

Ex.1009 / Page 153 of 280
TESLA, INC.

obsolescence and it’s subsequent replacement by another middleware tool. These features are
enumerated here because they are relevant to the discussion of lessons learned.

(1) FIFO message delivery between a transmitter and a receiver.

(2) Reliable and Atomic delivery of messages transmitted to a process group (i.e. all
surviving members or no members receive the message).

(3) Group membership events are ordered with respect to the message flow in the
group.

4.3.1 Synchronization and Determinism

a. One of the design goals of the Fault Tolerant Engagement Server was to minimize
hand shaking among the primary and shadow replicas. Another goal was to take advantage of
the parallelism inherent in a distributed computing environment. These goals helped shape the
design of the Engagement Server. The servers use a semi-active form of a primary/shadow
execution and recovery model. It is semi-active in that the shadow replicas are actually
processing requests and not acting as complete shadows to the primary replica. Itisa
primary/shadow model in that the shadow replicas must wait for synchronization events
originating from the primary.

b. Akey synchronization event is a message from the primary replica that informs the
shadow replicas which message to begin processing. This is done to ensure that all replicas are
processing the input messages in the same order. This is necessary to ensure that internal state is
maintained and updated consistently among the replicas. Engagement Servers receive messages
in several groups as well as from several transmitters within each group. This collection of
messages might not be received at all replicas in the same order. It is the responsibility of the
primary replica to inform the shadow replicas which of these inputs to begin processing, thus
creating the necessary level of ordered processing.

c. Based on the Isis features above, the primary replica can know that the shadow
replicas have received, or will receive, the message it is informing them to process. It also can
know that the shadow replicas will see messages from any transmitter in the same order that it is
seeing them. (This is FIFO on a node-by-node basis, not a total ordering of all messages
received at all nodes.) The primary replica can, therefore, know that the shadow replicas will

begin to process this particular message from the specified node and be assured it is the same
message.

d. At this point the shadow replicas are released to process the message at best possible
speed. Only at points in their processing where non-deterministic activities occur, e.g. a timer
expiration, do they need to wait for another synchronization message from the primary. When
the shadow replicas complete the processing for this message they begin performing another
aspect of synchronization with the primary replica. Each shadow replica must verify all of the
resultant transmissions from the primary replica. Each shadow replica receives these resultants
in the appropriate groups and can immediately attempt to match and remove them. This will be
the same set of resultants that each shadow replica has determined must be transmitted. This has
not added any extra communications overhead because the middleware is already performing
atomic multicasts to all group members.

144

Ex.1009 / Page 154 of 280
TESLA, INC.

e. The question this raises is “How can we be assured that each replica has come to the
same conclusion about the processing for any given message?” Also, “How can we be sure each
replica has determined the same set of resultants?” As previously mentioned, all replicas
proceed in processing a message at best possible speed once the primary replica has notified all
shadow replicas which message to process. Due to the nature of Engagement Server algorithms
the only place where comparisons, calculations, or actions could produce differing results is in
the timer expiration for an engagement response. Errors could arise, though, from the host and
network environment. In a language such as Ada, hardware faults, out-of-range values, data
corruption, etc. will manifest as exceptions. These exceptions are propagated into the application
code for the replicas to handle. Error recovery can commence in these exception handlers. This
error processing requires handshaking among the replicas to determine the appropriate course of
action. Time did not permit the completion of this aspect of the design; therefore, it is still in
development. But, apart from such errors, the replicas will agree on the processing conclusions
and the set of resultants. Non-determinism only enters in at the point of timer expiration. An
indicator from the primary replica handles this by specifying whether the shadow replicas should
proceed with normal processing for this engagement request or enter the time-out processing.

f. An additional point here in regard to determinism is that the Engagement Server
design is not sensitive to process or thread suspension. Suspensions of this type will not have a ”
value” effect on the engagement state data. Again, this is because of the nature of the state data
that is maintained by the replicas. Timer expirations could be affected by such suspensions, but
a synchronization indicator from the primary replica already handles this. This reveals that
completely deterministic execution is not necessary for fault tolerance. Determinism as it relates
to the state data maintained by the replicas is what is important and necessary.

g. There are some weaknesses with the described approach. First, applications that
perform heavy mathematical and floating-point calculations would require additional
handshaking. Different microcode precision in each processor could produce different or
deviating results in the redundant copies. But, additional handshaking for value comparison
would address this issue. Second, a robust error detection and exception handling approach must
be taken in the application code. This is not difficult to do in Ada but must be done
systematically and in layered fashion. Third, some knowledge of what constitutes a non-
deterministic activity relative to the state data being maintained must be built into the application
code. This requires some savvy on the part of application designer and coders. This is
specifically true in this approach, but is true of fault tolerant programming in general. Finally,
this approach does not address N-Version programming.

h. There are strengths of the approach as well. First, it is a very efficient performer in
the tactical realm. The overhead to the primary replica is negligible. It has a couple of
synchronization messages it must transmit to the shadow replicas. The shadow replicas have
slightly more overhead because they must perform verification of the resultant transmissions. In
fact, that is the majority of their overhead. Second, the handshaking has been minimized to
reduce network traffic. The only additional messages generated by this approach are the
synchronization messages. Third, the overhead cost is high only when it needs to be. The design
is efficient in handling process failure. It is when errors arise that the overhead and

145

Ex.1009 / Page 155 of 280
TESLA, INC.

synchronization costs increase. But this is where they must increase because of the high
probability of state data inconsistency. The probability of these error events is low; therefore,
the design only pays this high synchronization cost a low percentage of the time. This approach
has used minimal handshaking as well as capitalized on parallelism in the distributed
environment. With those design attributes it has constructed a synchronized and deterministic
fault tolerant engagement service.

4.3.2 Cross-Group Data Difficulties

a. As mentioned in the previous section, Engagement Server replicas join several groups
to send and receive messages. In the case of group membership change events, Isis guarantees
that these events are ordered in the message flow for that group. In other words, all group
members will see notification of new or lost members at the same point relative to the message
flow. This attribute is provided on a group by group basis. Since the replicas join several groups
a failing replica will generate several of these events, one for each group it fails out of. The
surviving replicas will see each of these events in the respective groups. The difficulty arises in
that there is no ordering guaranteed across the groups because each change is a group event
independent of other groups.

b. The Engagement Servers receive ID information about a track in an ID group,
engagement requests in an Engagement group, etc. The engagement state data is built by
combining and processing these pieces of data from different groups into a composite structure.
When failure of the primary replica occurs, the shadow replicas will detect these membership
change events. The shadow replicas must synchronize these events across all of the groups.
This is done to ensure that each replica has the proper view of state held by the primary replica
when it failed. This is a non-trivial task, but one that was accomplished by the suspension and
resumption of message queues internal to each of the shadow replicas. The shadow replicas
suspend internal queues as they detect the loss of the primary replica. The shadow replicas then
resume these queues upon receipt of the primary indication from the shadow replica that has
assumed the primary role. This allows the shadow replicas to guarantee a consistent view of the
failed primary replica’s state prior to its failure.

¢. Ideally, systems could be built such that this intersection of data across groups would
not occur in any component. Then components would not have to perform this cross group
synchronization. This is not a realistic assumption in our advanced computing systems. While
some components could be constructed in this manner, it will be difficult if not impossible to
build all components such that their state was constructed from data sent and received in only
one group. In any component where this is not the case, cross group synchronization will be a
component-level task unless there are middleware tools that provide a synchronization capability
across a user-specified set of groups. This synchronization capability currently exists in the
Engagement Server design and it is a HiPer-D work-in-progress to modify this into a layered,
adaptable capability.

146

Ex.1009 / Page 156 of 280
TESLA, INC.

4.3.3 Recovery Time and Group Coupling

a. There were two types of application changes to the fault tolerant Engagement Server
that impacted the group structure. Some legacy functionality was moved from the Engagement
Server to a more appropriate HiPer-D component. There were also some minor changes to the
data formats of messages transmitted in existing groups. Both of these types of changes allowed
the Engagement Servers to join fewer overall groups. These group reductions improved the
overall timeliness of failure detection and recovery in the Engagement Server replicas. The
specific recovery time was apparent when examining the Auto_Special Timeline display during
Demo98 (refer to Section 3.7.3.2, Figure 3.7.3.2-3 for a discussion and example of this display).
During normal SPY-Declared Auto_Special engagements the total processing required by the
HiPer-D components took only 10-20% of the allowable AEGIS requirement. When the primary
Engagement Server replica was intentionally failed, during such an engagement request, the
percentages grew to 140-200%. This difference of 130-180% 1s the group-based recovery time
required by the Engagement Servers. This recovery time includes the failure detection,
notification, and synchronization provided by the middleware as well as necessary processing
within the surviving replicas. One of the shadow replicas must become the new primary replica
and complete the processing steps associated with the current engagement request. While, the
recovery time indicated here is within AEGIS requirements, it was not necessarily bounded by
the Isis middleware used in Demo 98.

b. The timeliness of recovery is greatly impacted by the level of “group coupling” in the
system. In the group-based programming model all components that join common groups are
“coupled” together by virtue of these common groups. This coupling is a necessary attribute of
group-based middleware that allows it to provide message and event orderings as well as
delivery guarantees. Upon failure of a group member all surviving members are notified of this
membership change event. This event is ordered in that all surviving members will receive it at
the same point relative to message traffic occurring in the group. The middleware is performing
a hand shaking service to provide this ordered view of the failure event. In the middleware all of
the surviving members must agree to the new view of membership, i.e. minus the failed member,
before they can pass this event to the application. If any surviving member is slow to come into
agreement then all members will be delayed until consensus is reached. This slowness will

manifest itself as longer recovery times because of the increased latency between the actual
failure and the application notification of such failure.

c¢. There could be many reasons for application slowness with respect to a new
membership view. For example, it could be executing on a badly overloaded host or be suffering
from priority inversion and, in both cases, be delayed in coming to consensus. There are
architectural issues as well. The group coupling must be carefully analyzed and engineered. The
recovery times will be lengthened if groups are very large because many members must come
into consensus for each membership change event. The data required by each application
component, what group(s) that data must be transmitted in, etc., are critical decisions in
eliminating unnecessary group coupling. In the Engagement Server design, effort was made to
reduce coupling as much as possible. Obviously, the existing HiPer-D group architecture had an
impact on the reduction level that could be achieved. The critical issue is that group coupling

147

Ex.1009 / Page 157 of 280
TESLA, INC.

will have a direct impact on failure detection and recovery timeliness. These group architecture
decisions must be considered at the beginning of the Engineering Process where that is possible.

4.3.4 Precise Fault Injection

As was shown in Demo 98 the Engagement Servers were able to recover from a fault that
was precisely injected into the primary replica. This fault injection capability was described in
Section 3.5.4.3. This technique made an important contribution to the testability aspects of the
system, Our Advanced Computing Systems will contain hundreds of processes executing of
hundreds of platforms. The ability to test the system’s behavior in response to various faults
cannot be overstated. There must exist mechanisms to inject faults of various types into the
system and assess the system’s response both functionally and with respect to performance. This
was shown in Demo 98 by the ability to directly assess the impact of a primary replica failure
during a Spy declared Auto_Special engagement. This analysis revealed an increase in the time
required to process that engagement request; an increase due to the recovery time of the shadow
replica that was assuming the primary role. But, the ability to perform this analysis is solely due
to the precise fault injection capability developed in the Engagement Server work. General-
purpose tools of this nature are not yet forthcoming, but they are essential to overall system
validation.

4.4 Remote Digital Call for Fire (CFF) Lessons Learned

a. It was shown successfully that a remote FO/FAC spotter is capable of issuing digital
CFF request and updates using the interfaces and equipment in the Advanced Computing testbed.
The demonstrated functionality is considered representative of a potential real-world sequence
that can serve as a basis for follow-on experimentation.

b. Improvements in track insertion processing depicting the CFF target were addressed,
and the Demo 98 design is considered to be a more realistic design than that used in previous
demonstrations. As a result, new issues relative to dependencies on the OTH track path have
been identified for pursuit in out-year efforts. In particular, the value of creating a CFF

dependency on the timely and reliable reception of an OTH track by the combat system needs to
be revisited.

¢. The need to support multiple CFF targets simultaneously was identified. Due to
program constraints, the implementation was confined to a single engagement in Demo 98.

d. From a logistics standpoint of executing a test or demonstration, having a remote
operator in a separate lab was, at best, an awkward and problematic configuration. There was
never a guarantee that the actual network path would be available between the two locations.
Invariably, periodic difficulties arose during process start-ups to establish network connections
between the two labs. Furthermore, from the standpoint of smoothly staging a CFF engagement

. into the flow of an overall demonstration, a telephone connection between the buildings was
required. Voice communications between the two labs during the course of a demo added
additional coordination overhead and required the presence of an operator for extended periods
of time in the remote building.

148

Ex.1009 / Page 158 of 280
TESLA, INC.

e. Coordinate conversion and accuracy issues were only addressed at a coarse-grain
level. Further analysis and experimentation are deemed necessary in this area.

f. Engagement deconfliction was only assessed to the degree where an operator could

perform this task visually. Further concept definition and system engineering of this function are
also called for.

h. Future work is warranted to move towards variable format Tacfire messages as well
as insertion of the latest NSFS prototypes and simulators in order to keep up with this rapidly
moving area. Nevertheless, HiPer-D now has a respectable prototype approximation of this
future capability.

4.5 RM Lessons Learned and Future Direction

a. Demo98 has demonstrated significant Resource Management capabilities that involve
monitoring, decision-making, control, system specifications, and visualization. Figure 3.4-2 in
Section 3.4 shows the high-level view of the data flow that occurs in this type of architecture.

b. Accomplished goals for Demo98 include:
* General-purpose dynamic resource allocation
e Application scale-up based on load and QoS assessment

e Reconfiguration based on fault-recovery, damage-status, damage-prediction, and
recognition of QoS problems

* Dynamic monitoring and instrumentation across three UNIX platforms

e Human operator and automated control interface across three UNIX platforms
e Startup and shutdown control of third-party applications (ATWCS) as well as
resource management infrastructure components

Initial host allocation for selected AEC applications

QoS performance analysis at application and path levels

Host selection algorithms based on improved load metrics

Monitoring, decision-making, and control driven by System Specification files
Integrated visualization tools

4.5.1 Monitoring

a. Runtime monitoring with data-collection and storage are key to understanding the
“health” of a system of resources. Providing monitoring services for each resource can be
difficult. For instance, a compute-intensive daemon collecting massive amounts of data, or
simply a tight performance requirement on a monitoring daemon will cause excess resource
utilization and begin to defeat the purpose of providing resource management. An example was
seen with SNMP daemons/services provided through the operating system on a DEC Alpha. In
order to collect the data necessary for performance evaluation as well as process status, the
workstation would use upwards to 80% of its resources executing SNMP requests. Obviously

149

Ex.1009 / Page 159 of 280
TESLA, INC.

this is an unacceptable solution to monitoring. Hence, special care must be taken to ensure that
the monitoring components do not place a significant load on a computer’s resources.

b. Since it is critical to provide monitoring daemons on all platforms in the resource
pool, it therefore becomes important to provide monitoring support for multiple platforms. Our
current monitoring components run on UNIX platforms. Future endeavors will include porting
of these components to other operating systems such as Windows NT, Linux, VxWorks, and
LynxOS.

¢. Demo098 encompassed thirty-four UNIX workstations. In future years, the number of
host platforms included in the demonstrations are expected to increase significantly. Supporting
our goal for a diverse, configurable, upgradeable resource pool translates to requirements for a
highly scalable monitoring infrastructure.

4.5.2 Resource Management Decision Making

a. The decision-making portion of Demo98 consisted of three major components: QoS
Path-Managers, Resource QoS Managers, and Resource Manager. The inter-process
communication for the Decision Making components was provided by a package developed at
the University of Texas at Arlington (UTA) which was built on TCP/IP and required a name
server for location independence. The communications package performed well but had several
drawbacks. The name server was a bottleneck for scalability and survivability. In addition, the
communications library performed dynamic memory allocation during message sends and
receives which resulted in less than optimal performance. As a result, the choice of
communication mechanisms being used within the Resource Management decision making
components will be reassessed.

b. The Resource QoS Manager proved to be much more effective than the previously
used FY97 “voting” mechanism. Resource allocation times were reduced from 10-12 seconds to
under 500 milliseconds. The biggest difference involved precalculating host “fitness” scores for
all hosts in the resource pool with periodic updates being performed every second to maintain
up-to-date data. In addition to these changes, we also need to “normalize” the performance of
each host. This would allow a symmetric multi-processor server to have a higher score than a
single processor desktop or a Sun Ultra-60 to be “better fit” than a Sun Sparc-10.

¢. The Resource-Manager component in Demo98 performed initial allocation,
reallocation, and scale-up based on overload detection. Additional features will include scale-
down based on underload, application move to correct poor performance, and pro-active scaleup
based on prediction of overload. Application profiling, both in the static and dynamic sense, will
also be an important key enabler for better resource allocation decisions. Static profiling will
allow benchmarking to occur offline in a closed system and data provided to the Resource-
Manager at runtime. Dynamic profiling will allow data to be collected and assessed at runtime.

150

Ex.1009 / Page 160 of 280
TESLA, INC.

4.5.3 Resource Control / Program Control

a. Program Control was the key component for providing startup and shutdown’
capabilities both by an operator and automated by the Resource Manager. A user-friendly
display allowed operators to easily take control of tens to hundreds of hosts in a distributed,
heterogeneous environment.

b. One issue that arose was the role of the display and control processes. During the
course of the design and development of the Program Control components, the line between
control and operator interface capabilities became blurred with the display handling several
features that probably should have been implemented within the control process.

c. Security is another significant issue with distributed control. With the power to
startup and shutdown processes across a large resource pool brings the problem of who is
privileged to start and stop processes and on which machines. User-level control will need to be
incorporated into the display and control daemons to ensure that only process owners and
privileged users can control the system configuration (e.g., stop running processes, €tc...).

4.5.4 System and Software Specifications

a. The Resource Management System and Software Specifications Grammar, RMSpec,
was introduced in Demo98. It provided a convenient and centralized way for requirements for
QoS, configuration, dependency, etc., to be delivered to the resource management components.
Application software changes and system requirements changes that affect system performance
are handled by simply modifying a specification file. Therefore, a 65ms Auto-Special review
time can easily be lowered to 50ms.

b. Several implicit assumptions of the specifications grammar are concerns with regards
to the general-purpose nature of the grammar. For instance, paths are defined with implicit
concepts of “load”. A more generic, explicit approach must be pursued for the RMSpec
grammar. There needs to also be a way to “tag” data coming from the monitoring components
and correlate it for use in the grammar. This way a path can be defined and measured by using
text strings that map to data being delivered through instrumentation.

4.5.5 Visualization

a. Visualization is a key component for presenting data and decisions to operators. A
glimpse of the Host Display quickly shows which processes are allocated to which processors,
the status of all hosts, and the status of the network connections on all the hosts. The Graph
Display allowed hardware performance (i.e. Cpu-Idle, Network Packets-In and Out, Memory
Paging, etc...) to be monitored at runtime, thus keeping the operator informed as to the “health”
of the hardware systems in the resource pool. The Path Display graphically depicted the QoS
paths identified in the specifications files and allowed runtime plots of the data instrumented
along those paths. Finally, the Resource Management Decision Display informed operators of
all actions performed by the Resource-Manager including insight into the reasoning behind the
specific allocations.

151

Ex.1009 / Page 161 of 280
TESLA, INC.

b. In order to monitor QoS requirements placed on applications and systems in Demo98,
a modified version of the Jewel Instrumentation package was used. The displays used were very
similar to those in previous demonstrations. A more generic approach to instrumentation
displays is planned which would allow a display to be built using drag-and-drop techniques and

hooked to data through a point-and-click mechanism built into the display and instrumentation
infrastructure.

4.5.6 Summary

Demo98 unveiled a sound infrastructure base for dynamic resource management. Further
algorithm development to utilize more of the available data will allow for better and more robust
allocation and reallocation decisions to be made. Evolution of the existing architecture and the
features that lie within will move us closer to our goal of providing a scalable, fault-tolerant,
generic, dynamic resource allocation and control infrastructure.

152

Ex.1009 / Page 162 of 280
TESLA, INC.

APPENDIX A

EVALUATING THE PERFORMANCE OF MULTICAST
COMMUNICATIONS

Philip M. Irey IV and David T. Marlow
System Research and Technology Department
Combat Systems Branch
Naval Surface Warfare Center, Dahlgren Division
Dahlgren, Virginia 22448-5000

3 {pirey, dmarlow }(@nswc.navy.mil

Ex.1009 / Page 163 of 280
TESLA, INC.

APPENDIX A
EVALUATING THE PERFORMANCE OF MULTICAST COMMUNICATIONS

Philip M. Irey IV and David T. Marlow
System Research and Technology Department
Combat Systems Branch
Naval Surface Warfare Center, Dahlgren Division
Dahlgren, Virginia 22448-5000
{pirey, dmarlow }@nswc.navy.mil

ABSTRACT

In the distributed shipboard environment of interest to the United States Navy, there is an
increasing interest in the use of multicast communications to reduce bandwidth consumption and
to reduce latencies. The bandwidth required to transmit large volumes of information (e.g. track
files, maps, etc.) to multiple receivers could potentially be reduced significantly by the use of
multicast data transmission. Many types of real-time shipboard data, such as navigational and
gyro data, need to be distributed to a large number of hosts. The distribution of this type of data
might also benefit from the reduced latency possible using multicast techniques instead of
sequential unicast transmission. Before muliticast communications can be used in this
environment, however, a characterization of its performance must be made. This appendix
proposes a number of metrics, and data collection and analysis techniques for assessing multicast
communications performance. Of particular significance is a metric that correlates reception of
message and shows promise in analyzing topology-related problems. While the concepts
presented in this appendix are applicable to the general forms of multicast, this appendix
specifically focuses on the use of IP Multicast in an internal shipboard environment. The
MCAST Tool Suite (MTS), which uses the metrics and data collection techniques presented, is
then described. The results of applying this toolset to simulate and instrument several IP
Multicast-based application scenarios is then presented.

A.1 INTRODUCTION

a. Inthe distributed shipboard environment, there are many data streams that multiple
hosts need to receive. These data streams may be large in volume and sent often (in some cases,
hundreds of times per second). Examples of such data streams include gyro and other positional
update information. Multicast transfer, where each message forwarded by a sender is passed on
to multiple receivers, is expected to decrease bandwidth resources on the interconnected data
networks. In addition, it is expected that there will be reduced latency to pass each message to
all receivers for this technique when compared to sequential unicast transmission to each
receiver. The reduced bandwidth load is expected to enable other communications using the
same network resources to gain bandwidth and low latency advantages.

b. The Internet Engineering Task Force (IETF) has defined IP Multicast [RFC1112]
which provides the most universal approach to implementing multicast transfer with Commercial
Off The Shelf (COTS) products. IP Multicast is an extension to the standard Internet Protocol

Ex.1009 / Page 164 of 280
TESLA, INC.

suite which provides mechanisms for receivers to register for particular message types and for
routers to discover which multicast messages are needed by hosts it serves. IP Multicast
provides a means of supporting multicast transfer to a number of hosts which may be
interconnected by a variety of LAN types (e.g., Ethernet, FDDI or ATM). IP Multicast provides
a connectionless (i.e., unacknowledged) transfer service on top of which reliable transfer
mechanisms are being developed by the research community.

c¢. This appendix focuses on the use of UDP on top of IP Multicast which provides a
connectionless transfer service for application software. It is assumed that a multicast routing
protocol is in place among the routers or switches serving the multicast users. The details of
these protocols are outside the scope of this appendix.

A.2 RELATED WORK

A large body of work has been published on unicast metrics [IREY98] and [IPPM].
Previous work in unicast metrics can provide a foundation for multicast metrics; however, the
multicast transfer breaks some of the fundamental assumptions of unicast data transfer. Some of
the previously defined unicast metrics can be used as a foundation and upon which new multicast
metrics can be defined. The IETF has also initiated efforts in defining metrics targeted at
multicast exchanges [BMWG].

A.3 MULTICAST MODEL

a. This appendix focuses on 1— N communications model as shown in Figure A-1.

Figure A-1 1-N Communications Model

b. While, /— N groups can be constructed from a series of unicast communications, the

metrics for measuring the performance of these groups are outside the scope of this appendix and
will not be discussed.

A.4 MULTICAST PERFORMANCE METRICS

Although this appendix specifically focuses on IP multicast, the metrics defined in this
section have applicability to multicasting in general (e.g. 802.3 datagrams, ATM UNI point-to-
multipoint connections, etc.). Two types of metrics are defined for accessing multicast
performance: local metrics and group metrics. Local metrics are measured at a single sender or

Ex.1009 / Page 165 of 280
TESLA, INC.

single receiver. Group metrics, on the other hand, represent an aggregate performance for all
receivers in a multicast group.

A.4.1 Metric Notation

Metric names are defined with capital letters (e.g. XYZ). An individual measurement of a
metric from a set of measurements is represented using subscript notation (e.g. XYZ;). The
subscript , is used to select a particular measurement from a set of measurements. The subscript ;
is used to select a particular host from a set of hosts. To represent a particular measurement on a
particular host, a double subscript notation is used. For example, LI4 7}{ represents LIAT

measurement number , on host number j. Statistics can also be applied to a set of measurements.
Subscripts are used to represent the statistics computed for a set of measurements: “avg”
represents the average value; “min” represents the minimum value; “max” represents the
maximum value; and “sdev” represents the standard deviation. For example, XYZ..; represents
the average value of the set of measurements of the X¥Z metric. To denote a statistical
measurement from a particular host in group metrics, the statistic subscript again is subscripted.
For example, XYZavgj represents the average value of the XYZ metric on receiver j. In the

equations below, m represents the number of messages sent on a data stream and N represents the
number of multicast receivers in the group to which the data stream was sent.

A.4.2 Metric Instrumentation Points

Both the multicast sender and multicast receivers are instrumented at the application to
communications subsystem interface as shown in Figure A-2. The communications subsystem is
generally contained within the operating system (e.g. in an Unix environment, the application to
communications subsystem interface is often the sockets API). Because the measurements are
made at this interface, the performance observed by the application is measured and includes
delays introduced by transmission on the media, queuing delays in the communications
subsystem, and delays in the operating system.

Application Application Application
Communication Operating System Operating System
sy st
Subsystem Communication Communication
Operating System Subsystem Subsystem
C P C
TCP UDP e | wp oo o | TP | uop
P P 1%
Communications Communications Communications
Media Media Media
FDDI| ATM | Bthernet FDDI| ATM | Ethernet FDDI | ATM | Ethemet

A

A

A-4

Ex.1009 / Page 166 of 280
TESLA, INC.

Figure A-2 Metric Instrumentation Points

A.4.3 Messages

a. Messages are units of data sent from the multicast transmitter to the multicast
receivers in the group. They are application level entities as opposed to packets which may be
used within the communication subsystem. Performance data is collected on individual
messages or a stream of messages.

b. Each message sent contains a sequence number, (seq), a timestamp, (ts1), and data.
The sequence number is used by multicast receivers to order messages and to determine the
distance (in messages) between messages in the data stream. In this appendix, sequence numbers
are assumed to be monotonically increasing starting from one on a data stream from a particular
transmitter (e.g. increased by one each time a message is transmitted). Other sequence
numbering algorithms can be used as long as they allow message order to be determined and the
distance between messages to be computed. The timestamp identifies when the message was
sent by the transmitter and is used by the receivers to measure latency and throughput. Finally
the data is “filler” at the end of a message to ensure that the message is a particular size. The
size of a message is important when trying to simulate a particular application scenario.

A.4.4 Local Metrics

a. Metrics with the “local” prefix are measured at either the single sender or at a single
receiver as shown in Figure A-3.

Figure A-3 Local Metric Instrumentation Points

b. The “local inter-send time” metric and “local messages sent” metrics are measured at
the sender. All other “local” metrics are measured at a single receiver. Even though these
metrics are measured at a single receiver, information from the sender (e.g. sequence numbers,
timestamps, etc.) may be used to compute them. Figure A-4 and A-5 show pseudo-code similar
to the “C” programming language which shows the operation of the sender and receiver. It
should be noted that the local metrics are appropriate for the measurement of local multicast
performance and for local unicast performance as well. Unicast transfer is essentially an
exchange between a single sender and a single receiver. In this case, the metrics are valid
regardless of whether a unicast protocol (e.g. UDP over IP) or a multicast protocol (e.g. UDP

Ex.1009 / Page 167 of 280
TESLA, INC.

over IP multicast) is used to exchange the data (though this may affect the measured
performance).

seq=LMS=0

while (done==FALSE) {
tsl=gettimeofday(ts1)
send(A,++ seq,ts1,data)
ts2=gettimeofday(ts2)
LIST[++LMS]=timediff(ts2,ts1)

local_usleep(sleep_time)
Figure A-4 Transmitter Pseudo-Code

¢. As shown in Figure A-4, messages are sent from the multicast transmitter to the
receivers using a send() function. Each message is sent to the address A which can address a
unicast receiver or a multicast group of receivers. Each message sent contains a sequence
number, seq, a timestamp, ts1, and data. Since the timestamp is generated at the transmitter and
is used by the receiver, it is assumed that either the clocks of the sender and all receivers are

synchronized (e.g. NTP, GPS, etc.) or some method exists for converting between the time
domains of the transmitter and receivers [NTP].

d. As shown in Figure A-5, multicast receivers use the recv() function to receive the

messages sent to the address A and extract the sequence number, seq, timestamp, ts1, and data
from those messages.

A.4.4.1 Local Messages Sent (LMS) Metric

As shown in Figure A-4, LMS is computed at the transmitter. It is simply the count of the
number of messages sent to the group.

Ex.1009 / Page 168 of 280
TESLA, INC.

bytes_recerved=LMR=LMRL=LGC=0
expected_seq_num=0
tr1=gettimeofday()
first=TRUE
while (done==FALSE) {
prev_tri=trl
recv(A, seq,ts1,data)
trl=gettimeofday()
if (first == TRUE) {
start_time=ts1
FIRST=FALSE
|
process_packet = FALSE
if (seq == expected_seq_num) {
process_packet=TRUE
}
else if (seq < expected_seq_numy {
++LMRL
!
else { /* seq > expected_seq_num */
LGB[++LGC]= (expected_seq_num,seq)
LGLILGC]=seq-expected_seq
process_packet=TRUE
}
if (process_packet) {
LOWL[++LMR]=timediff(tr1,ts1)
LIAT[LMR]=timediff(tr1,prev_tr1)
expected_seq_num=seq+1

}

bytes_received=bytes_received+
sizeof(data)
j
end_time=gettimeofday()
L AT=bytes_received/timediff(end_time,start_time)

Figure A-5 Receiver Psendo-Code

A7

Ex.1009 / Page 169 of 280
TESLA, INC.

A.4.4.2 Local Inter-Send Time (LIST) Metrics

The LIST metrics are used to statistically characterize the time between successive
message sends at the multicast transmitter as shown in Figure A-4. Computing L/S7 is important
because the measured value may not always correspond to the expected value as shown in
[IREY97]. The “sleep time” or target time between successive message sends directly affects
the LIST values measured. Setting sleep_time is useful in simulating specific application
scenarios. The average, maximum, and minimum values can be computed for a set of LIST
measurements as shown in Equations 1, 2, and 3 respectively. The standard deviation for a set of
LIST measurements can be computed as shown in Equation 4.

" LIST,
LIST e = 3 —
i-1 (EQ 1)
IST o= MAX{LIST
vi (EQ2)
LIST = MIN(LIST
vi (EQ3)
m
S (LIST, -LIST,,)
LISTsdev = fizd n—1 GEQ 4)

A.4.4.3 Local Messages Received (LMR) Metric

As shown in Figure A-5, LMR; is computed at a single receiver. It is the count of the
number of messages received. LMR, includes messages received in sequence and those whose
sequence number was greater than the sequence number expected for the next message in the

data stream. Messages received with a sequence number less than the expected one are not
counted in LMR, but are counted in LMRL defined below.

A.4.4.4 Local Messages Received In-order (LMRI) Metric

LMRI, is defined to count only the messages which were received with a sequence

number equal to the expected sequence number as shown in Equation 5 (where LGN is defined
in paragraph A.4.4.11).

MRI; = LMR - LGN, EQ5)

Ex.1009 / Page 170 of 280
TESLA, INC.

A.4.4.5 Local Percent Messages Received (LPMR) Metric

LPMR;is defined to compute the percentage of the messages sent by the multicast
transmitter which were received by a multicast receiver. It is simply the number of messages
received by the receiver (LMR;) divided by the number of messages sent by the transmitter
(LMS) as shown in Equation 6.

LMR.
LPMR; = ——-Rl

1 LMS (EQ 6)

A.4.4.6 Local Messages Received Late (LMRL) Metric

LMRL; is defined to count the messages received by a receiver with seq less than
expected_seq as shown in Figure A-5. Both messages which arrive out of order and duplicate
messages are classified as “late” using this criteria. Although “late” packets are not common in
the shipboard environment of interest in this appendix, they can occur (particularly in failure
scenarios) and must be considered. In a Wide Area Network (WAN), “late” packets are more
common.

A.4.4.7 Local One-Way Latency (LOWL) Metrics

LOWL metrics are used to statistically characterize the one-way latency between the
multicast transmitter and a single receiver. These metrics are computed using the difference of
two timestamps as shown in Figure A-5. The first timestamp, (ts1), is generated by the multicast
transmitter when the message is sent. The second timestamp is generated at the receiver, (trl),
when the packet is received. LOWL, is the difference between trl and ts1 (assuming the
timestamps are in or can be converted to the same time domain). LOWLavg}., LOWLman,

LOWLminj, and LOWLsdev, are computed as shown in Equations 7 through 10. Since LMR;is
used in the computations, messages which are late or lost do not contribute to the computations.

L LOWL,
LOWL,, = zl TR (EQ7)
= J

LOWL =MAX {LOWL, }
max i !
Vi (EQ?Y)
LOWL ;, =MIN{LOWL, }
J \v/ . L

1

(EQ9)

Ex.1009 / Page 171 of 280
TESLA, INC.

Ml
2
> (LOWL, -LOWL,,,)

LOWL,,, =1-= — (EQ 10)
J

A.4.4.8 Local Inter-arrival Time (LIAT) Metrics

LIAT metrics are used to statistically characterize the time between the receipt of
successive messages at a single receiver as shown in Figure A-5. Since LIAT is computed using
timestamps from the local receiver only, no time domain conversions are necessary. Since
LIAT, is always equal to zero, it is not used to compute L/4 7., as shown in Equation 11.
LIATpax, LIAT s, and LIA Tsge, can be computed for the set of LI4T measurements in a manner
similar to Equations 8-10 except that 7 starts at 2 and the LMR, term in Equation 10 should be
replaced with the term LMR, -1. Since LMR, is used in the computations, messages which are late
or lost do not contribute to the computations.

Lz, =y AL
™6 & IMR -1 (EQ 11)

A.4.4.9 Local Application-to-Application Throughput (LAT) Metric

The LAT metric is used to characterize the end-to-end throughput between the multicast
transmitter and a single receiver. The term “application-to-application” is used because the time
interval over which the measurement is made includes the time from which the first message of
the data stream was transmitted at the sender until the time the last message in the data stream
was recetved by the receiver. As shown in Figure A-5, the start of the time interval begins with
the receiver recording the value of ts1 in the first message received on the data stream in
start_time. The receiver then records the time when the last message was received in end_time.
LAT, is the number of bytes received divided by the difference between these two times.

A.4.4.10 Local Gap Boundaries (LGB) Set

a. LGB, is the set of ordered pairs of the start and end points of gaps in sequence space
of received packets. LGB, is a set from which metrics are derived for host j. The storage space

required to record which messages were received in order and which were not can be reduced by
using an LGB set.

b. When a message is received with a sequence number which is not equal to
expected_seq (i.e., one greater than the highest previously received in-order message), one of
two scenarios occurs: 1) the message has a sequence number greater than expected_seq in which
case the ordered pair (expected_seq num,seq-1) denoting the sequence space gap is recorded in
LGBj; or 2) the message has a sequence number less than expected_seq in which case the
message is considered late and no action associated with LGB, 1s taken. A new sequence space
gap 18 not recorded for the second scenario because the packet was either a duplicate packet

A-10

Ex.1009 / Page 172 of 280
TESLA, INC.

(which is actually counted as a late packet as shown below) or was covered by a previously
recorded sequence space gap.

A.4.4.11 Local Gap Number (LGN) Metric

The LGN metric is a count of the sequence space gaps observed during an experiment. It
is equal to the number of messages received which had a sequence number greater than
expected_seq.

A.4.4.12 Local Gap Length (LGL) Metrics

The LGL metrics are used to statistically characterize the size of sequence space gaps
observed by a single multicast receiver. LGL,, for sequence space gap LGB, is computed by

subtracting the ending sequence number from the starting sequence number as shown in
Equation 12. (Figure A-5 shows (start, end)-tuples being recorded for LGB). LGLm,g] is

computed by iterating over & as shown in Equation 13. LGLmax] , LGmeJ and LGLsdng are

computed similarly to Equations 2 through 4, except that they are computed over £ as in
Equation 13.

Gij = LGB(end)jk—LGB(s‘cart)jk

(EQ12)
Loc, LGL,

LGL, = — K EQ 13

» = & Tac) FQ1)

A.4.5 Group Multicast Metrics

a. Unlike local metrics which look at the performance of a single sender or a single

receiver at a time, group metrics attempt to characterize the performance of all receivers in a
multicast group as shown in Figure A-6.

Figure A-6 Group Metric Instrumentation Points

b. Group metrics are only defined for multicast receivers. There are no group metrics
for the multicast transmitter.

A-11

Ex.1009 / Page 173 of 280
TESLA, INC.

A.4.5.1 Group One-way Latency (GOWL) Metrics

GOWL metrics are used to statistically characterize the one-way latency performance of
the group. LOWL measurements from each multicast receiver are used in the computation. The
average, maximum, minimum and standard deviation of a set of GOWL measurements can be
computed as shown in Equations 14 through 17. These equations also serve as prototypes for
computing average maximum, minimum, and standard deviation on sets for other group metrics
defined below. o

n LOWL,
GOWL,,, =Y ——= (BQ 14)

J=1 hn

GOWL “MAX(LOWL,, |

VI (EQ15)
OWL,;, “MIN {LOWL,,}
Vi (EQ 16)
S owL,, ~GOWL,,)’
GOWL,,, =\ (EQ17)

n-1
A.4.5.2 Group Inter-arrival Time (GIAT) Metrics

GIAT metrics are used to statistically characterize the message inter-arrival performance
of the group. LIAT measurements from each multicast receiver are used in the computation.
GIAT avg, GIATax , GIATpun , and GIATqev are computed in a manner similar to Equations 14-17.

A.4.5.3 Group Application-to-Application Throughput (GAT) Metrics
GAT metrics are used to statistically characterize the end-to-end throughput performance
from the transmitter to the receivers of the group. LAT measurements from each multicast

receiver are used in the computation. GA7 g, GATrax, GATpun, and GAT ey are computed in a
manner similar to Equations 14-17.

A.4.5.4 Group Gap Number (GGN) Metrics
GGN metrics are used to statistically characterize the number of message gaps observed
by the group. LGC measurements from each multicast receiver are used in the computation.

GGNavg, GGNyax, GGNyy, and GGN,ey are computed in a manner similar to Equations 14-17.

A.4.5.5 Group Gap Length (GGL) Metrics

A-12

Ex.1009 / Page 174 of 280
TESLA, INC.

GGL metrics are used to statistically characterize the size of message gaps observed by
the group. LGL measurements from each multicast receiver are used in the computation.
GGLavg, GGLmax, GGLyn, and GGLggey are computed in a manner similar to Equations 14
through 17.

A.4.5.6 Group Reception Correlation (GRC) Metric

a. The GRC metric is used to measure the degree of correlation in the messages received
by members of the group. To compute GRC, reception vectors are created for each group
member.

b. A reception vector is a representation which records which messages on a data stream
were received in sequence and which were not received in sequence or not received at all by a
particular multicast receiver in the group. To compute the reception vector for multicast receiver

J, V3, component i of F; is set equal to one if the message with sequence number i was received
in order and is set equal to zero otherwise. The information needed to compute the reception

vectors is recorded in LGB. The number of components in a reception vector is always equal to

c. A set of reception S can then be grouped into a reception matrix, R, as shown in
Equation 18. Each column j of R contains the reception vector for multicast receiver j. Each row
i of R contains a Reception Report (RR) for all receivers for message /. The number of rows in R
1s always equal to m. The number of columns in R is equal to |S] (the cardinality of §). The
reception matrix in Equation 18 shows R constructed from § which contains the complete set of
reception vectors (e.g. all multicast receivers in the group). R can be constructed for any subset,
S, of the complete set of reception vectors as well.

Reception Report
For Message #1

A

Reception Vector

1\;_,_/ for Host #2
(EQ 18)

d. GRC is computed on a reception matrix R as shown in Equation 21 which is derived
from Equations 19 and 20. Equation 19 is used to compute the Message Reception Correlation
(MRC) for message i. In this equation, the sum of Ry, is the number of multicast receivers which
received message i (R, = 1) and » minus this sum is the number which did not (R, = 0). The
absolute value of the difference of these two quantities is then divided by » (the number of
multicast receivers) which yields a value between 0 and 1. This value represents the degree of
correlation among the multicast receivers in receiving message 7. A degree of correlation equal
to 1 indicates that all receivers in the group whose reception vectors are contained in R received
that message. A degree of correlation equal to 0 indicates that half of the receivers received the
message and the other half did not. The sum of the MRC values is computed and divided by m

A-13

Ex.1009 / Page 175 of 280
TESLA, INC.

(the total number of messages which could have been received) to give the average degree of
correlation for all messages, or GRC, as shown in Equation 20. The values of GRC range from 0

)3

MRC. = (EQ 19)
I
— MRC
GRC = Y _
it= (EQ 20)

Z 2 Z R; -n
GRC=121izl
n xm (EQZl)

A.4.6 Impact of Unreliable Data Transmission Environment

The utility of the metrics defined in Sections A.4.4 and A 4.5 are dependent on the test
environment. In the environment of interest, IP multicast data transmission is used which has
unreliable semantics which can affect any measurements collected.

A.4.6.1 Correlation of Group Receivers

The GRC computed for the group provides a measure of the consistency of data reception
among the set of multicast receivers. If there is a low degree of correlation among the group
members, it is unlikely that the receivers are making their measurements on the same set of
samples. As an extreme example, suppose Host 1 receives all messages with odd sequence
numbers and Host 2 receives all messages with even sequence numbers which were sent on the
same datastream to a multicast group. In this case, Host 1 and Host 2 are making measurements
on what can be viewed as two different sets of data. In this case, GRC is equal to zero. Non-gap
group metrics should be viewed with caution in this case since GRC indicates no correlation
among the receivers. The local metrics collected are still valid but care should be taken when
comparing them among receivers. Cross checking of the data measurements is especially
important in this case.

A.4.6.2 GRC Partitioning Algorithm

Hosts can be partitioned into groups based on the GRC metric computed for those groups.
First, a threshold value is specified. Next, groups of hosts whose GRC is greater than or equal to
the threshold value are created. Two partitioning algorithms are presented. The goal of GRC
Loose Partitioning algorithm is to find the largest sets of hosts which meet the threshold criteria.

A-14

Ex.1009 / Page 176 of 280
TESLA, INC.

The goal of the GRC Strict Partitioning algorithm is to find the largest sets of hosts such that all
subsets of each partition meet the threshold criteria.

A.4.6.2.1 Loose GRC Partitioning

A set I is created to partition the set of receiving hosts into subsets based on their RR’s
such that the GRC for each subset is less than or equal to a threshold correlation, 1, as shown in
Equations 22 and 23. The purpose of Equation 22 is to create the set P which contains all
subsets of the set of RR’s, R, which meet the threshold correlation. Equation 23 removes all
subsets of P which are proper subsets of other elements of P to form the set IT which contains the
largest subsets of P which meet the threshold correlation. Testing each of these subsets against
the threshold criteria can be an expensive operation for large sets of RR’s.

P = {sc RIGRC(s) =21 (EQ22)

0= {AS—: P|A is not a proper subset of }
any other element of P

(EQ23)
A.4.6.2.2 Strict GRC Partitioning

A set Il is created to partition the set of receiving hosts into subsets based on their RR’s
such that the GRC for each subset and all subsets of that subset is less than or equal to a
“ threshold correlation, 1, as shown in Equation 24 and 25. The purpose of Equation 24 is to
create the set P which contains all subsets of the set of RR’s, R, which meet the threshold
correlation and all subsets of those sets also meet the threshold criteria. Equation 25 removes ail
subsets of 7 which are proper subsets of other elements of P to form the set IT which contains the
largest subsets of P which meet the threshold correlation. It should be noted that there are 2"
subsets which can be generated from R (where n = |R|). Testing each of these subsets against the
threshold criteria can be an expensive operation for large sets of RR’s.

= >
{s cR|VT,T cs,GRC(T) =1 0 20
- {A S |Ais not a proper subset of
any other element of P (0 25)

A.4.7 Cross-checking of Data Measurements

The metrics presented have been defined to operate in the presence of the loss,
reordering, or duplication of data which can result if an unreliable multicast protocol is used (e.g.
IP multicast). Despite this, unreliable transmission can result in what appears at first glance to be
inconsistent results. Cross checking among the various measurements should be done. For

A-15

Ex.1009 / Page 177 of 280
TESLA, INC.

example, it is possible to measure a low value for LOWL and a high value for LIAT on a data
stream. This seems inconsistent since the measured LOWL implies good network performance
yet the LIAT implies poor network performance. In this case, examining LGC might show a
large number of gaps which would contribute to the large value for LI47. LOWL is still low since
the time interval used for that metric only uses timestamps associated with that message. The
LIAT metric, on the other hand, uses a timestamp taken when previous message was received on
the data stream. If messages are lost, the measured value of LIAT becomes larger.

A.4.7.1 Test Termination

a. Another consideration when using an unreliable multicast protocol is how to identify
the end of a data stream at the receiver. If messages can be lost, simply counting received
messages at the receiver is not sufficient. Figure A-5 shows the receiver executes while the
value of the variable “done” is equal to FALSE. Although the pseudo-code does not show the
value of “done” being changed to TRUE, it is assumed that this will be done when the receiver
has determined that the data stream is completed.

b. The algorithms for identifying the end of a data stream are not shown in the pseudo-
code because it was felt that this is an implementation detail and does not affect the definition of
the metric. A variety of methods exist for a receiver to determine when the data stream has
terminated. MCAST, presented below, sends messages shorter than those in the data stream to
terminate a test. Metrics affected by any delay introduced by the test termination algorithm
should be adjusted appropriately. The only metrics affected by this delay are LAT and GAT.

A.5 THE MCAST TOOL SUITE (MTS)

a. MTS was developed at the Naval Surface Warfare Center - Dahlgren Division to
enable the performance analysis of multicast systems. MTS performs data collection and
analysis related to metrics defined in this appendix. MTS will be used in Section A.6 of this
appendix for instrumentation and analysis

b. While the metrics are applicable to generalized multicast communications, the tools
in MTS focus on testing the performance of UDP on top of IP Multicast. MTS consists of four
types of components: an instrumentation tool, a test coordination tool, a data extraction tool, and
several data analysis tools. Although these tools can be used individually, they are generally
used together. Figure A-7 shows the relationships among the tools in MTS.

mcast
.
oy

Set of Partitions mcast mcast mcast
{(RHR”): (R2an.,1)} "‘
GRCz /

| e :_partition.pl

A-16

Ex.1009 / Page 178 of 280
TESLA, INC.

Figure A-7 MCAST Tool Suite

A.5.1 MTS Instrumentation Tool

a. The main tool in MTS is the Multicast Communications Analysis and Simulation
Tool (MCAST). MCAST is a “C” program used to instrument a set of systems which are part of
an TP multicast group. MCAST is run on the single sender associated with the group and on the
receivers in that group which are to be instrumented. A multiple sender group is considered
invalid for testing with MCAST.

b. The MCAST tool reports metrics on the sender and at each receiver (e.g. local
metrics). Group metrics are not collected by MCAST, but are computed by the data extraction
tools as shown in Section A.5.3.

c. The MCAST tool is controlled by command line options. To illustrate a simple test
scenario, three command line options must be understood: “-s” denotes that this host is the
multicast sender; “-1” denotes that this host is a multicast receiver; and “~1” specifies a specific
network interface on which to send or receive. To start a test with a sender and two receivers,
“mcast -s -1 net_interface” would be run on the sending host, and “mcast -’ would be run on the

two receiving hosts. Results of the test are presented on the sender and on each of the receiving
hosts.

A.5.2 MTS Test Coordination Tool

a. For tests which involve a larger number of hosts than the simple case presented in the
previous section, the process of starting the MCAST sender and receivers and gathering their
results can be laborious. Each process must be started by hand with the appropriate command
line options on the appropriate host. When the test is completed, the results reported by each of
the processes must be collected from those hosts and then collated in a way that the group
metrics can be computed. (MCAST only collects local multicast metrics). A tool called
doit_multi.pl was developed to automate this process.

b. The doit_multi.pl tool interactively prompts the user to enter the names of the sending
host and each of the receiving hosts. Next, the user is prompted to enter parameters associated
with the test (e.g. Inter-send time, group address, etc.). In addition, doit_multi.pl allows the user

to enter a range of message sizes over which to test instead of testing just a single message size
as MCAST does.

c. After all of the test parameters are entered, doit_multi.pl starts MCAST with the
specified parameters on the specified hosts and gathers the results from those hosts into a single
output file where it can be processed by the data extraction tool presented in Section A.5.3. Ifa
range of message sizes was selected, doit_multi.pl repeats the process for each of the message
sizes tested, appending the results of each message size to the output file.

A-17

Ex.1009 / Page 179 of 280
TESLA, INC.

A.5.3 MTS Data Extraction Tool

The output file generated by doit_multi.pl can be quite large, particularly if testing is
done over a range of message sizes. The data in this output file is in a raw format suitable for
visual inspection but not for plotting or numerical analysis. To transform output files generated
by doit_multi.pl into a form suitable for plotting or numerical analysis, a program called
mcast_extract.pl was developed. This program extracts the data contained in a doit_multi.pl
output file into three types of data files: gap files, local metric files, and group metric files.
Output file names are generated by mcast_extract.pl and are based the name of the input file
(which contains the output of doit_multi.pl). In the data file type descriptions below, the name
of the input file passed to mcast_extract.pl is assumed to be “ifile”.

A.5.3.1 Gap Files

a. Gap files describe the start and end of sequence gaps in the stream of messages
received during a test. These files are a representation of the Local Gap Boundary (.GB) set
described in Section A.4.4.10. Gap files have the following naming convention:
“ifile.gaps.node”. Here, “ifile” is the name of the input file passed to mcast_extract.pl, “.gaps.” is
generated by mcast_extract.pl to identify the type of file, and “node” is the name of the host

corresponding to the data file. One file is generated for each host whose data is collected by the
doit_multi.p! script.

b. The format of each line of a gap file is as follows: “msglen 0 _or 1 start end”. Here,
“msglen” is the length of the message being tested by doit_multi.pl. (doit_multi.p! can test a
over a range of message sizes during a single test.) “O_or 17 is either a zero which means all
messages in the interval specified by “start” and “end” have not been received or a one which
indicates that all messages in the interval were received. “start” indicates the sequence number
of the start of the interval being reported and end indicates the sequence number of the end of
that interval. The value of “0_or_1” should alternate between zero and 1 for a given value of
“msglen” in a data file.

A.5.3.2 Local Metric Files

a. Local metric files contain metrics measured at each multicast receiver. These files
contain a variety of metrics presented in Section A.4.4. Local metric files have the following
naming convention: “ifile.local. metric”. Here, “ifile” is the name of the input file passed to
“mcast_extract.pl”, “.local.” is generated by mcast_extract.pl to identify the type of file, and
“metric” is the type of metric collected in the data file. Current values for “metric” are: “at” for
Application-to-Application throughput (see LAT defined in Section A.4.4.9); “iat” for Inter-
Arrival Time (see LIAT defined in Section A.4.4.8); “owl” for One-Way Latency (see LOWL in
Section A.4.4.7); and “pmr” for percent of the messages received (see LPMR in Section A.4.4.5).

The complete set of local metrics defined in this appendix will be added to mcast_extract.pl in
the future.

b. The format of a local metric file contains two parts: the key header section and the
data section. The key header section provides a description of the data contained in each column

A-18

Ex.1009 / Page 180 of 280
TESLA, INC.

of the data section which follows. Each line of the key header has the following format “#
column X = metric_ss host”: where the “#” prefix is used to denote a comment in plotting
programs such as gnuplot, “column X indicates which column is being described by the key
header entry, “metric_ss” is the search string used to extract the data from the raw doit_multi.pl
input file for this column, and “host” is the name of the host for which the data in the column
corresponds. As described in the key header section, the first column of each line of the data
section contains the message length. Each column thereafter of each line in the data section
contains the data collected for a particular host as described in the key header section.

c. The format of the local metric file is intended to allow plots to be easily generated
with plotting tools such as gnuplot. In gnuplot, for example, column 2 versus column 1, column
3 versus column 1, column 4 versus column 1, and so on can be plotted simultaneously to show
the local metric for each receiver on the same graph.

A.5.3.3 Group Metric Files

a. Group metric files contain metrics derived from the local metric files. The metrics
correspond to those defined in Section A.4.5. Group metric files have the following naming
convention: “ifile.group.metric”. Here, the input file passed to “mcast_extract.pl”, “.group.” is
generated by mcast_extract.pl to identify the type of file, and “metric” is the type of metric
collected in the data file. Current values for “metric” are the same as those defined for local

metric files in Section A.5.3.2. One group metric file is generated for each local metric file
generated.

bk b. The format of group metric files is also the same as that of the local metric files (i.e. a
key header section followed by a data section). These files are also in a format suitable for
plotting. Group metric files always have two columns of data. The first column contains the
message length. The second column contains the measured value of the group metrics.

A.5.4 MTS Data Analysis Tool

Once the data has been extracted into the various metric files, the data analysis tools
available in MTS can process it. The tools enable analysis to be done related to the Group
Reception Correlation defined in Section A.4.5.6.

A.5.4.1 GRC Processing Tool

A tool called gre.pl was developed to compute the GRC for a set of hosts. The GRC can
be computed for an arbitrary number of hosts involved in a test. The list of hosts are specified on
the command line. The tool outputs two columns of numbers. The first column contains the
message length and the second column contains the GRC computed for the message lengths
specified on the given hosts. Options available to gre.pl are: “~thresh” to specify a GRC
threshold, “-stats” to output detailed statistics related to the GRC computation, and “-msglen” to
compute the GRC on a single message length only. The threshold value is used to specify the
GRC level required for all message lengths tested to be considered successful. The GRC

A-19

Ex.1009 / Page 181 of 280
TESLA, INC.

processing tool uses the return code of the program to indicate that either all GRC values
computed for all message lengths tested meet the threshold value or at least one does not.

A.5.4.2 GRC Partitioning Tool

a. Atool called grc_partition.pl was developed to partition hosts into performance
groups based on the a GRC threshold value as described in Section A.4.6.2. Because there are 2"
possible subsets which must be tested against the threshold criteria given » hosts, the complete
enumeration of sets is too costly to compute. A Loose GRC Partitioning algorithm is used by the
tool.

b. The algorithm used by the tool tests 0(#°) sets rather than the 2" sets required if a
Strict GRC Partitioning is done (e.g., all sets are tested). The algorithm is guaranteed to produce
one or more sets which meet the threshold criteria rather than the largest number of sets which
meet the threshold criteria.

A.6 TP MULTICAST PERFORMANCE TESTS

A number of tests were conducted to evaluate the performance of UDP over IP multicast
using the metrics developed in Section A.4. Some of the tests were performed in a “stand-alone”
configuration outside the HiPer-D testbed. Other tests were “integrated” in the sense that they
were conducted in the HiPer-D testbed to solve specific operational problems.

A.6.1 Stand-alone Testing

A number of experiments were conducted outside the HiPer-D testbed to prove the utility
of the multicast performance metrics and MTS. Eventually the tools evaluated and applied
during the stand-alone testing were transitioned into the HiPer-D testbed where they were used.

A.6.1.1 Stand-alone Test Environment

The test environment consists of a number of Sun Microsystems workstations and servers
(Ultra 2, SparcStation 5, Ultra Enterprise 450, and SparcServer 4/ 670 MP) running Solaris 2.6.
Tests were conducted over one Gigabit/second (Gbps) switched ethernet, 100 Megabit/ second
(Mbps) switched ethernet, and 10 Mbps non- switched ethernet. Figure A-8 shows the hosts in
the testbed and how they are interconnected. The hosts are interconnected with 10/100/1000
Mbps Ethernet switches from Extreme Networks. It is important to note that multicast routing is
not being used in the testbed. In this environment, all multicast and broadcast traffic is
forwarded across all collision domains.

A-20

Ex.1009 / Page 182 of 280
TESLA, INC.

Tide
(Ultra 2)

imewarp
(SS 5) Ethernet
Q Bridge
Vaxless
SS p 5
(589 Sunoc Tifanic
(4/670 MP) (Enterprise 450)

1 Gbps Ethernet (Switched)

ey | 00 Mbps Ethernet (Switched)

10 Mbps Ethernet (Non-switched)
Multicast Testbed

Figure A-8 Multicast Testbed
A.6.1.2 Stand-alone Unicast Versus Multicast

a. Asdescribed in Section A .4, local metrics are applicable to measuring both unicast
and multicast performance. MCAST is able to report these metrics for both cases since it
examines IP addresses passed to it to determine if they are multicast addresses or unicast
addresses. If an address is a unicast address, the system calls associated with enabling multicast
functionality are not made. In this case, the system calls made are identical to those made for
unicast data exchange. If a multicast address is passed to MCAST, it makes the socket and
system calls which enable the multicast functionality.

b. In this series of tests, Tide is the transmitter and Cheer is the receiver. First a unicast
data stream is measured between the hosts. Next, a multicast data stream is measured between
the hosts. The unicast and multicast results are then compared. For these tests, only LET and
LOWL are examined.

A-21

Ex.1009 / Page 183 of 280
TESLA, INC.

A.6.1.2.1 100 Mbps Switched Ethernet

As can be seen in Figures A-9 and A-10, there is little if any difference between Unicast
and Multicast transmission using 100 Mbps switched Ethernet with Tide as the transmitter and
Cheer as the receiver.

App-to-App Throughput VS Message Length
UL e P T Pt ST T T P T
+
80 * % |

90

70} i

60 -

50 | .

40F .

App-to-App Throughput (Mbits/sec)

20 |- -

Lol

] i] I 1) 1 1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Message Length (bytes)

10

+ Tide to Cheer UDP (Unicast} on Ethernet (100 Mbit Switched)
% Tide to Cheer over UDP (Multicast) on Ethemet (100 Mbit Switched)

Figure A-9 Unicast Versus Multicast LAT over 100 Mbit Switched Ethernet

A-22

Ex.1009 / Page 184 of 280
TESLA, INC.

One-way latency

30000 T Y i T Y T T T
X
25000 .
X
+ Ry XHE
- K KKk KX
Sé 20000 + . x X % *m*x&*xxxxxm" xx¥ -
3 x* * ®
= X * * X*
o~ * *
e x X
[] *
% 15000 + X b
i
z
2
2
o 10000 + -
5000 - i
0wk] L ; 1 I i 1 '
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Message Length (bytes)

+ Tide to Cheer over UDP (Unicast) on Ethemet (100 Mbit Switched)
% Tide to Cheer over UDP (Multicast) on Ethemet (100 Mbit Switched)

Figure A-10 Unicast Versus Multicast LOWL over 100 Mbit Switched Ethernet
A.6.1.2.2 1 Gigabit/Second (Gbps) Switched Ethernet

a. Asshown in Figures A-11 and A-12, there is a noticeable performance difference in
the LAT and LOWL metrics measured with Tide as the transmitter and Cheer as the receiver over
Gigabit Ethernet. Figures A-13 and A-14 plot the difference between the two LAT and LOWL

performance curves to better illustrate the difference between the unicast and multicast
performance.

A-23

Ex.1009 / Page 185 of 280
TESLA, INC.

App-to-App Throughput VS Message Length
¥

350 T T T T T T T
&* X*§
300 | ¥ +* XX ;‘-l-* +** &
PETES LMV St SIS R
+ ++E7 FRxX X
) % +.>"<)< ++*§x;x){x * "
3 250 | i o RO 1
g fx XX X
g ;x ﬁﬁ x x
R 200 | % X -
5 +
3 % 4%
£ 150 F +X J
s X X
<
5 %
& 100 b .
[=%
< *
50 Fx -
3
0 ! L I 1 [1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Message Length (bytes)

+ Tide to Cheer over UDP (Unicast) on Ethemet (1 Gbps Switched)
* Figafeex o1y Uik dse-VerSas™MuliicaSt'AT over Gigabit Ethernet

One-way latency
9000 A 1] 1 1

1]] T
8000 | x .

7000 B

6000 |+ -

5000 X 1

4000 x X 4

One-way Latency (usec)

3000 - X i

X X" x
1000 |* + X
LENE RS
K X pbp bt e X T
PR 'S ST e L A
%gg% %
1 1 1 1) 1 1 1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Message Length (bytes)

FHP g bbb bR b

+ Tide to Cheer over UDP (Unicast) on Ethemet (1 Gbps Switched)
% Tide to Cheer over UDP (Multicast) on Ethernet (1 Gbps Swilched)

Figure A-12 Unicast Versus Multicast LOWL over Gigabit Ethernet

A-24

Ex.1009 / Page 186 of 280
TESLA, INC.

Throughput Performance Advantage vs Message Length
UDP (Unicast) Over Ethernet (1/ S‘(’Ebps Switched) (Tide to Cheer)

UDP (Multicast) Over Ethemnet (1 Gbit Switched) (Tide to Cheer)

o 30 T T T T T T T T

g

3 J
T 25 *

E

S

8 20 + .+ i
g

8 L + + + i
b} 15

g 0 + N ' ot ++ *

E or -+ + * * * + 4t + i
?: 5 . . 1'++ + . . ++ L+ + t h
+ + +

2 + + +
+
‘5, ok - PR k3 -
g +
[o
"‘E ‘5 1 1 L) J 1 | 1
0 2000 4000 6000 8000 10000 12000 14000 16000 180C

Message Length (bytes)
Poaints > 0 - UDP (Unicast) Over Ethernet (1 Gbps Switched) (Tide 1o Cheer) has superior perf.
Points < 0 - UDP (Multicast) Over Ethernet (1 Gbps Switched) (Tide to Cheer) has superior perf.
Point = 0 - equal perf.

+ Throughput Difference

Figure A-13 Unicast and Multicast LAT difference over Gigabit Ethernet

One-way Latency Performance Advantage vs Message Length

UDP (Unicast) Over Ethemet (3/ sGbps Switched) (Tide to Cheer)

UDP (Mutticast) Over Ethernet (1 Gbit Switched) (Tide to Cheer)
%}: BOOO + 1 i T i l i T
8 +
Y 7000 N E
3
£ 6000 | * -
> +
o +
< 5000 + + -
8
g 4000 | + + |

+ +

% 3000 ot . _
o + ++ +
g 2000 + R o R
2 oy Y + o + o+
_‘3 1000 - " N + + + + + -
. + + +7 4
g O 444 st Fhbaes % L ha s L L UV i
o)
6 -1000 r L ! [} ! t ! 1

1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Message Length (bytes)

Points > 0 - UDP éUnioast) Over Ethernet (1 Gbps Switched) (Tide to Cheer) has superior perf.
Points < 0 - UDP (Mulficast) Over Ethernet {1 Gbit Switched) (Tide to Cheer) has supetior perf.
Point = 0 - equal perf.

+ One-way Latency Difference

Figure A-14 Unicast and Multicast LOWL difference over Gigabit Ethernet

A-25

Ex.1009 / Page 187 of 280
TESLA, INC.

b. At this time, no satisfactory explanation for the performance differences observed
between Unicast and Multicast transmission in the 1 Gbps tests has been found. The fact that no
differences were observed in the 100 Mbps tests but differences were observed in the 1 Gbps
tests might lead to the hypotheses that the multicast forwarding capabilities of the switch do not
scale in the same way as the unicast forwarding of the switch at higher transmission rates.
Another hypothesis would be that architectural differences between the Summit 1 switch used in
the 1 Gbps tests and the Summit 2 switch used in the 100 Mbps contribute to the performance
differences observed. Further work in this area will attempt to test these hypotheses and attempt
to identify the source of the performance differences.

A.6.1.3 Stand-alone Group Multicast Performance

As previously noted the local metrics are useful to measure both unicast and multicast
performance. The group performance metrics, on the other hand, are generally only used to
measure multicast performance. When analyzing the behavior of a multicast group, the GRC
metric is often a key in the analysis process.

A.6.1.3.1 Using GRC for Group Performance Analysis

a. Figures A-15, A-16, and A-17 show three different experiments, E1, E2, and E3
respectively, in which Sunoco was the multicast transmitter and Era, Tide, Timewarp, and
Vaxless were the multicast receivers. In the tests, Sunoco transmitted 10,000 messages to the
multicast group. As shown in Figure A-8, the transmitter in this scenario (Sunoco) is connected
to the network via a 10 Mbps shared Ethernet connection. Consequently, Sunoco cannot exceed
= a transmission rate of 10 Mbps.

b. Figure A-15 shows a scenario (E1) where Sunoco sent messages of length 16384
bytes to the multicast group with a sleep_time equal to 0. As can be seen visually, few messages
are not received by any of the receivers. Table A-1 shows a high degree of correlation (.9991)
among the receiver set and that a high percentage of the messages were received (99.87%).

A-26

Ex.1009 / Page 188 of 280
TESLA, INC.

Vaxless

Timewarp

Tide

EFa

Tide --x---
Vaxiess ---%---
e Timewarp -« 8-

Figure A-15 E1: Reception Vectors for Message 16384 Bytes in length
(no background load)

L Table A-1 GRC Measurements
GRC RR=0 RR=N 0<RR<N
El 0.9991 0% 99.87% 13%
E2 0.9989 1.81% 97.99% 0.2%
E3 0.4498 0% 21.06% 78.94%

c. Figure A-16 shows a scenario (E2) where Sunoco sent messages of length 16384
bytes to the multicast group with a sleep_time equal to 0. In this scenario, unlike E1 and E3, a
unicast background load of 6 Mbps (between two hosts not involved on the multicast test) was
introduced on the 10 Mbps Ethernet shown in Figure A-8. As can be seen, in Figure A-16, a
large number of messages are dropped. Table A-1 shows a high degree of correlation among the
receiver set (0.9989). It also shows that nearly all the messages which were not received were
not received by all receivers (RR=0). In this environment, a message not received by all hosts
probably indicates that the message was lost at the sender. With the background load on the

shared media attached to the sender, it is likely that collisions caused it’s output queue to
overflow resulting in lost packets.

A-27

Ex.1009 / Page 189 of 280
TESLA, INC.

Era

Tide

Vaxless

Timewarp
1w
0.8
0.6
0.4
0.2

0
Message Length (b}e%?%m%oo%
o01%000

era ——
Tide -----
Vaxless ---*---
Timewarp - -&--

Figure A-16 E2: Reception Vectors or Messages 16384 bytes in length
(6 Mbps background load)

A.6.1.3.2 GRC Performance Partitioning

Figure A-17 shows a scenario (E3) where Sunoco sent messages of length 256 bytes to
the multicast group with a sleep_time equal to 0. For E2, Table A-1 shows a much lower degree
of correlation (.4498) than E1. This is also reflected in the Reception Reports (RR) in the table.
Computing [T for E3 with 1= 0.5 yields the set {{R,R}, {Rs, R¢}} where R}, R;, Rs, R4 are the
reception reports for Tide, Era, Vaxless, and Timewarp respectively. Consequently, Tide and Era
correlate to the specified degree as do Vaxless and Timewarp.

A28

Ex.1009 / Page 190 of 280
TESLA, INC.

Vaxless

Timewarp
Tide
Era
"
08 \

0.6

0.4
02 + Vaxless
0k
Timewarp

0
1000200%000

400%00
Message Length (b&eos?

25

0700%0 era +
Tide X

%00, v

oo ~5 v 5

Figure A-17 E3: Reception Vectors for Messages 256 bytes in length (no load)
A.6.2 Integrated Multicast Testing

MTS proved useful in diagnosing several unexpected performance behaviors in the
HiPer- D testbed. These behaviors were operational in nature and thus of significant importance.
These problems needed to be solved as quickly as possible to ensure successful operation of the
testbed.

A.6.2.1 ATM Switch “Performance Problem”

a. When an ATM Switch “Performance Problem” was being investigated, the complete
MTS was not available. The only multicast instrumentation tool available was MCAST (which
would later become part of MTS). MCAST was used to try to duplicate the performance

problem being experienced by the applications in the testbed using its application performance
simulation tuning parameters.

b. Duplicating the problem with the test tool was important since this would show that
the problem was not necessarily in the applications experiencing the performance problems.
Also, producing the problem required a significant portion of the HiPer-D testbed to be activated
along with the applications which ran on those portions of the testbed. This process is very
resource intensive in both the equipment and personnel required. If the problem could be
duplicated with MCAST, a single operator could reproduce the problem at will by using only the
machines on which the applications experiencing the performance problems were run.

A-29

Ex.1009 / Page 191 of 280
TESLA, INC.

c. The initial attempts to duplicate the problem proved unsuccessful because of a lack of
understanding of the actual performance characteristics of the applications being simulated by
MCAST. Once the performance characteristics of the applications were understood, duplicating
the problem proved to be quite easy and was repeatable.

d. When the performance problem was duplicated a great deal of analysis was needed to
determine the actual cause. Since the MTS test coordination tool, data extraction tool, and data
analysis tools were not developed yet, running tests was both tedious and time consuming. Also,
analyzing the data was difficult as well. Despite these problems, the source of the problem was
found without the tools.

e. A lesson learned from this process was that better testing, instrumentation, and
analysis tools were needed. This realization led to the full development of MTS and the
formalized development of the metrics presented in this appendix.

f. When the MTS implementation was complete, another attempt was made to duplicate
the “performance problem”. The goal of this experiment was to determine if the additional tools
developed would reduce the complexity in debugging the problem. Unfortunately, all of the
conditions required to reproduce the problem could not be duplicated. The utility of the new
toolset was still shown, however, because a new “performance problem” was identified.

A.6.2.2 Altaird Performance Problem

In trying to duplicate the ATM switch “performance problem”, a test was conducted
which included all of the Altair hosts (Sun Microsystems Ultra2 workstations). This test
revealed a new performance problem. Plots of the data extracted by using mcast_extract.pl
showed the LAT and LPMR performance of Altair4 was consistently less than that of the other
Altair hosts. Furthermore the GRC computed was poor. The GRC data was analyzed with the
gre_partition.pl tool which placed Altair4 in a partition by itself and all other hosts in a second
partition. Since all of the Altair hosts have identical hardware and software configurations, this
result was not expected.

A.6.2.3 Altair and Electra Performance Differences

In another experiment conducted to duplicate the switch “performance problem”, all of
the Altair hosts (Sun workstations) and Electra hosts (SGI Origin 200 workstations) were
included in the test. The data collected showed that all of the Altair hosts had correlated
performance while the Electra hosts did not. In the testbed, all the Electra hosts are connected to
one switch and all the Altair hosts are connected to another switch. Since the LANE Broadcast
Unknown Server (BUS) is located on the switch connecting the Altair hosts, it was speculated
that the intra-switch traffic required for the Electra hosts to participate in the group was
contributing to the problem. Another experiment was run in which several Electra hosts were
moved to the switch with the LANE BUS. Since these hosts still exhibited the performance
problem, it was concluded that the problem was not switch related. It is speculated that
performance differences between the Electra and Altair hosts would account for the differences
in the correlation. Further testing is needed in this area.

A-30

Ex.1009 / Page 192 of 280
TESLA, INC.

A.7 CONCLUSIONS

The metrics and analysis techniques developed in this appendix as well as their
realization in MTS have proved to be useful in analyzing the performance of multicast systems.
The performance of complex applications can be simulated and evaluated on the target hardware
environment without the complexity of running the application itself.

A.8 FUTURE WORK

a. The development of MTS will be completed. The data extraction tool will be updated
to include all local and group metrics presented herein.

b. The work to date has focused on instrumenting IP Multicast in a non-routed
environment., Future work in this area will examine a routed multicast environment and a
switched VLAN environment. Further investigation into the source of the performance
differences between 1 Gbps and 100 Mbps ethernet will be conducted.

¢. Another area of future work would be to investigate incorporating the metrics defined
here into an operational tool which can be used to monitor the health of an operational network.

The MCAST receiver module would be converted to a daemon process and run on hosts to be
monitored.

A.9 REFERENCES

[1] BMWG] Dubray, K., Internet-Draft: Terminology for IP Multicast Benchmarking, July 1997.
[2] [IREY97] Irey 1V, Philip M., Marlow, David T., Harrison, Robert D., Distributing Time
Sensitive Data in a COTS Shared Media Environment, Joint Workshop on Parallel and
Distributed Real-Time Systems, pp. 53-62, April 1997."

[3] [IREY98] Irey IV, Philip M., Harrison, Robert D., Marlow, David T., Techniques for LAN
Performance Analysis in a Real-Time Environment, Real-Time Systems - International Journal
of Time Critical Computing Systems, Volume 14, Number 1, pp. 21-44, January 1998 F

[4] [TPPM] Paxon, V., Almes, G., Mahdavi, J., Mathis, M., Internet Draft: Framework for IP
Performance Metrics, November 1997.

[5] [NTP] Mills, D., RFC-1305, Network Time Protocol (Version 3) Specification,
Implementation and Analysis, March 1992.

[6] [RFC1112] Deering, S., RFC-1112, Host Extensions for IP Multicasting, August 1989.

"Documents available on http:/fwww.nswe.navy. mil/ITT

A-31

Ex.1009 / Page 193 of 280
TESLA, INC.

APPENDIX B

HIPER -D
DATA DISTRIBUTION EXPERIMENT

Leslie A. Madden, Robert B. Anthony, Charles L. Fudge
Naval Surface Warfare Center, Dahlgren Division
Dahlgren, Virginia 22448-5000
{MaddenL.A, AnthonyRB, FudgeCL}@nswc.navy.mil

B-1

Ex.1009 / Page 194 of 280
TESLA, INC.

APPENDIX B
HIPER - D DATA DISTRIBUTION EXPERIMENT

Leslie A. Madden, Robert B. Anthony, Charles L. Fudge
Naval Surface Warfare Center, Dahlgren Division
Dahlgren, Virginia 22448-5000
{MaddenL A, AnthonyRB, FudgeCL}@nswc.navy.mil

B.1 BACKGROUND - DATA DISTRIBUTION PROBLEM DOMAIN

a. The data distribution problem domain for command and control systems can be divided
into two general categories: control data and streaming data, as shown in Figure B-1. Complex
data ordering, low volume, reliable delivery, and deterministic latency often characterize control
data. Examples of this type of data for the Aegis Combat System could be Auto-Special and
Doctrine data.

DATA DISTRIBUTION
STREAMING CONTROL
Best Effort Reliable/Acknowledge Reliable Acknowledge
Volume High or Low Volume and Rate Low
Rate High or Low Ordered Deterministic

Figure B-1 Data Categories

b. Streaming data usually has limited data order dependencies, high volume, requires a
stable frequency and inter-arrival, and does not require reliable delivery. A message can be
missed, or possibly several messages depending on the frequency and message type, the next
received, and still satisfy system requirements. Examples of this type of data could be Gyro and
Track file update data.

c. Obviously, not all the message types used in the Aegis Combat system fall neatly into
one of these two categories. SPY data, for example, could be considered high volume and yet
require a stringent deterministic latency.

d. The relevance of these complex issues is very germane to future Aegis baselines.
Baseline 7 Phase 1 timing requirements are currently being reviewed on a message type basis.
Tradeoffs for example, such as deterministic latency versus reliable delivery, are being evaluated
to determine the most efficient method of distributing data to meet the system’s requirements.

e. Future Aegis baselines will use distributed processing architectures and distributed
applications that employ commercial off the shelf hardware and software to the greatest extent
possible. Software companies have developed, and continue to develop, a broad variety of
commercial middleware products to help system developers implement distributed applications

B-2

Ex.1009 / Page 195 of 280
TESLA, INC.

in the data distribution arena. One group of products that appears to meet the data streaming
requirements is publish/subscribe products.

£ This paper documents the results of the evaluation of two publish/subscribe products.

B.2 PUBLISH/SUBSCRIBE PRODUCTS

a. Publish/Subscribe products are message-based middleware products that provide a
service, or range of services, to various applications, above and beyond those provided in
TCP/IP. Applications that need to publish data send it to the publish/subscribe product. The
product in turn sends the data to any and all clients that have registered with it, for the data. As
shown in Figure B-2, a publisher can service multiple subscribers, and a network could consist of
multiple publishers and subscribers. The benefit of the publish/subscribe product is that the
developer doesn’t have to design and develop the code, and can concentrate on the development
of applications. Second, the application doesn’t have to be involved in keeping track of clients
and the sending and possible re-sending of data. Third, the developer can use the same or similar
interfaces in all of their servers and clients that utilize the same types of publish/subscribe
service. Basically it is less costly to buy a messaging middleware product than it is to build one.

Data Server/Publishe?\ Data Server/Publisher
A B

{ Publish/Subscribe Middleware

7/ 1 Z I \
<. NETWORK —
VA | 7 T \
[Publish/Subscribe Middleware |
¥ \
Data Client/Subscriber Data Client/Subscriber
1 3
Data Client/Subscriber Data Client/Subscriber
2 n

Figure B-2 Publish/Subscribe Architecture

b. Inits simplest form, a publish/subscribe product requires the following functions:

(1) Subscriber Registration — Subscribers/clients need to be able to register and un-

register with the publisher for services from the publisher. Typically this is accomplished with a
daemon that runs in the background.

B-3

Ex.1009 / Page 196 of 280
TESLA, INC.

(2) Publisher Advertisement — Publishers need to be able to advertise the presence
of their services. Typically this is accomplished with a daemon that runs in the background.

(3) Data Publishing — When the application actually publishes its data, the
publish/subscribe product must take the data and distribute it via the network to all clients that
have registered for the data.

(4) Data Reception — The data is received by the publish/subscribe product in each
of the clients, which in turn provide it to the subscriber application.

c. While these are the basic functions provided in a publish/subscribe product, there are
an endless number of additional features that can be added, such as reliability of delivery, fault
tolerance, different rates of delivery, language bindings, etc.

B.3 GOALS AND OBJECTIVES

a. The primary goals of the Data Distribution Experiment (DDE) were to:

(1) evaluate two Publish/Subscribe middleware products in a data streaming
application.

(2) select one product to be used for Navigation Data Distribution for the Advanced
Computing Testbed Demonstration 98 (Demo 98)

b. The two products selected for evaluation were Real Time Innovation’s NDDS and
Tibco’s Rendezvous (TIB).

c. The objectives of the DDE were to:

\ (1) modify the GDCSim and GDC_Client programs to incorporate the NDDS and
TIB products

(2) modify the GDCSim and GDC_Client architectures to accommodate future
middleware products

(3) install the middleware products in the test bed, and

(4) compare NDDS and TIB performance; and compare both to UDP performance in
the following areas:

(a) Average Message Latency
(b) Message Latency Variation
(c) Average Message Inter-arrival time

(d) Message Inter-arrival Variation

B-4

Ex.1009 / Page 197 of 280
TESLA, INC.

(e) Dropped message rate

(f) ATM network versus FDDI network
(g) Unicast versus Multicast

(h) Memory utilization

(1) CPU utilization

B.4 EXPERIMENT DESCRIPTION

B.4.1 Experiment Design

a. The DDE architecture is shown in Figure B-3. The basic idea was to have a publisher
application on one workstation transmit messages to a subscriber application on another
workstation. Successive test runs were made utilizing UDP, followed by inserting NDDS as the
middleware, and finally with TIB inserted as the middleware. Test data was gathered for the
parameters listed above, and then used to compare the three products. UDP was used as a
baseline for several reasons. First, it is a fast protocol in widespread usage. Second, it is the
protocol that both NDDS and TIB use as their underlying transport protocol. As a result, we
expected both NDDS and TIB performance to be “worse” than UDP.

MEASURE MESSAGE:
LATENCY - MIN, MAX, AVG, STD. DEV.
INTER-ARRIVAL - MIN, MAX, AVG, STD. DEV.

DROPPED
APPLICATION APPLICATION
(TRANSMITTER/ (RECEIVER/
SERVER/PUBLISHER) CLIENT/SUBSCRIBER)
UDP l T *UDP
PUB/SUB PUBLISH/SUBSCRIBE PUBLISH/SUBSCRIBE PUB/SUB
DAEMON MIDDLEWARE MIDDLEWARE DAEMON
l Y
TCP/IP TCP/IP
LAYER LAYER
v MESSAGES t
OPERATING
S oPERATING
v)
NETWORK

Figure B-3 Data Distribution Experiment Architecture

B-5

Ex.1009 / Page 198 of 280
TESLA, INC.

b. Ideally, once a message stream between the publisher and the subscriber has been
established, one would expect the only variable to be the middleware. Unfortunately, this is not
true. Each of the components shown in Figure B-3 inherently inserts some variation in the
message stream. Therefore, it was very important to minimize the variation each component
added, and/or keep the variation the same for successive runs.

B.4.1.1 Definition Of Latency And Inter-Arrival Variation
a. Most of the parameters being measured, such as latency, dropped message rate, etc,

are easily understood. The purpose of this section is to describe how we are using the latency
variation and inter-arrival time variations to discriminate between UDP, NDDS and TIB.

b. Using inter-arrival time as an example, Figure B-4 shows the ideal frequency
distribution for a publisher. All of the messages would have an inter-transmit time of exactly the
desired message rate, in this case, 1.0 msec.

messages T

msec 1.0

Figure B-4 Ideal GDCSim Frequency Distribution

c. Assuming that we are using UDP, the hypothetical data in Figure B-5 shows that, at
the subscriber, we would expect most messages to arrive with 1.0 msec inter-arrival times.
However, we would also expect a certain number of messages to arrive either a little late or a
little early because they are affected by the TCP/UDP/IP layers, operating systems and network
layer of the test set-up. This is reflected in Figure B-5, as 0.9 and 1.1 msec. inter-arrivals.

B-6

Ex.1009 / Page 199 of 280
TESLA, INC.

messages

msec 0.9 1.0 1.1

Figure B-5 GDC_Client UDP Frequency Distribution

d. This leads us to several very important concepts.

(1) UDP represents the baseline for any measurements and/or comparisons between
products.

(2) The combined variation of UDP, the operating systems, network, etc. cannot be
removed from the experiment.

(3) Since the products we are measuring are based on UDP and TCP, their variations
will almost certainly be equal to, or greater than, UDP.

e. Assuming the above issues, and assuming hypothetical test data from two different
products, product “A” and product “B”, Figures B-6 and B-7 show two different frequency
distributions that might be seen. All things being equal, then product “A” has better inter-arrival
times than product “B”, and represents a better choice.

messages 1

msec 08 091011 1.2

Figure B-6 GDC_Client Product “A”
Frequency Distribution

B-7

Ex.1009 / Page 200 of 280
TESLA, INC.

messages
1
i

msec 07 08 09 10 11 12 13

Figure -B7 GDC_Client Product “B”
Frequency Distribution

f. Standard deviation is the chosen measure of the spread, or variation, of the inter-
arrival data in comparing the three publish/subscribe products. The standard deviation was
chosen, first for convenience. GDCSim and GDC_Client provide a standard deviation for each
2-second sample. Second, it is a well accepted measure of variation. And third, it is relatively
easy to calculate. It is very important to recognize that standard deviation is being used as a
measure of variation introduced by the middleware products as compared to the variation
associated with UDP. The absolute variance added by the middleware product is not being

calculated. A similar approach is used for the latency variation, however, instead of the variation
in inter-arrival, variation in latency is being analyzed.

B.4.2 Hardware Configuration

The DDE was conducted on three workstations and two networks as shown in Figure
B-8. One set of test runs was conducted between Aquilla and Blofeld (Sun Sparc Ultra 2s) over
the ATM network. Another set of test runs was conducted between Aquilla and Pavo (Sun Sparc
Ultra 1s) over the FDDI network. All the test runs consisted of UDP, NDDS and TIB messages.

Ex.1009 / Page 201 of 280
TESLA, INC.

Msg Protocols
udp

ndds unicast
tib unicast

Msg Protocols
udp

ndds unicast

tib unicast

Figure B-8 DDE Hardware Configuration

B.4.3 Software Architecture

a. The high-level software architecture is shown in Figure B-9. GDCSim runs on
Aquilla and the clients, GDC_Client, each run on Blofeld and Pavo. The purpose of GDCSim is
to transmit constant streams of messages for various time periods. Multiple combinations of
message rate and time periods can be set up in a configuration file that GDCSim reads in. For
example, 100 messages per second may be transmitted for 2 minutes, followed by 500 messages
for 2 minutes, etc. In addition to sending messages, GDCSim registers with the Isis server
protos, and transmits control messages to the clients, after they register with GDCSim via protos.
One of the major modifications to GDCSim consisted of making a “general purpose” interface
layer where various types of messages could be added for testing. The current message types
supported at this layer are UDP, TCP, Isis, NDDS and TIB. The idea was to make it easy to add
additional message types as needed. Note that there are also “network services” layered into the
system, specifically Isis, NDDS and TIB, which in turn make use of UDP, TCP and IP as
necessary. Another key point is that there are NDDS and TIB daemons on the workstation that
are required for the messaging products to work. The purpose of the daemons is to “coordinate”
the registration of services between the middleware layer in the GDC_Clients, and the
middleware layer in the GDCSim.

B-9

Ex.1009 / Page 202 of 280
TESLA, INC.

.
i aquilla
- GDCSim [control] [. ndds

— |

E [mxs] [nddsI tib }\i Measurement

Points
tib
Cote) () L) |
N Ca—
{ 1p)

:é [udp] (tep

L 13518 J { ndds JL tib) ndds : g 1518 ndds tib i
daemon j |

daemon)
: - i tib i
3 = ndds it ‘: % daemon | |

Gd

Figure B-9 Software Architecture

b. When GDC_Sim generates a data message, it is immediately passed to the
middleware layer. The middleware layer then passes the message to lower network protocol
layers and out onto the network. At the receiving workstation, the process is reversed, the lower
network protocol layers pass the message to the middleware layer, which then passes the
message to GDC_Client.

B.4.4 Test Scenario And Conditions

a. The data transmission protocols were selected and read in via initialization files and
command line arguments. The UDP protocol was used to gather baseline data for data
transmission. The messaging middleware products, NDDS and TIB/Rendezvous, were also used
for data transmission in a unicast mode, and then compared to UDP. The underlying protocol
that NDDS uses for data and daemon communication is UDP. TIB/Rendezvous uses TCP
daemon communication and UDP for data transmission. Each product was tested during two
runs, an A run and a B run. Each test run was identical and consisted of the various message
rates as shown in Figure B-10. Latencies, interarrival times, standard deviations, etc. were
collected in two-second intervals, as shown in Figure B-11.

B-10

Ex.1009 / Page 203 of 280
TESLA, INC.

120 sec * (60 samples

i

MESSATIATE e 25 ate 15 e 25 ol ToTALMEssagss
10 ‘ 20 Msgs T 20 Msgs 20 Msgs e & o 1200
20 ; 40 Msgs l 40 Msgs 40 Msgs s o o 2400
100 l 200 Msgs l 200 Msgs | 200 Msgs * o @ 12000
400 DOO Msgs l 800 Msgs ' 800 Msg?l . o o 48000
1000 l 2000 Msgs | 2000 Msgs | 2000 Mng’ ® o o 120000
Figure B-10 Message Rates
120 sec * (60 samples
MESAGERATE o 2% ape 2% e 2% o TG

10 l 20 Msgs l 20 Msgs l 20 Msgs“ *e & 1200

20 (—40 Msgs 40 Msgs 40 Msgs] e o @ 40 Msgs 2400

100 l 200 Msgs | 200 Msgs l 200Msgs| ® ® @ 200 Msgs 12000

400 . 800 Msgs | 800 Msgs [800 Msgs l * o @ 48000

1000 , 2000 Msgs l 2000 Msgs l 2000 Msgt} ¢ & @ 120000

I
/é;;;I;ILCS PER SAMPLE, PER MESSAGE RATE -\\
TRANSMIT

RECEIVE INTERARRIVAL

1 Minimum Interarival time per Sample
1 Maximum Interarrival time per Sample
1 Average Interarrival time per Sample

1 Standard Deviation per Sample
RECEIVE LATENCY

1 Minimum Latency time per Sample

1 Maximum Latency time per Sample

1 Average Latency time per Sample

1 Standard Deviation per Sample

1 Minimum Intertransmit time per Sample

1 Maximum Intertransmit time per Sample

1 Average Intertransmit time per Sample (Over 20, 40, 200, OR
800, 2000 observations as appropiate)

1 Standard Deviation per Sample (Over 20, 40, 200, 800, 2000
observations as appropiate)

Figure B-11 Statistics Per Sample

b. The message transfer rates “requested” by GDC_Client were also read in via an
initialization file. The message length was 200 bytes of canned data. It should be noted that
gyro data for Aegis Baseline 7 Phase 1 is being proposed at a 100-Hertz rate.

Ex.1009 / Page 204 of 280
TESLA, INC.

c. Sun Sparc Ultra 1 (Pavo) and Ultra 2 (Aquilla, Blofeld) workstations were used with
the Solaris 2.6 operating system. Sun Sparc Ultra 1 is a uniprocessor workstation and the Ultra 2
contains two processors. ATM and FDDI network interfaces were used for data transmission.

B.S ERROR MITIGATION AND ANALYSIS

a. The purpose of the error mitigation and analysis effort was to take a rigorous
approach to identifying, quantifying, and reducing the errors and uncertainties encountered in the
data collection and subsequent analysis. The end goal of this effort was to minimize the effect of
errors and uncertainties on the final results and conclusions.

b. Multiple test runs were conducted to “smooth out” and identify any perturbations
with data associated with an individual test run. The System Control Laboratory (SCL) was
physically isolated, and only those applications necessary to conduct the testing were running.
The Solaris OS real time feature was used to place GDCSim, GDC_Client, and the NDDS and
TIB/Rendezvous daemons in real-time mode. Both this and the isolation of the SCL were done
to minimize the uncertainties associated with the latency and inter-arrival data.

¢. During the runs, when GDCSim was crossing from one frequency to another, data
that was obviously invalid was identified and characterized by latencies or inter-arrivals
inconsistent with the frequency, but consistent with the previous frequency. Such data was not
considered in the final analysis.

d. The Network Time Protocol (NTP) was used for clock synchronization. Blofeld and
Pavo, the two clients were synchronized to Aquilla (GDCSim) which was synchronized to Cetus.
Table B-1 lists the clock data collected at the beginning and end of each test run. All values are
in microseconds.

Table B-1 Clock Synchronization Values

AQUILLA BLOFELD PAVO

Run A |RunB |Run A |RunB |Run A | RunB
NDDS - Start 002 238 000 008 -088 -023
NDDS- Finish -010 075 145 024 179 087
UDP - Start 039 -098 -035 100 011 041
UDP - Finish 528 -108 072 -019 043 -028
TIB - Start -060 048 -047 057 -006 027
TIB - Finish 210 655 004 112 -026 117

e. “Start” and “Finish” data was obtained manually before beginning each test run, and
at the end each test run. From an absolute value perspective it can be seen that the greatest clock

B-12

Ex.1009 / Page 205 of 280
TESLA, INC.

drift occurred between — 088 and 179 for NDDS Run A on Pavo. It drifted at least 267
microseconds. At its worst, there was a 179 usecs deviation from Aquilla. However, it should
be noted that, as it drifted through zero, it was virtually synchronized with Aquilla. The rest of
the runs fell under 160 usecs.

f. Itis obvious that lacking absolute synchronization of clocks between the sender of the
data, Aquilla, and the receivers of the data, Pavo and Blofeld, results in measurement error
through any algorithms used to calculate latency, thus affecting the final value. But the
magnitude of error possible has, at least, been bounded with the data in Table B-1; that it is

relatively small and, most importantly, does not change the conclusions reached in the
experiment.

g. For a number of reasons there was no attempt to assign a numerical value to this error
of uncertainty, or to add any positive or negative offsets to the final latency measurements. First,
the clock drift rates, the NTP resynchronization rate, and the message sample rate are all
occurring at different rates. Instrumentation and methodology do not currently exist to
dynamically measure and factor in clock offsets. However, as long as NTP maintains clock
synchronization within acceptable levels it is probably not necessary.

B.6 TEST RESULTS

B.6.1 Latency

GDC_Client collected the latency data for messages received in a two-second window.
The average latencies for each message frequency rate were then averaged via a spreadsheet.
The end-to-end latency measurement was the difference between the GDCsim time stamp and
the GDC_Client time stamp. Figure B-12 illustrates how the latency and messages are related.
GDCSim Messages

—’l - LATENCY in Milliseconds
GDCSim Transmit H l ‘ H H
MessageStream

Mi M2 M3 Mn

GDC Client Receive ﬂ H 7 H H

Message Stream

M1 M2 M3 Mn

Time >

Figure B-12 Message Latency

B-13

Ex.1009 / Page 206 of 280
TESLA, INC.

B.6.1.1 Average Latency

Figures B-13 and B-14 show the average latency for Blofeld (ATM) and Pavo (FDDI)
respectively. The UDP and NDDS latencies are relatively constant across the frequency
spectrum on both the ATM and FDDI networks. The TIB/Rendezvous latency is relatively
constant across all message rates for ATM however, it increases 25 to 30% at the 1000 message
per second rate for FDDIL. As the baseline protocol, UDP has the best performance, as would be
expected. For the messaging middleware products, NDDS has a better absolute latency
performance than TIB/Rendezvous. It should be noted that all average latencies fell within the
3.5 msec. range which is the latency specified for Mission Critical Messages in the Preliminary
Design Review Data Package for Computing System Requirements Document for Baseline 7

Phase 1.
AVERAGE LATENCY - ATM (blofeld)
1.8
16
1.4 —e— UDP-A
1.2) -g- UDP-B
§ 1 Py L P s ae . PP s YT - NDDS_A
co84+—— — NDDS-B
06 2 TIB-A
5 04 . *—G—TIB"B
Bonsnvome s, s, e e e Fprwemsn s 3
0.2
0 T T T T

10 20 100 400 1000
Msg/sec

Figure B-13 Average Latency Results, Blofeld

Ex.1009 / Page 207 of 280
TESLA, INC.

AVERAGE LATENCY - FDDI (pavo)

25
2 S
“:-b:—‘%“‘""“ﬁ“?*-—_: /’/
o 15
1]
7]
€ e
0.5
&= e e S +
0 T T T 1

10 20 100 400 1000
Msg/sec

Figure B-14 Average Latency Results, Pavo
B.6.1.2 Latency Variation

Figure B-15 and B-16 show variation in latencies, as measured by the standard
deviations, for each frequency. The standard deviation captures the variation in latency
measurements with respect to the mean. The average standard deviation for UDP and NDDS are
consistent throughout the frequencies and relatively small. The standard deviation for
TIB/Rendezvous begins to climb dramatically at 400 messages per second. This indicates the
product is beginning to have a significant number of messages with relatively high latencies.

LATENCY STD DEV. - ATM (blofeld)

1.2 -
) —+—-UDP-A
0.8 f -=— UDP-B
S / NDDS-A
= ... NDDS-B
0.4 / o
0.2 ey — TIB-A

10 20 100 400 1000

Msg/sec
Figure B-15 Latency Variations, Blofeld

B-15

Ex.1009 / Page 208 of 280
TESLA, INC.

LATENCY STD DEV. -FDDI (pavo)

1.4
—e—UupP-A
1.2 Vi
1 / —%—-UDP-B
g 0.8 NDDS-A
n
E 06 “ NDDS-B
0.4 —*—TIB-A
0.2
0 T s —=—TIB-B
10 20 100 400 1000
Msglsec

Figure B-16 Latency Variations, Pavo

B.6.2 Inter-Arrival

One characteristic of a publish/subscribe middleware product is its ability to deliver
messages at a constant rate or period. Inthe DDE, GDC_Client has the ability to measure the
time between each successive message, which is called the inter-arrival time. Figure B-17 shows
the relationship between an idealized GDCSim message stream, what we would like to see at the
GDC_Client, and what the message stream may actually look like. As discussed earlier, the time
measurements are made when the message leaves the lower level network layers and actually
enters the GDC_Client application.

Ex.1009 / Page 209 of 280
TESLA, INC.

GDCSim Messages

GDCSim Transmit ﬂ H ﬂ_. ﬂ H

MessageStream
M1 M3 Mn
— i<— INTERARRIVAL time in Milliseconds
DESIRED GDC _}
Client Receive

Message Stream

I L]l I
I 1 | |
=
Time 1 g

Constant Interarrival Times - Reflect the ability of the “system” to adhere to a given message rate, message
frequency, and conversely, a constant period.

M1

ACTUAL GDC_Client H
Receive Message Stream

Figure 17 Inter-arrival Time

B.6.2.1 Average Inter-Arrival

a. GDC_Client collected the inter-arrival data for messages received in each two-second
window. The average inter-arrival times for each message frequency rate were then averaged via
a spreadsheet. Figure B-18 shows the relationship between message rate and average inter-
arrival times over the ATM network, and Figure B-19 shows the relationship between message
rate and average inter-arrival times over the FDDI network.

B-17

Ex.1009 / Page 210 of 280
TESLA, INC.

AVG.INTERARRIVAL -ATM (blofeld)

120
100 &
\ —o— UDP-A
80 . ——UDP-B
° \ NDDS-A
n 60
£ \ e NDDS-B
40 s TIB-A
N\
L —e— 11B-B
20 S
0] . \m\.\‘“‘"“"r“"‘%
10 20 100 400 1000
Msglisec
Figure B-18 Average Inter-arrival Time - Blofeld
AVG.INTERARRIVAL - FDDI (pavo)
120
100
\ —— UDP-A
80 -a— UDP-B
b -NDDS-A
®» 60
£ \ - NDDS-B
40 \ —x— TIB-A
20 g —a— TIB-B
0 \1\!‘*‘%_.»

10

20

100
Msg/sec

400

1000

Figure B-19 Average Inter-arrival Time - Pavo

B-18

Ex.1009 / Page 211 of 280
TESLA, INC.

b. As shown by the overlapping plots all of the protocols, UDP, NDDS and TIB, were
capable of producing and receiving message streams that achieved the desired average message
rates. Notice that the results were virtually identical for both the ATM and FDDI interfaces.

c. Asresult, if the only interest is average inter-arrival times, all three of the products
considered in the DDE are acceptable.

B.6.2.2 GDCSIM Transmit Variations

a. Before looking at inter-arrival variation times at the GDC_Clients, it is necessary to
look at how well GDCSim could actually transmit messages. Ideally, GDCSim should transmit
messages at exactly the same inter-transmit time; in other words, at a very constant rate.
Unfortunately, GDCSim itself has a small but significant variation in inter-transmit times. This
variation will contribute to the total variation that is seen and measured at the GDC _Client. Asa
result, some effort must be made to quantify its variation and analyze its impact on the
experiment.

b. Figure B-20 shows the variations in inter-transmit times at various message rates,
over the ATM network. Figure B-21 shows the inter-arrival time at the GDC_Client. In general,
at each respective message rate the standard deviations of the inter-arrival times are at least twice
the size of the inter-transmit times.

INTER-TRANSMIT STD. DEV. - ATM (aquiila)

0.08
0.06 _|~UDP-A
3 0.04 bR B
"NDDS - A
0.02 - -~ NDDS - B
O T T T T 1 ~a‘€~T|B - A
10 20 100 400 1000 _—_TIB-B

msg/sec

Figure B-20 Inter-Transmit Standard Deviation Aquilla

B-19

Ex.1009 / Page 212 of 280
TESLA, INC.

INTERARRIVAL STD.DEV.-ATM (b)

0.4
0-2 J = UDP-B
@ 052 NDDS-A
71} R
€ 0.15 NDDS-B
0.1 - s TIB-A
0.05 —«—TIB-B
0 L T T 4

10 20 100 400 1000
Msgl/sec

Figure B-21 Inter-arrival Variation — Blofeld

a. Figure B-22 shows the variations in inter-transmit times over the FDDI network, and
Figure B-23 shows the inter-arrival time at the GDC_Client. Once again, at each respective
message rate, the standard deviations of the inter-arrival times are at least twice the size of the
inter-transmit times.

INTER-TRANSMIT STD. DEV. - FDDI (aquilla)
0.07
0.06 = —<—~UDP - A
0.05 /mmxﬂ::iy,‘/ ~ UDP- B
g 0.04 7 - NDDS - A
£ 0.03 ~ i NDDS - B
0.02 : = TIB - A
0.01 ~TIB-B
0 T 1 1 1

10 20 100 400 1000

Msglsec

Figure B-22 Inter-Transmit Standard Deviation - Aquilla

B-20

Ex.1009 / Page 213 of 280
TESLA, INC.

INTERARRIVAL STD.DEV.-FDDI(p)

0.4 # —— UDP-A

/ % UDP-B
0.3

e / NDDS-A
g 0.2 P = / - -NDDS-B
S B —x— TIB-A
O 4 [] | I

10 20 100 400 1000
Msg/sec

Figure B-23 Inter-arrival Variation — Pavo

b. Looking at the UDP protocol, while the inter-transmit variation is significant, there is
also a significant component of variation in the inter-arrival variation that can be attributed to the
TCP/IP layers, operating systems and the network associated with the testbed. This variation is
inherent to the testbed and cannot be removed. The UDP plots are relatively flat and well
behaved over all the message rates.

c. For NDDS, the data shows pretty much the same results as UDP, with the exception
that there is a small rise in inter-transmit variation at the 1000 msg/sec rate. Interestingly
enough, there was no corresponding rise observed in the inter-arrival variation.

d. Finally, for TIB, the inter-transmit times are small but not very consistent between the
different networks. At the clients, the inter-arrivals are fairly flat, until we get to the 400 and
1000 msg/sec rates, where the variations get significantly larger. The magnitude and rate of
change at these rates are very significant.

e. Inboth the case of NDDS and TIB, there appears to be a significant component of
inter-arrival variation above and beyond what can be attributed to GDCSim, or the other
components such as TCP/IP, the operating systems, network, etc. Since everything in the test
system is held reasonably constant, this variation is attributed to the middleware products.

B-21

Ex.1009 / Page 214 of 280
TESLA, INC.

B.6.2.3 Inter-Arrival Variation

a. Figure B-20 shows the inter-arrival variation for each message rate at Blofeld. The
standard deviation captures the variation in inter-arrival measurements with respect to the mean.
The average standard deviation for UDP and NDDS are consistent throughout the frequencies
and relatively small. The standard deviation for TIB/Rendezvous begins to climb significantly at
400 and 1000 messages per second. This indicates the product is beginning to have a significant
number of messages arriving either late or early. Figure B-23 shows identical results at Pavo
over the ATM network.

b. There are two interesting yet conflicting things happening with TIB. While the
standard deviation is rising rapidly, it is indicating that a proportionately small number of
messages are having significant deviations. As shown earlier, the average inter-arrivals are very
good. On the other hand, the direction of the growth is ominous.

B.6.3 Dropped Message Rate

Dropped message rate data was gathered to identify any differences in performance
between UDP, NDDS and TIB. Over all the test runs, there were no dropped messages.

B.6.4 ATM Network versus FDDI Network

As expected, both the ATM and FDDI networks produced the same results. The only

real numerical differences were in average latency, which were minor differences in TIB at 1000
msg/sec over the FDDI network.

B.6.5 Multicast

Multicast testing was not performed because Pavo did not have an ATM interface, and
because the multicast configuration over the FDDI was not working at the time of the test runs.

B.6.6 Memory Utilization

a. Table B-2 illustrates the typical memory values recorded during the testing. The
application programs, GDCSim and GDC_Client were consistently around 7 to 8 MB for UDP,
NDDS and TIB/Rendezvous. There were two NDDS daemons and a license manager running on
one workstation, plus a start daemon which ran on all workstations. The NDDS daemons were
consistently around 2 MB.

b. The TIB/Rendezvous daemon on the clients was approximately 2 MB also. The
Rendezvous daemon on the server grew from 2 MB to 37 MB in approximately 120 seconds
from the start of the test. A default feature of TIB/Rendezvous is that it provides 60 seconds of
reliability. It accomplishes this by buffering the last 60 seconds worth of data. According to
discussions with the vendor, “37 MB is not out of the ordinary, unless you are observing

B-22

Ex.1009 / Page 215 of 280
TESLA, INC.

persistent growth over long period of time”. Persistent growth over a period of time was not

observed.
Table B-2 Memory Allocation
APPLICATION/DAEMON START END]
GDCSim (Aquilla) 8 MB 7 MB
GDC Client (Blofeld) 8 MB 7 MB
GDC Client (Pavo) 8 MB 8 MB
NDDS Daemons (Server and Clients) 2 MB 2 MB
TIB Rendezvous Daemon 2 MB 2 MB
TIB Rendezvous Daemon (Server) 2 MB 37 MB

B.6.7 CPU Utilization
CPU utilization data was gathered, but was not analyzed due to time constraints.
B.7 COMBINING STANDARD DEVIATIONS ACROSS SAMPLES

a. Asdiscussed earlier, GDCSim and GDC_Client calculated the standard deviation for
both latency and inter-arrival time for each 2-second sample of data. (Note, that GDCSim and
GDC_Client, collected data on every message sent. As a result, data is available on the entire
population of any given test run.) To compare UDP, NDDS and TIB at the various message
rates, the variation across all the samples at a given message rate was needed as shown in Figure
B-24. This section details the mathematical approach taken to combining the separate variations
into a single variation at each message rate.

B-23

Ex.1009 / Page 216 of 280
TESLA, INC.

120 sec * (60 samples

i

2sec 2sec 2sec 2 sec
S ->i<- -P‘(— TOTAL MESSAGES
W sample sample sample *l sample _
10 , 20 Msgs } 20 Msgs [20 Msgs J ¢« ® 1200
20 l 40 Msgs ' 40 Msgs l 40 Msgs " o 40 Msgs 2400
100 ‘ 200 Msgs) 200 Msgs } 200Msgs | & ® @ 200 Msgs 12000
400 { 800 Msgs | 800 Msgs | 800 Msgs ~ * o o 48000
1000 EOO Msgs | 2000 Msgs l 2000 Msg.:l ® & & |7000Msgs 120000
STATISTICS ACROSS 60 SAMPLES PER MESSAGE R,
TRANSMIT o RECEIVE INTERARRIVAL
1 Average of all the Intertransmit Minimums OR 1 Average of all the Interarrival Minimums

1 Average of all the Intertransmit Maximums
1 Average of all the Intertransmit times
1 Standard Deviation of all the Intertransmit times

1 Average of all the Interarnval Maximums

1 Average of all the Interarrival times

1 Standard Deviation of all the Interarrival times
RECEIVE LATENCY

1 Average of all the Latency Minimums

1 Average of all the Latency Maximums

1 Average of all the Latency times

1 Standard Deviation of all the Latency times

Figure B-24 Statistics Across All Samples

b. The calculation for the standard deviation across all the samples at a given message

rate is possible, because the averages of the individual samples are all extremely close. The
standard deviation is calculated as follows.

Individual Sample Variance Calculations

The formula for calculating the variance is as follows:

n(ixf) - (ixz')2

S =

7’2(7’1 _ 1) (Equation 1)

Where each individual measurement is x,

B-24

Ex.1009 / Page 217 of 280
TESLA, INC.

For large values of n, the variance can be defined as:

)Xy

5= n(n) (Equation 2)

(It is important to note, that the assumption of a large values of n is valid for 100, 400 and 1000
messages per second, because we have 200, 800 and 2000 observations respectively, per sample.
However, the assumption is not true for message rates of 10 and 20 because they result in 20 and
40 observations per sample. The same formulas were used for calculating all of the standard
deviations because the absolute standard deviations at these message rates represent an extremely
small value when compared to the actual values of the latencies and interarrivals being

measured. Secondly, the interesting deviations in latency and inter-arrival all occurred at the 400
and 1000 messages per second rates.)

r ()
| 2
2 _i=2l | =

S
n n J (Equation 3)
For an individual sample of n observations:
n n 2
2
So (3,
Si.' _ =l _ | =l

n n forj=1,2,.m (Equation 4)

n

2
) Z Xji 5
— il =

S; = l X (Equation 5)

B-25

Ex.1009 / Page 218 of 280
TESLA, INC.

&

2 _ .
a) §;p+x; = (Equation 6)
(The above equation is used in a later substitution.)

Overall sample variance

The overall sample variance is

m 1 m n 2
2
22X | L2
Sz =1 =l | et =
mn mn (Equation 7)

m n m 2
2 —
szﬁ ij
SZ - J=1 i=1 j=1

mn m (Equation 8)

Substituting in equation (a) from above,

m m 2
2, =2 =
IR TS
St = Jj=1 _ | JA
m m (Equation 9)

if X; = X (all of the averages are very close to each other), then

B-26

Ex.1009 / Page 219 of 280
TESLA, INC.

Z‘xj = mx (Equation 10)

and

s 2
SZ_J,_1]+mf2_ mx ‘
m m m (Equation 11)
m
2
D8
J
2 j=1
8= m (Equation 12)

c. The above formula was used to combine the standard deviations across multiple
samples for latency, inter-arrival and inter-transmit variations.

B.8 EXPERIMENT CONCLUSIONS and SUMMARY

a. NDDS was selected to be used for Navigation Data Distribution for Demo 98 for the
following reasons:

(1) NDDS had the best absolute latencies
(2) NDDS had smaller variations in latency and inter-arrival times

(3) TIB appears to be reaching its limits at 1000 msgs/sec based on growing
variations in latency and inter-arrival times observed

b. All three products, UDP, NDDS and TIB demonstrated latencies within the 3.5 msec
definition in the Preliminary Design Review Data Package For Computing System Requirements
Document For Baseline 7 Phase 1.

¢. Two commercial messaging products were integrated into the GDCSim/GDC_Client

and evaluated. The programs were modified to accommodate other products in the future. The
products are viable products for use based on their proper application.

B-27

Ex.1009 / Page 220 of 280
TESLA, INC.

d. The publish/subscribe products performed essentially the same over both ATM and
FDDI networks.

e. As expected, both NDDS and TIB functioned well in the testing. Even though NDDS
was chosen over TIB, TIB is a perfectly acceptable product for use within the limits of its
capability.

B.9 LESSONS LEARNED

a. The following lessons were learned:

(1) Installing publish/subscribe middleware products requires a significant amount of
effort. There are so many features in these products that close attention has to be paid to
installation to ensure that any evaluation is fair to both products.

(2) It was possible to discriminate between products based on average latencies and
variations in latency and inter-arrival times.

(3) Efforts to evaluate products at rates above 1000 msgs/sec will have to pay special
attention to clock synchronization and the magnitude of variations inherent in the testbed.

(4) The shape of the latency and inter-arrival frequency distributions should be
characterized.

B.10 FUTURE EFFORTS

a. The current experiment was a “raw speed” test. Future evaluations should be more
like the “real world” environment and utilize more of the basic features of the products.

b. Also, testing with multiple clients would give a better idea of the scalability of the
product.

c¢. Perform multicast testing

B-28

Ex.1009 / Page 221 of 280
TESLA, INC.

APPENDIX C

WINDOWS NT INVESTIGATIONS

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20723-6099

Ex.1009 / Page 222 of 280
TESLA, INC.

APPENDIX C

WINDOWS NT INVESTIGATIONS

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20723-6099

C.1 Background

In June 1998, the Navy’s Chief Information Officer (CIO) released his Information
Technology Standards Guidelines (ITSG). The guidelines recognized the growing presence of
Windows NT, as well as its possible application to the Navy’s requirements for a powerful
operating system. The ITSG indicated an organization-wide shift towards NT over the next few
years, encompassing systems such as ashore and on-ship installations. The question now was
not, “Should we use NT?” but “What do we need to do to make NT work the way we want?”

The focus of the activities outlined here was to begin investigations that would ultimately answer
the latter question for HiPer-D.

C.2 Objectives and Overview

a. Our primary objective was to create an advanced distributed system, running on NT
that could be used to evaluate the suitability of NT to these types of systems. JHU/APL's
HiPer-D components constitute a system of this type. All of JHU/APL's HiPer-D components
are written on top of a JHU/APL-developed middleware layer called Amalthea. Amalthea
isolates the application from the specifics of the underlying operating system. Moving the
system to NT was accomplished by porting Amalthea to NT.

b. Amalthea also contains a communications layer that isolates the applications from the
underlying ISIS process group communications system that formed the backbone of HiPer-D.
Stratus, the vendor of ISIS, is removing ISIS from the commercial market. This prompted a
separate activity to move Amalthea communications away from ISIS and on to the AL. This
would isolate Amalthea communications from the underlying group communications product.
This effort is described in Appendix E. The decision was made to port the AL to NT rather than
investing effort in the short-lived ISIS environment. The process group communications
package chosen to replace ISIS was Spread. Spread runs under Unix and NT and was used to
allow the components of HiPer-D that ran on NT to interoperate with the components that
remained on Unix. The HiPer-D components ported included KINED, SIMCON, SENSIM, and
the gen_*' applications.

c¢. Once a working hybrid system was in place, JHU/APL’s next objective was to
optimize the performance as much as possible. NT is generally believed to have a less efficient
networking subsystem as compared to Unix, so a drop in performance was expected. However,

' The gen_* components are used to enter and delete tracks manually in HiPer-D.

C-2

Ex.1009 / Page 223 of 280
TESLA, INC.

JHU/APL had to determine exactly how much of a loss would be incurred and whether
performance would remain at acceptable levels.

C.3 Steps Taken

Migration of the HiPer-D system to NT involved two major tasks: porting the underlying
Amalthea API and configuring the Spread group communications package to run on NT. These
two tasks were conducted in parallel. Because the HiPer-D applications were built using
Amalthea, the task of moving those applications to NT was subsumed by the task of porting of
Amalthea.

C.3.1 Deep Porting of Amalthea to Win32

a. The primary step in migrating HiPer-D to the NT platform was to port the underlying
Amalthea libraries upon which most of the HiPer-D applications were built to the Win32 AP
The purpose of Amalthea was to hide the underlying implementation and platform details from
applications, providing uniform interfaces to thread models, event models, and the like.
Amalthea was designed to allow applications using Amalthea libraries to compile and run on
different platforms with no code change.

b. Two options were considered. One possibility was to perform a “shallow” port of the
libraries using a third-party interface such as Cygnus’ GNU Win32 environment. Such an
interface translates Unix system calls into corresponding Win32 calls. However, this
development path was not followed due to the lack of thread support in the translation interfaces.

c. Itwas decided instead to use the other option: perform a “deep” port of Amalthea,
that is, manually translate the Posix-based calls inside Amalthea into a Win32 implementation.
An effort was made to maintain a compatible Unix code base by using compiler #ifdef directives
to conditionally generate code for different platforms. This directly supports the future goal of
reintegrating Unix and NT versions into a single code base.

d. All code was compiled using Microsoft Visual Studio 97 C++ Compiler (SP3) and
linked with multithreaded C libraries. Compiler warnings were set to their highest level.
Consequently, as is common when compiling C code with C++ compilers, loose type
specifications in the Unix code surfaced. All relevant Unix code was modified to use explicit
type casting. This was a change in syntax to the Unix code base, not an algorithmic
modification. In general, existing code was not touched in order to maintain a close match
between the original Unix and new Unix/NT code bases.

e. There were enough parallels between Unix and Win32 that the majority of the porting
was straightforward. However, libthea presented some interesting issues, namely in the
implementation of threads, synchronization objects, signals, and events. The Win32 version was
coded to simulate the required operations as well as possible. To date, only one situation in
which the simulated behavior produced discrepancies has been found: The way that Win32
handles events causes some notifications to arrive at different times. The situation was corrected
by verifying that the correct notification was received rather than assuming it was correct.

C-3

Ex.1009 / Page 224 of 280
TESLA, INC.

£ Table C-1 provides a list of the libraries and capsules that were ported to Win32. In
addition, one new library was developed to handle NT service integration. This library
facilitated the creation of NT services (daemons). Using the services library, three new
components were created: service_manager, process_manager, and proxy_client. Of those
three, process_manager and proxy_client were instrumental in creating a hybrid system. The
service_manager was more of a utility component that closely mirrored the operation of NT's
own Services applet.

Table C-1 Items Ported or Created on NT

Libraries Components
libthea kined
libsys sensim
Ported libenvelope simcon
libal gen*

service_manager
Created service process_manager
proxy_client

C.3.2 Spread on NT

a. At the same time that Amalthea was being ported to Win32, investigations of the
Spread group communications package on NT were undertaken.

b. Testing of Spread was performed in several steps, each subsequent step adding
another variable into the configuration. At this stage, testing stressed compatibility and
operational stability more than robustness or performance. Three utilities were used to test
communications compatibility:

(1) A version of the Spread-supplied sample user program modified for multithreaded
operation under NT

(2) A similarly modified version of the Spread-supplied sample flooder
(3) A custom program that sent n messages of b bytes, ported for both NT and Solaris

¢. Numerous test cases were run under each of the following configurations, listed by
purpose and order of complexity:

(1) NT single daemon operation — Multiple clients on a single NT box
(2) NT daemon to NT daemon interaction — Multiple clients on multiple NT boxes

(3) NT daemon to Solaris daemon interaction — Multiple clients on multiple NT
boxes and multiple Solaris boxes

C-4

Ex.1009 / Page 225 of 280
TESLA, INC.

d. Spread was configured to use the same TCP/IP communication method as the current
HiPer-D system, that is, multiple point-to-point connections. The first time an NT daemon was
introduced into a network of Spread daemons running on Solaris, all of the other daemons
crashed. This just turned out to be an interesting requirement of the Spread configuration files.
Nodes had to appear in the same order in each configuration file. A likely assumption is that
each Spread daemon determines its unique identifier according to its location within the
configuration file. This problem was not experienced under Solaris because our Unix systems
shared a common file system.

e. Other than that initial stumble, no errors were encountered through this stage of
testing. Performance testing was deferred until tests could be conducted against the actual
system. Additionally, the communications layers of Amalthea were ready to be linked with the
Spread library, so focus was shifted to that task. One problem encountered was a program model
inconsistency between Amalthea and Spread. Microsoft’s compiler refused to link to Spread,
giving errors related to errno. The primary suspicion was that Spread was built using single-
threaded C libraries. (Recall Amalthea was compiled using multithreaded C libraries.) Dr. Yair
Amir, the developer of Spread, confirmed this and built a version that utilized the multithreaded
C libraries. Following this modification, compilation of the ported Amalthea libraries was
complete.

C.4 Running the System

a. Although all of the SENSIM capsules had been ported, only two capsules, namely,
KINED and SENSIM, were directly integrated into a running system. The remainder of the
SENSIM modules were peripheral components and were not required in order to run the system.
The various gen* capsules were manually started, so technically they did not have to be
integrated. However, gen newt was used often enough that a specific plan file was created for it.

b. Before running any of these capsules on NT, the corresponding Solaris capsules had
to be disabled. This involved removing some of the capsule execution dependency definitions in
the System Control plan files. Execution dependencies existed on KINED from
KINED_BROKER, TRACK_CONTROLLER, and TRACK GEN. Execution dependencies on
SENSIM existed from TRACK_GEN. The plan files for those modules were modified to allow
them to start without waiting on KINED or SENSIM. For now, the NT modules would be
started by hand. Automatically starting NT modules through System Control was deferred until
JHU/APL had a better understanding of the more basic integration details.

¢. System performance would be measured in terms of track loads and track latencies.
Track load refers to the number of tracks that the system is handling at any one time. A track
report is generated for each track at some defined periodic interval. These reports formed the
bulk of the network traffic sent throughout the system. For simplicity’s sake, an interval of one
report per second was used so that the track load corresponds on a one-to-one basis with the
number of reports. The higher a track load the system could handle, the better. Previous tests on
a full Unix system showed that it could handle track loads approaching 8000 tracks (at one report
per second).

C-5

Ex.1009 / Page 226 of 280
TESLA, INC.

d. Track latency refers to the time interval between when a track report was sent by one
capsule and when it was received by another. Lower latency numbers represent better
performance. Latency measurements were taken at various points in the progression of a track,
starting at KINED and ending at model _client. On a full Unix system, track latency between any
two adjacent capsules averages under 30 ms. In the hybrid system, the interval between KINED
and KINED BROKER is of particular interest because it represents the first point of transition
between NT and Unix.

e. The first tests were run on a uniprocessor Pentium 200-MHz machine with 64 M
RAM (machine name a2dw/). Almost immediately the first interoperability issue surfaced;
neither KINED nor SENSIM would join the RTDS_Signon group. The Spread-supplied USER
program was used to monitor what, if any, messages where being sent to that group. By
monitoring the RTDS_Signon group, the problem was traced to an unhandled endian conversion
inrtds_if and tns_if. While these interfaces properly converted most messages, they did not
convert zero-length messages. Although no actual endian conversion was required on zero-
length messages, Spread reports endian differences and the AL layer issues an up-call to the
conversion function. The conversion function did not properly handle this situation, resulting in
the message being dropped rather than acknowledged.

. After making the appropriate changes and recompiling the affected capsules, both
KINED and SENSIM were able to join the required groups. In fact, the entire system seemed to
be running. An ownship process could be started from Unix, tracks injected into the system
through both Solaris and NT versions of gen_newt, and track flow observed from KINED
through to the model client.

g. On the first run, the system showed extremely high (4 to 5 seconds or more) latency
times, but it was soon realized that the NT and Solaris machines were not properly time
synchronized. Since latency times are calculated using the local machine clock, an accurate
reading can only be obtained if all machines in the system are properly synchronized. Time on
the Solaris machines was maintained via Network Time Protocol (NTP) daemons on each Solaris
box and a single time source. To synchronize the NT machine to the rest of the system, a
suitable NTP service for NT was needed. Seven freeware and shareware NTP clients were
obtained from the TUCOWS software repository (http://www.tucows.com/). Each client was
examined in the areas of ease of use and simplicity. Many of the clients offered more
functionality than necessary, such as time server capabilities. In the end, Dimension 4 by Think
Man Software (http://www.thinkman. com/~thinkman/dimension4) was selected because of its
simplicity, ease of use, and availability.

h. The NT system was synchronized to the same NTP server that the Solaris machines
used. This resulted in latencies that were in the neighborhood of 200 ms as measured at
KINED_BROKER. This was still an unacceptably high latency. It was suspected that the
network connection of the NT machine, at the time a 10baseT switched connection, was the
major limiting factor. All of the Solaris machines were running on shared 100baseT
connections. In this configuration, the NT machine was only able to maintain approximately

Ex.1009 / Page 227 of 280
TESLA, INC.

1000 tracks before flooding its network connection. Further testing was postponed until a
100baseT connection could be established.

i. Following the connection of the 100-Mbit line to the NT machine, performance gains
were immediately noticeable. Average track latencies dropped to 70 to 80 ms — still high
compared to the Solaris machines, but acceptable for the time being. As the track load of the
system was increased, strange results appeared in the average track latencies reported at each
capsule. At just over 3000 tracks model_client would show stale track reports (Jatencies in
excess of 500 ms). Because the only change introduced into the system was the addition of NT,
the assumption is that one of those components, or perhaps NT itself, is causing a bottleneck. A
perplexing aspect of this problem is that both KINED_BROKER and TRACK_PROCESSOR
show track latencies around 100 ms. Therefore, between TRACK_PROCESSOR and
model_client something is causing latencies to increase drastically. JHU/APL is still unsure
what is causing this problem.

j. Ignoring the model client latency mystery for the time being, JHU/APL continued to
increase the track load. Unfortunately, as track loads neared 6000, CPU utilization in the 200-
MHz Pentium approached 100%. JHU/APL decided to move testing to a more powerful
Symmetric Multiprocessor (SMP) system with two Pentium II 300-MHz CPUs and 128 MB
RAM (machine name faurus). A switched 100baseT connection was established and NTP time
synchronization was installed. However, HiPer-D was unstable on this machine configuration.
As tracks were injected into the system, the Spread daemon crashed with packet creation and
packet delivery errors. The crashes seemed to occur at random points with no identifiable trigger
events. It was not clear whether this was an issue with the SMP configuration, Spread, the NT
capsules, the NT machine configuration, or some combination thereof. JHU/APL consulted Dr.
Amir for assistance in exploring the possibility of an error in Spread. He built a modified
daemon with increased debugging capabilities, but it was not possible to determine anything else
about the problem through the use of this new daemon.

k. Because the error manifested itself only on this particular machine (taurus), we
suspected a hardware or software configuration error or an SMP incompatibility. To isolate this
suspicion, JHU/APL ran the hybrid system using another NT machine. Similar in configuration
to faurus, the new machine was also an SMP but with only a single Pentium II 400-MHz, with
128 MB RAM (machine name gemini). Again a switched 100baseT connection was made and
time synch software installed. On this machine, the Spread daemon did not exhibit any
unexpected packet handling. Further investigation consisted of starting daemons on both gemini
and faurus, then running the system from gemini. No HiPer-D components were executed on
faurus, only the Spread daemon. Interestingly, the daemon running on faurus still crashed in this
situation, indicating a problem with the underlying hardware or software installed on faurus.
Following a clean reinstallation of NT, faurus no longer exhibited packet-handling problems.

L. Both faurus and gemini now appeared capable of running the hybrid system.
However, an intermittent problem with KINED was experienced on both machines. At times,
KINED stopped responding to the injection of new tracks. It would still send track updates for
any tracks that were already in the system, but it would not start any new tracks. The error
occurred at track levels ranging from no tracks (just starting) to hundreds of tracks before

C-7

Ex.1009 / Page 228 of 280
TESLA, INC.

locking. The normal solution was a shutdown and restart of the HiPer-D system. In the interest
of time, investigations into the cause of the error were shifted into the background as other test
and performance measurements were continued.

m. Analysis of all running HiPer-D threads revealed two threads that consumed the
majority of all system resources. One was the single Spread daemon thread, the other was a
KINED thread that listened for new Spread messages. On the first machine (a2dwl), each of
these two threads accounted for nearly 50% of all processor utilization at 6000 tracks, effectively
inundating the entire machine. As expected, the faster Pentium II machines were much more
capable of handling the CPU demands of the system. At 6000 tracks, processor utilization was
approximately 35% on gemini, and approximately 20% per processor on faurus. Network
utilization averaged 1.5% per 1000 tracks. It certainly seemed like these machines and
connections could handle the resource requirements that HiPer-D put forth. However, there were
still high latencies in certain parts of the system. Again, KINED BROKER and
TRACK PROCESSOR maintained relatively low latencies while model_client still reported

much higher numbers. Performance tuning was delayed reliability and Unix interface issues
could b resolved.

C.5 Integration with System Control

a. At this point the hybrid system was stable enough to include as part of Demo 98. As
with the Unix-only configuration, JHU/APL wanted to be able to start up the entire system with
a single command to system_control. Until now, all of the NT capsules had been started by
hand. Therefore, the first step in an automated startup was an interface module between Unix
system_control and the NT capsules. One option was to port System Control's node_manager
and agent programs to Win32. System Control could then communicate directly with the ported
modules. However, node_manager and agent utilized platform-specific features such as forking
and parent-child relationships, which extended beyond the capabilities of the Amalthea library.
This made this option neither practical nor feasible given the time constraints. A more
applicable solution involved the integration of System Control on the Unix side and a separate
program called process_manager on the NT side.

b. Process_manager was created as an NT system service that allowed the remote
invocation, monitoring, and termination of an application. Commands and requests can be sent
to process_manager through a regular socket connection. A single process_manager host can

service multiple client connections, allowing the remote invocation of multiple applications on a
machine (see Figure C-1).

C-8

Ex.1009 / Page 229 of 280
TESLA, INC.

RTDS

(Unix Capsule)

T
NT Proxy - Kinematics
Client Daemon
(Unix Capsuie) / (NT Capsule)
Process
Manager
Node Manager/ Senice
Agent
{Unix Host) (NT Host) \/ \
NT Proxy Sensor
Client Simulator
(Unix Capsule) (NT Capsule)
'r-..h'.\‘ _";—_—__/
System Node Manager/ Track
Controller Agent Processor
(Unix Host) (Unix Host) (Unix Capsule)
Model Client
(Unix Capsule)
Node Manager/
Agent e e
(Unix Host) e . e
- Process
Manager Track
Senice Generator
(Unix Capsule) (gen_newt)
(NT Host) (NT Capsule)

Controller
(Unix Capsule)

Figure C-1 Hybrid System Configuration

c¢. A new Unix program called proxy client was developed. Proxy client runs as a
normal System Control client and connects to process_manager through a socket. Through
command line and environment variables, JHU/APL could specify what application to run, along
with an initial environment. Proxy client can be started from any machine, local or remote as
long as it can make a socket connection to an NT host running process manager. Each
proxy_client is bound to exactly one application. In addition, each proxy client maintains a
heartbeat between itself and the application to which it is bound. If the application exits,
proxy_client will also exit. Similarly, if proxy client exits, the application it started will exit as

well. If the host process_manager service somehow dies, all proxy clients and applications tied
to that host will exit.

d. A version of proxy client was developed for NT during the Amalthea Unix-to-NT
porting process. It was used as the starting point for the creation of a Solaris version of
proxy_client. Fortunately, the NT version of proxy_client was written using the Amalthea
libraries, facilitating a port to Solaris. However, creating a Solaris version involved more than a

C-9

Ex.1009 / Page 230 of 280
TESLA, INC.

simple recompile of proxy_client because a number of Amalthea packages were added or
modified to implement the necessary features (see Table C-2).

e. Porting the affected packages from Win32 back to Solaris was a straightforward
process. Again compiler #define directives had been used to separate platform-specific code. As
a result, simply overwriting the relevant Unix versions with the new NT versions was all that
was required to synchronize the affected modules.

Table C-2 Amalthea Packages Ported Back to Unix

Package Modification
thea socket Support for Unix-style sockets
thea process Support for additional process functions
thea log Support for logging of system errors
thea string Support for additional string functions
thea assert Added

f. After updating the Amalthea libraries, proxy client compiled on Solaris without any
modification. However, changes were needed to handle platform-specific characteristics in the
user environment. The Win32 version of proxy_client was designed to forward all environment
variables to the application it starts, but it does not make any sense to pass a complete Unix
environment to an NT application. For the purposes of this phase, JHU/APL restricted the
forwarding of user information to only those variables that applied to the Windows environment
(see Table C-3). Three new variables were introduced under Unix to specify an NT home
directory (WIN_HOME), NT account username (WIN USER), and NT account password
(WIN_PASSWORD). In general, these variables were not used; however, they were added to
parallel the functionality of the original NT version of proxy client. Without any modification,
proxy_client would try to authenticate account information on NT using the Unix account. This
would work if an account exists under NT with the same username, but this is both impractical
and unnecessary. Process manger did not require authentication to start an application.

Table C-3 Environment Variables Forwarded by proxy_client (Unix)

Environment Variable Values Purpose
LOGGING YES |NO Enable / disable logging of output
CONSOLE YES | NO Enable / disable console interaction (should be ON)
CAPSULE string Specify the capsule name
STDIN string Specify and new STDIN source
STDOUT string Specify a new STDOUT destination
STDERR string Specify a new STDERR destination
WIN HOME NT path NT application home directory; replaces HOME
WIN USER string NT account username; replaces USER
WIN PASSWORD string NT account password; replaces PASSWORD

g. The Solaris proxy client was able to start, monitor, and stop an application remotely
on an NT host. JHU/APL now had all the necessary components to implement an automatic

C-10

Ex.1009 / Page 231 of 280
TESLA, INC.

startup. HiPer-D would be configured just as it was on the Unix-only system, with the exception
that KINED and SENSIM would be running on NT.

h. To start the NT versions of KINED and SENSIM automatically, system_control was
used to start two instances of proxy_client. Plan files were created for two proxy clients as
system_control capsules. One proxy_client would be bound to KINED, the other to SENSIM.
Each client was responsible for starting and monitoring its corresponding application. In this
manner, System_control was able to start, stop, and monitor the NT capsules indirectly.

1. The results were quite impressive. The hybrid system ran just as it did in a pure Unix
configuration. All of the functionality from system_control, such as the ability to include
capsule dependencies and restart information, was available to the NT capsules. Once a proper
configuration had been installed on an NT host — that is, process_manager and Spread were both
running — no further interaction with the NT machine was necessary.

C.6 Current Problems and Issues

a. JHU/APL has recently moved from Spread 3.08 to Spread 3.09, which was released
in October 1998. No API changes were made in the new version. The major differences were
the inclusion of a multithreaded library (similar to the custom-built library from 3.08) and
support for IP-Multicast to a specific network segment.

b. Two problems plagued the system. The first is a seemingly random locking that
KINED occasionally experiences. Since moving to Spread 3.09 this problem has not been
observed, but more extensive testing is required before a conclusive statement can be made about
this error. The second, and more intriguing, issue was a repeatable view change error. The
problem is as follows: when gen_newt is run on the same machine as KINED and SENSIM,
KINED will report a view change from the unknown group /RefGrp/SIM_Domains, as well as
duplicate ownship messages from an external source. After some investigation, it was
determined that KINED never joins the /RefGrp/SIM_Domains group (it is not supposed to), yet
it still receives view change messages for that group. To confirm this, two instances of the user
program were started. The first was used to simulate the group membership of KINED; the
second would simulate the actions of gen_newt. An interesting observation was made: the
KINED simulation would receive invalid view changes as soon as the gen newt simulation was
started! Furthermore the problem only occurred when gen _newt was started with a private name
that began with a capital ‘K’ or earlier (i.e., A, B, J, 3, 4, etc.). Another way of stating this is that
KINED would receive bad view changes whenever gen_newt connected with a private name
whose first character was ASCII value 75 (decimal) or lower. This conclusion was made after
repeated tests with different private names for gen_newt. By default, gen newt used the private
name GEN_NEWT when connecting to the Spread daemon. When the connection name was
changed from GEN_NEWT to GEN_NEWT and the entire HiPer-D system was rerun, no errant
behavior was observed.

c¢. Through deeper investigations into the view change error, the problem was traced
back to an incorrect compiler optimization of the Spread daemon by Microsoft Visual C++
Version 5.0. Dr. Amir has built a new version of the daemon without any optimizations. Thus

C-11

Ex.1009 / Page 232 of 280
TESLA, INC.

far, no strange view change behavior has been observed, but testing will continue to determine if
any other problems remain unresolved.

C.7 Future Goals

a. A major goal for the near future is a migration of the NT versions of Amalthea and
the various SENSIM applications back to the single code base that supports the Unix systems.
Since the NT version of Amalthea was developed, a number of modules on the Unix side have
undergone major revisions. Message structures and general behavior remain similar for the time
being, but JHU/APL cannot guarantee how long this will be the case. It is quite obvious that a
dual code base will not only be difficult to maintain, but may also introduce additional problems
into the system. For the majority of the modules within Amalthea, reintegration into a single
code base will not be that difficult. Compiler #define directives were heavily used to separate
platform specific code. In addition, no Unix areas were modified when NT code was added. If
no changes have been made to the Unix code, all that will be needed is to copy the NT version
over the Unix version. If changes have been made, however, those changes must be incorporated
into the NT versions, and possibly some of the NT-specific areas must be rewritten to implement
algorithmic changes.

b. The last major area of investigation deals with improving performance. Among other
things, JHU/APL will address issues such as whether an SMP system significantly improves
throughput, or whether the physical location of machines relative to each other has any
significant effect on latency times.

C.8 Lessons Learned

a. Over the course of this investigation JHU/APL came into contact with many aspects
of Windows NT 4.0. Just like every other system, NT has both its advantages and disadvantages.
These qualities need to be identified, and in some cases modified, if possible. The following are
observations regarding the experience of working with NT.

b. Setting up a new machine for NT is a straightforward process. Machines that
supported booting from compact disk, read-only memory (CD-ROM) were the easiest to set up:
Simply insert the NT CD into the CD-ROM drive and power up the system; the installation
program starts automatically. Systems without bootable CD-ROMs required the use of a boot
disk, which, although slower, was not any more complicated. Hardware detection and
compatibility, a common issue in both the Unix and NT domains, was not a problem in this
situation. NT was able to detect all system-level components such as the peripheral component
interconnect (PCI) bridging hardware, small computer system interface (SCSI) controllers, and
Ethernet adapters. Certain subsystem components, including video and sound cards, defaulted to
a generic driver. However, an area in which NT has an obvious advantage over Unix is
extensive vendor support for the NT platform. In every case, new device drivers for any
nonnative devices could be obtained from the manufacturer’s website. It is almost guaranteed
that any new devices, both mainstream commercial and more industry specific, will support
operation under NT.

C-12

Ex.1009 / Page 233 of 280
TESLA, INC.

c¢. Industry support is also prevalent in the area of application software. Microsoft’s
Windows 9x operating system has dominated the consumer and business markets. Windows 9x
runs a subset of the Win32 API, while NT utilizes the complete Win32 specification. As a result,
nearly all applications that run on Windows 9x will run on NT with little or no modification.
Some vendors take advantage of the added functionality in the NT implementation of Win32 to
make their applications even more robust under NT.

d. A major issue with the state of software deployment on NT is the intentional or
inadvertent modification to the system through the installation of a user application. Microsoft
software often causes this problem. For instance, the installation of Microsoft Internet Explorer
4.0 or the Microsoft Office Suite — both user applications in function — added new files to the NT
system directory. What’s more, these applications often modify critical system components and
dynamic link libraries (DLLs), sometimes going as far as to modify the kernel. The installation
of one or more select applications, and the subsequent system modifications these applications
made, caused the original packet instabilities on faurus. It has not been determined which
particular application or applications are responsible. In setting up NT for running HiPer-D the
NT system was kept as “clean” as possible; only those things that were absolutely necessary
were installed. The intent here is not to advocate running a bare system — that would defeat the
purpose of a computer. However, care should be taken when adding any application to the
system. One option 1s the use of some sort of monitoring program, such as any of the
commercial uninstall programs, that is capable of recording the state of the system before and
after an application is installed. These utilities can track changes to any files, new files that were
added, and modifications to the registry. In this manner, system administrators have direct
knowledge of exactly what has been changed and whether the installation of a particular
application may cause instabilities.

e. Growing support of NT in the software vendor community throughout the years has
prompted the creation of many development tools. Consequently, NT has one of the most
feature-rich development environments of any platform. Microsoft’s Visual Studio Integrated
Development Environment (IDE), if utilized to its full extent, is extremely versatile. It tracks
multiple sources, generates dependencies, and provides useful variable browsing capabilities,
among other things. In terms of debugging, Visual Studio allows source-level debugging,
attaching to an already running process, debugging individual threads, and a multitude of other
features. Other vendors have also created various development tools, such as SoftIce debugger
and Wdiff visual diff utility. Most of our executables were generated through individual
makefiles and the command line compiler rather than through the IDE. Because of this,
advanced development features such as automatic dependency generation and incremental
building were unavailable. As a result, modifications to any of the libraries required a complete
rebuild instead of a selective relink, slightly increasing time requirements. Fortunately, the
source level debugger could still be used to trace the operation of the NT capsules.

f. NT is flexible enough to simulate many of the Posix-derived functions that Amalthea
exposes. Most required functions had some sort of corresponding Win32 call; the functionality
of those that did not could be simulated through a combination of calls. The more subtle effects
of simulating Unix in this manner have yet to be determined. Possible implications include
improper operation, hindered performance, and reduced stability. However, all tests thus far

C-13

Ex.1009 / Page 234 of 280
TESLA, INC.

have not shown any errant operation or loss of stability that can be attributed to the porting of
Unix calls. Win32 was never designed to simulate Unix calls; it is a different programming
model that supports its own concepts and operations, including access to the characteristic
Windows Graphical User Interface (GUI) routines. An interesting investigation might be the
creation of graphical front-ends to the various HiPer-D components, possibly allowing dynamic
interaction and tweaking of the modules, as well as improved presentation and reporting
capabilities.

g. Perhaps the most valuable lesson learned from this experience is that Windows NT is
a viable operating system that should not be overlooked. Not only was NT capable of running
HiPer-D applications, but it is able to achieve relatively good performance and reliability from
those applications without an extensive amount of tweaking. Just looking at latencies and track
loads will show that HiPer-D running on Unix has a clear-cut lead in terms of performance.
However, keep in mind that while the Unix configuration has been tweaked and modified for
years, the migration to NT has occurred in just over 4 months.

C-14

Ex.1009 / Page 235 of 280
TESLA, INC.

APPENDIX D

HISTORY
OF
HIPER-D TRACK CORRELATOR AND FILTERING PROCESS

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20723-6099

Ex.1009 / Page 236 of 280
TESLA, INC.

APPENDIX D

HISTORY OF HIPER-D TRACK CORRELATOR AND FILTERING PROCESS

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20723-6099

D.1 HiPer-D Correlation and Tracking (HCT)

a. The earliest HiPer-D work was focused on the ability to move existing tactical
capabilities into a networked, distributed computing environment. HCT was an effort to provide
a network-distributed implementation of the CEP correlation and tracking capabilities. This
actually consisted of three separate functions (Track Management, Gridlock, and Update) as
depicted in Figure D-1. There were two major objectives for this phase:

(1) portability
(2) communications development.

b. The CEP code was written in C and implemented on Motorola 680x0 Versa Module
Eurocard (VME) boards with the pSOS executive and a set of JHU/APL-developed messaging
services. The clean, well-defined interfaces among the three application functions (Gridiock,
Track Management, and Update) provided an obvious strategy for the port to HiPer-D.
Network-based messaging services were developed to run both on standard network (Ethernet)
environments, as well as Mach operating system native messaging;’ and a surrogate for the
pSOS executive was constructed to run on the host operating system (either Mach or Unix).

c. The porting efforts were quite successful. At the time of the I1 demonstration, HCT
ran on Ethernet-networked PCs with Mach, Ethernet-networked Digital Decstation 5000s under
Digital Unix, and on an Intel MPP machine called the Paragon using Mach and an internal high-
speed switch network.

d. The communications results were mixed. While the Paragon high performance
switch network was effectively able to negate the performance distinction between local and
remote communications, the situation in the Mach-based PCs was different. With buffering set
for tolerable latencies, the PC was still able to achieve only ~1000 messages/sec to a remote
process vs. over 10,000 messages/sec to a local process.

' The Mach operating system, at the time, was a promising research endeavor that emphasized distributed computing
and provided interprocess messaging services that allowed the processes to be placed among a collection of
machines transparently.

Ex.1009 / Page 237 of 280
TESLA, INC.

Contacts

B

Ship Data

Updating Contacts /"

Correlation/)
New Tracks ridlock

Vectors

Track
Updates

TRACK

Track Report
MANAGEMENT Ry fBoxReporns

Figure D-1 CEP Tracking and Correlation

D.2 Track Correlation and Filter (TCF)

a. The change from the HCT to TCF (Track Correlation and Filter) was motivated by
the desire to address functionality more directly related to Aegis. Basically, the external
interfaces initially established for HCT were maintained, but the HCT was completely replaced
with new correlation and tracking that was derived from the Aegis C&D specification. Aside
from this shift of focus, the other objectives were to investigate scalability and fault tolerance. A
major component of this shift was also a change in messaging, away from simple Mach and
network messaging services to a higher level set of services (the ISIS Distributed Toolkit) that

offered delivery and ordering guarantees that are helpful in constructing scalable and fault-
tolerant software components.

track reports

TRACK INIT

chamges

| 4 RTDS CLIENT 1
KINED

| RTDS
I / ~{RTDS CLIENT
track TRACK FILTER

Updates

Figure D-2 HiPer-D Track Correlation and Filtering

b. TCF consisted of two modules — Track Init and Track Filter (see Figure D-2). The
Track Init module performed correlation for a new track and entered the track into the system.
The Track Filter implemented an alpha beta filter for maintaining state on each track. An “alpha
beta” filter smooths a set of periodic measurements of some value by means of the equation:
NewState = Alpha * M + Beta * Last

D-3

Ex.1009 / Page 238 of 280
TESLA, INC.

Where:
NewState is the current estimate of the variable.
M is an X or Y position measurement.
Last is the previous estimate of the variable.
The alpha and beta coefficients should sum to one.
For alpha=1 beta=0, no filtering is performed. As beta is increased from zero to
one, the effect of the filter is increased.

Track Filter implemented a primary/backup form of fault tolerance, but this was not thoroughly
tested. Track Init had no form of fault tolerance.

c. A simulator (KINED) was created to model multiple sensors and drive the system
with input data. Two separate communications groups” were created for delivering track data
from the KINED to the TCF. Track change messages (new and lost) were routed into the Track
Init, correlated, and forwarded to the Track Filter. Track updates were delivered directly to the
Track Filter from KINED, bypassing the Track Init module. Track Filter then sent both the track
change and track update messages to the RTDS (Radar Track Distribution Server), allowing all
messages to be placed in one ordered stream. The separation of the communications groups
providing input to TCF allowed for differing delivery characteristics — minimal latency is
desirable for track change messages, but high throughput is more important for the track updates.
Track change messages probably account for less than 1% of the total traffic in a running system.

d. AutoSpecial handling® created the need for new and lost track notifications with
minimal latency (see Figure D-3). The sensor (simulated by KINED) determined whether a new
track fell within an AutoSpecial region. In the event that one did, the sensor issued an
AutoSpecial tentative new track message to Track Init. A communications group existed for
clients interested in AutoSpecial events. Track Init would react to an AutoSpecial Tentative
message by immediately issuing a tentative AutoSpecial message into the AutoSpecial group.
The sensor was responsible for issuing a positive or negative resolution message (AutoSpecial
report) shortly after issuing the tentative message.* If the resolution was positive, Track Init
entered a new track, and RTDS clients would begin to receive reports on the new track.

* Process group communications are described in Section Exror! Reference source not found..

* AutoSpecial is a term used to describe a high interest or high threat track. Typically, some region around a ship
would be defined, and any tracks present in this region would be classified as AutoSpecial. Weapons control
systems would want to receive notice for any detected AutoSpecial tracks as early as possible.

* If this confirmation did not arrive within a prescribed time frame, a negative resolution would automatically be
issued by Track Init into the AutoSpecial communications group.

Ex.1009 / Page 239 of 280
TESLA, INC.

Tentative Threat
Detection, Resolution

Track Changes
(low volume) TRACK INIT
Track Updates
i TRACK FILTER Ordered Changes
(high volume) ad Updates

Figure D-3 TCF Information Flow

e. The Track Init module performed track correlation between sensors. This required
that Track Init maintain a current state for all tracks in the system. However, track updates were
only being delivered to the Track Filter. From Track Filter, they were forwarded to the RTDS.
To obtain track data, Track Init actually became a client of the RTDS in order to receive recent
state on all tracks (see Figure). This allowed Track Init to evaluate and compare any new tracks
to the set of existing, composite/filtered tracks being reported by all sensors.

f. The Track Filter module combined the updates from multiple sensors and applied a
simple filter to produce a composite track picture. This capsule could be replicated for fault

tolerance, but filtering was performed by every Track Filter for every track. This simply means
that the full load had to be carried by each Track Filter.

D-5

Ex.1009 / Page 240 of 280
TESLA, INC.

APPENDIX E

GROUP COMMUNICATIONS

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20323-6099

Ex.1009 / Page 241 of 280
TESLA, INC.

APPENDIX E

GROUP COMMUNICATIONS

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20323-6099

E.1 Introduction

a. One of the core technologies on which HiPer-D is based is process group
communications. Process group communications provide a mechanism in which applications
become members of a communications group. When a member sends a message in a group, all
other members of the group receive the message. In this respect, process group communications
are analogous to multicast communications. Process group communications extend the concept
of multicast by providing reliable communications, by guaranteeing different levels of message
ordering, and by providing operations associated with membership changes in the group.

b. Since its beginning, HiPer-D has used a process group communications package
known as ISIS. ISIS provided the following characteristics:

(1) Reliable communications

(2) Levels of ordering including no ordering, first in first out (FIFO) ordering, causal
ordering and total ordering

(3) Group membership change (referred to as group view changes or view changes)
notifications that are synchronized in the message flow

(4) A state transfer approach that holds up the message flow to all members and
allows a synchronized state transfer to take place among group members when a view change
occurs.

c. Process group communications have been used throughout HiPer-D as the primary
means for communicating among distributed processes. In general, the primary features that
have been used are the reliable communications, message ordering, and group membership
change notification. For example, the ISIS state transfer facility has been used to implement the
fault-tolerant and scalable RTDS.

d. In 1997, STRATUS, the vendor of ISIS, announced that it would stop selling ISIS
and that there would be no replacement product. This prompted a search for a new middleware
product. It quickly became obvious that there were no commercial process group
communications packages available. There were, however, several research packages available.

Ex.1009 / Page 242 of 280
TESLA, INC.

e. The research packages that were considered included HORUS, ENSEMBLE, Spread
and TOTEM. HORUS is from the continuation of the research efforts that produced ISIS.
ENSEMBLE is the latest product from the same research group. Spread is a second-generation
product that is derived from TOTEM. HORUS and ENSEMBLE were not selected due to
maturity and stability concerns. TOTEM and Spread appeared to have the stability required for
use in HiPer-D. Spread was chosen because it is more advanced than TOTEM and because local
support was available from the developer of Spread, Dr. Yair Amir at The Johns Hopkins
University Homewood campus. All of the communications packages reviewed, including
Spread, supported reliable communications, ordered messaging, and group membership services.
None supported synchronized state transfer, which is a major component of the RTDS design.
This meant that synchronized state transfer would have to be implemented in a layer above
Spread and below the application.

f. JHU/APL's original approach to communications for HiPer-D involved the
development of three thin layers of software between the application and the underlying support
mechanism. These layers are known collectively as Amalthea Communications or “Amalthea
comms”. The initial research into a replacement for ISIS quickly led to the realization that the
Amalthea comms components that supported process group communications would have to

change significantly if the move away from ISIS was to be accomplished without redeveloping
HiPer-D applications.

E.2 Amalthea Communications Layers

a. Amalthea Communications consists of three layers: domain classes, domain class
S support (DCS), and group management services (GMS). Amalthea communications is written in
ANSI C. Amalthea communications layers are shown in Figure E-1 and are explained in

subsequent paragraphs.
JHU / APL

Applications
Domain
Classes

DCS

GMS
ISIS

Figure E-1 Amalthea Communications Layers
b. Domain classes are actually part of the application in that they are defined by the

application. Domain classes contain message definitions and the definitions of all the routines
that the application would use to send and receive messages. The idea is that this information is

E-3

Ex.1009 / Page 243 of 280
TESLA, INC.

defined once and is placed in a domain class library. Any application that needs to send or
receive messages using that domain class would link with that library. This ensures that all
senders and receivers of messages defined in a domain class have the same message definitions,
thus preventing problems associated with senders and receivers operating with different revisions
of a message structure.

¢. Domain classes support the idea of multiple instances of a domain class.
Applications have the ability to define a domain class and then to use that same domain class to
create a separate instance of the domain class. Messages sent in one instance are not received in
a separate instance. An example of the use of multiple instances is a server's communication
with multiple clients. The message structures and access routines would be the same for all
clients but each client would need to receive a different set of messages. The server would create
a separate instance of the domain class for each client. In this way, each client would receive
only those messages specifically destined for that client, and the server would be able to use the
same code to talk to all clients.

d. Domain classes do not have to be ISIS-based. The concept can be used to implement
a communications path using any underlying communications protocol. In the 1998 Advanced
TCF efforts, a domain class was formed that used IP multicast as the underlying communication
layer.

e. The domain class support layer contains support utilities used by domain classes.
These utilities include mechanisms for sending and receiving blocks of data. Domain classes
form a message and then send a pointer to a DCS send function. The DCS send function actually
transmits the message via ISIS. Similarly, messages received from ISIS are forwarded to the

appropriate domain class by DCS. Prior to 1998, DCS was the layer that isolated HiPer-D from
changes in ISIS.

f. Group management services provide domain classes with special services associated
with group membership changes. These services include the ability to join a specific group and
to register a callback routine that will be called when a view change (membership change)
message is received. An application uses the join call to register a callback routine that will be
called when a data message is received, and a separate routine that is called if the sending
machine has a different architecture than the receiving machine. This last callback is known as a
conversion up-call. Conversion up-calls give the domain class the opportunity to perform byte
swapping in situations where the sending machine has a different endian ordering than the
receiving machine.

g. Other GMS services aid in the management of communications groups that contain
both servers and clients and that use state transfer to implement fault tolerance. Before these

services are explained, the basic approach of using ISIS synchronized state transfer must be
explained.

Ex.1009 / Page 244 of 280
TESLA, INC.

[
|
!
| |
l
[
| | AT
MAT | |
[
|
|
[
Application A sends | Application B gets MA1 and then
messages MA1 and MA2 I application C joins the group

Figure E-2 New Process Joins Group

h. The left side of Figure E-2 shows Application A sending two messages, MA1
followed by MA2. The right side of Figure E-2 shows Application B receiving MA1 followed
by the joining of Application C. When C joins, a group view event is started. At this point, ISIS
completes the delivery of all messages that were sent prior to the view change even though the
join attempt started before Appl B received MA2. This preserves consistent ordering of events
among members of a group, even though actual delivery times may vary somewhat in a real-time
sense. In this example, messages MA1 and MAZ2 are delivered. The left side of Figure E-3
shows Application B reacting to MA1 and MAZ2 by creating MB1 and MB2.

Appl A Appl B Appl C Appl A Appl B Appl C

| [z

EE
Nl =

|
|
|
I
|
|
|
!
|
|
!
|
I
|
|

Application B responds to MAT and I1SIS blocks the delivery of MB1 and
MA2 by sending MB1 and MB2 MB2 until the view change is complete

Figure E-3 Messages in Old View are Delivered

1. MB1 and MB?2 are sent in the new view that includes Application C. ISIS blocks the
delivery of MB1 and MB2 until the view change process is complete. This is shown in the right
side of Figure E-3. After all messages from the previous view have been sent, ISIS provides all
participants in the group with the opportunity to transfer state to the new joining member. GMS
filters this and forwards the state transfer option to only the oldest member of the group. In this
example, assume that Application A is the oldest group member.

Ex.1009 / Page 245 of 280
TESLA, INC.

Appl A @ App! C

(51,

=
EE
oll=

: 1| MB2 | MB1] MB1
i I
! A 1 mB2 MB2

Application A sends state message S1 SIS passes the state information through
to the new process ahead of any

messages created in the new view

Figure E-4 Sate is Transferred

j. Figure E-4 shows Application A sending a state message in response to the delivery
of a view change event from ISIS. The state information includes all information that the new
member, Application C, will need to become a fully functional member of the group. In this
example, that might include the fact that MA1 and MA2 were sent. This will prepare
Application C for the arrival of MB1 and MB2. Once all state transfer messages have been sent,
ISIS resumes the message flows illustrated in Figure E-5. At this point application C has been
fully entered into the group, and the view change is complete.

@D @D

AwE]
| ()

Normal message processing resumes
Figure E-5 Message Flow Resumes

k. Figures E-2 through E-5 illustrate the situation where a new process is added to a
group. When a process leaves the group, either intentionally or as the result of a failure, a
similar process occurs. All messages in the old view are delivered, assuming that there are
receivers still left in the group. ISIS then holds any messages created in a new view and signals
for a state transfer. GMS then selects the oldest member to perform the state transfer. When the
state transfer is complete, ISIS resumes the message flow. The state transfer mechanisms
illustrated here form the basic building blocks that THU/APL used to develop fault-tolerant
servers for HiPer-D.!

1. The examples above illustrate the basic case where all members of a group are of the
same type. This situation is shown graphically in Figure E-6.

! Note that the state transfer mechanism is only implemented for applications that are capable of sending or
receiving state transfer, GMS's use of the capabilities provided by ISIS is such that there is no performance penalty
for applications that do not use state transfer.

Ex.1009 / Page 246 of 280
TESLA, INC.

o

/ Communications Group

Appl Appl

Figure E-6 Homogenous Applications Sharing a Communications Group

m. The situation is more complex when the fault-tolerant entity is a server. In this case
servers must belong to a communications group in which they can communicate with each other
and they must also belong to a group in which they can communicate with clients. The groups
must be separate since clearly it would be undesirable for clients to be aware of or involved in
communications among the servers. Figure E-7 illustrates this situation.

Server-to-Client

/ Group

©,

Server-to-Server

O\,

Figure E-7 Client / Server Using Group Communications

n. The situation where a server belongs to multiple groups complicates state-transfer.
ISIS uses the synchronized state transfer process when any process joins a group. Clearly, this
would be inappropriate when a client in Figure E-7 joins the Server-to-Client group because state
transferred would be server state information. GMS supports the concept of a reference group to
assist in this situation.

0. Areference group is a group in which applications of the same type communicate.
The Server-to-Server group in Figure E-7 is a reference group. GMS implements the concept of
reference groups with the following rules:

(1) Only processes of the same type may be in a reference group.

E-7

Ex.1009 / Page 247 of 280
TESLA, INC.

(2) State transfer only occurs between processes in the reference group.
(3) A Process may only belong to a single reference group.
(4) Any process using state transfer must belong to a reference group

p. GMS also supports the concept of fully qualified members of a group. A group
member is fully qualified if it has completed all of its initialization activities, including joining
all appropriate groups, and is ready to participate in the group. Scalable servers use this
capability to determine when a new server is ready to begin processing.

g. GMS supports the concept of a synchronized group. A group is synchronized if all of
its members are fully qualified. A group is unsynchronized if any of its members are in the
process of becoming fully qualified or if any of its members have departed and the view change
has not completed. GMS provides optional up-calls to signal changes in synchronization. Fault-
tolerant servers use this to maintain consistency during view changes.

E.3 The Adaptation Layer Approach

a. In considering the impact of removing ISIS from the system, it was realized that the
effort would impact both DCS and GMS and to a small degree the domain classes. This would
be a high-risk process since all of JHU/APL's HiPer-D components relied heavily on these
layers. In order to prevent this from happening again in the future, it was decided that a new
Adaptation Layer (AL) interface would be created. This is shown in Figure E-8.

JHU / APL
§a Applications
: Domain
Classes
DCS
GMS
i Adaptation Layer
Adaptation Interface
Layer
Spread

Figure E-8 The Adaptation Layer

b. The Adaptation Layer Application Programming Interface (AL API) identifies a basic
set of group communications capabilities on which DCS and GMS can rely.” If the underlying
process group communications package supports those capabilities then the AL would be thin
and would pass calls on to the underlying implementation. Any capabilities specified in the AL

* Note that in the following discussions the term "Application” refers to the DCS / GMS layers because they are the
users of the AL, The users of Amalthea comms, which are HiPer-D applications, never directly reference the AL,

E-8

Ex.1009 / Page 248 of 280
TESLA, INC.

API that were not available in the underlying process group communications package would be
implemented in the AL.

E.4 Spread

a. Spread implements process group communications by using daemons that are placed
on different processors throughout the system. Applications communicate with Spread through a
linked library that establishes a connection with a daemon. All communications with other
Spread applications are routed through the daemons and up through the library to the application.
Spread allows there to be any number of daemons in a system. An application may connect with
a daemon on the same machine on which it is running or it may connect to a daemon on a remote
machine. To improve fault tolerance, HiPer-D places a daemon on each machine and requires
that all applications on a machine connect with the local daemon. This is illustrated in Figure
E-9.

\ \ { Socket
Socket\ Socket\ f Based |
Based \ Based \ ! IPC :

wpc N/ wpc N1
Spread Spread Spread
Daemon Daemon Daemon

‘\ TCP/IP /‘ ‘\ TCP/IP /‘

IPLAN

Figure E-9 HiPer-D's Use of Spread

b. Spread daemons may be configured to communicate using either TP multicast or
TCP/TP. To date TCP/IP has been used to minimize any potential problems associated with the
ATM network in use at NSWCDD.

c. Spread's programming interface is simple compared to ISIS. It consists of a connect
call, a receive call, a pair of send calls, a join call, a leave function, and a handful of utility
functions.

d. The connect function is used to establish a connection between the application and
the Spread daemon. The dashed lines in Figure E-9 illustrate this connection. This connection
forms an endpoint to which Spread assigns a name that is unique within the system. Because

Ex.1009 / Page 249 of 280
TESLA, INC.

there is one endpoint per application, the endpoint name can be thought of as Spread's name for
the application.’

e. The receive call is the only function through which Spread returns group information
to the application. Messages from other members of the group are returned from this call as well
as special Spread-created view change messages. When application messages are returned, the
name of the endpoint that sent the message is also returned. The receive call also returns a flag if
the machine that sent the message has a different endian architecture than the receiving machine.
This warns the user that the data in the message buffer may need to go through a byte swap
operation. Each view change message identifies the reason that the change occurred and
contains a list of the endpoints that are in the new view.

f. Spread supports a send call that allows the user to pass the address of a data buffer
and its size to the call. To use this call the user must marshal the message into a contiguous
space in memory. Spread also supports a scatter send call that allows the user to forward a list of
pointers and sizes to Spread. This allows the application to send a message that is made of
several components without having to first copy them into a contiguous buffer space.

g. The Spread join call is used to join a group and the leave call is used to leave a group.
There is no limit to the number of groups that an endpoint can join. All messages from all
groups that an endpoint has joined are received through the receive function call. The receive
call returns the name of the group in which the message was sent along with the message.

E.S Adaptation Layer API

a. Those capabilities that are provided by currently available process group
communications packages have influenced the specification of the AL API. ISIS implemented a
broad interface with a large number of capabilities. HORUS reorganized the interface and
eliminated several of the more complex functions. ENSEMBLE went even further in this
direction. Spread, in contrast, has an extremely simple interface and a limited set of basic

capabilities. After the tradeoffs were considered the following characteristics were chosen for
the AL API:

b. The AL APIwill support information hiding such that no underlying data structures
associated with the underlying process group communications package would be used at the
interface. In addition the interface will be designed such that any of the AL’s underlying
structures can be changed without impacting the AL API or any applications using it.

(1) The AL API will be multithreaded and will use up-call mechanisms to deliver
information to the application.

(2) The AL API will support messages constructed of an unlimited number of variable
sized buffers.

(3) The AL API will support the following types of ordering:
(a) FIFO ordering.

* The "one endpoint per application” rule is artificial in that Spread can support multiple conmections from a single
application. The AL does not support multiple connections from a single application. There can only be one AL
library linked in an application, and the AL only supports a single connection call.

E-10

Ex.1009 / Page 250 of 280
TESLA, INC.

(b) Causal ordering — Consider the situation where message 1 is delivered to
processes A and B and A responds by sending message 2 on to process B. Causal ordering
guarantees that B will receive message 1 followed by message 2. This is illustrated in Figure
E-10.

Messsage 1

Causal Ordering guarantees
that Appl B will Receive
Message 2 after Message 1

Figure E-10 Causal Ordering

(c) Total ordering — Assures that all receivers receive all messages in the exact
same order. This is more strict than causal ordering in that causal ordering deals with message
exchanges that have a common node, and total ordering applies to all communications, even
communications over parallel but unrelated paths. This is illustrated in Figure E-11.

o o o
] m o3 o3
« m m
Msg 1 w_; ‘ :
Msg2:
wgs
Msg4f : f —*—’f :
Time —

Total ordering guarantees that all messages
are received in the same order. Here B & D
receive Msg 3 followed by Msg 4

Figure E-11 Total Ordering

(4) The AL API will support the following primary functions:

(a) Group join and leave

(b) Multicast send

(¢) Unicast send

(d) Multicast RPC — RPC Send calls require the receiver to reply explicitly to the
message. The AL manages the replies and notifies the sender when all replies have been
received. It also manages situations where expected replies can never be received because a
message receiver leaves the group before replying.

(e) Unicast RPC

(f) Multicast stability — The sender is notified when the AL determines that all
receivers have received the message.

(g) Unicast stability

E-11

Ex.1009 / Page 251 of 280
TESLA, INC.

(h) Message and buffer management routines.

(5) The API will support the following required up-calls:
(a) Message reception
(b) Endian conversion
(c) View change

(6) The API will support the following optional up-calls:
(a) RPC reply received
(b) Stability notification

c. State transfer mechanisms are explicitly not included in the definition of the AL API
because none of the candidate process group communications packages supported synchronized
state transfer. If state transfer were written into the AL, it would have to be redeveloped when a
new middleware package is selected. To avoid this the state transfer capability was written into

the modified GMS.

d. An initialization routine is provided in the AL API. In the Spread AL
implementation, this is where the connection is made to the Spread daemon. The AL API
requires that this call be made before any other call in the API.

e. Inusing the AL API, a user joins a group by making a call to a join routine, In this
call, the user specifies functions that are to be called when a view change occurs, when an endian
conversion is required, and when a data message is received. No further action needs to be taken
to receive a message. The next message received in the group will result in the data received
function up-call being made.

f To send a message, the application using the AL must first make an explicit call to
create the message. In this context, a message consists of a header that contains information
about the message and data space that contains the data that the user sends with the message.

The create message function creates the header and returns a pointer to that header. It does not
allocate storage space for the data associated with the message. The application then creates
buffers and appends them to the message. This is done by passing the address and size of a piece
of application-owned storage to create a buffer function. This approach prevents forcing the
application to copy data into a contiguous space before sending the message. The AL passes the
buffer pointer and size information down to Spread. Spread then uses this information to form
the message packet that is transmitted over the network.

E.6 AL Design

An adaptation layer has been implemented to connect the AL API to the Spread process group
communications package. One of the major issues that had to be addressed in this development
was that Spread implements a standard down-call mechanism for receiving messages. The AL
API defines an up-call mechanism for receiving information. This conflict was addressed by
using a multithreaded design for the AL.

E.6.1 Threading Model

E-12

Ex.1009 / Page 252 of 280
TESLA, INC.

a. The thread design inside the AL is driven by the difference in calling paradigms
between Spread and the AL APL. A single Spread listen thread is established that blocks on a
Spread receive call and waits for messages to be delivered. An additional thread is created each
time the application joins a group. A new message queue is also established for each group
joined. The group thread monitors this queue for new messages. When the Spread listen thread
receives a message from Spread, it places the message on the new message queue that is
associated with the group in which the message was received. The threading structure is
illustrated in Figure E-12.

Group1 - Group2 - Group3
AL ' S5
1] H H n % % ﬂ %
Application g g2 g 3 Up-Calls
8 >« s &
= © o =
A A A A
AL AP/
Group
N Threads
AL : : New
Layer : . Message
Queues
Spread Listen
Thread
Spread AP/
Spread A
SP_Receive

Figure E-12 AL Thread Model

b. When the group thread gets a message on its new message queue, it first identifies the
message type. If the message is a view change, the group thread calls the view change function
defined by the application in the join call. If the message is a data message, the group thread
first checks to see if the sending machine is of a different endian architecture than the receiving
machine. If this is the case, the message is passed up to the application as an argument to the
conversion up-call. This gives the application an opportunity to correct for endian differences
before the message is processed. The data message up-call is made after any conversion up-calls
are complete.

c. The AL thread model allows the application to receive messages from multiple
groups asynchronously. Within a single group, however, only one up-call will be made to the
application at any time. The AL layer maintains message order. Up-calls will be made in the
order that the messages generating the up-call arrived. There is no ordering supported between
groups. This means that a message destined for group A that arrives after a message destined for
group B could be delivered to group A before the other message is delivered to group B.

E-13

Ex.1009 / Page 253 of 280
TESLA, INC.

E.6.2 Data Structures

The data structures in the AL consist primarily of doubly and singly linked lists. These
structures are described in the subsections that follow. The relationships among the data
structures are illustrated in Figure E-13.

E.6.2.1 Group List

The primary data structure is the group list. This is a doubly linked list that contains an
entry for every group joined by the application. Each entry contains pointers to the new message
queue for that group, a pointer to the current view for the group, and pointers to a list of records
that identify any replies expected from other members of the group. Records in this list also
contain all configuration information associated with the group including the default message
ordering to be used, the group name, and the up-call functions defined for the group.

E.6.2.2 New Message Queue

a. The new message queue is used as common storage between the Spread listen thread
and the group thread. The group thread reads records from the top of the queue and the Spread
listen thread places new messages on the bottom of the queue. There is one of these structures
for every group joined by the application. The head and tail pointers for this structure are held in
the group record (component of the group list) of the group associated with the queue.

b. Ifthe new message queue entry represents a view change, a pointer to an array 1s
established when Spread listen creates the queue entry. Each entry in this array is a pointer to an
endpoint record for a member of the new view of the group. If the new message queue entry
represents a data message, a pointer to the message structure for the message is established.

E-14

Ex.1009 / Page 254 of 280
TESLA, INC.

New Message

Gl’oup List Queue
Buffer
View Changes Only
Data Messages Qnly
Message List /‘\ T
Buffer List
Array Structures
Endpoint List
) 4
View List
RPC List |
—> “-J_> y

Figure E-13 AL Data Structures

E.6.2.3 Message List

The message list structure is a doubly linked list that contains all of the messages that
exist at any single point in time in the system. Messages are linked in a list to provide easy
access by diagnostic routines that are capable of printing all messages in the system. Messages
are not related by their position in the linked list. Message records are accessed either through
direct reference via message handles held by the application or through access via the new
message queue associated with a particular group.

E.6.2.4 Buffer List

E-15

Ex.1009 / Page 255 of 280
TESLA, INC.

A message list record contains all of the information that pertains to a specific message,
including a pointer to a list of buffers that hold the data associated with the message. If the
message was created by the application in preparation for transmission, there will be an entry for
each buffer appended to the message by the application. If the message was created by Spread
listen when a message was received from Spread, then there will be only one buffer and that will
contain all of the data associated with the message. Each buffer record in the list pointed to by a
message list record contains the memory address of the actual data storage (in effect, this is a
pointer to the storage), the size of the data storage, and a pointer to the next buffer record.

E.6.2.5 View List

A record in the group list contains a pointer to a record in the view list that represents the
current view for that group. The view list is a doubly linked list of all views (of all groups) that
are currently active. This list also holds any expired views that are still being referenced by the
application (see Section Error! Reference source not found., which describes reference
counts). Each view record contains all of the information that relates to the view including a
pointer to an array. Each entry in this array contains a pointer to the endpoint record of a group
member that is present in the view.

E.6.2.6 RPC List

Records in the group list also contain head and tail pointers to an RPC list. There is an
entry in the RPC list for each outstanding RPC message or stability message that has been sent in
the group. Each entry contains the up-call routines that are to be called when an RPC reply is
received or a stability response is determined. Each record also contains a pointer to the view in
which the RPC or stability request was made. This is used to determine the endpoints from
which replies are expected.

E.6.3 Reference Counts

a. The user of the AL API receives and manages handles for objects created and
managed by the AL. These handles are implemented as pointers to isolate the AL API and its
users from changes in the AL layer. Because the AL creates the objects pointed to by these
handles, it must also be responsible for removing them. It is expected that the AL users will
need to create copies of these handles. This creates a conflict because the AL layer needs to
know when copies have been made so that it can know when a structure is no longer needed and
can be removed.

b. To address this problem, the concept of reference counted objects was created. When
the AL user copies a reference counted object, the user must call a routine to increment a
reference counter associated with that object. The AL also increments this count when the object
is in use by the AL. When the AL is finished with the object, it decrements the reference count.
When the AL user is finished with the copy of the object, the user must decrement the reference
count. When the reference count goes to zero, the object is removed. The reference counted
objects in the AL API are endpoints, groups, messages, and views.

Ex.1009 / Page 256 of 280
TESLA, INC.

e

E.6.4 Transmission Formats

a. When the AL makes a send call to Spread, the AL passes Spread the name of the
group in which the message will be sent and a data message that is encoded according to the type
of message that is being sent. The encoding used is shown in Figure E-14.

Multicast Data Message All sizes are in bytes
|4 | size | Data |
0 4 8
Multicast RPC Message
l -2 ‘ RPC Msg # ‘ Size . Data l
0 4 8 12

Unicast RPC Message
'— -3 , RPC Msg # l Target EP [Size I Data }

0 4 8 8 + 12 +
MAX_GROUP_NAME MAX_GROUP_NAME

Unicast Data Message
1 -4 l Target EP } Size] Data l

0 4 4 + 8 +
MAX_GROUP_NAME ~ MAX_GROUP_NAME

RPC Reply Message

Requestor
RPC Msg #

0 4 8 8+ 12+
MAX_GROUP_NAME MAX_GROUP_NAME

-5 Target EP Size Data

Multicast Stability Message

L -7 I RPC Msg # Size Data
0 4 8 12

Figure E-14 Data Formats

b. The first 4 bytes in each format contain a negative integer that identifies the message
type. In all formats the data area is preceded by a 4-byte integer that contains the size of the data
area in bytes. The Targer EP field contains the name of the unicast message destination
endpoint. Receivers ignore the message if the 7arget EP field does not contain its name. The
RPC Msg # field in the RPC messages and in the Multicast Stability Message contain an integer
value that, in combination with the identity of the requesting process, uniquely identifies the
RPC request. This value is echoed back in the Requestor RPC Msg # field in the RPC Reply
Message.

c. The data areas in each message format contain the buffers that are associated with the
message. This is illustrated in Figure E-15.

E-17

Ex.1009 / Page 257 of 280
TESLA, INC.

data
Buffer
M = Message
Size in Bytes Data Size
data
Buffer
Data Size
0

Figure E-15 Transmitted Data Message

E.7 Transformers

a. The magnitude of the AL development effort was such that it was a high-risk item for
the 1998 demonstration. It was not clear that the effort could be completed, integrated with
HiPer-D, and integrated at NSWCDD in time for the 1998 demonstration. To reduce the risk,
the decision was made to focus only on the integration of JHU/APL's components for the 1998
demonstration. NSWCDD components would continue to use ISIS. Transformers would be
used to bridge between process groups implemented in Spread and their colleagues implemented
in ISIS.

b. A transformer is a standalone process that exchanges messages between a Spread
group and an ISIS group. Transformers are built with both communications stacks and simply
exchange messages at the top of each stack. Transformers do not implement any of the state
transfer protocols. They are strictly limited to basic message exchange.

c. With one exception, a separate transformer was built for each group that was used by
both NSWCDD and JHU/APL components. The exception was the RTDS. The structure of the
RTDS is such that it was easier to convert its inputs to use the new AL directly. The new RTDS
gets information from the ATCF through the AL layer and distributes the information to its
clients using ISIS.

E.8 Results

a. Development and initial integration were completed at JHU/APL. A version of
JHU/APL's components was delivered to the lab at NSWCDD and integrated in time for the
1998 HiPer-D demonstration. While several problems were uncovered and corrected during
integration at JHU/APL, no problems were encountered in the AL, DCS, or GMS during the
integration efforts at NSWCDD. Two problems were detected and corrected in the transformers
during this integration. No quantitative comparisons were made, but performance of the new
system appears to be at least comparable to the ISIS based system.

Ex.1009 / Page 258 of 280
TESLA, INC.

b. Considering the fact that this effort significantly changed the underlying middleware
of all of JHU/APL's HiPer-D components, this effort can only be considered a tremendous
success. The accomplishment is even more striking when it is remembered that the effort started
relatively late in the year and that developments in other HiPer-D components were carried out

in parallel.

E-19

Ex.1009 / Page 259 of 280
TESLA, INC.

Adaptive QoS and Resource Management
Using 4 Posteriori Workload Characterizations'

Lonnic R. Welch', Paul V. Werme?®, Binoy Ravindran’, Larry A. Fontenot?, Michael W. Masters*, D. Wayne
Mills and Behrooz A. Shirazi'

TComputer Science and Engineering Dept.
The University of Texas at Arlington
Arlington, TX 76019-0015
{welch|shirazi}@cse. uta.edu

¥The Naval Surface Warfare Center
Dahlgren, VA 22448
{WermePV|MastersMW)FontenotLA|Mills
DW }a@nswe.navy.mil

"The Bradley Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

bino:

Abstract

Certain real-time applications must operate in highly
dynamic environments (e.g., battle environments), thereby
precluding accurate characterization of the applications’
workloads by static models. Thus, guarantees of real-time
performance based on a priori characterizations are not
possible. However, potential benefits of a posteriori
approaches are significant, including the ability to
Sfunction correctly in dynamic environments (through
adaptability to unforeseen conditions), and higher actual
utilization of computing resources.

In this paper, we present an approach that is
appropriate for systems which experience large variations
in workload. A distributed collection of computing
resources is managed by continuously computing and
assessing QoS and resource utilization metrics that are
determined a posteriori. The utility of our approach is
shown by applying it to a large, experimental distributed
Navy computing system.

1 Introduction

The majority of real-time computing research has
focused on the scheduling and analysis of real-time
systems whose timing properties and execution behavior
are known a priori. This is not without justification, since
static approaches to the engineering of real-time systems
have utility in many application domains [13].

ee. vt.edu

Furthermore, the pre-deployment guarantee afforded by
such approaches is highly desirable. However, there are
numerous applications which must operate in highly
dynamic environments (such as battle environments),
thereby precluding accurate characterization of the
applications’ properties by static models. In such contexts,
temporal and execution characteristics can only be known
a posteriori. Thus, guarantees of real-time performance
based on a priori characterizations are extraneous.
However, the potential benefits of a posteriori approaches
are significant. These benefits include the ability to
function correctly in dynamic environments (through
adaptability to unforeseen conditions), and higher actual
utilization of computing resources.

This paper deals with large, distributed real-time
systems that have execution times and resource
utilizations which cannot be characterized a priori. The
motivation for our work is provided in part by the
characteristics of combat systems, which are described in
[6] as follows:

“Modern naval combatants host many highly
complex systems. Each system performs one or more
tactical capabilities. The single large-scale system
Jormed via integration of these complex systems is a
Combat System. ...

The combat system processing demand per unit of
time is defined as follows. Each tactical capability,
e.g., track management, has its own processing

' Sponsored in part by DARPA/NCCOSC contract N66001-97-C-8250, and by the NSWC/NCEE contracts

NCEE/A303/41E-96 and NCEE/A303/50A-98.

Ex.1009 / Page 260 of 280
TESLA, INC.

Fifth IEEE Real-Time Techrology and Applications Symposium, June, 1999, Vancouver, British Columbria

demand. This demand is dependent on the number of
objects, e.g., tracks, that will utilize this capability.
The total number of capabilities active concurrently
varies with time. The total number of objects driving
each capability varies with time. Thus, the combat
system processing demand per time unit is dependent
on number of objects per capability in the time unit
and the number of capabilities active during the time
unif. ...

A definition of the demand space features and
supply space features is needed. The mapping of
demand space features onto the supply space features
is needed. Indices that support clustering or
partitioning of demand features on or across supply
Seatures also is needed. ...”

Implications of these requirements are that demand
space workload characterizations may need to be
determined a posteriori, and an adaptive approach to
resource allocation may be necessary. In existing real-
time computing models, the execution time of a “job” is
often used to characterize workload, and is usually
considered to be known a priori. Typically, execution
time is assumed to be an integer “worst-case” execution
time (WCET), as in [10, 12,21, 19, 18, 13, 3]. While [13]
establishes the utility of WCET-based approaches by
listing their domains of successful application, others [9,
7,5, 8,16, 12, 17, 15, 14, 11, 1, 2, 4] cite the drawbacks,
and in some cases the inapplicability, of the approaches in
certain domains. In [12, 17, 9, 5, 1] it is mentioned that
characterizing workloads of real-time systems using a
priori worst-case execution times can lead to poor
resource utilization, particularly when the difference
between WCET and normal execution time is large. It is
stated in [14, 1] that accurately measuring WCET is often
difficult and sometimes impossible. In response to such
difficulties, techniques for detection and handling of
deadline violations have been developed [7, 15, 14].
Paradigms which generalize the execution time model
have also been developed. Execution time is modeled as
a set of discrete values in [8], as an interval in [16], and
as a probability distribution in [9, 17, 2]. Most models
consider execution time to apply to the job atomically;
however, some paradigms [11, 15] view jobs as consisting
of mandatory and optional portions; the mandatory
portion has an a priori known execution time in [11], and
the optional portion has an @ priori known execution time
in [15]. Most of these approaches assume that the
execution characteristics (set, interval or distribution) are
known a priori. Others have taken a hybrid approach; for
example, in [5] a priori worst case execution times are
used to perform scheduling, and a hardware monitor is
used to measure a pasteriori task execution times for
achieving adaptive behavior. The approach most similar
to the one presented in this paper is described in [4],

F-3

where resource requirements are observed a posteriori,
allowing applications which have not been characterized a
priori to be accommodated. Also, for those applications
with a priori characterizations, the observations are used
to refine the a priori estimates. These characterizations
are then used to drive resource availability based
algorithmic and period variation within the applications.

In this paper we present an approach that is
appropriate for systems which experience large variations
in workload. We elaborate the details of the language,
system model, metrics, and middleware presented in [20].
Furthermore, the experimental results presented in [20]
were performed on a benchmark system, whereas this
paper presents results from applying the technology
within an experimental Navy distributed computing
system. The techniques are used during war-fighting test
scenarios, demonstrating processing of up to 7500 radar
tracks while meeting real-time requirements. The testbed
consists of many application systems (greater than 100
processes consisting of more than 1 million lines of
source code) being managed by the middleware, under
highly dynamic system workloads, and on many
cooperating hosts (40 hosts with 60 processors). These
experiments provide a proof of concept for the
specification language and the a posteriori techniques for
modeling, monitoring and resource allocation. The results
also demonstrate very fast (sub-second) detection and
reallocation services for large-scale systems.

2 The System Model

Our approach to adaptive resource and QoS
management is based on the dynamic path paradigm. A
path-based real-time subsystem (see [20]) typically
consists of a detection & assessment path, an action
initiation path and an action guidance path. The paths
interact with the environment via evaluating streams of
data from sensors, and by causing actuators to respond (in
a timely manner) to events detected during evaluation of
sensor data streams. A system operates in an environment
that is either deterministic, stochastic, or dynamic. A
deterministic environment exhibits behavior that can be
characterized by a constant value. A stochastic
environment behaves in a manner that can be
characterized by a statistical distribution. A dynamic
environment (such as a war-fighting environment)
depends on conditions which cannot be known in
advance.

For example, an air defense subsystem can be
modeled using three dynamic paths: threat detection,
engagement, and missile guidance. The threat detection
path examines radar sensor data (radar tracks) and detects
potential threats. The path consists of a radar sensor, a
sensor data stream, a filtering program and an evaluation
program. When a threat is detected and confirmed, the

Ex.1009 / Page 261 of 280
TESLA, INC.

Fifth IEEE Real-Time Technology and Applications Symposium, June, 1999, Vancouver. Britsh Columb:a

engagement path is activated, resulting in the firing of a
missile to engage the threat. After a missile is in flight,
the missile guidance path uses sensor data to track the
threat, and issues guidance commands to the missile. The
missile guidance path involves sensor hardware, software
for filtering, software for evaluating & deciding, software
for acting, and actuator hardware.

The approach described in this paper pertains to
detection & assessment paths. This type of path
continuously evaluates the elements of a sensor data
stream to determine if environmental conditions are such
that an action should be taken. Thus, this type of path is
called continuous. Typically, there is a timeliness
objective associated with completion of one review cycle
of a continuous path, i.e., on the time to review all of the
elements of one instance of a data stream. (The data
stream is produced by sampling the environment. One set
of samples is the data stream instance.)

The threat detection path of an air defense system is
an example of a continuous path. It is a sensor-data-
stream-driven path, with desired end-to-end cycle
latencies for evaluation of radar track data. If it fails to
meet the desired timeliness quality of service in a
particular cycle, the path must continue to process track
data, even though desired end-to-end latencies cannot be
achieved. Peak loads cannot be known in advance for the
threat detection path, since the maximum number of radar
tracks that may exist in a battle environment cannot be
known a priori. Furthermore, average loading of the path
is not a useful metric, since the variability in the sensor
data stream size is very large - it may consist of zero, 10s,
100s or 1000s of tracks.

We have developed a demand space model based on
the dynamic real-time path paradigm. A software
subsystem, S8, consists of (1) a set of applications (SS.A
= { a;,a,,...}), (2) a set of devices (sensors and actuators)
(8S.D = { d,, d,,...}), (3) a communication graph defining
the connectivity between applications and devices (I'(SS)
€ TI((SS.D U SS.A) x (SS.D U SS.A))), and (4) a set of
paths (SS.P = {P, P, P; ...}). (Note: II denotes the
power set).

Each continuous path P; is represented as (1) a set of
applications PLA = {a;;, ai2....} (where PpA <
SS(P;).A), (2) a set of devices Pi.D = {d;;,d;>,.....} (where
P.D < SS(P,).D), (3) a communication graph y(Py) e
T(P.D v PLA) x (P.D U PLA)) (note that y(P) <
T'(SS(Py))), and (4) a data stream P.DS. (Note: SS(P;)
denotes the subsystem in which path P; is contained.)
Profile(a;) is the set of hosts where application ‘a;” is
eligible to be run (i.e., the set of hosts for which a; has
been compiled). For the communication graph v(P;), the
head node of the graph (which is the application which
receives the initial input data stream) is represented as
ROOT(Py), and the last node of the graph (which is the
application which communicates with other applications

F-4

or paths outside of P;) is represented as SINK(P;). The
type of Py’s data stream is defined as ©(P;..DS) e {dynamic,
stochastic, deterministic}. (For the remainder of this
paper, it is assumed that the all data stream types are
dynamic).

The real-time QoS requirements of a continuous path
include one or more of the following: (1) required latency
of Aree(Py) seconds, (2) required throughput of Orgpe(Ps)
data stream elements per second, and (3) required data
inter-processing time of Sgpo(Py) seconds (the maximum
allowable time between processing of a particular element
of P.DS in successive cycles). To mask transient QoS
violations during QoS monitoring, a specification may
also define a sampling window and a maximum number
of QoS violations to be tolerated within the window;
o(P;) models the sampling window size and (P
represents the maximum allowable number of violations
within the sampling window.

The demand space model also captures information
that must be obtained a posteriori. Some application
programs can be replicated for load sharing. The set of
replicas of application ‘a;;> during cycle ‘c” of Py is
defined as REPLICAS (a;;,¢) = {a;,, 82, ...}. The host
to which application ‘a;;,’ is assigned during cycle ‘¢’ of
path P; is defined as HOST (a;;5,¢,P5).

The set of elements that constitutes a data stream can
vary dynamically. P.DS(c)={P.DS(c);, P.DS(c),,...}
represents the set of elements in P, DS during cycle ‘c’ of
P,. The tactical load (in number of data stream elements
processed) of a continuous path P; during it’s ¢® cycle is
{P..DS(c)|. The processing of elements of a data stream
may be divided among replicas of an application to
exploit concurrency as a means of decreasing execution
latency of a path. In successive stages of a path that has
non-combining applications (applications which, after
processing data received from a single predecessor,
simply divide the data among their successors), data will
arrive in batches to applications; hence, each application
may process several batches of data during a single cycle.
Thus, the model represents the set of elements from all
batches of data processed by application/replica ‘a’ during
cycle ‘¢’ as P.DS(c, a)y={P.DS(c, a);, P..DS(c, a),...}
The cardinality |[P.DS(c, a)| is the tactical load of ‘a’ in
cycle ‘c’. The data stream elements contained in the j
batch of ‘a’ are denoted by Pi.DS(c, a, j)={P:.DS(c, a, j)1,
P.DS(c, 3, j),.-}-

3 QoS Specification

This section presents a specification language for
describing the characteristics and requirements of
dynamic, path-based real-time systems, and incorporates
the system model constructs described in Section 2. The
language provides abstractions to describe the properties

Ex.1009 / Page 262 of 280
TESLA, INC.

Fifth IEEE Real-Time Technology and Applications Symposium. June, 1999, Vancouver, Britsh Columbia

of the sofiware, such as hierarchical structure, inter-
connectivity relationships, and run-time execution
constraints. It also allows description of the physical
structure or composition of the hardware such as
LANs, hosts, interconnecting devices (such as
bridges, hubs, and routers), and their statically known
properties (e.g., peak capacities). Further, the quality
of service requirements of various system components
can be described. The constructs of the specification
language are illustrated within the context of the
distributed experimental Navy combat system
components (described in Section 5).

A high-level system specification is shown in
Figure 1. Atthe highest level, a specification consists
of a collection of software systems, hardware systems,
and network systems. A software specification is a
collection of software systems, each of which consists
of zero or more software subsystems (SS). This is
illustrated in Figure 1 for the AAW system. The
Doctrine SS has a priority, a set of dynamic real-time
path definitions (8S.P), and a set of application
program definitions (SS.A).

A path (P;) is defined as a connectivity graph
(y (Py)) of constituent applications, a set of attributes
(priority and type), QoS requirements, and data/event
stream definitions (P.DS). The connectivity
specification represents the communication
relationships among applications (Pi.A) in a path.
These relationships form a directed graph, specified as

HARDWARE SYSTEM Navy_Ship {...}
NETWORK SYSTEM Ship_Net {...}
SOFTWARE SYSTEM ATWCS {...}
SOFTWARE SYSTEM AAW
{ #/ This line is a comment
SUBSYSTEM Displays {...}
SUBSYSTEM TacticalServices {...}
SUBSYSTEM Doctrine {
Priority 2;
PATH AutoSpecial_Review {

} //end path AutoSpecial_Review

} Hlend of software subsysiem Doctrine
} fiend of software system AAW

Connectivity {
{AAW:TrackServices:Track_Processor, AAW:TrackServices:RTDS);
(AAW: TrackServices:RTDS, AAW:Doctrine:AutoSpecial);
(AAW:Doctrine:AutoSpecial, AAW: TacticalServices:Engage_Server);
(AAW: TacticalServices:Engage_Server, AAW. TacticalServices:WCS);
} flend Connectivity

Type Continuous;

Priority 1;

RealTimeQoS {
SimpleDeadiine 65.0;
InterProcessingTime 0.600;
Throughput 200;
BatchLatency 20.0;
BatchinterArrival 550.0,
MaxSlack 80;
MinSlack 20,
SlidingWindowSize 20;
Violations 15;

} flend of real-time QoS definition

Scalability { Scalable TRUE;

PathSettlingTime 30.00;}
DATASTREAM { Type Dynamic;

SlackQoS 4003}

a set of ordered application pairs, which indicates the
primary data flow between applications. (Note that
the names of the applications specified in the sample path
are fully qualified as system:subsystem:application.)

A path’s real-time QoS requirement specification may
include simple deadlines, inter-processing times,
throughputs, and super-period deadlines. A simple
deadline is defined as the maximum end-to-end path
latency (Areg(P3)) during a cycle of a continuous or quasi-
continuous path, or during an activation of a transient.
Inter-processing time (8pgo(Py) is defined as a maximum
allowable time between processing of a particular element
of a continuous or quasi-continuous path’s data stream in
successive cycles. The throughput requirement (Ogeo(Ps))
is defined as the minimum number of data items that the
path must process during a unit period of time. Each
timing constraint specification may also include items that
relate to the dynamic monitoring of the constraint (e.g.,
slack).

The scalability specification indicates whether the path
is scalable, and includes specifications for defining when
and how scaling will be accomplished. (For a path to be
scalable, one or more applications in the path must be
scalable.) A datastream specification (P.DS) is also

Figure 1. AAW sys & AutoSpecial_Review path.

given for the sample path. The stream type (t(P;.DS)) can
be deterministic, stochastic, or dynamic.

The applications (P;.A) which constitute a path are
included in the QoS specifications (Figure 1 & 2). An
application is either an executable image that may be
started as an autonomous process on a host, or a script file
that potentially forks multiple processes. An application
has several control characteristics. First, there are time
delays associated with the application (representing the
amount of time the control program must wait before
starting this application, and the time the application
requires to complete its initialization once it has been
started). There are also definitions controlling how an
application is started. The Automatic attribute is used to
determine which applications should be started
automatically as part of default system initialization. The
RMStart field specifies whether the Resource
Management infrastructure should decide where the
application should be started or whether a static
configuration should be used. Console and Display are
attributes pertaining to the graphical capabilities required
by the application (mainly used for debugging). Memory
indicates the minimum amount of memory that the
application requires in order to execute.

Ex.1009 / Page 263 of 280
TESLA, INC.

Fifth [EEE Real-Time Technology and Apphcations Symposium, June, 1999, Vancouver, British Columbia

An application can have one or more Starfup blocks to
describe the resource requirements of the application.
This information includes required host type and
operating system type and version(s); alterately, this may
be an optional list of hostnames. The startup information
also includes the working directory, name of the
executable, and an ordered list of arguments. (Multiple
Startup blocks are used when multiple versions of an
application exist, such as executables compiled for
different machine architectures.) The Shutdown block
specifies either a signal used to shutdown the application,
or a script to gracefully terminate the application.

The Dependency block describes temporal
relationships between applications, including startup and
shutdown dependencies and time delay requirements.

A survivability QoS specification includes a Boolean
variable that indicates (1) whether the application should
be managed to ensure survivability (i.e., fault tolerance)
and (2) the minimum required level of redundancy. The
flag, SameHost, indicates whether the application must be
started on the same host on which it failed (which is
useful for providing fault tolerance for daemons that must
run on a specific host).

The scalability specification indicates if an application
can be scaled via replication. (Currently, applications
specified as scalable are assumed to be capable of
performing load sharing among replicas, and adapting
automatically to varying numbers of replicas.)

Hardware system specifications (Figure 3) allow the
description of zero or more hardware subsystems. Each

APPLICATION AutoSpecial {

TimeDelay 4; // Wait this long (secs) before starting
SettiingTime 5; // App needs this long to initialize to steady state.
Automatic TRUE; // Automatically start this app
RMStart TRUE; // This application is to be allocated & host by RM
Console TRUE; /I Start this App in a XTerm
Display "factical1”, // Where to place the display for this App
Memory 2; // Min amount of Free RAM (Mb) needed
STARTUP {

Type "SUN"; OS "Solaris";

Version"2.5.1"; Version "2.6"

Directory "$STACTICAL_BINDIR";

Execute "auto_special.solaris.exe”;

Arg "% {UNIQUE, 1, 32)";

Arg "> jusrtmpl%(USERID)_auto_spec_%(UNIQUE, 1, 32).out";
} llend STARTUP
SHUTDOWN { Script “auto_special_shutdown™; }
DEPENDENCY {

Type STARTUP; // STARTUP, SHUTDOWN

Name "AAW. TacticalServices:Doctrine_Server”;
Delay 10; // seconds

}
RestartDelay 1; // Time to delay starting after a detected failure
SurvivabilityQoS { Survivable TRUE;

MinCopies 1;

SameHost FALSE;
}Scalability { Scalable TRUE;
Combining FALSE;
Splitting FALSE;

Figure 2, Specification of AutoSpecial.

hardware subsystem consists of one or more hosts. A host
specification describes the host’s name, type, operating
system and version, number of processors, processor
speeds, RAM capacity, and network connectivity.
Network system specifications describe the networks and
interconnection devices such as switches, hubs, and
routers. A network system consists of zero or more
subsystems which may contain networks (each with an
associated peak bandwidth specification) and/or
interconnection devices (each containing a description of
network membership). (Hardware and network system
models employed for characterizing the resource supply
space features are described in Section 4.)

4 Adaptive QoS and Resource
Management

This section defines metrics and techniques for
reasoning about the mapping of demand space onto
supply space, i.e., for resource and QoS management.
Our approach (depicted in Figure 4) works as follows.
Application programs of real-time control paths send
time-stamped events, via the Application Instrumentation
component, to the Path QoS Monitor component. The
Path QoS Monitor component calculates path- and
application-level QoS metrics, compares observed QoS to
required QoS, and notifies the QoS Diagnosis component
when QoS violations are detected. The Host & Network
Monitoring component collects operating system and
network performance, status, and load information, which
is then provided to the Resource QoS Monitor component.
Here, host and network statistics are correlated,
performance and load histories are maintained, and load
metrics are calculated. This information is made available
to the QoS Diagnosis component for use in determining

resource loading, and allocation tradeoffs. The QoS
HARDWARE SYSTEM Navy_Ship { Diagnosis
avy_Ship
SUBSYSTEM Compartment_5 { component
HOST tactical_12{ determines the
Type "SUN";
OS "Solaris"; Version "2.6"; cause. of .QOS
Speed 250; //MHz Memory 256; //MB violations,
NumCPUSs 2,
Default-Network Ship_Net.Ether_100; analyzes and
Network Ship_Net:ATM_250; ranks
} ! potential
} HOST tactical_13{...} reallocation
SUBSYSTEM Compartment_6 {...} actions for
) SUBSYSTEM Compartment_7 {...} ‘ restoring
NETWORK SYSTEM Ship_Net { required QoS,
LAN Ether_100 { Bandwidth 100;} d vrovides
LAN ATM_ 250 {Bandwidth 250;} an: 1; Vi ¢
IC Hub_3{ this list o
Network Ship_Net:Ether_100; recommended
)Network Ship_Net:ATM_250; actions along
} with
associated

Figure 3, Host & net. specs.

Ex.1009 / Page 264 of 280
TESLA, INC.

Fifth IEEE Real-Time Technology and Applications Symposium, June, (999, Vancouver, British Columbia

host and network load metrics to the Resource Allocation
component. The Resource Allocation component
determines the most beneficial allocation of resources for
restoring required QoS. The allocation actions selected
are then implemented by the Application & Resource
Control components. These techniques are explained in
more detail in this section.

Monitoring of real-time QoS involves the collection of
time stamped events sent from applications. The times
when application/replica ‘a’ starts and ends processing of
the data stream for cycle ‘¢’ are represented as s(P.DS(c,
a)) and e(P.DS(c, a)), respectively. The times when
application/replica ‘a’ starts and ends processing batch ‘j°
of data during cycle ‘¢’ of P; are denoted by s(Pi.DS(c, a,
J)) and e(P;..DS(c, a, j)), respectively.

Observed real-time QoS metrics are defined in terms
of these basic events as follows: (1) latency of path P;
during cycle ‘c’ is = Aops(P;,c) = max({e(P.DS(C, im0
i) - sPeDS(c, aixy, 1)) | am = SINK(P), a; =
ROOT(Py)}) (note that Aggs is the maximum value from
the set of latencies of all batches of data processed by all
replicas of SINK(P;) during the cycle), (2) data-inter-
processing time of application ‘a’ in path P; during cycle
‘¢’ of data stream P.DS(c,a) is approximated as

Sons(P.DS(c,a)) = {s(P..DS(c,a)) - s(P:. DS(c-1,a))}, for ¢
> 1, (3) data-inter-processing time of path P; during cycle
‘¢’ for data stream P.DS(c,a) is Sops(Pi.DS(c)) =
doss(Pi.DS(c,a)), where ‘a’ = ROOT(P;), (4) observed
cycle throughput of path P; during cycle ‘c’ is Oops(Pjc) =
P.DS(c)| / hoss(Pise), (5) workload of application/replica
‘a’ of path P; during cycle ‘c® is Weops(Pic,a) =

a
[P.DS(c,a)| / Sons(PiDS(e,a)), and (6) workload of path
P; during cycle ‘c’ is Wops(Pie) = [PuDS(c)} /
80];5(1) i.DS(C)) = (ZIPi.DS(C,ank)D / 8033(Pi.DS(C)), for all
replicas k of ROOT(P)).

Analysis of a time series of the real-time QoS metrics
enables detection of QoS violations. An overload of a
path or application occurs in any cycle ‘¢’ where the
number of violations within the sample window o(Py)
equals or exceeds the maximum number of violations
v(P). As an example, detection of a path-level QoS
latency violation occurs when the observed path latency
Aons(P;) exceeds the required path latency Ageo(Py) for
v(P;) samples within the sample window of the most
recent o(P;) samples. This can be expressed as o(P;) <
l{d: (c-drH < @) A [(azol®)) - ors®id) < O},
where ‘¢’ is the current data stream cycle and ‘d’
represents data stream cycles

within the sliding window
[e-(@(P)-1), ¢]. For the
experiments described in
Section 6, path latencies
(hops(Py, ¢)) are used for
determining QoS violations.

The components of the
supply space are also
modeled @ posteriori in our
approach. A hardware
system, HS, consists of (1) a
set of hosts HS.H = {h,, h,,
...... ¥, (2) a set of Local
Area Networks or LANs,
HS.L = {L],Lz,}, and
(3) a set of interconnecting
devices HS.I = {iyiz,}.
The system model captures
several hardware load
metrics. The paging score
of a host Ah; at time ¢ is
defined as PS(h;t), and is
calculated as the number of
page faults per second
averaged over the time
interval t,, divided by a
maximum page fault

Figure 4. QoS & resource management.

F-7

threshold. The cpu score of
a host 4; at time ¢ is defined
as CS(hut), and represents

Ex.1009 / Page 265 of 280
TESLA, INC.

the average percent CPU idle time over time interval t,.
The network score of a host k; at time ¢ is defined as
NS(h;t), and is calculated as the number of packets
received plus the number of packets sent averaged over
time interval t;, divided by a maximum network packet
threshold. (All scores fall within the interval [0,1].)

Fitness scores for each of the host load metrics are
calculated as follows: The paging fitness is calculated as
PF(h,t) = (1 — PS(hy,t)). The cpu fitness is calculated as
CF(h,t) = CS(hy,t). The network fitness is calculated as
NF(h;,t) = (1 — NS(h;,t)). These fitness score are used to
calculate the aggregate fitness indices. The notation
FI(h;,t) denotes the aggregate fitness index of host h; at
time t. One fitness index function that we have found
useful is: Fl(hy,t) = (wy * PF(hyt)) + (wy ¥ CF(h;t)) +
(ws * NF(hy,t)), where w; is the weight given to the i"
load metric, and = w;= 1.0. The fitness index is a relative
measure of host load: the higher the fitness index, the
lighter the load on the host. When making resource
allocation decisions, hosts with higher fitness scores are
preferred over hosts with lower fitness scores.

5 Experimental Results

The techniques described in the previous sections have
been implemented and employed to manage several
subsystems within a complex distributed experimental
Navy system. This section describes a set of experiments
that demonstrate the ability of our approach to deliver
real-time QoS to these subsystems, even in highly
dynamic environments.

The experiments were performed in the System
Control Laboratory (SCL) at the Naval Surface Warfare
Center in Dahlgren, Virginia. The tactical system
applications, simulation components, and resource and
QoS management components were run on Sun, SGI,
DEC and HP systems, consisting of (a) 12 Sun Ultra 2
Enterprise dual processor machines in a “compute farm”
arrangement, (b) 2 Sun Ultra 2 dual processors, (c) 1 Sun
Ultra 1, (d) 1 Sun Ultra 60, (¢) 1 Sun Sparc 10, (f) 7 SGI
Origin 200 dual processor machines in a compute farm
arrangement, (g) 3 SGI Onyx 2 computers, (h) 1 SGI O2
workstation, and (i) 5 HP TAC4 J210 workstations. In
addition, there were 3 Sun systems running Solaris 2.5.1,
two of which were used as file servers, and one of which
was used as a Network Time Protocol (NTP) server.

. . ags
1998 Demo Block Diagram (simplified)
“Ring of Death” e e e
- {RoD) ind PDU Rined | Advanced Computing Test-bed Interconnects:
St [SimCon |-.-p|_kned T ke ! T Pl:n oAt
Generator -~ —-Pl:‘__ﬂ__l- - i
) e ,.. ! Server |-
j rmemy el ["—‘M -
Geodatic Broker Ship Reliive
\l' Target RoDyd Geocentric —» Ship Relative SIoTHDS] oy
Controller i iimans ' CD(Display
Geocentric .| AACT{Track Yy {Geocentric)
v Broker ———— . .
l Entity/State PDUs. Geocentric ——3» Geodetic ¢ ———I® " Different formats w/i
o eodetic ¥ RTDS same message
o Helm o Tactical Picture Disp),
Message | [~ - -.{ JMCIS | ABMX |-~ o) ical Picture Displays
- Control Genarator w0181 sorazd F e ~ Peconflictio, S {Map-centric)
. i T CFF 3 Remote Digral
Geodetic - ﬂ JMCIS Display - p SR 23D Al [cre (ROD al
1\ Sim Truth (Geocontricy —— ° — | er Processor gy
Display Vo En
oSN E ent M-2 Figh
Geocentric o om Au“hglg,,%"z.a. nasgemen WCSsim |- bl | M J""H
I Entity/State PDUs ~ %1 Fiter Server
J Ship Relative ——3» Seccentrid
Injt Upp NSFS
Geocentri * 7 j/ Sim
X Helm :
NavSim €\ pata. 1 ' ATWCSLC =| 1%2&"2.“;“ l"”
Geodetic Attitude Data - 1 1 1612 | 5
O/S Posttion pIS
=== Geocentric X, Y, Z (DIS-based)
— Ship Relative - Owaship Tangent Plane Diagram developed by Wayne Mills
=== Geodetic - WGS-84 and Mike Johnson, NSWCDD
— N/A
Advanced Computing 1998 Demo Overview 29 September 1998 - p 3

Figure 5. The software systems used in the experiment.

F-8

Ex.1009 / Page 266 of 280
TESLA, INC.

Fifth IEEE Real-Time Technology and Applications Svmposium, June, 1999, Vancouver, Bnush Columbia

There were also 6 DEC Alpha workstations running DEC
Unix 4.0b which were used for instrumentation displays,
and 1 SGI Indigo2 running Irix 5.3 which was used for
visualization of network loading. Four Windows NT
systems were also part of the testbed but were not used
during the experiments reported herein.

Three networks were used in the testbed: ATM,
FDDI, and Ethernet (both 10baseT and 100baseT). All
systems except for the file servers and time server were
connected to the Ethernet network, and most hosts were
also connected to either the ATM or FDDI networks. The
ATM network was used as the primary network for
tactical communication (except for hosts that did not have
ATM connections, in which case FDDI was the preferred
network). The Ethernet network was used primarily for
data traffic supporting resource and QoS instrumentation,
monitoring, and control.

The block diagram in Figure 5 shows the major
computer program components that were operational
during the experiment. The components shown outside of
the shaded region represent simulators controlling targets,
tracks, Navy ships, radars, and weapon systems. These
components form an integrated wrap-around simulation
environment capable of updating and controlling the
behavior of 1000s of real-time tracks. The “system under
test”, represented within the shaded region, is composed
of Command, Control, Communications, Computers, and
Intelligence (C4I) components, ship combat systems Anti-
Air Warfare (AAW) components, and Advanced
Tomahawk Weapon Control System (ATWCS) Launch
Control components.

The AAW subsystem was the focus of our
experiments and incorporates the air defense path
components discussed in Section 2: threat detection
(detection & assessment path) and engagement (action
initiation path). The data flows along the AAW
subsystem paths are initiated by the simulation
environment. Track data injected by the wrap-around
simulation environment is provided to the Track
Correlation and Filtering (TCF) function, which creates
and maintains a track file representing the ship’s view of
the tactical environment. The TCF function provides this
data to the Radar Track Data Server (RTDS), which
distributes the track data to client applications as
requested. The four weapons doctrine applications
(Manual Engage, Semi Auto [not shown], Auto-SM, and
Auto Special) are clients of the RTDS and compare the
track data against operator selected doctrine criteria.
They then forward any tracks that match the doctrine
criteria to the Engagement Server for engagement. The
Engagement Server validates and schedules the
engagements and sends the engage order to the Weapons
Control System Simulator (WCSsim). The WCSsim then
sends the target information and firing order to the SM-2
missile flight simulator which launches and flies out a

simulated missile which attempts to intercept and destroy
the simulated target.

Within the AAW subsystem, the focus of our
experiments is the AAW Auto Special Doctrine path,
consisting of the Track Processor component of TCF, the
RTDS application, the Auto Special Doctrine process, and
the Engagement Server application. This path specified
as AAW:Doctrine:AutoSpecial_Review in Figure 1.

Resource and QoS management components were
used to monitor, control, and manage the testbed
environment, Resource management components were
used for starting up and configuring all of the system and
simulation components (based on the QoS specifications
described in Section 2) except for those shown within the
heavy dashed line. Run-time monitoring of host, network
and application resource usage and statuses were
performed for all of the SGI, Sun, and HP systems within
the testbed. In addition, for components within the AAW
Doctrine subsystem paths (described above), application
QoS performance and load metrics were monitored. This
monitored information was used for determining host and
network load and health indices, as well as application
and path-level statuses and QoS performance metrics.
These statuses, metrics, and load indices were used (as
described in Section 4) for: (1) determining path overload
conditions (i.e., QoS violations) and for determining the
“best” method (from the options provided within the QoS
specifications) for restoring required QoS and (2)
determining fault recovery actions when software failures
were detected. Detailed QoS specifications, as described
in Section 2, were developed for each of the systems
shown in the diagram (excluding those within the heavy
dashed line). These specifications defined the startup,
configuration, and reconfiguration options available for
each software application and path. Software fault
recovery actions were provided for ATWCS, resource
management, displays, and AAW components during the
experiments. Scalability options were provided for the
AAW doctrine components (ManualEngage, SemiAuto,
AutoSM, and AutoSpecial processes) within the various
AAW doctrine paths.

A set of experiments was designed to test our
approach to adaptive resource and QoS management for
the class of applications described in [6]. As discussed
above, the tests focused on the AAW subsystem, in
particular on the AutoSpecial doctrine review path (the
path specified in Figure 1 as
AAW:Doctrine: AutoSpecial_Review). Hereafter the path
is referred to as ASRP (AutoSpecial Review Path). The
path is described in the specification language as being
scalable and survivable; thus, our experiments tested both
of these features. Its real-time QoS requirements are
maximum latency [Areg(ASRP)] of 65ms with a sliding
window size [o(ASRP)] of 20 samples, and maximum
number of violations during the sliding window [v(

Ex.1009 / Page 267 of 280
TESLA, INC.

AumSpecial Track Count

/7,
i

/
/
—/,

]
|
!

A
4

;Fd

|

|

/

Track Cou
-
I e SN

g8 55 8 %8 8§

H

bt

o

EY 100 150 0

Tieas i

20 20

Figure 6. Tactical Load | ASRP.DS| over time.

ASRP)] of 15 samples. The system is stressed with
dynamic changes in the workload of the path (e.g.,
increasing track load), resulting in QoS violations. We
test the ability of the QoS and resource management
middleware to detect and recover from the violations, and
to do so in a timely manner. Additionally, a set of
experiments is run to test the ability of the middleware to
provide survivability (fault detection and recovery)
services to real-time application systems in a timely
manner. The results are summarized in Figures 6 and 7.

To test the ability of the middleware to manage real-
time QoS in dynamic environments, the workload of the
path was incrementally increased (see Figure 6) until its
timing requirement could no longer be met (see Figure 7).
At that point, the scalability feature of the path was
exploited - the QoS and resource management software
replicated a program contained in ASRP and assigned the
replica to the host with the highest fitness.

Application AAW:Doctrine:AutoSpecial (abbreviated
as AS) is the one that requires replication in order to
restore real-time QoS to path ASRP during the test runs.
The eligible list of hosts where the AS application could
be run was Profile(AS) = {altairl, altair4, altair5, altair6,
altairl1 and altair12}. Initially, only one copy of the AS
application was run on host altaird. Hence,
REPLICAS(AS) = {AS;} (indicated by a single line
representing the application on host altair4 in Figure 6)
and the tactical load of the path |[ASRP.DS| =
|ASRP.DS(AS)| = 300 (also as shown in Figure 6). As
seen in figure 7, the initial review time latency is less than
the required review time latency of 65ms (Aops(ASRP) <
Areo(ASRP)).

Starting at about time 25, the tactical load |ASRP.DS|
is increased gradually until at about time 50, [ASRP.DS|
> 900 and Aops(ASRP) > Agpg(ASRP). At time 53.27
(see Figure 7), the QoS monitor detects that at least
v(ASRP) violations occurred within the sampling
window o(ASRP), and the QoS management middleware
reports a realtime QoS violation. The resource
management software is notified that the AS application
should be replicated to recover from the violation. Using
the host fitness indices for all hosts in Profile(AS), the
host on which to start the replica is selected (which in this
case was host altairl1). The host fitness index function

F-10

AutoBpecia) Ruview Tims

|

= !Mﬁw

Figure 7. Review L&t&ncy Aoss(ASRP) as a
function of time.

used is FI(hyt) = (w; * PF(hyt)) + (w2 * CF(hy,t)) + (wy
* NF(h;t)), as described in Section 4. The time for the
resource management response took 0.0009 seconds, and
the total latency of the recovery actions (including starting
the new replica of AS) took 0.3017 seconds.

Following the recovery action, REPLICAS (AS) =
{AS,, AS;} (indicated by two lines representing hosts
altair4 and altair11 in Figure 6). The tactical load of each
replica stabilizes at about time 60, such that
|ASRP.DS(AS;)| = |ASRP.DS(AS;)| = 500 (thus the
path’s total tactical load |ASRP.DS| = 1000). As seen in
Figure 7, the observed latency for each replica stabilizes
below the required latency (Lops(ASRP) < Agpo(ASRP)).

This sequence of dynamically increasing the tactical
load |ASRP.DS| until the ASRP path is overloaded is
repeated several more times, (starting at about time 70) as
can be observed in Figures 6 and 7. The results are very
similar to the first case-the QoS violation is quickly
detected and a scale-up action is taken, Across all the
tests, the average resource allocation decision time was
0.0012 seconds (with a standard deviation of 0.0002582)
and the average total latency of the recovery actions was
0.32951667 seconds (with a standard deviation of
0.04376704). These results show the effectiveness of our
approach for dynamic real-time QoS management within
a large-scale combat system as described in [6]. Real-
time QoS violations were successfully detected,
appropriate recovery actions were performed, and the
required QoS was restored. These actions were
consistently performed in less than one second, even
under heavy tactical and system loads.

In addition to testing the ability of our middleware to
deliver real-time QoS to dynamic real-time applications,
we also tested the ability of the middleware to provide
survivability services to real-time application systems in a
timely manner. In these tests, one replica of the
AutoSpecial application was faulted, requiring that the
middleware (1) detect the failure and (2) restart a replica
on the “fittest” of the eligible hosts. These tests were
performed a total of 17 times, and the reallocation
decision times and total recovery times were measured.
The average resource allocation decision time was
0.00097059 seconds, with a standard deviation of
0.00041648. The minimum, average and maximum total

p— 7y
e AKSFS

o ARAEY 1
- ater12

Ex.1009 / Page 268 of 280
TESLA, INC.

Fifth IEEE Real-Time Technology and Applications Symposium, June, 1999, Vancouver. British Cotumbia

latencies of the recovery actions were 0.1296,
0.19401765, and 0.2379 seconds, respectively, with a
standard deviation of 0.04376704. Thus, across all tests,
the total response time for application fault detection and
recovery services was far less than one second, providing
adequate response times.

6 Conclusions and Future Work

This paper has presented adaptive QoS and resource
management technology for distributed real-time systems
with a-posteriori-determined workloads. The
effectiveness of our approach was demonstrated within an
experimental large-scale combat system. In particular, test
results were obtained and evaluated for the
AutoSpecial_Review path of the AAW subsystem. The
results show that real-time QoS violations and program
faults were successfully detected, appropriate recovery
actions were performed, and the required QoS was
restored. These actions were consistently performed in
less than one second, even under heavy tactical and
system loads. Ongoing work includes formal techniques
and decentralized algorithms for QoS negotiation,
resource and QoS management for transient and quasi-
continuous paths, and benchmarking of dynamic real-time
systems.

7 References

[1] L. Abeni and G. Buttazzo, “Integrating multimedia
applications in hard real-time systems,” in Proceedings of the
19" IEEE Real-Time Systems Symposium, 3-13, IEEE Computer
Society Press, 1998.

[2] A. Atlas and A. Bestavros, “Statistical rate monotonic
scheduling,” in Proceedings of the 19" IEEE

Real-Time Systems Symposium, 123-132, IEEE Computer
Society Press, 1998.

[3] T.P. Baker, “Stack-based scheduling of realtime processes,”

Journal of Real-time Systems, 3(1), March 1991, 67-99.
[4] 8. Brandt, G. Nutt, T. Berk and J. Mankovich, “A dynamic
quality of service middleware agent for mediating application
resource usage,” in Proceedings of the 19" IEEE Real-Time Sys.
Symposium, 307-317, IEEE Computer Society Press, 1998.

[S] D. Haban and K.G. Shin, “Applications of real-time

monitoring for scheduling tasks with random execution times ,”
IEEE Transactions on Software Engineering, 16(12), December
1990, 1374-1389.
[6] Robert D. Harrison Jr., “Combat system prerequisites on
supercomputer performance analysis,” in Proceedings of the
NATO Advanced Study Institute on Real Time Computing,
NATO ASI Series F(127), 512-513, Springer-Verlag 1994,

[7]1 F. Jahanian, “Run-time monitoring of real-time systems,” in
Advances in Real-time Systems, Prentice-Hall, 1995, 435-460,
edited by S.H. Son.

[8]T.E. Kuo and A. K. Mok, “Incremental reconfiguration and
load adjustment in adaptive real-time systems,” IEEE

F-11

Transactions on Computers, 46(12), December 1997, 1313-

1324.

[91J. Lehoczky, “Real-time queueing theory,” in Proceedings of
the 17" IEEE Real-Time Systems Symposium, 186-195, TEEE
Computer Society Press, 1996.

[10] C.L. Liu and J.W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal of
the ACM, 20, 1973, 46-61.

[11] J.W.8. Liu, K.J. Lin, W.K. Shih, A.C. Yu, J.Y. Chung and
W. Zhao, “Algorithms for scheduling imprecise computations,”
IEEE Computer, 24(5), May 1991, 129-139.

[12] K. Ramamritham, J.A. Stankovic and W. Zhao,
“Distributed scheduling of tasks with deadlines and resource
requirements,” IEEE Transactions on Computers, 38(8), August

1989, 110-123.

[13] L. Sha, M. H. Klein, and J.B. Goodenough, “Rate
monotonic analysis for real-time systems,” in Scheduling and
Resource Management, Kluwer, 1991, 129-156, edited by A. M.
van Tilborg and G. M. Koob.

[14] D.B. Stewart and P.K. Khosla, “Mechanisms for detecting
and handling timing errors,” Communications of the ACM ,
40(1), January 1997,87-93.

[15] H. Streich and M. Gergeleit, “On the design of a dynamic
distributed real-time environment,” in Proceedings of the 5"
International Workshop on Parallel and Distributed Real-Time
Systems, 251-256, IEEE Computer Society Press, 1997,

[16] J. Sun and J.W.8. Liu, “Bounding completion times of jobs
with arbitrary release times and variable execution times,” in
Proceedings of the 17" IEEE Real-Time Systems Symposium, 2-

11, IEEE Computer Society Press, 1996.

[17] T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.C. Wu
and J.W.S. Liu, “Probabilistic performance guarantee for real-
time tasks with varying computation times,” in Proceedings of
the I* IEEE Real-Time Technology and Applications
Symposium, 164-173, IEEE Computer Society Press, 1995,

[18] J. Verhoosel, L. R. Welch, D. K. Hammer, and E. J. Luit,
“Incorporating temporal considerations during assignment and
pre-run-time scheduling of objects and processes,” Journal of
Parallel and Distributed Computing, 36(1), July 1996, 13-31,
Academic Press.

[19] L. R. Welch, A. D. Stoyenko, and T. J. Marlowe,
“Modeling resource contention among distributed periodic
processes specified in CaRT-Spec,” Control Engineering
Practice, 3(5), May 1995, 651-664.

[20] L. R. Welch, B. Ravindran, B. Shirazi and C. Bruggeman,
“Specification and analysis of dynamic, distributed real-time
systems,” in Proceedings of the 19" IEEE Real-Time Systems
Symposium, 72-81, IEEE Computer Society Press, 1998,

[21] J. Xu and D.L. Parnas, “Scheduling processes with release
times, deadlines, precedence and exclusion relations,” JEEE
Transactions on Software Engineering, 16(3), March 1990, 360-
369.

Ex.1009 / Page 269 of 280
TESLA, INC.

APPENDIX G

RESOURCE MANAGEMENT
QoS AND SYSTEM SPECIFICATIONS

Larry A. Fontenot+, Lonnie R. Welch*, Shafqat Anwar*, Paul V. Werme+

+Naval Surface Warfare Center, Dahlgren Division
17320 Dahlgren Road
Dahlgren, Virginia 22448-5000
{FontenotLA, WermePV }@nswc.navy.mil

*Computer Science and Engineering Dept
The University of Texas at Arlington
Arlington, TX 76019-0015
Welch@cse.uta.edu
Anwar@swbell. net

G-1

Ex.1009 / Page 270 of 280
TESLA, INC.

APPENDIX G

RESOURCE MANAGEMENT
QoS AND SYSTEM SPECIFICATIONS

Larry A. Fontenot+, Lonnie R. Welch*, Paul V. Werme+

+Naval Surface Warfare Center, Dahlgren Division
17320 Dahlgren Road
Dahlgren, Virginia 22448-5000
{FontenotLA, WermePV }@nswc.navy.mil

*Computer Science and Engineering Dept
The University of Texas at Arlington
Arlington, TX 76019-0015
Welch@cse.uta.edu

G.1 QoS and System Specifications.

a. To effectively manage a pool of computing resources, the Resource Manager must
have some means of determining the capabilities and configuration of the computing resources
under its control, of determining the software components that need to be executed and the
dependencies of these software components on both hardware and software resources,
determining what mission-level and application-level requirements are expected to be met, and
determining what control capabilities are available to be used to attempt to recover from fault or
QoS violation conditions. To address these needs, a System and Software Specification
Grammar has been developed to attempt to capture the “static” information needed by the
Resource Manager for effectively managing a pool of distributed resources. The development of
this grammar has been a joint effort between NSWCDD and the University of Texas at Arlington
(UTA). The grammar attempts to capture the follow information:

(1) Hardware and Operating Systems
» Hardware Configuration
e Network Configuration
¢ Operating System and Version
(2) Software
Systems, Subsystems, Applications, Processes
Resource Requirements
QoS Requirements
Survivability Requirements
Path Information: Structure and QoS Requirements

e o 9 o

b. As part of the grammar development effort, a specification library has also been
developed which parses the specification files and provides an API for accessing the

G-2

Ex.1009 / Page 271 of 280
TESLA, INC.

specification information. The specification library was written in C and has been ported for all
of the UNIX development platforms in the testbed, including Solaris 2.6, Solaris 2.5.1, Irix 5.3,
Irix 6.3, Irix 6.4, and HP-UX 10.20. The library is currently being used by most of the Resource
Management components, including Program Control, Resource Manager, Path QoS Managers,
History Servers, UNIX Host Monitors, and the Host and Path Displays.

¢. The remainder of this section presents the Resource Management System and
Software Specifications Grammar for describing the characteristics and requirements of
dynamic, path-based real-time systems. The grammar provides abstractions to describe the
properties of the software, such as hierarchical structure, inter-connectivity relationships, and
run-time execution constraints. It also allows description of the physical structure or
composition of the hardware such as LANs, hosts, interconnecting devices or ICs (such as
bridges, hubs, and routers), and their statically known properties (e.g., peak capacities). Further,
the Quality-of-Service (QoS) requirements on various system components can be described.

d. At the highest level, a specification consists of a collection of software systems,
hardware systems, and network systems. The language rules for specifying systems are
described in the remainder of this section. A high-level system specification is shown below:

SOFTWARE SYSTEM AAW {...}
SOFTWARE SYSTEM ATWCS {...}
HARDWARE SYSTEM HOST POOL {...}
NETWORK SYSTEM SHIP NET {...}

G.1.1 Software System Specifications.

A software specification is collection of software systems, each of which consists of one
or more software subsystems. This is illustrated below:

SOFTWARE SYSTEM AAW {
SUBSYSTEM Displays {...}
SUBSYSTEM Tactical_Services {...}
SUBSYSTEM Doctrine {...}

} // End Software System AAW

SOFTWARE SYSTEM ATWCS {
SUBSYSTEM Launch Control {...}
SUBSYSTEM Engagement_Plan_and_Control {...}
SUBSYSTEM Mission Data Plan {...}
SUBSYSTEM Scenario_Gen {...}

} // End S‘é'ftware System ATWCS
Note that a comment begins with “//” and extends to the end of a line.
Qualified references: AAW:Displays, AAW: Tactical Services, and AAW:Doctrine denote the

subsystems of software system AAW. This is distinguished from the subsystems of ATWCS,
which would be identified as ATWCS:Launch_Control,

G-3

Ex.1009 / Page 272 of 280
TESLA, INC.

ATWCS:Engagement Plan_and_Control, ATWCS:Mission_Data_Plan and
ATWCS:Scenario_Gen.

G.1.1.1 Software Subsystem Specifications.

A subsystem is specified by describing its priority, sets of constituent applications and
devices, a set of end-to-end real-time path definitions, and a graph representing the
communication connectivity of the applications and devices. A sample subsystem specification
is shown below:

SUBSYSTEM Doctrine {
Priority 2;
PATH Spy_Declared_AutoSpecial {...}
PATH AutoSpecial ReviewTime {...}
PATH SemiAuto_ReviewTime {...}
PATH AutoSM_ReviewTime {...}

APPLICATION Auto_Special {...}
APPLICATION Semi_Auto {...}
APPLICATION Auto_SM {...}

} // End SubSystem Doctrine
G.1.1.1.1 Dynamic Real-time Path Specifications.

a. The definition of a path includes a set of constituent applications, various path
attributes, QoS requirements, and data/event stream definitions (see example below). The
attributes of a path include priority, type, and importance. Path type, which defines the
execution behavior of the path, is either continuous, transient, or quasi_continuous.

b. A continuous path is one in which the elements of a data stream are continuously
evaluated and decisions are continuously made whether or not any of the elements require action.
Typically, there is a timeliness objective associated with completion of one review cycle, i.e., on
the time to review each of the elements of the data stream once. The doctrine track-review path
from track-distribution to doctrine evaluation is an example of a data-stream that is constantly
undergoing analysis.

c. Transient paths are typically event-driven. An action in the system initiates a task to
be performed to completion. A timing objective is typically associated from initiation to task
completion. A good example of a transient path is the Spy-Declared Auto-Special Engagement.
Spy initiates the action to send a track through a high-priority path with tight timing
requirements.

d. Finally there is the quasi-continuous path. This typically occurs when an action
“turns-on” a path and a later action “turns-off” the path. There are typically two timeliness
objectives: (1) completion time for one cycle and (2) deactivation time; typically, it is more
critical to perform the required processing before the activation deadline than it is to meet the
completion time for each cycle. Thus, it is acceptable for the completion time of some cycles to

G-4

Ex.1009 / Page 273 of 280
TESLA, INC.

violate the requirements, as long as the desired actions are completed by the deactivation
deadline.

PATH AutoSpecial ReviewTime {
Connectivity{...}
Type Continuous;
Priority 1;
RealTimeQoS{...}
Scalability{...}
DATASTREAM{...}

} // End Path AutoSpecial_ReviewTime

G.1.1.1.1.1 Path Connectivity Graphs.

The connectivity specification represents the communication relationships among
applications in a path. These relationships form a graph, which is specified as a set of ordered
application pairs. The sample specification (below) indicates that application
AAW:Track Control:Track Controller sends data to application
AAW:Track_Distribution:RTDS and that application AAW:Track Distribution:RTDS sends
data to application AAW:Doctrine:Auto_Special. Note that the names of applications are fully
qualified, as System: Subsystem: Application.

Comnmnectivity {
(AAW:Track_Control: Track_Controller, AAW:Track Distribution:RTDS),
(AAW:Track Distribution:-RTDS, AAW:Daoctrine: Auto_Special),

} // End Connectivity

G.1.1.1.1.2 Real-time QoS.

RealTimeQoS {
SimpleDeadline 65.0; /I Cycle deadline
InterProcessingTime 0.600;
Throughput 200;
MaxSlack 80; // Maximum deadline slack/cycle
MinSlack 20; // Minimum deadline slack/cycle
SlidingWindowSize 20; {1 Cycles to monitor real-time QoS
Violations 15; /f Max QoS violations w/in window
} // End RealTimeQoS

As seen in the above example, a real-time QoS specification includes timing constraints
such as simple deadlines, inter-processing times, and throughputs. A simple deadline is defined
as the maximum end-to-end path latency during a cycle of a continuous or quasi-continuous
path, or during an activation of a transient. Inter-processing time is defined as a maximum
allowable time between processing of a particular element of a continuous or quasi-continuous
path’s data stream in successive cycles. The throughput requirement is defined as the minimum
number of data items that the path must process during a unit period of time. Each timing
constraint specification may also include items that relate to the dynamic monitoring of the
constraint. These include minimum and maximum slack values (that must be maintained at run-
time), the size of a moving window of measured samples that should be observed, and the
maximum tolerable number of violations (within the window).

G-5

Ex.1009 / Page 274 of 280
TESLA, INC.

G.1.1.1.1.3 Scalability.

The grammar and model consider the scalability of the end-to-end paths and their
application program constituents. Some paths permit replication of their constituent applications
to scale to dynamic data stream or event stream loads. If a scalable path is unable to meet its
real-time requirements, one or more of its constituent applications may be replicated. Similarly,
if a path is exceeding its real-time requirements by a large margin, one or more of its replicas
may be removed. The scalability specification contains a flag that is TRUE or FALSE,
indicating if the path is scalable. Also specified is the PathSettlingTime, which indicates the
amount of time that must be allowed between successive “scalings” of the path. Below is an
example of a scalability specification.

Scalability {

Scalable TRUE; // Path has scalable components
PathSettlingTime 40.00; // Seconds between reconfigurations
} // End Scalability
G.1.1.1.1.4 Datastream Specification.

a. For real-time systems it is important to understand the characteristics of the
environment in which they operate. We have found it useful from an engineering perspective to
model an environment as deterministic, stochastic or dynamic. A deterministic environment
exhibits behavior that can be characterized by a constant value (scalar or interval). A stochastic
environment behaves in a manner that can be characterized by a statistical distribution, which
may be either a well-known distribution, e.g. normal, or an empirical distribution that has
properties that can be derived from a data set. A dynamic environment depends on conditions
that cannot be known in advance. For systems that operate in such environments, it can be
catastrophic to build systems based on predicted conditions because the system may not be able
to adapt, even though adequate resources may be available.

DATASTREAM {
Type Dynamic; // Deterministic, Stochastic, or Dynamic
SlackQoS 400; // Additional number of data items that the

// continnous/quasicontinous path should be

// able to handle at any given time
} // End Datastream

b. The data stream size or event arrival rate of a dynamic stream is not described in the
specification, since it must be observed at run time.

c. The SlackQoS specification for a datastream indicates an amount of additional
elements that the path should be able to process in a timely manner. The resource allocator
should consider this quantity when assessing possible allocations.

G.1.1.1.2 Application Specifications.

APPLICATION Auto_Special {

Ex.1009 / Page 275 of 280
TESLA, INC.

TimeDelay 4; // Delay this long after initial startup
Automatic TRUE; /1 Automatically start this app.
Console FALSE; // Start this App in an XTerm or other console
RM_Start TRUE;// Should allocations be done dynamically
STARTUP{...}
SHUTDOWN{...}
DEPENDENCY{...}
RestartDelay 10;
SurvivabilityQoS {...}
Scalability {...}

} // End Application Auto_Special

An application is an executable image that may be started as an autonomous process on a
host. TimeDelay indicates the amount of time that must elapse since the startup of the previous
application (this is sometimes needed to insure proper initialization of cooperating applications).
Automatic indicates whether the application is part of a default startup configuration for the
system or not (necessary for one-button system starts). Application attributes also include all
information necessary to startup and shutdown applications (not elaborated in this paper).
Console indicates whether or not an application is to be started in an Xterm, or some other type
of console. RM_Start specifies whether or not the application is to be dynamically allocated at
startup, or rely on an operator for resource allocation. The starfup block and the shutdown block
describe how to automatically start and stop the application. The dependency block indicates
any dependencies the application may have with the startup and/or shutdown of other
applications (e.g. it may be required that a particular application be started before another
application can be started). RestartDelay indicates the amount of time that must elapse before
restarting a “failed” application. The SurvivabilityQoS and Scalability blocks indicate if and how
survivability and scalability services are to be provided to the application.

G.1.1.1.2.1 Application Startup Information.

An application startup block contains all the information necessary to, automatically or
manually, start an application. This information includes supported hardware (host) type,
operating-system type, and operating-system version(s) (see example below). This may be
further constrained by an optional list of the names of hosts that can run the application. The
startup information also includes the working directory for reading and writing data files, the
name of the executable, and an ordered list of arguments that must be passed on the command

line when the application is started. Last is a list of processes expected to be seen on the system
when the application is running.

STARTUP {
Type "SUN";
OS "Solaris";
Version "2.5.1",
Version "2.6";
Host altairl;
Host altair4;
Host altair3;
Host altair6;
Host altair7,
Host altair8;

Ex.1009 / Page 276 of 280
TESLA, INC.

Host altairll;
Host aquilla;
Host blofeld;
Directory "SHIPERD_AAW_VERSION/exes";
Execute "auto_special.solaris2.6.exe";
Arg "Y%(UNIQUE, 1, 32)";
Arg "A_Spcl %(UNIQUE, 1, 32)";
Arg "-jewel";
Arg “-rstat";
Arg "-splot";
Arg "> fusttmp/%(USERID)_auto_special%o(UNIQUE, 1, 32).out";
PROCESS auto_special.solaris2.6.exe {}
}// End Startup

G.1.1.1.2.2 Application Shutdown Information.

An application shutdown block indicates the command(s) to be used for termination of
the application. A shutdown command may be a POSIX signal name or may be a shell script or
batch file. A sample shutdown block is shown below.

SHUTDOWN {
Signal "SIGTERM";
} // End Shutdown

SHUTDOWN {

Script "SHIPERD_AAW_VERSION/exes/stop_auto_special.sh";
} // End Shutdown

G.1.1.1.3 Inter-application Dependencies.

DEPENDENCY {

Type STARTUP;

Name "AAW:Displays: State_Server";

Delay 5; // Seconds
¥

A dependency block describes a temporal relationship between applications (see above
example). The relationship indicates the fype of the dependency (startup or shutdown), the name
of the program with which the dependency exists, and the time value associated with the
relationship. The time value indicates the duration that must elapse between start or stop of the
named application and the start or stop of the application which has the dependency block in its
specification,

G.1.1.1.4 Application Survivability QoS.

SurvivabilityQoS {
Survivable TRUE; // Application is survivable
MinCopies 1; // Min replicas of this application
SameHost FALSE; // Restart on same host on failure?
} /1 SurvivabilityQoS

G-8

Ex.1009 / Page 277 of 280
TESLA, INC.

As shown in the above example, a survivability QoS specification includes a boolean
variable that indicates (1) whether the application should be managed to ensure survivability and
(2) the minimum required level of redundancy. SameHost allows an application to be specified
for restart only on the host it was running upon failure.

G.1.1.1.5 Application Scalability.

Scalability {
Scalable TRUE; /1 1s app scalable?
Combining TRUE; // Does combine inputs
Splitting TRUE; // Does divide outputs
} // Scalability

The scalability specification for an application indicates if an application can be scaled
via replication (see example above). Scalable applications are programmed to exploit load
sharing among replicas, and can adapt dynamically to varying numbers of replicas. The
specification also indicates whether an application combines its input stream (which may be
received from different predecessor applications and/or devices), and splits its output stream
(which may be distributed to different successor applications and/or devices) are also specified.
“Combining” and “splitting” are commonly called “forking” and “joining” in parallel computing
paradigms.

G.1.1.2 Example.

The completed software example for an Auto-Special doctrine application would be
constructed as follows:

SOFTWARE SYSTEM AAW {
SUBSYSTEM Doctrine {
Priority 2;
PATH AutoSpecial_ReviewTime {

Connectivity {
(AAW:Track_Control:Track Controller, AAW:Track Distribution:RTDS);,
(AAW:Track_Distribution:RTDS, AAW:Doctrine: Auto_Special);

} // End Connectivity

Type Continuous;

Priority 1;

RealTimeQoS {
SimpleDeadline 65.0,
InterProcessingTime 0.600;
Throughput 200;
MaxSlack 80;
MinSlack 20;
SlidingWindowSize 20;
Violations 15;

} // End RealTimeQoS

Scalability {
Scalable TRUE;
PathSettlingTime 40.00;

} // End Scalability

DATASTREAM {

G-9

Ex.1009 / Page 278 of 280
TESLA, INC.

Type Dynamic;
SlackQoS 400;
} // End DataStream
3} // End Path AutoSpecial_ReviewTime
APPLICATION Auto_Special {
TimeDelay 4;
Automatic TRUE;
Console FALSE;
RM_Start TRUE,
STARTUP {
Type "SUN";
OS "Solaris";
Version "2.5.1%
Version "2.6";
Host altairl;
Host altair4;
Host altair5;
Host altair6;
Host altair7,
Host altair8;
Host altairll;
Host aquilla;
Host blofeld,
Directory "SHIPERD _AAW_VERSION/exes";
Execute "auto_special.solaris2.6.exe";
Arg "%(UNIQUE, 1, 32)";
Arg "A_Spcl %(UNIQUE, 1, 32)";
Arg "-jewel";
Arg "-rstat”;
Al'g "-Splo u;
Arg "> hasttmp/%(USERID)_auto_special%(UNIQUE, 1, 32).out";
PROCESS auto_special.solaris2.6.exe {}
} // End Startup
SHUTDOWN {
Signal "SIGTERM";
} // End Shutdown
DEPENDENCY {
Type STARTUP;
Name "AAW:Displays:State_Server";
Delay 5; //secs
} // End Dependency
RestartDelay 10;
SurvivabilityQoS {
Survivable TRUE;
MinCopies 1;
SameHost FALSE;
} // End SurvivabilityQoS
Scalability {
Scalable TRUE;
Combining FALSE;
Splitting FALSE;
} // End Scalability
} // End Application Auto_Special
} // End SubSystem Doctrine
} // End System AAW

G-10

Ex.1009 / Page 279 of 280
TESLA, INC.

G.1.2 Hardware System Specifications.

A bardware system specification construct allows the description of one or more
hardware subsystems (see example below). Each hardware subsystem consists of one or more
hosts. A host specification describes the host’s name, type, operating system version, speed,
RAM capacity, CPU quantity, and network connections.

HARDWARE SYSTEM HOST _POOL {
HOST altairl {

Type "S[JN'l; -
0OS " Solaris";
Version "2.6";
Speed 200, /I MHz #
Memory 128; //MB
NumCPUs 1; '
Default-Network SHIP_NET:ATM;
Network SHIP_ NET:ETHER; &

¥
HOST altair2 ...} B &
HOST altair3 {...} gp
HOST altaird {...}

} // End Hardware System HOST POOL

G.1.3 Network System Specifications.

A network system specification describes the LANs and ICs (interconnection devices
such as switches, hubs and routers). A system consists of one or more subsystems. A subsystem
may contain LANs (each with an associated peak bandwidth specification) and ICs (each
containing a description of network membership). A sample network specification is shown
below:

NETWORK SYSTEM SHIP_NET {
LAN ATM {
Bandwidth 100;

}
LAN ETHER {
Bandwidth 100;

}

IC Router {
Network SHIP_NET:ATM;
Network SHIP NET:ETHER;

¥
} // End Network System Ship_Net
G.1.4 Summary.
This section has described a specification grammar for declaring requirements on applications in
a dynamic, distributed, heterogeneous resource pool. The grammar allows the description of

environment-dependent application features, which allows for the modeling and dynamic
resource management of such systems.

G-11

Ex.1009 / Page 280 of 280
TESLA, INC.

