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DRAFT 18 May2000 

Description of Resource Management, NSWCDD patent case number TBD 
Michael W. Masters, NSWCDD, Code B35 

Resource Management consists of a set of cooperating computer programs that provides an ability to 
dynamically allocate computing tasks to a collection of networked computing resources (computer 
processors interconnected on a network) based on the following measures: an application developer/user 
description of application computer program performance requirements; measured performance of each 
application programs; measured workload (CPU processing load, memory accesses, disk accesses) of each 
computer in the network; and measured inter-computer message communication traffic on the network. 

The capabilities provided by Resource Management are as follows: 

• Dynamically allocate computer programs to computers within a network based on a user statement 
of computer program performance goals , 

• Dynamically change allocation according to changing system loading conditions 
• Change allocations based on manual operator direction 
• Dynamically adjust to overall computer workload by balancing processing loads among a number 

of scalable, replicated load sharing programs 
• Dynamically compensate for computer failures -and network link failures by restarting copies of 

lost computer programs on surviving computers within the network 

Resource management consists of the following computer program components: 

• A Performance Specification Language whereby application developers/users define the 
performance goals they want Resource Management to insure for each application. Application 
computer program performance requirements, or performance goals, consist of requested CPU 
execution times for each application. A performance goal may also be specified for the end-to-end 
processing time of a combination of several computer programs which are designed to process 
data in a sequence (referred to as a path). In a path, each computer program in sequence performs 
a defined set of processing steps and then passes its data to the next computer program in the path. 

• A Specification Language Processor Program that converts application developers/users 
requirements into instruction for action by the remainder of Resource Management 

• An Operating System Instrumentation Subsystem that collects measured performance data from 
each computer in the network. This subsystem consists of two types of components. The first is 
an Operating System Instrumentation Data Coilector Program, a copy of which runs on each 
program in the network and collects computer performance data from the operating system on 
which it resides. The second is a centralized Operating System Measurement Repository Program 
that accumulates operating system instrumentation data from all the collector programs. The 
collector programs periodically report the data they have collected to the central operating system 
measurement repository program. 

• A System Health Monitor Subsystem, consisting of a heartbeat mechanism (periodic messages to 
all computers in the network). The System Health Monitor Subsystem detects the failure of any 
computer in the network or the loss of a network link within the overall network and reports this 
information to the Operating System Instrumentation Subsystem. 

• An Application Instrumentation Subsystem that collects measured performance data from each 
application running under the scope and control of Resource Management. This subsystem 
consists of two types of components. The first is an Application Program Instrumentation Data 
Collector Program, a copy of which runs on each program in the network and collects computer 
performance data from the application computer programs running on the computer on which the 
collector program resides. The second is a central Application Program Measurement Repository 
Program that accumulates application instrumentation data from all the collector programs. The 
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collector programs periodically report the data they have collected to the central application 
measurement repository program. 

• A Resource Allocation Program that utilizes measurement information from both the Operating 
System Measurement Repository Program and the Application Program Instrumentation Data 
Collector Program to make decisions concerning the allocation or assignment of computer 
programs to computers within the network. It compares the observed performance of each 
application program with the application developer/user requested performance level. For each 
application, if the application's performance is within bounds specified by the application 
developer/user, the resource allocation program makes no change of allocation to the system 
(computers, network and applications). If one or more applications are found to be performing in 
a less than satisfactory manner compared to the performance goals specified by the application 
developer/user, or if based on trend analysis they are projected to begin performing in a less than 
satisfactory manner, or if a computer failure or network link failure has been detected in the 
network, then the Resource Allocation Program examines data on the measured loading and 
performance of each computer in the network from the operating system instrumentation data 
collector program, applies an optimization algorithm, and selects a configuration change, or 
application computer program reassignment re-assignment to a different computer designed to 
restore the application's performance to the level specified by the application developer/user. The 
Resource Allocation Program sends the configuration change request to a Program Control 
Subsystem and its agents for implementation, (see description of program control component 
below). The Resource Allocation Program selects one of the following actions: 

o If the computer program that is not meeting performance goals has been designed as a 
scalable, replicated load-sharing computer program, then the Resource Allocation 
Program will select a computer from the network which has sufficient reserve capacity to 
provide adequate processing services and will direct the Program Control Subsystem to 
load and initialize a second (and eventually a third, and a fourth, etc.) copy of the 
application program that is not meeting its performance goals. 

o If the program that is not meeting its performance goals is not a scalable, replicated load­
sharing program, then the Resource Allocation Program will direct that the Program 
Control Subsystem move it to a different computer. This move operation consists of 
starting a new copy of the application program that is not meeting its performance goal 
on a computer with the reserve capacity to run the program satisfactorily and then 
shutting down the copy of the application program that is not meeting its performance 
goals. 

o If a computer or network link has failed, then the Resource Allocation Program selects 
one or more computers in the network with the capacity to run the applications on the 
computer or computers that have failed or that have been isolated from the rest of the 
network by the failure of the network link. It will direct the Program Control Subsystem 
to load and initialize copies of all application programs that have been rendered 
inoperable by the computer failures or network link failure. 

• A Program Control Subsystem that receives resource allocation configuration changes from the 
Resource Allocation Program and carries them out. The Program Control Subsystem consists of a 
Program Control Program and a set of Program Control Agents, one of which resides on each 
computer in the network. The Program Control Program has two modes of operation: a manual, 
Program Control Program Operator activated mode and an automatic mode commanded by the 
Resource Allocation Program. When the Program Control Program receives a configuration 
change directive, either from the Program Control Program Operator or the Resource Allocation 
Program, it sends a command to the Program Control Agent on the computer where the 
configuration change operation is to take place. The Program Control Agent on that computer 
performs the appropriate action by means of interaction with the operating system of the computer 
on which it resides and by means of interaction with the file system of the computer network. 
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o If the requested configuration change results in starting a new program on the designated 
computer, then the Program Control Agent sends commands to the file system causing 
the new program to be loaded across the network and initiated on the designated 
computer. 

o If the requested configuration change results in shutting down a program on the 
designated computer, then the Program Control Agent sends commands to the operating 
system causing the program to be stopped. 

Based on long-term oversight and technical direction of the Resource Management capability from its 
inception as a part of the joint DARPA and Navy funded HiPer-D program and the DARPA follow-on 

~Quorum program, it is my assessment that three individuals have contributed substantially to invention of 
-the concept and architecture of Resource Management. The initial concept and design were developed by 
the author, Michael W. Masters, and by Dr. Lonnie Welch while he was on sabbatical at NSWCDD as a 

-visiting professor. Subsequently, Mr. Paul Werme added substantial technical detail to-the architecture. 
_Two individuals have been predominant in the detailed design of the implementation of the components of 
Resource Management described above and in the demonstration and verification that the Resource 
Management concept is realizable. These are Dr. Lonnie Welch and Mr. Paul Werme. In addition, Mr. 
Larry Fontenot may have contributed substantially to the invention of the Performance Specification 
Language and the Specification Language Processor Program. 

This assessment. along with the technical accuracy and completeness of the description provided above, is 
· solely that of the author and should be considered preliminary subject to review and clarification by Dr. 
Welch and Mr. Werme. To the best of the author's knowledge, all work on Resource Management. from 
its inception, has been performed either by government employees or by non-government employees 
working under the direction of government employees through government contracts. 
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EXECUTIVE SUMMARY 

The High Performance Distributed (HiPer-D) Computing Project was a six year joint 
Defense Advanced Research Projects Agency (DARPA)/ Aegis Program Office (NA VSEA PMS 
400) program to investigate the application of advanced technologies and concepts to the Naval 
Surface Ship Anti-Air Warfare (AA W) problem domain. The first phase of the program, funded 
primarily by DARPA, was involved in prototype development and the evaluation and 
demonstration of selected DARPA technologies using the system-level prototype developed. 
The second phase, funded primarily by PMS 400, involved prototype expansion and 
enhancement, incorporating COTS technology as well as DARPA technologies, and a focus of 
risk reduction of Aegis identified critical technology and system issues. The HiPer-D 
Computing Project was to have ended with publication of the Engineering Testbed Three (T3) 
Report. However, due to the success of the project, the Aegis Program Office and DARPA have 
elected to continue the effort. The next demonstration following T3 was named Demo 98. 

The HiPer-D Computing Program Advanced Computing Testbed Demonstration 98 
(Demo 98) was held in September 1998 in the System Control Laboratory (SCL) at NSWCDD. 
Among the attendees were CDR Stevenson of PMS 400 and Dr. Gary Koob ofDARP A. Once 
again, the innovative expertise of the Aegis HiPer-D engineering team at NSWCDD and 
JHU/ APL, coupled with commercial tools and technology, resulted in both the building and 
experimental validation of 21 st century computing architectures that support mission-critical 
weapon systems. All the following technical objectives were met. 

(1) To expand the land attack capability by integrating the Advanced Tomahawk 
Weapons Control System (ATWCS) Launch Control Real Time (LCRT) group into the HiPer-D 
testbed. 

(2) To enhance the NSFS call for fire from voice communications to a digital 
capability. 

(3) To complete the development and integration of a fully fault tolerant, scalable 
AA W path through the system. This involved the development of a fault tolerant Engagement 
Server and a fault tolerant Track Correlator and Filter (TCF). 

(4) To enhance the resource management capability of the system. This included 
increased functionality, reduced fault recovery times, and starting and re-starting of non-HiPer-D 
components, such as ATWCS. 

(5) To further the evolution toward Navy open systems. This included the expansion 
of the ATM network and the addition of IP multicast capability over all three networks (ATM, 
FDDI, Ethernet). 

(6) To begin assessing the feasibility of using COTS-based distributed object 
computing technologies for the Navy. This included the integration of CORBA in the Track 
Number Server (TNS) and the Plan Server components. 
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(7) To evolve toward long term middleware. This included the integration of 
commercial products, CORBA-based and NDDS, and the integration of SPREAD group 
communication in the Advanced Track Correlator and Filter (ATCF). 

(8) To expand the simulation capability of the testbed by adding a physics-based, DIS 
compatible wrap-around simulation capability. The DIS capability would provide the basis for 
integrating geographically dispersed laboratories into the HiPer-D testbed. 

(9) To include navigation/gyro data distribution. The ATWCS LCRT component 
requires a 16 Hz navigation data input which was delivered over the ATM network. 

This report describes the components and conduct of Demo 98, how these objectives 
were met, and the lessons learned from the effort. 
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1.0 INTRODUCTION 

a. The High Performance Distributed (HiPer-D) Computing Project was a six year joint 
Defense Advanced Research Projects Agency (DARPA)/ Aegis Program Office (NA VSEA PMS 
400) program to investigate the application of advanced technologies and concepts to the Naval 
Surface Ship Anti-Air Warfare (AA W) problem domain. The first phase of the program, funded 
primarily by DARPA, was involved in prototype development and the evaluation and 
demonstration of selected DARPA technologies using the system-level prototype developed. 
The second phase, funded primarily by PMS 400, involved prototype expansion and 
enhancement, incorporating COTS technology as well as DARPA technologies, and a focus of 
risk reduction of Aegis identified critical technology and system issues. The HiPer-D 
Computing Project was to have ended with publication of the Engineering Testbed Three (T3) 
Report. However, due to the success of the project, the Aegis Program Office and DARPA have 
elected to continue the effort. 

1.1 HiPer-D Phase 1- DARPA Technology Evaluation 

a. Phase 1 of the HiPer-D Program began in June of 1991 and ended in 1994. The 
primary goals were to demonstrate and test DARPA-developed technologies, and assess the 
viability of including distributed computing in future combat system planning. Major objectives 
for HiPer-D Phase 1 were to: 

(1) Evaluate DARPA technologies for use in combat systems. 

(2) Educate Aegis engineers in distributed computing principles and methods. 

(3) Provide feedback to Aegis and DARPA to focus further technology development 
efforts. 

1.1.1 Phase I Integrated Demonstration One (11) 

a. The DARPA technologies were thoroughly tested through various stand-alone 
demonstrations and the HiPer-D Phase 1 Integrated Demonstration One (II) that occurred in 
March 1994. 11 successfully integrated prototype tactical functions and simulators that were 
developed independently by the HiPer-D organizations [Naval Surface Warfare Center Dahlgren 
Division (NSWCDD) and Johns Hopkins University Applied Physics Laboratory (JHU/APL)]. 
These were hosted on a layer of commercial off-the-shelf (COTS) software, using the full set of 
DARPA distributed computing technologies: the multi-node Touchstone Sigma (Paragon) 
computer, the Mach operating system kernel and, the Isis distributed communications toolkit. 

b. HiPer-D I1 identified essential pieces of technology, not available as COTS or high 
performance computing technology, that would enable the initial building of high performance 
weapon systems. It identified the following technological requisites: 
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(1) A preemptive operating system with deterministic behavior that ran on high 
volume, low cost, standard workstation and server platforms (not the low volume niche market 
single board computers). 

(2) Operating system instrumentation. 
(3) Communication enhancements (simultaneous higher throughput combined with 

lower latency communications for small message sizes). 

( 4) System level instrumentation that could associate tactical application processing 
with resource consumption metrics from operating system instrumentation. 

(5) Responsive fault tolerance mechanisms. 

c. The II demonstration met all of the stated program objectives. It validated the use 
of distributed computing technologies in future combat system design planning. The HiPer-D 
Integrated Demonstration 1 (II) Report, published in September 1994, provided performance 
feedback to both the Aegis and DARPA communities on DARPA technologies in a simulated 
tactical environment. The report also recommended technology improvements, briefly assessed 
the process of developing combat system functions in a distributed environment and identified 
areas for further development. 

d. The I1 demonstration, and subsequent publication of the report, ended Phase 1 of the 
HiPer-D Program. 1 

1.2 HiPer-D Phase 2- DARPA/COTS Technology and Critical Issues Evaluation 

a. In February 1994, HiPer-D Phase 2 began when programmatic lead and funding 
responsibility were transferred from DARPA to Aegis. Thus, the emphasis of the program 
correspondingly shifted. The HiPer-D Technical Management Team (TMT) was tasked by the 
Aegis chairman to focus on critical risks that had to be mitigated to ensure transition of 
distributed computing technologies into the Aegis Baseline 7 development program. Based on 
this guidance, the concept of an evolving engineering testbed was developed. Specific focus for 
HiPer-D Phase 2 included the following: 

(1) Targeting specific baseline objectives. 

(2) Ensuring HiPer-D demonstrations are Critical Issues driven. 

(3) Building upon lessons learned and experience gained from HiPer-D Phase 1. 

( 4) Basing future efforts and demonstrations on re-engineered Aegis code. 

(5) Using COTS products and open architectures where practical. 

(6) Evaluating recommended improvements to DARPA technologies when ready. 

b. The vision of the HiPer-D testbed was to permit collection and evaluation of 
engineering-quality data on new technologies and distributed system design concepts as they 

1 For further details see the HiPer-D Integrated Demonstration One (Il) Report, 6 September 1994 
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related to both future Aegis baselines and future surface combatants. This approach, and its 
evolution to support future system engineering development, would comprise a continuously 
evolving distributed computing testbed. The results of successive demonstrations of the testbed 
would feed into the various Aegis baseline development (forward fit and backfit) efforts. The 
base architecture serving as the departure point for HiPer-D Phase 2 testbed planning was Aegis 
Baseline 7 Phase I and follow-ons. 

c. Since HiPer-D Phase 2 was driven by critical-issues, each of the HiPer-D technical 
organizations compiled a list of specific areas that it believed should be addressed in planning 
future distributed testbed demonstrations. The TMT consolidated this data into a Critical Issues 
List, and structured the information into five major subdivisions: 

( 1) Requirements and Architecture 

(2) Combat System Functionality 

(3) Tactical Support Layer 

(4) Integrated Service Layer 

(5) Process 

d. The TMT then developed specific demonstration activities to address each of these 
areas. In order to target specific Aegis baseline objectives, demonstration activities were 
arranged, in conjunction with the Aegis programmatic schedules, to develop the HiPer-D 
distributed demonstration definitions and schedules. Table 1.2-1 details the consolidated 
information with results arranged into the above five major subdivisions. 2 

e. The testbed activities are centered on a series of formal demonstrations, T 1 through 
T3. Each demonstration is composed of two parts, integrated demonstration and stand-alone 
demonstrations. The evolving integrated demonstration builds on previous milestones, and 
successively combines increasing Aegis Weapon System (AWS) functionality with the latest 
distributed computing techniques and technologies. The second element of each testbed 
demonstration includes a series of stand-alone experiments and demonstrations. The nature of 
the experiments and the components used vary as they are directed toward specific computing 
issues at a particular stage of the program. 

2 For comprehensive description of each critical issue see Appendix A, HiPer-D Phase 2 Engineering Test and 
Demonstration Plan, 1 November 1994 
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Table 1.2-1 HiPer-D Phase 2 Critical Item List 

1. Architecture • Architecture and System Partitioning Studies 

2. Combat System • Standard Missile Engagement Path (SPY, C&D, WCS) 
Functionality • Other AWS Tactical Functions as Required 

. Non-A WS Elements 
3. Tactical Support Layer • Track File Management 

• Track File 

• Doctrine Processing 

• Open Display / Submode Design 
. Navigation/ Gyro Data Distribution 

• Parallelization 
4. Integrated Service Layer • Communications Protocol . Networks 

. Real-time Operating Systems . Fault Tolerance 

• Open System Issues, e.g., Client / Server Model 

• Distributed System Control and Resource Management 

• Time Management 

• Security 
5. Process • System Test 

• Re-engineering Legacy Code 

• Tool Initiatives 

• Language Issues: Ada, Ada 9X & Annexes, C, C++ . Baseline Strategy (Forward and Backfit) 

1.2.1 HiPer-D Phase 2 Engineering Testbed One (Tl) Demonstration 

a. Tl, on 15 May 1995, was the first formal testbed demonstration of the HiPer-D Phase 
2 Program. Results were unprecedented, in that it proved that COTS could support the 
engineering development of large scale, complex, distributed computing-based systems. It 
addressed several shortfalls identified in I 1, and achieved a significant increase in tactical track 
capacity. 

b. Communications were addressed by moving from the Intel Paragon multi-computer 
and employing more mainstream COTS fiber distributed data interface (FDDI) network-based 
elements. Application of the COTS network was enhanced by a demonstration of an NSWCDD­
defined, highly fault-tolerant FDDI network configuration with fault recovery times of 100 
milliseconds. The Aegis SM-2 Auto-Special engagement function was developed and integrated 
into this test. Significantly, the HiPer-D track capacity was increased an order of magnitude 
from 100 (Il) to 1,000 tracks. This dramatic increase was due to locating, and resolving, the 
"track pipeline" bottlenecks over a period of several months. 3 

3 For details concerning Tl, see HiPer-D Engineering Testbed One (Tl) Report, 17 November 1995 
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1.2.2 HiPer-D Phase 2 Engineering Testbed Two (T2) Demonstration 

a. In October 1995, the second formal testbed demonstration of the HiPer-D Phase 2 
Program, Engineering Testbed Two (T2), occurred. It consisted of the integrated demonstration, 
built on the previous Tl Demonstration, and stand-alone investigation of IP Multicast. The 
integrated demonstration included Alpha 3000s, with the Digital Unix 3.2B operating system, 
enabling an asynchronous transfer mode (ATM) switched network; and, the successful 
implementation of a hybrid network environment of FD DI and ATM. The tactical scenario 
sequence, with two Auto-SM doctrines established and Auto-Special doctrine activated, involved 
multi-sensor track initiations in the doctrine areas; appropriate engagements; random "no kill" 
assessments and re-engagements; subsequent ramping up of background tracks; faulting of 
servers; faulting of clients; and continued multi-doctrine engagements. 

b. A new "peer client" model was developed and demonstrated for load sharing and fault 
tolerance. A new performance visualization tool based on the Isis Monitor of Performance 
(IMP) was developed to instrument and display peer client performance. Together, the Peer­
Client model, used for Auto-SM, and the Radar Track Data Server (RTDS) design with 
replicated servers, enabled processing to be added dynamically in support of fault tolerance and 
load balancing. Application instrumentation (JEWEL) and the Peer-Client IMP X-Window 
display provided real-time distributed system performance monitoring and Go Plot provide post­
exercise detailed analysis capability. 

c. Significantly, the track entry rate in this demonstration was double that of the Tl 
Demo for the first 700 tracks entered. Subsequently, a capacity of more than 1200 tracks was 
exhibited. The T2 Demo was accomplished using Aegis-originated code. This included radar 
tracks from SPY and Surface Operations. The SPY Radar Control was derived from Lockheed 
Martin's SPY Control Loop; and Surface Ops was derived from Aegis Baseline 4 code. Finally, 
the message flow within the Auto-Special SM 2 engagement path was enhanced to reflect that of 
the current Aegis Weapon System. 4 

1.2.3 HiPer-D Phase 2 Engineering Testbed Two A (T2A) Demonstration 

a. The HiPer-D Phase 2 T2A was held in December 1996. The stand-alone tests 
involved several efforts, among them were network tests on the Fiber Data and Distribution 
Interface (FDDI); Asynchronous Transfer Mode (ATM); Ethernet and Myrinet networks; 
Transport Control Protocol (TCP); User Datagram Protocol (UDP) throughput; and, bandwidth 
and latency for different platforms. Time synchronization tests using TCP were performed, and 
high data rate (gyro distribution) tests were also conducted. 

b. The T2A demonstration successfully distributed gyro data over commercial network 
technology at 400 Hz, using a Gyro Data Converter simulator (GDC sim), with no degradation of 
tactical performance at (extremely high) track loads. Dynamic resource management was 
demonstrated through tactical applications automatically recognizing and reconfiguring after a 

4 For details concerning T2, see HiPer-D Engineering Testbed Two (T2) Report, 30 August 1996 

7 

Ex.1009 / Page 16 of 280 
TESLA, INC.



system fault. Auto-SM was re-allocated to another homogeneous component based on CPU 
resource usage. Resource management functionality was added with a one-button start-up 
feature that brought all combat system functions on-line automatically, versus manually starting 
each. The Common Display Kernel (CDK) was successfully integrated into the HiPer-D testbed 
using the data broker concept. The Sensor Rate Server (SRS) demonstrated graceful degradation 
under severe system overload conditions by maintaining high priority tracks at the requested 
update rates, while reducing update rates for lower priority tracks. 

c. By parallelizing more, and providing scalability through peer clients, effective track 
capacity increased to greater than 2,000 tracks in T2A. A track capacity of 2200-2400 tracks 
was achieved without SRS intervention, and a total of 4900 tracks was supported with SRS 
intervention. 

d. T2A also compared network technology using Aegis gyro data requirements; 
specifically, FDDI versus ATM versus Myrinet, to determine which of these would provide the 
most bandwidth, scalability, and particularly, the lowest latency. 5 

1.2.4 HiPer-D Phase 2 Engineering Testbed Three (T3) Demonstration 

a. All of the software used in the T3 testbed was commercial off the shelf (COTS), and 
the hardware was a heterogeneous mix composed of work stations from four vendors, each using 
the vendor-supplied operating system, and three networks. 

b. One of the major goals for T3 was to expand the scope of the testbed beyond 
shipboard Anti-Air Warfare (AA W). To accomplish this, C4ISR components, the Joint Maritime 
Combat Information System (JMCIS) and Advanced Planning and Power Projection and 
Execution (APPEX) were interfaced to the Aegis AA W subsystem by data brokers. Data 
brokers are small computer programs that, essentially, translate data from a transmitting 
component into a format that can be processed by the receiving component. This is a concept 
that could be used to integrate legacy systems into a new architecture. The Track Data Broker 
and the C3I data broker were two new components developed for T3. During the demonstration, 
JMCIS provided over the horizon (0TH) track information throughout the system, received real­
time AA W tracks, and provided track data to APPEX. 

c. Another important goal was to demonstrate the ability to respond to a Naval Surface 
Fire Support (NSFS) call for fire. To accomplish this goal, a scenario was scripted that included 
landing Marines ashore, having multiple NSFS calls for fire, some with 5" gun engagements and 
some with surface to surface missile engagements. 

d. The HiPer-D Resource Manager (RM) was used to start non-HiPer-D components 
automatically and remotely at the beginning of the demonstration. Resource Management for T3 

5See HiPer-D Engineering Testbed Two A (T2A) Report, dated 16 Dec 97, for peer client architecture and 
implementation details 

8 

Ex.1009 / Page 17 of 280 
TESLA, INC.



had two dimensions. The first was system recovery in the event of a fault. The other was the 
adding of resources when the system became overloaded. 

e. A video from a Predator Unmanned Aerial Vehicle (UA V) was run during the T3 
demonstration. It was displayed on the Anti-Surface Warfare (ASUW) Coordinator's 
workstation as well as Tactical Air Operations (TAO) workstation. The goal was to determine 

~~e i~
1

:~~np~;~:::£.~ and network bandwidth, to digitize, compress and send out the signal at 

1.3 Demo 98 Objectives 

a. The technical objectives for Demo 98 included: 

(1) To expand the land attack capability by integrating the Advanced Tomahawk 
Weapons Control System (ATWCS) Launch Control Real Time (LCRT) group into the testbed. 
This required the porting of the LCRT program from HP743RT to Sun Solaris and still meeting 
the ATWCS LCRT real time requirements. Also the inertial navigation data and the interface 
with the vertical launch system (simulator) were to be over the tactical network and not point-to­
point NTDS interfaces as in the operational system. ATWCS was to use the Network Time 
Protocol (NTP) over the tactical network for clock synchronization. ATWCS was also to 
integrate with the HiPer-D Resource Manager for both start-up and fault tolerance ("hot restart" 
of LCRT). Finally, the ATWCS LCRT was to be instrumented with jewel to be able to assess 
performance in near real time during the demonstration. 

(2) To enhance the Naval Surface Fire Support call for fire from voice 
communication to a digital capability. In T3 a voice communication (simulated) call for fire was 
demonstrated. For Demo 98 the objective was to have a remote Forward Observer/Forward Air 
Controller (FO/F AC) issue a digital call for fire over the network to ownship. Ownship was to 
respond with a gun engagement and the appropriate tacfire messages (shot, splash, spot adjust, 
etc.) were to be exchanged between ownship and the FO/F AC. 

(3) To complete the development and integration of a fully fault tolerant, scalable 
AA W path through the system. This involves the development of a fault tolerant Engagement 
Server function. This function maintains all system state data or status regarding ongoing or 
requested engagements by guns or missiles. The preservation of this engagement state data 
during faults, failures, and recoveries was to be demonstrated. The impact of these faults, 
failures, and recoveries during an engagement on the SPY Auto-Special timeline was also to be 
examined. A fault tolerant Advanced Track Correlator and Filter (ATCF) is also an objective for 
this demonstration. The two processes, Track Control and Track Processor, are to be replicated 
for fault tolerance. 

(4) To enhance the Resource Management capability of the system. The objective 
included increased functionality (the scaleup of weapons doctrine components as track load 
increased based on a Quality of Service track review time specification), reduced fault recovery 

6 See HiPer-D Engineering Testbed Three (T3) Report, dated 31 Dec 1998, for further details. 
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time, (programs that faulted and restarted in much less than one second), and the starting and 
restarting (due to program faults) of non-HiPer-D components such as ATWCS. 

(5) To further the evolution toward Navy open systems. This included the 
installation, test, and use of the open network standard IP Multicast capability over three 
networks (ATM, FDDI, and Ethernet). IP Multicast allows the message sender to transmit one 
message that is received by many receivers. 

(6) To begin assessing the feasibility of using COTS-based distributed object 
computing technologies for the Navy. This included the integration of Common Object Request 
Broker Architecture (CORBA) middleware technology in the Track Number Server (TNS) and 
the Doctrine/Plan Server components. 

(7) To evolve toward long term middleware. This included the integration of various 
commercial products CORBA-based, and NODS (a publish/subscribe communications package), 
and the integration of SPREAD group communications in the ATCF component. 

(8) To expand the simulation capability of the testbed by adding a physics-based, DIS 
compatible wraparound simulation capability. The physics based capability would allow more 
operationally oriented and operationally valid scenarios to be a part of future demonstrations. 
The DIS capability would provide the basis for integrating readily with other simulators and 
integrating geographically dispersed laboratories into the HiPer-D testbed. 

(9) To include the real time, high data rate delivery of navigation/gyro data. The 
ATWCS LCRT component requires a 16 Hz navigation data input which was to be provided 
over the ATM network. 

b. The remainder of the report describes the demonstration components and the 
configuration, the demonstration scenario, how these objectives were met, and lessons learned 
from the effort. 
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2.0 STAND-ALONE ENGINEERING TESTS 

Stand-alone Engineering Tests provide data concerning the use and applicability of a 
technology or product to the integrated demonstration. These tests are aimed at "breaking" 
technologies and providing insight in the maturity, robustness, and performance under heavy 
loads. Three Stand-alone Engineering tests are summarized in the following subparagraphs with 
the details provided in appendices. 

2.1 Evaluating the Performance of Multicast Communications 

In the distributed shipboard environment of interest to the U. S. Navy, there is an 
increasing interest in the use of multicast communications to reduce bandwidth consumption and 
to reduce latencies. The bandwidth required to transmit large volumes of information ( e.g., track 
files, maps, etc.) to multiple receivers could potentially be reduced significantly by the use of 
multicast data transmission. Many types of real-time shipboard data, such as navigational and 
gyro data, need to be distributed to a large number of hosts. The distribution of this type of data 
might also benefit from the reduced latency possible using multicast techniques instead of 
sequential unicast transmission. Before multicast communications can be used in this 
environment, however, a characterization of its performance must be made. Appendix A 
proposes a number of metrics, and data collection and analysis techniques for assessing multicast 
communications performance. Of particular significance is a metric that correlates reception of 
message and shows promise in analyzing topology-related problems. While the concepts 
presented in Appendix A are applicable to the general forms of multicast, the appendix 
specifically focuses on the use of IP Multicast in an internal shipboard environment. The 
MCAST Tool Suite (MTS), which uses the metrics and data collection techniques presented, is 
described. The results of applying this toolset to simulate and instrument several IP Multicast­
based application scenarios are presented. See Appendix A for details. 

· 2.2 Data Distribution Experiment 

The data distribution problem domain for command and control systems can be divided 
into two general categories: control data and streaming data. Complex data ordering, low 
volume, reliable delivery, and deterministic latency often characterize control data. Examples of 
control data for the Aegis Combat System could be Auto-Special and Doctrine data. Streaming 
data usually has limited data order dependencies, high volume, requires a stable frequency and 
inter-arrival, and does not require reliable delivery. A message or possibly several messages 
could be missed depending on the frequency and message type, and when the next message is 
received the system requirements still would be satisfied. Examples of streaming data could be 
gyro and track file update data. Obviously not all the message types used in the Aegis Combat 
System fall neatly into one of these two categories. SPY data, for example, could be considered 
high volume and yet require a stringent deterministic latency. The future Aegis Baseline 7 Phase 
1 timing requirements are currently being reviewed on a message type basis. Tradeoffs, such as 
deterministic latency versus reliable delivery, are being evaluated. These future Aegis baselines 
will use distributed processing architectures and distributed applications that employ commercial 
off the shelf hardware and software to the greatest extent possible. Software companies have 
developed, and continue to develop, a broad variety of commercial middleware products to help 
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system developers implement distributed applications in the data distribution arena. One group 
of products that appears to meet the data streaming requirements is publish/subscribe products. 
Appendix B documents the results of the evaluation of two publish/subscribe products. 

2.3 Windows NT Investigations 

In June 1998, the Navy's Chief Information Officer (CIO) released his Information 
Technology Standards Guidelines (ITSG). The guidelines recognized the growing presence of 
Windows NT, as well as its possible application to the Navy's requirements for a powerful 
operating system. The ITSG indicated an organization-wide shift towards NT over the next few 
years, encompassing systems such as ashore and on-ship installations. The question now was not 
"Should we use NT?" but" What do we need to do to make NT work the way we want?" The 
Windows NT investigations documented in Appendix Care the beginning of this effort whose 
goal is to answer the latter question for HiPer-D. 
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3.0 ADVANCED COMPUTING TESTBED DEMO 98 INTEGRATED 
DEMONSTRATION DESCRIPTION 

a. The Demonstration 98 milestone event was held on September 29, 1998 in the System 
Control Laboratory, Building 1500, at NSWCDD. Among the attendees were CDR Stevenson of 
PMS 400 and Dr. Gary Koob of DARPA. The demonstration was imminently successful in that 
all the following technical objectives were met: 

(1) To expand the land attack capability by integrating the Advanced Tomahawk 
Weapons Control System (ATWCS) Launch Control Real Time (LCRT) group into the HiPer-D 
testbed. 

(2) To enhance the NSFS call for fire from voice communications to a digital 
capability. 

(3) To complete the development and integration of a fully fault tolerant, scalable 
AA W path through the system. This involved the development of a fault tolerant Engagement 
Server and a fault tolerant Track Correlator and Filter (TCP). 

(4) To enhance the resource management capability of the system. This included 
increased functionality, reduced fault recovery times, and starting and re-starting of non-HiPer-D 
components, such as ATWCS. 

(5) To further the evolution toward Navy open systems. This included the expansion 
of the ATM network and the addition of IP multicast capability over all three networks (ATM, 
FDDI, Ethernet). 

(6) To begin assessing the feasibility of using COTS-based distributed object 
computing technologies for the Navy. This included the integration of CORBA in the Track 
Number Server (TNS) and the Plan Server components. 

(7) To evolve toward long term middleware. This included the integration of 
commercial products, CORBA-based and NDDS, and the integration of SPREAD group 
communication in the Advanced Track Correlator and Filter (ATCF). 

(8) To expand the simulation capability of the testbed by adding a physics-based, DIS 
compatible wrap-around simulation capability. The DIS capability would provide the basis for 
integrating geographically dispersed laboratories into the HiPer-D testbed. 

(9) To include navigation/gyro data distribution. The ATWCS LCRT component 
requires a 16 Hz navigation data input which was delivered over the ATM network. 

b. The Standard Missile engagement path through the A WS, as shown in Figure 3. 0-1, 
was initially chosen for prototype implementation in the test bed prior to the I1 demonstration in 
1994. The standard missile path provides a high performance challenge with well-defined timing 
requirements for experimental validation purposes. The tactical function in this AA W path is 
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essentially the same as in the AN/UYK-43 based A WS computer programs. Modifications were 
made that kept the prototype unclassified and do not affect results. 

c. Each successive demonstration since has added AA W capability to this engagement 
path and with the T3 demonstration and this demonstration the test bed functionality has been 
expanded into C4ISR and land attack areas as shown in the Demo 98 Block Diagram, Figure 
3.0-2. 

(1) The gray boxes are the wraparound simulation components that provide the 
scenario inputs, control the scenario timing, and process the outputs of the tactical components. 
The Environment Simulation (Env Sim) provides the scenario inputs and controls the scenario 
timing. The :MF AR Sim simulates a physics based multi-function array radar. The ID Sim 
simulates the ID output of an IFF system. The 0TH simulator provides 0TH sensor data to 
Th1CIS. The FO/F AC and RDDL components simulate a remote digital CFF request from a 
Forward Observer. The Engagement Planning Sim (EP Sim) and the Mission Data Sim (MD 
Sim) provide mission planning inputs into the ATWCS LCRT group. The Vertical Launching 
System Sim (VLS Sim), the Missile Sim, and the Flight Sim receive the ATWCS mission plans 
and missile alignment data, and fly the ATWCS missiles to their assigned targets. The 
Navigation simulator (Nav Sim) and the gyro data simulator (Gyro Sim) provide nav/gyro data to 
the system. The Weapons Control system sim (WCS Sim) simulates the SM-2 missile system 
and the Naval Surface Fire support simulation (NSFS Sim) simulates a 5 11 gun system. Kined is 
a bulk track load generator used to input thousands of tracks into the system to demonstrate 
system performance under heavy load. 

(2) The AA W components are shown in blue. The Advanced Track Correlation and 
Filtering (ATCF) components receive AA W tracks from the :MF AR Broker and Kined. When 
updates or new track data are received they are passed to the Radar Track Data Server (RTDS) 
and the server provides AA W track data to all system components or clients that need the data. 
The weapon doctrines (Semi-Auto, Auto-Sim, and Auto-Special) receive and process the track 
data and send engagement requests to the Engagement Server for those tracks determined to be 
threats based on the currently activated weapons doctrine. Manual Engage Control provides 
operator selected, or operator approved engagement requests to the Engagement Server for 
processing. The Engagement Server validates the engagement request and forwards the 
engagement order to either WCS Sim for missiles or NSFS Sim for gun engagement. Two AA W 
operator positions were utilized in Demo 98 using a geographical tactical picture display that 
showed the AA W and 0TH tracks and activated weapon doctrines. These two positions were 
the Anti-Air Warfare Coordinator (AA WC) and the Surface Warfare Coordinator (SUWC). The 
double boxed components are fault tolerant and/or scalable (ATCF, RTDS, Semi-Auto, Auto­
SM, Auto-Special, Engagement Server). 

(3) The green components represent the land attack capability in the demo. The 
Launch Control Executive (LC Exec) and the Launch Control Real Time (LCRT) are ATWCS 
components. The Tacfire, C3I Broker, and Advanced Battle Management and Execution 
(ABMX) are part of the digital CFF capability. 
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( 4) The brown components are the C4I processes. JMCIS is a SP AW AR C4I 
product that provides a C4I picture of current operations. The Aegis Air Correlator Tracker 
(AACT) provides the interface between the C4I subsystem and the AA W subsystem allowing the 
passing of 0TH and AA W track data between the two. The 0TH Data Server provides the 0TH 
track data to all system processes or clients that need 0TH track data ( ex., AA W operator 
displays). 

( 5) The AA W components are described in detail next, followed by the ATWCS land 
attack component and the JMCIS C4ISR components. Next the Resource Management 
Component is described and then the simulation components. Following the component 
description, the demonstration scenarios and major events are presented, then lessons learned 
from the effort. 
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Figure 3.0-1 Aegis Weapon System with HiPer-D Overlay 
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3.1 AA W Subsystem Functional Description 

a. The AA W subsystem components are highlighted in Figure 3 .1-1. These components 
interface and receive sensor inputs from the sensor simulators, process the data into a track 
report, distribute the track information to all client components that need access, process and 
evaluate the track data for threat evaluation, and engage those tracks deemed hostile according to 
the specified ship doctrine. 

b. The major enhancements and additions to the AAW subsystem for Demo 98 include: 

(1) Redesign of the track correlation and filtering components for increased capacity 
and fault tolerance. 

(2) Incorporation of CORBA technology in the Doctrine/Plan server and the Track 
Number Server. 

(3) Redesign of the state data intensive Engagement Server to provide a 
primary/shadow fault tolerance capability. 

c. A description of all the AA W subsystem components follows with additional details 
describing the major enhancements and additions. 
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3.1.1 Advanced Track Correlation and Filtering (ATCF) 

a. The track correlation and filtering elements ofHiPer-D originated as a port of the 
"Milestone 90" Cooperative Engagement Processor (CEP) correlation and filtering capability to 
HiPer-D. This became known as HiPer-D Correlation and Tracking (HCT). It was used in the 
initial HiPer-D integrated demonstration, I 1. The next generation was aimed at making the 
correlation and filtering more directly relevant to Aegis. This build, called Track Correlation and 
Filter (TCF), implemented correlation and filtering algorithms from the Aegis C&D PPS, and 
was used in the Tl, T2, T2A, and T3 HiPer-D demonstrations. Program focus during the 
development ofHCT and TCF was on issues of track distribution. In this environment, efforts 
were not expended to make either component fault-tolerant or scalable. See Appendix D for 
details of the history ofHiPer-D Track Correlation and Filtering processing. 

b. In T2A and T3 the TCF's total update rate of approximately 2300 updates per second 
began to limit the throughput of the overall system significantly. This prompted the 
development of the Advanced Track Correlator and Filter (ATCF) for the 1998 demonstration. 
ATCF would be designed to be both scalable and fault-tolerant. 

3.1.1.1 ATCF Overview 

a. The Advanced TCF addressed several issues to improve upon the original TCF. Some 
of these improvements were not fully realized in 1998, but the majority of the necessary 
infrastructure to support them is in place. In particular, neither correlation nor filtering is 
implemented yet. To date, the ATCF effort has focused on building the proper communications 
architecture. The design looks similar to the original TCF but has a shift in functional allocation 
that better addresses scalability. The two components have been renamed Track Controller and 
Track Processor (see Figure 3 .1.1.1-1 ). The ATCF is fully fault-tolerant and can distribute the 
load across a dynamically changing number of Track Processors. 

SENSOR 
BROKERs 

Track Changes 
(low volume) 

TRACK 
CONTROLLER 
••••••••••••••••• ;> ............. • 

••• ,Jo.- •••,•.•••,v••• •• •.• •••·•• 

//I 
,-----, .~--~~-~~-~·· .. ····, 

(one per sensor) TRACK TRACK 
PROCESSOR 

2 

TRACK : TRACK : 
PROCESSOR 

1 
PROCESSOR : PROCESSOR ; 

3 : : 

_r_r_a_c_k_u_p_d_a_te_s_..., ____ ,.. ___ •··············~~~.·-·./········ 

(high rate/high volume multicast) 

Figure 3. 1.1.1-1 Advanced TCF 
b. The major issue with TCF was the complexity of scaling the Track Init function. In 

ATCF, the primary computation involved in correlation has been shifted out to the Track 
Processors, with the Track Controller retaining a role as "coordinator". Essentially, this shifts all 
major processing to the Track Processors, thus reducing the need to scale the Track Controller. 
Fault tolerance is achieved in the controller by providing a hot spare, and in the Track Processors 
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by allowing dynamic reallocation of track responsibilities. Track Processors split the processing 
load by track. Each processor has a collection of tracks for which it is responsible. A new Track 
Processor receives a portion of each existing Track Processor's track load, and a failing Track 
Processor's responsibilities are redistributed over the remaining nodes. 

3.1.1.1.1 Standard Message Format 

a. The first step in building ATCF was to specify the input message formats. Each 
sensor provides an independent stream of data, with slightly different characteristics. A single 
message format called "sensor 3D" was defined for use within ATCF. This defines the 
necessary components of data that ATCF expects to receive from a contributing sensor. The 
introduction of brokers allows the input messages from a sensor to be converted to the standard 
sensor three-dimensional (sensor 3D) format. All sensors (via their brokers) submit sensor 3D 
messages to ATCF. As a result, all messages from all sensors can now be processed by the same 
logic within ATCF. The use of brokers enables a new sensor to be added to a system without 
having to modify the ATCF to account for the new sensor's message type. A broker simply 
converts the sensor's unique message format to the sensor 3D format. The convenience and 
reduced complexity of handling a single message type far outweighs the effort of developing any 
new brokers. A broker was developed for the KINED7 sensor/simulator to demonstrate a sample 
implementation. This adapts the KINED output to the new ATCF sensor 3D input format. No 
changes to KINED were required. 

- - - - ATCF_lnternalgroup: 
,,,,,. ATCF ....__ correlation requests & results, 

/ '- track assignments, 
'. track change messages 

; I TRACK \ 

Sensor 3D 
Messages 

Native Sensor 
Messages 

\_ \r3c¥- CONTROLLER ........ D / ,,-----,"":-.·. c;n'3t\ "'i=:::=========~ ...... \ 

d BROKER ~:~~a;;y~ ~~ 
-..,_ TRACK PROCESSORS// ~ 

'- / RTDS RTDS 
..__ - - - ..-- CLIENT CLIENT 

Figure 3.1.1.1.1-1 ATCF I/0 
b. During a typical simulation run, KINED generates all track messages (new tracks, 

updates, and track drops). The addition of a KINED broker has increased the number of 
processes through which all traffic is routed. (Note the addition of a broker in Figures 3. 1.1.1.1-1 
and Figure 3.1.1.1.2-1.) This caused a slight increase in the end-to-end (KINED to RTDS client) 
latencies. Track change message latencies increased approximately 2 ms, and track update 
latencies increased approximately 10 ms. 

3.1.1.1.2 MFAR Broker 

7 KlNED is a simulator created to model multiple sensors and drive the system with input data. 
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a. A second broker was created for adapting the MF AR simulator' s8 output to the new 
ATCF (see Figure 3.1.1.1.2-1). The MFAR broker provides a bridge from one communications 
mechanism (CSSEnet) to another (process group communications). :MFAR broker accepts new 
track, update, and drop track messages from the :MF AR simulator. These messages are 
converted to the Sensor 3D format and sent on to ATCF. The broker also receives Auto-Special 
doctrine messages. The Doctrine/Plan Server sends doctrine messages in the Auto-Special 
communications group. If MF AR broker receives an Auto-Special doctrine, new track messages 
from the :MF AR simulator will be compared against the doctrine parameters. Any new tracks 
meeting the criteria are flagged as Auto-Special when sent to ATCF. This also triggers special 
logic in the broker to flag the first update received for each Auto-Special track. This first update 
must be issued as an Auto-Special resolution. 

DIS 

Sensor 3D 
ATDnet/ Messages 
CSSEnet 
messages 

MFAR MFAR 
SIMULATOR , , BROKER 

l 
AutoSpecial parameters, 

rate requests 

Figure 3 .1.1.1.2-1 :MF AR Broker 

b. The :MF AR simulator supports rate control for individual tracks. A track's update rate 
is the number of times an update report is issued for that track during a unit of time. A separate 
process within HiPer-D, the Sensor Rate Server (SRS), determines when a rate for a particular 
track should be adjusted. The :MF AR broker receives these requests and forwards them to the 
:MF AR simulator. The :MF AR simulator adjusts the rate at which updates are passed to the 
l\1F AR broker. 

c. Multiple brokers can coexist and operate concurrently. Brokers may join and/or leave 
a running system without disrupting the ATCF. 

3.1.1.1.3 IP Multicast Communications 

a. The next step in building ATCF was to develop a messaging layer to allow the 
brokers to deliver updates to the Track Processors with maximum efficiency. First a 
communications protocol selection was required. IP Multicast is inherently unreliable, and extra 
steps are needed to verify that all messages get delivered to all listeners. Process group 
communications libraries such as ISIS or Spread implement reliability and ordering at the 
expense of increased latency in message arrival. From a system perspective, it is more important 
to maintain a constant flow of timely updates than to expend extra effort checking that each and 

8 The :tv1F AR Simulator is a component ofNSWCDD's CSSE simulation environment. It takes input from DIS and 
filters it using physical characteristics to provide reports that more accurately repreent the returns seen by a radar. 
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every update gets delivered, in order. Given this, IP multicast was selected as an experimental 
candidate. The question explored by this experiment was could an ATCF design use the lower 
quality protocol and still provide high speed reliable service? The use of IP multicast was 
significant because it is the first use of unreliable communications in a critical path within 
HiPer-D. 

b. The ATCF design used timestamps in the updates to be sure that time ordering of 
reports is not grossly violated. If two updates for a single logical track arrive out of order, the 
older one is discarded. Because the flow of updates is constant, allowing a small percentage to 
be dropped should not have a significant impact. The track change messages (new track 
messages and track drop messages) are still reliably delivered in process communications 
groups. 

c. Performance statistics were gathered to aid in evaluating the use of multicast. The 
statistics being measured include the percentage of lost messages, the percentage of messages 
that arrive out of order, and the average latency of the messages being delivered. Testing was 
performed on Ethernet, FDDI, and ATM networks. The only behavioral difference displayed by 
each type of network was that each medium provided a different maximum total track capacity. 
Message loss and misordered delivery of messages was only observed upon nearing maximum 
system capacity. Message loss was quite rare on ATM networks. 

d. Timed buffering was implemented to improve throughput. A timed buffer is a queue 
in which messages to be sent are placed. A maximum age, also known as a staleness value, for 
the messages in the queue is set. A separate thread of execution (separate from the sending 
thread) observes this buffer and sends the contents out at regular intervals as defined by the 
staleness value (typically 10-50 ms). The buffer is also sent when it is full. Without modifying 
the operating system, the minimum effective interval is approximately 10 ms.9 Timed buffering 
causes multiple messages to be sent as one unit, resulting in fewer socket calls. This is more 
efficient than making a socket call for each message, and results in a much higher maximum 
throughput. The tunable parameters are the staleness interval and the size of the buff er. The 
latency for each message is directly related to this staleness value. End-to-end (KINED to RIDS 
client) latencies as low as 40 ms were observed when all staleness intervals were set to 10 ms 
and a moderately high number (several thousand) of tracks was injected into the system. 
Average total ( end to end) latencies were in the range of 50 to 70 ms for a load of around 1000 
tracks. As the load increases, these timed buffers begin to fill completely before the interval 
expires, causing more frequent sends to occur. This has the effect of pushing the total latency 
down as the load increases. 

e. One point of interest regarding buffer size is that each network standard has a 
maximum transmission unit (MTU) size. For Ethernet, this is 1500 bytes. For FDDI, the MTU 
size is around 4096 bytes. For ATM, it is dependent on the network interface driver (the actual 
packet, or cell, size is 53 bytes). On the Solaris 2.6 workstations with ATM interfaces in the labs 

9 This was the case with single and multiprocessor workstations running Solaris 2.5, Solaris 2.6, and Digital's 
OSF/1 4.0. This is believed to be a side effect of the process scheduler allocating minimum time slices to each 
process before preempting them. 

22 

Ex.1009 / Page 31 of 280 
TESLA, INC.



at NSWCDD, MTU size was around 9000 bytes. It is acceptable for an application to request to 
send a block of data larger than the MTU, but this will result in the message being fragmented 
into multiple units, or packets. The fragments must then be reassembled by the receiving entity's 
kernel. It was expected that the overhead of :fragmentation handling would cause a decrease in 
performance, but this was not seen. In fact, using buffers larger than the MTU proved to be 
more efficient than using smaller ones. This may be due to the fragments being sent as back-to­
back packets on the Ethernet and FDDI mediums, but this is purely conjecture. Another possible 
explanation is that as the blocking size of the data is increased, the number of socket calls needed 
decreases, for a constant amount of data (multiple blocks' worth). The time needed to pass a 
block of data up or down through the protocols in the network stack may be significant and 
independent of the size of the block of data. 

f. The operating system also provides the ability to change the buffer size used within 
the kernel for socket operations. This is not the same buffer used by a communications library 
for timed buffering. Sizes between 4 Kb and 512 Kb were tried, but no effect on performance 
was observed. A separate system call is performed to verify that the request to change the socket 
buff er size was indeed being acknowledged by the operating system. 

g. The multicast library does not ensure that messages get delivered (i.e., does not 
implement reliable delivery). An incrementing counter is placed in each message sent. The 
receiver simply remembers this counter value from the last message. If the next message 
received has a counter value greater than (the last counter+ 1), this indicates that some messages 
were dropped. The exact number can be computed. The counter values used by the multicast 
library are only used as a means of gathering statistics on performance. Reordering and 
retransmit have not been implemented. 

h. Each track update message contains a timestamp, which is placed there by the sensor 
or simulator, indicating the time of contact. It is important that updates for a single logical track 
are not processed out of order. It is acceptable that some updates may be discarded as a result. 
These updates would have been delivered across the network in the wrong order. The timestamp 
can be used to prevent processing an older update after a newer update. If a client were to 
receive an older update after a newer one, it might appear that a track had changed direction, or 
some other oddity. The ATCF only processes updates that are newer than the last received 
update for a given track. 

L The application-programming interface to the multicast library was modeled using 
Amalthea domain classes. Functions provided include: an initialize method, a callback 
registration method for message delivery, a group join method, a method to send messages, and a 
group leave method. Also, a method to enable and configure the timed buffering option was 
provided. 

j. Message buffering was experimented within the track change process 
communications group. With buffering enabled, several thousand tracks could be injected into a 
system in a matter of seconds. However, the latency for all track change messages was increased 
by approximately 8 ms as a result. Without buffering the track change group, the time required 
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to feed several thousand tracks into the system increases dramatically, but keeps these latencies 
to a minimum. This is the preferred option, since low latency is required for AutoSpecial events. 

k. As a passive form of flow control, a maximum latency threshold can be specified for 
messages received by a Track Processor. Presumably, if track updates are being received with 
"old" timestamps, then the network medium is likely to be congested. The appropriate course of 
action is to drop these aged reports, rather than propagate the condition by introducing more 
traffic ( delivering an update to a track processor will result in another update message being sent 
to the RTDS). It is likely that the updates would be "aged" further before final delivery to 
RTDS's clients. Some clients might wish to impose maximum latency thresholds for the track 
updates. Therefore, it is in the best interest of the system to discard reports if they are too old. 
Track Processor currently supports only a static threshold. 

1. The Track Processors use a process communications group to deliver all messages to 
the RTDS. Track change messages are combined with track reports in this group. This allows 
the Track Processors to guarantee that the RTDS will not be subjected to illegal sequences (e.g. 
receiving a track update before a new track message, or receiving a track update after a lost track 
message). The ordering logic in Track Processor maintains a recent history of dropped tracks, in 
case any reports arrive after the drop message. This prevents Track Processor from forwarding 
any reports after sending a lost track message. 

m. All messages emanating from a single Track Processor must be processed by all 
RTDSs in the order they were sent (to ensure track update ordering). However, ordered streams 
from different Track Processors may be interspersed in any fashion. The design of ATCF 
supports independence between Track Processors (i.e., they do not communicate directly to 
coordinate their activities with one another). 

3.1.1.1.4 ATCF Fault Tolerance 

a. The Track Controller is implemented with a primary/shadow form of fault tolerance. 
Primary/shadow (sometimes called active/backup) means that redundant replicas of a process are 
maintained. This is accomplished by having all processes consume input data with only the 
designated (active) instance providing output. If the active instance fails, then one of the backup 
replicas can be promoted to the active status. 

b. The Track Controller directs and coordinates the activities of the Track Processors 
with respect to fault tolerance. The ATCF uses all available Track Processors and has the ability 
to recover from a total loss of Track Processors. If all Track Processors should fail, there is a 90-
sec window during which a new Track Processor may be started. No updates are delivered to 
RTDS clients during this time. If a new Track Processor is created within this time window, all 
tracks are assigned to this new Track Processor, and reports begin to flow again. If no new 
Track Processor becomes available after 90 sec, RTDS will issue drop track messages for all 
tracks that were being reported. If a new Track Processor was created after this event, and 
reports began to arrive at the RTDS again, RTDS would issue new track messages to the RTDS 
clients. The flow of updates would continue to the RTDS clients. The ATCF can even recover 
as long as at least one Track Controller remains. 
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3.1.1.1.5 Track Number Mapping 

a. Track number mapping occurs when a process transforms the track identifiers 
provided in the input to a different set of identifiers for its output. Each sensor has its own 
method of assigning identifiers (usually a number that can be represented by 16 or 32 bits) to 
tracks. These identifiers are unique only within the domain of that one sensor. Therefore, in a 
system with multiple sensors, it is entirely possible that two sensors might use the same identifier 
for two logically different tracks. Each identifier would be unique to one sensor, but by 
coincidence two sensors may select the same identifier. This is the reason number mapping is 
performed. For each sensor, a mapping can be constructed to ensure that each logical track maps 
to its own unique system-wide identifier. This is accomplished by drawing all mapped output 
identifiers from a common pool of identifiers. The TNS was created for exactly this purpose. 

b. Figure 3 .1.1.1.5-1 illustrates the intended use of the TNS by various processes. 
Typically a broker (Label 1 of Figure 3 .1.1.1.5-1) performs the mapping function for each 
sensor. This ensures that all sensors' track contributions can be uniquely identified by ATCF. 
An output identifier from a broker is called a sensor HTN (held track number). Track Controller 
allocates numbers to logical track entities (Label 2a of Figure 3.1.1.1.5-1). The ATCF output 
identifiers are called composite HTN s. If two tracks being reported by different sensors are 
correlated, they can be mapped to the same composite HTN. The sensor HTN to composite 
HTN mappings maintained by Track Controller get distributed to the Track Processors in the 
track assignments (Label 2b of Figure 3 .1.1.1.5-1 ). Note that the identifier mappings created by 
Track Controller are applied to track change messages issued to the Track Processors, but the 
track update messages contain sensor HTN identifiers. Track Processor must transform the 
sensor HTNs to composite HTNs before updates are sent to RTDS. 

SENSOR/ 
SIMULATOR 

Track Number Server 
.._ ____ ____, @ 

0} ~ TRACK 

CONTROLLER 

I\\~ (2b' 
BROKER \ ~ V 

~k ;----------------------------------, 

upe1a~l□ D_D D! 
TRACK PROCESSORS 

Figure 3 .1.1.1. 5-1 Track Number Change as a Result of Correlation 

3.1.2 Air Engagement Control (AEC) 

a. The AEC implements a portion of Aegis C&D and WCS functionality. It performs the 
processing necessary to evaluate potentially threatening air tracks and initiate engagement of 
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those tracks with SM-2 missiles. AEC evaluates air threats by comparing track data provided by 
the HCT against a priori defined criteria such as range, velocity, and identification. These 
criteria are referred to as doctrine. AEC engagement doctrine may be semi-automatic ( operator 
in the loop), automatic, and/or sensor-initiated automatic doctrine, also known as Semi-Auto, 
Auto-SM, and Auto-Special doctrine, respectively. An engagement server mediates engagement 
requests from the doctrine processing applications and performs validity checks on the 
engagements. It also provides the interface with the weapons control system to initiate 
engagements and monitor their progress. Supporting applications include an Aegis-like display 
capability with submode and alert routing support as well as tactical and character read-out 
(CRO) displays, a manual engagement support application, a doctrine server that acts as a 
repository of doctrine criteria, and a variety of simulators and instrumentation tools. 

b. The AEC uses an open systems approach for its code base. This approach simplifies 
the process of adding tactical functionality. The architecture relies on client/server design 
principles, software layering, and data driven design. Libraries of reusable and common services 
are used as building blocks upon which application unique functionality can be added. These 
common services facilitate interfacing with other applications and include domain specific 
services that abstract inter-application interface details including messaging and data marshalling 
as well as data caching. Examples include track data management services, engagement client 
services, and display services. A group-based communications API provides an abstraction for 
group communications that is currently implemented using Ensemble but is not dependent upon 
a particular implementation. The common services also include more general-purpose 
functionality such as UDP and TCP communications service, queue management, string 
manipulation, and semaphores. 

3.1.2.1 AEC Component Summary 

Table 3.1.2.1-1 summarizes the AEC components. The major enhancements to the AEC 
components for Demo 98 were the addition of Common Object Request Broker Architecture 
(CORBA) to the Doctrine Plan Server and the addition of fault tolerant capability to the 
Engagement Server. 
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Table 3.1.2.1-1 AEC Component Descriptions 

ELEMENT FUNCTION 
AEC Display • General Purpose Tactical Display Capability 

. X-Windows Based Map and PPI Using ADS Map Database 

. CRO, Submodes, Alerts, Tutorials, Close Control, F AB IV AB, 
and Fixed Map Control Support 

Display State • Alert Routing 
Data Server • Submode Mediation / Control 

. Display State Repository in Support of Open Systems Architecture 
Manual • Engagement Client 
Engage Control . Manual Engagement Initiation 

. Operator Interface to Engagement Status 
Semi-Auto-SM . Semi-Auto-SM Doctrine Qualification . Fault Tolerant/Load Sharing 
Auto-SM • Auto-SM Doctrine Qualification . Fault Tolerant/Load Sharin_g 
Auto-Special . SPY Auto-Special Doctrine Qualification 

• AEC Auto-Special Doctrine Qualification . Fault Tolerant/Load Sharing and Active Replication 
Engagement • Engagement Control 
Server • Engagement Monitoring 

• Tactical/ WCS Sim Interface . Target Engagement Status Server . Primary/Shadow Fault Tolerance Capability 
Doctrine/Plan • Provides Doctrine Statements/Updates Server 
Server • CORBA and Isis Interface Support 

3.1.2.2 AEC Display 

The tactical display capability is provided by the AEC Display Program and the AEC 
State Data Server, as well as a reusable layer of code that facilitates use of the display capability 
by the applications. The AEC Display Program provides an X-Windows based geographic 
display of the tactical situation. AEC operators may sign-on to any of the implemented 
sub-modes at any given display, allowing them to interact with the AEC system. The sub-mode 
positions currently implemented are Anti-Air Warfare Coordinator (AA WC); Tactical Actions 
Officer (TAO); Tactical Information Coordinator (TIC); and Computer Program Information 
Supervisor (CPIS). Once signed on, an operator may perform any action allowed for that sub­
mode including listing, activating and displaying doctrine regions; initiating and monitoring 
engagements; reviewing alerts; and monitoring program status. The display window contains 
map display, alert and tutorial areas, a V AB/F AB panel, a close control CRO, a tactical CRO 
area, and a menu for map actions such as re-centering and re-scaling. Most of the functionality 
provided by the display program can be tailored via data files. 
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3.1.2.3 Display State Data Server 

This server is a repository of information about the status of all ABC displays. It retains 
data on the location of each sub-mode signed on and maintains a queue ofunreviewed alerts 
associated with the various sub-modes. It tracks display parameters, such as the most recently 
pressed V AB/F AB, currently displayed CRO, and currently hooked track at each display. 
Services are provided for the Display State Server clients to retrieve this information, allowing 
tactical and support programs to update CROs or act upon V AB actions as appropriate. 

3.1.2.4 Manual Engage Control 

The Manual Engage Control program is the interface between the operator and the 
engagement processing programs. It supports manual engagement of tracks, the subsequent 
sending of engagement requests to the Engagement Server; and the processing of alerts. Manual 
Engage Control is an Engagement Server client and receives updated target engagement status 
information from that server. It is responsible for updating operator CRO displays with current 
engagement status data as engagements progress. 

3.1.2.5 Plan Server 

a. The Plan Server maintains a data file of active and inactive doctrine statements and 
provides those statements to client programs on start-up and by request. For Demo 98 the Plan 
Server was extensively modified to incorporate Common Object Request Broker Architecture 
(CORBA) technology. The main objective was to begin the process of assessing the feasibility 
of using COTS-based DOC technologies for Navy mission-critical systems. The Doctrine/Plan 
Server and its client processes were identified as an area where the use of the CORBA 
technology could be investigated and demonstrated without adversely affecting any of the real­
time requirements of the overall system. Modifications were made to the Doctrine/Plan Server 
program and its client programs (Auto-SM, Semi-Auto and Auto-Special) to use the CORBA 
technology. Previously, the interface between the Plan Server and its clients used Isis group 
communications middleware. 

b. CORBA is primarily a distributed system object-oriented integration technology, and 
as such, the Doctrine/Plan Server and clients are thought of as objects in the distributed system. 
Client objects send requests and server objects respond to requests. In CORBA the Interface 
Definition Language (IDL) is used to specify the interface between objects, that is, what services 
the server provides to the clients. In this demonstration, the Plan Server and its clients were 
legacy applications, so that the interface and communication style were already somewhat 
decided. The interface consisted of the weapon doctrine data that the clients request from the 
Doctrine/Plan Server. The communication style provided by Isis was asynchronous messaging. 
At the time that this experiment was done, the latest standard was CORBA 2.0. This version did 
not include specifications for asynchronous messaging. Therefore, in this demonstration, the 
communication style used was synchronous request/reply where the clients request the weapon 
doctrine data and then block while awaiting the reply from the Doctrine/Plan Server. 
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c. The Plan Server was modified to use CORBA to receive requests (via the Object 
Request Broker (ORB)) from the clients for the weapon doctrine database. In addition, the 
ability for non-CORBA clients to request the weapon doctrine data using Isis was left intact. 
The clients were modified to use CORBA to make their requests (via the ORB) to the Plan 
Server by invoking the IDL interface operation getWeaponDoctrine on the CORBA Plan Server 
object. The ORB is responsible for ensuring that this invocation results in a call to the 
corresponding remote CORBA Plan Server object method, and returns the results to the client. 

3.1.2.6 Semi-Auto 

Semi-Auto receives tactical weapon doctrine from the Plan Server, then evaluates tracks 
against the currently active Semi-Auto doctrine regions. If a track's evaluated intercept point 
qualifies, a Recommend Engage alert is queued for the AA WC sub-mode. Semi-Auto is an 
Engagement Server client and as such, receives updated target engagement status information 
from that source. Semi-Auto is a peer client replicated for fault tolerance and load sharing10

. 

3.1.2. 7 Auto-SM 

Auto-SM receives tactical weapon doctrine from the Plan Server and evaluates tracks 
against the currently active Auto-SM doctrine regions. It sends an engagement request to the 
Engagement Server upon track qualification. Auto-SM is an Engagement Server client and 
receives updated target engagement status information from that source. Auto-SM is a peer 
client replicated for fault tolerance and load sharing. 10 

3.l.2.8 Auto-Special 

Auto-Special receives tactical weapon doctrine from the Plan Server and operates in two 
independent modes, SPY and AEC. The SPY mode evaluates tentative track and resolution 
messages reported by Track Correlation and Filtering (TCF) in response to the Auto-Special 
Patameters messages sent to Sensor Sim by the Plan Server. Auto-Special attempts to qualify 
the tracks supplied by TCF against the active Auto-Special statements. If a track qualifies, 
notification is forwarded to the Engagement Server. Auto-Special also has an AEC mode that 
periodically evaluates all tracks against the active Auto-Special doctrine statements and forwards 
an engagement request to the Engagement Server if a track qualifies. Auto-Special is an 
Engagement Server client and receives updated target engagement status information from that 
source. Auto-Special is a peer client replicated for fault tolerance and load sharing with respect 
to the AEC mode. 10 With respect to the SPY mode, Auto-Special uses an active replication 
model. Each Auto-Special replica acts independently on the tentative track and track resolution 
messages received from TCF, and forwards engagement requests to the Engagement Server as 
appropriate. The Engagement Server is responsible for filtering out duplicate requests. In this 
way, rapid reaction to significant threats is possible even upon failure of an Auto-Special replica. 

10 See HiPer-D Engineering Testbed Two (T2) Report, 30 Aug 96 for peer client architecture and implementation 
details. 
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3.1.2.9 Engagement Server 

a. A major addition to the HiPer-D system in Demo 98 was the replication of the 
Engagement Server component. Prior to Demo 98 this component was not replicated and, 
therefore, represented a single point of failure in the HiPer-D engagement capability. This 
section describes this Engagement Server work and its affects and impacts on Demo 98. Table 
3.1.2.9-1 briefly highlights the improvements made to the Engagement Server since the T3 
Demo in August 1997. 

Table 3.1.2.9-1 Engagement Server Improvements 

T3 Demonstration (8/97) Demo 98 (9/98) 
1 Engagement Server; single point 3+ Engagement Servers; 
of failure primary/shadow execution and 

recovery model 
No, or minimal, tactical state data Critical engagement state data of 
in replicas; (RTDS Track sets) system-wide interest 
Fault injection precision was Precise fault injection capability 
approximate; Ctrl C, Kill, etc. that is data file driven; application 

tailored 
No displays demonstrating JEWEL display providing a 
consistency among replicated window into replica state and 
components action consistency 

b. Execution Model: The purpose of the Engagement Server in HiPer-D is threefold. 
First, it validates engagement requests from clients and arbitrates any race conditions occurring 
due to multiple engagement requests on the same target. Second, it generates engagement orders 
to WCSSim for valid engagement requests. Third, it distributes engagement status updates to 
clients as tracks progress through their engagement sequence. During normal operation, doctrine 
clients (the Semi-Auto, Auto-SM, and Auto-Special applications) and tactical operators (the 
Manual Engage Control application) generate engagement requests on threatening tracks. The 
Engagement Server performs validation checks on these requests. Validated engagement 
requests result in engagement orders generated by the Engagement Server to the WCSSim. 
Finally, as the target cycles through the engagement sequence the engagement status for the 
target is updated and distributed by the Engagement Server. As previously mentioned, prior to 
Demo 98 the Engagement Server represented a single point of failure for the engagement 
capability ofHiPer-D. 

The Engagement Server design and execution relies on several features provided by the 
underlying group communications middleware. For Demo 98 this middleware was Isis, the 
group communications toolkit developed at Cornell University. The relevant features are listed 
below: 

(1) FIFO message delivery between a transmitter and a receiver. 
(2) Reliable and atomic delivery of message transmitted to a process group (i.e. all 

surviving members or no members receive the message). 
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(3) Group membership events ordered with respect to the message flow in the group. 

c. FIFO ordering guarantees that a receiver will receive messages in the same.order that 
a given transmitter sends them. Reliable and atomic delivery guarantees that either all members 
of a process group will receive a message or none of them will. This is an important feature to 
ensure that all group members have the same set of input messages. These two features together 
guarantee that all members of a group see messages in the same order from a given transmitter to 
that group. This provides an important guarantee of atomic ordering from a given transmitter. 
The ordered group membership events guarantee that membership changes to a group are seen 
by surviving group members at the same position in the message flow occurring for that group. 
For example, assume one member of a group receives a message followed by a subsequent 
membership change in that group. All surviving members of that group will see that identical 
ordering. In other words, it is guaranteed that all members will receive the message followed by 
the membership change. This is a critical feature to support fault tolerance in the presence of 
process failures. These features will be discussed again in Section 4.3 describing lessons learned 
in the Engagement Server work. 

d. The Engagement Server design relies on these three group communications attributes 
to implement a semi-active primary/shadow execution and recovery model. The primary/shadow 
model requires that one replica be designated as primary. The primary replica is responsible for 
carrying out all processing and initiating any resultant responses. All other replicas are 
designated shadow replicas. The shadow replicas duplicate the computations of the primary but 
do not initiate any output except when the primary fails. The execution model and its 
dependence on group communications are discussed in the following paragraphs. 

e. The first Engagement Server replica coming on-line assumes the role of the primary 
replica. All additional replicas come on-line in the role of shadow replicas. Demo 98 ran with 
three replicas, one primary and two shadow replicas. The design is not limited to this number, 
but there will always be only one primary replica. The primary replica has these unique 
responsibilities: 

(1) Informs all shadow replicas that it has assumed the role of the primary replica. 
(2) Informs all shadow replicas which message (i.e. input stimulus) to begin 

processing. 
(3) Transmits messages to other components, as well as to shadow replicas, that result 

from processing an input stimulus. (These transmitted messages are called "resultants") 
( 4) Informs all shadow replicas when time-out conditions occur with respect to 

engagements in progress. 

f. The shadow replicas have responsibilities that differ from the primary: 

(I) Receives an indication of which replica has assumed the primary role. 
(2) Receives and processes indications from the primary replica as to which input 

stimulus to begin processing. 
(3) Verifies that the primary replica successfully transmits all required resultants. 
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( 4) Receives and processes indications of time-out conditions that occur at the 
primary replica with respect to engagements in progress. 

g. Table 3 .1.2. 9-2 summarizes the unique responsibilities of the primary and shadow 
replicas. These responsibilities should be considered in parallel and will be discussed to 
demonstrate the execution model. The first responsibility for both primary and shadow replicas 
allows all replicas to know which process has assumed the primary role. This is done at process 
initialization. The first replica detects that it is the only Engagement Server on-line and assumes 
the role of the primary replica. Additional Engagement Servers detect that there are other 
replicas on-line and wait to receive the indicator message from the primary replica. The primary 
replica detects these new replicas and then transmits this indicator to each of them. This allows 
the shadows replicas to properly identify the primary replica. This indicator is also transmitted 
after a failure of the primary replica but this will be discussed in regard to the third responsibility 
of primary and shadow replicas. 

Table 3.1.2.9-2 Replica Responsibilities 

Responsibility Primary Replica Shadow Replica 
1. Assumption of Primary Sends indicator to all Receives and processes 

Role shadow replicas. indicator from primary 
replica. 

2. Stimulus Eligible for Sends indicator to all Receives and processes 
Processing shadow replicas when it indicator from primary 

begins processing a replica. Initiates processing 
stimulus. of designated stimulus. 

3. Transmission of Transmits resultant to Receives and verifies 
Resultant appropriate destination transmission of resultant by 

components and shadow primary replica. 
replicas. 

4. Time-out Notification Sends time-out notification Receives and processes 
to shadow replicas. time-out notification from 

primary replica. 

h. The second responsibility forces all replicas to process messages in the same order. 
Just prior to processing a message the primary transmits this information to the shadow replicas. 
This informs the shadow replicas which message to begin processing. The shadow replicas, in 
turn, are awaiting such an indicator to ensure that they process the identical message as the 
primary replica. The first and second Isis features, previously discussed, guarantee that each 
shadow replica will receive the specified message if they have not already. Once they receive 
this indicator they can proceed to process this message at the best possible speed. This technique 
of ordered message processing is an important step in ensuring that the replicas are staying in 
synch with respect to the engagement state data. 

i. The third responsibility for each ensures that every resultant from processing an input 
stimulus does indeed get successfully transmitted. It is the responsibility of the primary replica 
to actually transmit the resultants. When the primary replica processes a message it simply 
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transmits a resultant at each point where that is necessary and then continues processing. The 
shadow replicas perform somewhat differently. When shadow replicas reach the identical point 
in processing a message they store this resultant in a pending-outbound state and then continue 
processing. The shadow replicas will receive each resultant transmitted by the primary replica, 
because of the ordering and atomitity guarantees provided by the group communications 
middleware first and second features oflsis. As they do so they are able to match these 
resultants against ones they have stored in a pending-outbound state queue. Matched resultants 
are subsequently removed. By this technique the shadow replicas can verify successful 
transmission of the resultants. 

j. Should the primary replica fail before transmitting all resultants, the Engagement 
Server relies on the group communications guarantee of ordered membership change events with 
respect to the message flow in a group. With this guarantee, all surviving shadow replicas will 
know exactly which resultants the primary replica transmitted prior to failure. One shadow will 
assume the primary replica role. It will transmit to the surviving shadow replicas an indicator 
that it is now the primary replica. It will then transmit any resultants that remain to be sent and 
continue on in the role of the primary replica. The shadow replicas will await this primary 
replica indication. When they receive it they will then continue on in their role as shadow 
replicas. But, they will now perform their activities, including the matching of resultants, by 
looking for indicators from the new primary replica. 

k. Finally, the fourth responsibility allows all replicas to be in agreement with respect to 
time-out conditions. When an engagement order resultant is transmitted to WCSSim, the 
Engagement Servers await a response from WCSSim. It is possible for this expected response to 
time-out. Upon transmission of an engagement order the primary replica sets a timer. If this 
timer expires before it receives the engagement response from WCSSim then the engagement 
has timed-out. The primary replica will transmit a message to the shadow replicas indicating 
whether the engagement response was received in time or it timed-out. In this manner, the 
shadow replicas can determine whether they should continue the normal processing for this 
engagement or proceed into the time-out processing. Either way, they will mimic the primary 
replica via the indicator it transmits to them. 

1. Although the shadow replicas utilize the timeout notification from the primary 
replicas, they each also set their own timer when an engagement order is queued in a pending­
outbound state. As long as the shadow replicas receive the time-out indicator message from the 
primary replica they can ignore and clear their own timers. These shadow timers are only 
needed when the primary replica fails. In this case, the shadow that becomes the new primary 
replica will then use it's own timers to determine all time-outs and send appropriate indicators to 
all shadow replicas. 

m. The responsibilities defined above allow the creation of a replicated engagement 
service. This service is able to withstand process failures to any of the replicas, including the 
primary. Even in the case of a primary replica failure the engagement service capability will 
continue uninterrupted. This replicated engagement service is transparent to clients. Clients do 
not need to know how many Engagement Server replicas are cooperatively executing to provide 
this fault-tolerant service. 

33 

Ex.1009 / Page 42 of 280 
TESLA, INC.



3.1.3 Track Data Services Components 

The Track Data Server component provides a system wide unique track number through 
the Track Number Server, distributes correlated and filtered track data to all clients requesting 
the information via the Radar Track Data Server (RTDS), and provides the sensor feedback on 
frequency of update for priority tracks during track data overload conditions using the Sensor 
Rate Server (SRS). All track data service components are summarized in Table 3 .1.3-1 and 
described in the following subparagraphs. 
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Table 3.1.3-1 Track Data Services Components 

COMPONENT FUNCTION 
Radar Track Data • Open client-server approach to radar track distribution 
Server (RTDS) • Provides client specific track groupings, report rate selection, 

and latency specification 

• Distributed implementation for scalability and fault tolerance 
Track Number 

Provides single number source for all components 
Server (TNS) • 

Sensor Rate Server • Provides desired report rate for each Track to sensor simulator 
(SRS) • Graceful degradation during track overload conditions 

3.1.3.1 Radar Track Data Server (RTDS) 

a. The RTDS was designed to serve as a flexible central distribution point for the radar 
track data produced by HiPer-D Correlation and Tracking (HCT). Its primary objective is to 
shield the radar track data recipients (e.g., displays, engagement review functions, etc.) from the 
excessive volume of sensor data produced by the TCF function, yet still provide the data 
necessary to ensure timely system operation. 

b. RTDS provides an extremely flexible interface to its clients, allowing arbitrary 
groupings of tracks for specific track report rates and delivery latency needs. For example, when 
changing the range or center of a display, the display can request received tracks be displayed at 
a one-second rate, while other tracks (not even on the screen) can be updated at a five-second 
rate to reduce overall load on the display program. In the case of Auto-Special doctrine 
processing, where low track latencies are crucial, the RTDS client could request to receive track 
reports at a low latency setting for all those tracks in the vicinity of qualification. This results in 
very high responsiveness for critical needs, while reducing overall system processing and 
communications. It also provides more traditional query/response services in which the clients 
receive data only when requested. This is put to effective use by the sensor simulator which 
must, on notification of an engagement by WCS, retrieve kinematic data on the targeted object to 
compute properly an intercept trajectory and generate the contacts for the simulated ownship 
missile. 

c. The RTDS is implemented as a replicated server. The replication provides fault 
tolerance, as well as distributes the communications load among all the server replicas. In the 
event that one of the replicas crashes, the remaining servers assume its load with no effect on the 
clients. 

3.1.3.2 CORBA Track Number Server {CTNS) 

CTNS is the Track Number Server (TNS) software adapted to utilize CORBA-based 
communication. The goal was to take an existing system having a sizable amount of 
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communication with other processes, both local and remote, and utilize CORBA11 as the 
interface methodology. A brief description of the CTNS architecture and a performance 
summary are presented. 

3.1.3.2.1 CTNS Overview 

a. The CTNS provides a central location for managing unique track identifiers. The 
underlying concept is to have a single source (CTNS) maintain the track numbers, assuring that 
no number is ever used to identify multiple objects, that numbers do not get "consumed" never to 
be reused, and that numbers are reused on a least recently used basis. The following terms are 
useful when discussing CTNS functionality: 

( 1) Process Group Communications Layer - provides communications group 
membership services and supports communication between distributed groups. 

(2) Process Group A communications group implemented via the Process Group 
Communications Layer. 

(3) CTNS Group-The CTNS Broker, CORBA_TNS, and CORBA_TNS_Bridge 
processes that work together to perform the TNS functions. 

(4) TNSS Client A TNS Service (TNSS) client that uses CTNS services. 
(5) TNSS Group -A process group that contains all the members of the CTNS group 

and a particular TNSS client. There is one TNSS group for each TNSS Client. 

b. For a TNSS client to acquire track numbers, it must join a TNSS group. This is 
accomplished through a request to the CTNS. The TNSS client is considered by CTNS to be a 
single entity for track number messages. Figure 3.1.3.2.1-1 shows two clients that have 
established communications with the CTNS through separate TNSS groups. The Process Group 
Communications Layer provides the functionality for joining a TNSS group and sending 
messages within a TNSS group. 

l! CORBA - Common Object Request Broker Architecture is an infrastructure that provides the services necessary 
for distributed objects to communicate without the user having to deal with network programming details. The 
COREA standards are maintained by the Object Management Group (OMG). 
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TNSS Group 

TNSS Group 

Figure 3 .1.3 .2.1-1 CTNS and TNS Client Relationship 

3.1.3.2.2 Overall Architecture 

a. CTNS was implemented using Iona Technologies Orbix CORBA environment. 
CTNS comprises the following modules: 

(1) corba_tns process - This is the main program in the CTNS. It is a C++ program 
which is started by system control, and is responsible for managing the Track Number database. 
When a TNSS client signs on to the TNS process group, corba_tns creates an object for the 
TNSS client. This object is used for managing the client's track number data. 

(2) ctns_broker process An ANSI C program that manages TNSS client messages 
with the CTNS. This program is started by system control. 

(3) corba_tns_bridge subprocess AC++ program that provides an interface between 
corba_tns and the ctns_broker. This program is launched by ctns_broker. It acts as a bridge 
between the process group communications based clients ( coded in ANSI C) and the CORBA­
based server ( coded in C++ ). 

( 4) Object Request Broker (ORB) - The middleware that establishes the client-server 
relationships between objects. Using an ORB, a client can transparently invoke a method on a 
server object, which can be on the same machine or across a network. The ORB intercepts the 
call and is responsible for finding an object that can implement the request, pass it the 
parameters, invoke its method, and return the results. The client does not have to be aware of 
where the object is located or any other system aspects that are not part of an object's interface. 
The ORB is a standard component of CORBA 

(5) orbixd daemon- This is an Orbix-furnished process that initiates communication 
between corba_tns_bridge and corba_tns. It provides an initial object reference12 to 

12 Object reference -The CORBA Object Request Broker (ORB) uses object references to identify and locate 
objects so that it can direct requests to them. As long as the referenced object exists, the ORB allows the holder of 
an object reference (client) to request services from it It appears as if the client is making a local procedure call, 
when in fact the object can be located on a remote processor. 

37 

Ex.1009 / Page 46 of 280 
TESLA, INC.



corba_tns_bridge so that corba_tns_bridge can make method invocations on corba_tns. Orbixd 
is launched by system control. Orbix requires that orbixd be collocated with each instance of a 
CORBA server. While this process is specific to Orbix, other CORBA packages furnish this 
capability in one form or another. 

b. The CTNS architecture is illustrated in Figure 3.1.3.2.2-1: 

Object 
Adapter 

orbixd 

Object Request Broker 

Client Object Reqs 

TNSS Client 
C 

Track Number 
Requests/Resp 

Object Request Broker 

['!<,::'.';:! - Member of CTNS group 

Track Number 
Requests/Resp 

Figure 3 .1.3 .2.2-1 CTNS Architecture 

3.1.3.2.3 CTNS / TNSS Client Communications 

a. Communication between the CTNS group and a TNSS client is via the ctns_broker 
module. This is a process group communications based ANSI C program that is responsible for 
the following: 

(1) Initiating TNSS group sign-on via the process group communications layer 
(2) Accessing the Track Number Server database (corba_tns module) via the 

corba _tns _ bridge subprocess 

38 

Ex.1009 / Page 47 of 280 
TESLA, INC.



(3) Providing a destination for TNSS client track number requests made via the 
process group communications layer 

b. Process group communications layer based applications are multithreaded in the 
sense that the process group communications layer will issue multiple up-calls in parallel in 
response to messages in multiple groups. After initialization, ctns_broker threads are created for 
starting a TNS reference group and processing client messages for TNSS group sign-on. 
ctns_broker threads are created for each TNSS client that joins a TNSS Group. The threads are 
responsible for processing requests made by the TNSS client as well as monitoring the group 
status. All communication between the ctns_broker threads and a TNSS client is via the process 
group communications layer. 

3.1.3.2.4 CTNS Group Communication 

a. The interface to the CTNS server is defined with CORBA' s Interface Definition 
Language (IDL ). 13 Based on an IDL file, the Orbix IDL compiler generates modules for the 
CORBA server (Object Skeleton code) and client (Client Stub code) to interface with the ORB. 
The Object Skeleton code is the framework for the methods to access the objects specified in the 
interface. The developer provides the code for these methods in the Object Skeleton. The Client 
Stub code is complete when generated by the IDL compiler. This code provides the mechanisms 
needed by the CORBA client to access the server's objects, either remotely or locally, via the 
ORB. The ORB is part of the underlying CORBA infrastructure that handles the communication 
between the CORBA server and client. IIOP14 is the protocol used for the communication 
between the CORBA server and client. The CORBA server and client are not required to be on 
the same processor nodes; communication between the two processes will function regardless of 
their locations due to the ORB. 

b. The CORBA server responsible for managing the track number database is corba_tns. 
It creates objects for each TNSS client that joins the TNSS group via ctns_broker. The 
corba_tns_bridge subprocess (CORBA client) invokes these objects in response to track number 
data requests from ctns _ broker. corba _ tns and corba _ tns _ bridge are not required to be on the 
same processor nodes; communication between the two processes will function regardless of 
their locations. 

c. In order for communication to be established between the distributed members of the 
CTNS group, the following must occur. When corba _tns starts up, it notifies orbixd via the 
ORB, that it is ready to receive data requests. corba_tns_bridge requests orbixd to provide an 
object reference for corba _tns. The CORBA client / server communication is now established. 

13 IDL -A language similar to C++, used to specify the objects and object methods to be utilized in accomplishing 
certain tasks in a distributed environment. An IDL specification is independent of the language used to implement 
either 1he client or the server. 
14 This is 1he Internet Inter.ORB Protocol, which specifies interoperability between different ORB implementations. 
IIOP is the standard CORBA communication protocol. Under IIOP, an object reference is provided in the CORBA 
Interoperable Object Reference (IOR) format. The main components of an IOR are 1he host name on which an 
object's server resides, the port number on which 1he server is listening for IIOP traffic, and an object key, which 
uniquely identifies an object within a server. 
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As long as corba_tns has an object established, and corba_tns_bridge holds a reference to that 
object, corba_tns can process data requests from ctns_broker. 

d. Upon receipt of a TNSS client data request, a ctns_broker thread sends the 
information over a FIFO pipe. The corba_tns_bridge subprocess is blocked on a read of the pipe. 
The corba_tns_bridge invokes a method on the specified TNSS client object corresponding to the 
data request it receives over the pipe. The corba _tns method is invoked and data is exchanged 
based on communication between the Client Stub code, ORB, Object Adapter, and Object 
Skeleton code. This communication is transparent to the CORBA server and client. 
corba_tns_bridge passes the data it receives back through the pipe to ctns_broker. 

e. Initially, it was intended that the ctns_broker program be a COREA-based C++ 
application that would communicate with corba_tns via the ORB. It would still utilize the 
process group communications layer to communicate with INSS clients. This was not possible 
due to incompatibilities with C programs calling C++ programs (the process group 
communications layer is written in C). To get around this obstacle, ctns_broker remained a 
Spread-based C program. It forks a CORBA-based C++ subprocess (corba_tns_bridge), with 
which it can communicate over a Unix FIFO pipe. This allows a standard C application to 
communicate with the CORBA-based C++ application (corba_tns), although it adds an extra 
level of complexity and inefficiency. 

3.1.3.2.5 Startup Processing 

a. At startup, the corba_tns program registers with orbixd to establish its location and 
identify an initial object reference15 to the ORB. It then awaits a data request. After 
corba _tns _ bridge starts up, it requests an object reference for corba _tns, which is provided by 
orbixd. After ctns _ broker accepts sign on to the group of a TNSS client, it notifies 
corba_tns_bridge ofthe new client. corba_tns_bridge then uses its initial object reference to 
request that an object be created for the new TNSS client. corba_tns provides a client object 
reference to corba_tns_bridge for the new TNSS client. Any data requests related to this TNSS 
client are to be made using the client's object reference. The passing of data and any method 
invocations between corba_tns and corba_tns_bridge are handled by the ORB and are transparent 
to the programs. 

b. After corba_tns has started, the ctns_broker program forks a subprocess that starts the 
corba_tns_bridge program. Ctns_broker establishes a pipe between itself and corba_tns_bridge 
to provide for communication between the two programs. It then calls the gms join routine 
which initializes TNS process group communications using the HiPer-D DCS/GMS interface 
layers. It then registers routines with the tns _ if module to accept INS domain sign on messages 
and INS domain messages, and signs on to the TNSS Group. Control is then passed to process 
group communications, which calls the above-mentioned routines when messages arrive from a 
TNSS client. Ctns_broker places each message it receives in a FIFO pipe to be read by 
corba_tns_bridge. 

15 The initial object created by corba_tns is a factory object. When corba_tns_bridge binds with corba_tns, it 
receives an object reference for this factory object. The factory object provides methods for creating and destroying 
client objects. When a new client object is to be created, corba_tns_bridge invokes a method on this factory object. 
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c. When the corba_tns_bridge program is started, it tries to bind with the corba_tns 
program via the ORB. This provides corba_tns_bridge with the initial object referenc~ that it 
needs to communicate with corba_tns. Once successful, corba_tns_bridge blocks on the CTNS 
message buffer waiting for a message from ctns _ broker. 

3.1.3.2.6 Performance 

a. The CTNS interface was implemented with the capability to provide new track 
numbers to a client and to release a track number held by a client. 

b. The performance of the CTNS interface was evaluated with the CTNS processes 
located on the same node, as well as distributed on different nodes. Distributing CTNS requires 
that corba _ tns and orbixd be located on the same node. The CTNS was tested with multiple 
TNSS clients, and the maximum track number capacity (10,000) was verified for at least one 
client. To determine if the CTNS interface was functioning properly, the following 
characteristics were observed as tracks were entered in the system: 

(1) The log files for ctns_broker, corba_tns_bridge, and corba_tns were evaluated to 
verify that: 

(a) ctns_broker signs on to a group properly and a client object is created for each 
TNSS client that signs on to the group 

(b) Messages from a TNSS client are formatted properly within the CTNS group, 
the client object is updated correctly for the given message, and results of the message are 
returned to the client properly. 

(2) The display (Ximp) was observed to verify that the number of tracks in the system 
corresponded to what CTNS had allocated. 

(3) Modelc log file showed a normal distribution of track reports while CTNS was 
allocating track numbers to the system. 

3.1.3.3 Sensor Rate Server (SRS) 

The SRS provides an opportunity to use the available sensor bandwidth in an intelligent way. 
For example, there may be limits in sensor or processing capabilities due to hardware and/or 
software configurations. These limits may be temporary or permanent. The SRS adapts the 
requested sensor data load by collecting information on sensor capabilities, desired track report 
rates, and track importance. It then maps requested rates and priorities onto sensor capabilities 
and issues commands to the sensor(s), specifying the rate at which each track is to be reported. 

3.2 Land Attack and C41 Subsystem Functional Description 

A land attack capability provided by the ATWCS Real Time Launch Control function is a 
new component added to the test bed for Demo 98. The path for 0TH tracks to be entered into 
the testbed is provided through the JMCIS and AACT components. The ABMX component and 
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the data brokers providing the interfaces to these systems are part of this subsystem. These 
components are highlighted in Figure 3 .2-1 and described in the following subparagraphs. 

3.2.1 Advanced Tomahawk Weapons Control System (ATWCS) 

a. The ATWCS has a number ofresponsibilities. First, it is responsible for over water 
route planning for Block II and Block III Tomahawk Land Attack Missile (TLAM) strikes 
against predefined land targets. Secondly, ATWCS aligns the missiles inertial navigator and 
downloads flight software and mission data, enabling the missile to navigate to the target. It 
responds to Vertical Launching System (VLS) and missile fault conditions, maintains weapon 
safety and controls missile launch sequence. In addition, it responds to VLS and missile fault 
conditions, maintains weapon safety, and controls TLAM initialization and launch. Overland 
routes and terminal attacks are planned external to ATWCS by Tomahawk mission planning 
systems either ashore, at Cruise Missile Support Activities (CMSA), or on command ships at 
Afloat Planning System (APS) Detachments. These preplanned missions are stored in a library 
maintained by ATWCS. The library may be updated via either magnetic tape, or satellite 
communications from CMSA or APS sites. 

b. ATWCS is composed of several major subsystems, or Computer Software 
Configuration Items (CSCI). The over water planning function is performed by the Engagement 
Planning and Control (EPC) CSCI, supported by the Command, Control, Communication and 
Intelligence (C31) CSCI which provides the near real-time surface track tactical picture. The 
missile initialization and launch function is implemented in the Launch Control (LC) CSCI, 
supported by the Mission Data Process (.MOP) CSCI which provides the preplanned overland 
route and target data from the mission library. A System Management (SM) CSCI has overall 
control of the ATWCS system and provides general-purpose services such as mode (tactical, 
training or test) control and operator alert processing. 
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c. In support of the 98 Demo objectives, the following architectural concepts were 
investigated as part of the ATWCS element of the demonstration: 

(1) Open systems design 

(2) Distributed architecture 

(3) Hardware independence (a.k.a., software portability) 

(4) Shared resource management 

(5) Support of real-time processing 

(6) Fault tolerance 

d. The LC CSCI was selected as the prototype effort for Demo 98. This decision was 
based on the following facts. The LC: 

(1) Has an architecture that is conducive to supporting the demonstration objectives. 

(2) Has well-defined real-time and non-real-time requirements. 

(3) Was developed using multiple programming languages and operating systems. 

e. Figure 3 .2.1-1 presents a high-level view of the architecture of the operational 
ATWCS, with the LC CSCI shown decomposed into its three major processes, the LC Human 
Computer Interface (HCI), the LC Executive (Exec), and the LC Real-Time (RT). LC HCI 
provides the graphical interface to the LC operator; LC Exec is the "brain" of the LC CSCI, 
where the state of each active Tomahawk engagement plan is maintained. The LC RT process 
handles the communication between the ship's Inertial Navigation System (INS) (the forward 
and aft WSN-5s) and the VLS Launch Control Units (LCU). 
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@i) ATWCS LC CSCI Components 

~ OtherATWCS CSC!s 

Other Combat System Components 

Figure 3.2.1-1. High Level Architecture of Operational A TW CS 

f. With the exception of the LC RT process, ATWCS CSCis are designed to run on 
TAC-3/4 (HP) processors with the HPUX 9.07 operating system. Communication between 
CSCis (and LC processes) is implemented by Application Program Interface (API) software in a 
client/server architecture on a local area network. The LC RT process is designed to run on an 
HP 743 single board computer under the HPRT operating system. Communication between the 
LC RT processor and the ship's INS and VLS are point-to-point NTDS interfaces. In order to 
provide a degree of fault tolerance, the LC RT process is normally running simultaneously in two 
separate HP 743 processors. This configuration allows automatic recovery from HP 743 
processor failure, loss of communication with the primary WSN-5, or loss of communication 
with either VLS LCD. However, multiple failures may require operator intervention to 
overcome, or may be unrecoverable. Figure 3.2.1-2 depicts the ATWCS/HiPer-D integration for 
Demo 98. 
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Figure 3.2.1-2 ATWCS Network Connectivity 
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g. The LC version 2.1 tactical software, one of the developmental builds for ATWCS, 
was selected as the baseline for the Demo 98 advanced computing prototype. The functionality 
of the other ATWCS CSCis and combat system components was simulated. These simulations 
satisfy all of the LC interface requirements, but do not provide all of the operational functionality 
of their tactical counterparts. 

h. Demonstrating portability was approached in two ways. First, the portable 
programming language, Java, was used for the LC HCI software because it allowed software to 
be developed on one platform and run on many platforms. The second approach was to identify 
the hardware dependencies in the LC RT software, and isolate those dependencies in such a way 
that only a recompilation would be needed in order to run the existing software on a Sun/Solaris 
platform. 

i. Demo 98 also demonstrated the fault tolerance of LC RT in a distributed architecture, 
integration with the ship-wide computing Resource Manager, adoption of network connectivity 
among mission critical elements of the combat system, and simulation of the Tomahawk missile 
flight. In accordance with the vision for future combat systems, the point-to-point interfaces 
between ATWCS and simulations representing the ship's INS and VLS have, in the testbed 
architecture, been replaced with network connectivity. 

j. Figure 3.2.1-3 illustrates the architecture of the ATWCS component of the Demo 98 
testbed. None of the supporting infrastructure (NTP, JEWEL, RM, etc.) is shown in this 
diagram. As can be seen, a Nav Sim program running on an SGI processor, and a Nav Data 
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Server application running on a Sun simulated the ship's INS. The baseline LC Exec and LC 
HCI processes, along with non-real-time components of the other ATWCS CSCI simulations, 
were hosted on a TAC-4 under HPUX 10.2. In addition to a Sun for each of the prototype LC 
RT and LC HCI processes, another Sun was required to host the real-time components of the 
supporting simulations. 

Frdct)l>e 
ATW:SS/N 

-MATW:S 
&SmJaionSW 

Srn.tla!oo&!N 

$3ARIX St.n/&llans 26 &nl&Jlans26 St.n/&Jlans 26 

&nlS:llans 26 

T /lC4/rPLD< 10 2 

Figure 3.2.1-3 ATWCS Demonstration Testbed Architecture 

3.2.2 Joint Maritime Command Information System (JMCIS) 

a. The JMCIS was the source for non-organic track data (often referred to as over-the­
horizon or 0TH data). JMCIS is an automated C41 system that interfaces to a variety of military 
communications and computer systems. JMCIS is designed to provide tactical situation 
assessment, data fusion and display capabilities to battle group and force commanders. 

b. JMCIS is made up of a variety of networked computers. The central processor is 
known as JOTS 1. JOTS 1 receives data from other JMCIS components including those designed 
to handle communications interfaces. JOTS 1 performs data correlation then distributes that data 
to all other JMCIS processors. All JMCIS processors communicate using the JMCIS TDBMS 
protocol over Ethernet LAN connections. 

c. In Demo 98, there was a JOTS 1 processor and a JOTS28 processor. JOTS28 is a 
general-purpose processor with no predefined role in the JMCIS network. In HiPer-D, JOTS28 
hosted the Advanced Battle Management and execution (ABMX) software (formerly Advanced 
Power Projection Planning & Execution (APPEX)). 
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d. Demo 98 did not contain the JMCIS communication processors. An interface was 
developed to drive JMCIS that allowed tracks to be introduced into JMCIS using an Over-the­
Horizon Targeting Gold (OTHGOLD) interface. OTHGOLD is an ASCII file format that 
contains track position information. OTHGOLD files are read by the JMCIS 'COM' program 
which passes the data to JOTS 1. To simulate a moving target, a process called OTHSIM was 
developed. This process is illustrated in Figure 3 .2.2-1 below. 

OTHGOLD 

~ 
created & copied Remote 
A new fife is f 
every 15 seconds Copy 

'-, Remote 
Execution 

T 

COM 

Scenario DIS PDUs 

Track 

JMCIS 

Figure 3.2.2-1 - JMCIS Stimulation 

,, 3.2.2.1 DIS to OTHGOLD Converter 

a. The program dis2othg is a software filter that reads DIS PDUs (as specified in IEEE 
1278.1 - 1995) as input from a Unix socket. It examines each PDU as it arrives to determine its 
type. If the PDU is an Entity State (ES) PDU, it proceeds to convert the appropriate PDU data 
fields to OTHGOLD message components. The program writes a file to disk containing the 
OTHGOLD messages (the "OTHGOLD file") triggered either by a timer or a certain number of 
message components having been prepared for writing. The DIS to OTHGOLD Converter 
architecture is illustrated in Figure 3 .2.2.1-1. 

b. Dis2othg has a companion Unix shell script, copy_oth_gold.csh, that copies the 
OTHGOLD file to a designated computer that then runs the JMCIS import_file program to get 
the OTHGOLD data into the JMCIS system. 

c. The program and shell scripts coordinate their operations by setting and examining the 
file protection bits of the OTHGOLD file. This ensures that dis2othg will not overwrite the 
OTHGOLD file before it has been moved to the JMCIS computer or while the shell script is 
doing its copy operation. This scheme also pre~1ents the shell script from attempting to copy an 
incomplete OTHGOLD file as dis2othg is writing it. 
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d. The usual arrangement is to have dis2othg and copy_oth_gold.csh running on the 
same computer. But this is not necessary. As long as the disk file can be seen by the computers 
that run the program and shell script, the desired data from DIS will be moved to JMCIS. 

$LOCAL_ OTH_FILE $JMCIS_ OTH_FILE 
,,..---...., 

-- ..... 
-

f---

~ 
rep ~ .. 

-
PDUs 

~ 
V 

ril" Dis2othg 

, ' 
Copy _oth_gold.csh - $JM CIS _ FUNCTION rexec 

r 

$LOCAL_NODE $JMCIS_NODE 

Figure 3.2.2.1-1 DIS to JMCIS Interface 

3.2.3 Advanced Battle Management and Execution (ABMX) System 

a. ABMX is a force-level mission planning, preview, and battle management system that 
allows carrier-based air wings to plan, visualize and assess strike plans prior to the launch of 
aircraft. ABJ\1X began as an Advanced Combat Technology Demonstration (ACTD) and was 
successfully deployed for six months aboard USS Theodore Roosevelt (CVN-71). 

b. ABJ\1X offers a two dimensional (2D) display on the JOTS28, and a three­
dimensional (3D) display resident on a Silicon Graphics workstation. The ABMX 2D is used for 
mission planning, fine-tuning, and battle management. The ABJ\1X 3D display provides a 3D 
battle display. ABMX 3D in Demo 98 was used for visual deconfliction during the digital CFF 
sequence. 

3.2.4 Data Brokers - Legacy System Interface 

a. The key aspect of integrating legacy systems into the testbed is the ability to establish 
intercommunication among all the components. This was accomplished in Demo 98 with the 
AEGIS Air Correlator and Tracker (AACT) and the C31 broker. AACT provides the interface 
between C4I, JOTS 1, and the RTDS AA W components. The C3I broker provides the interface 
between HiPer-D combat systems and ABMX and Naval Surface Fire Support Simulator (NSFS 
Sim). A track broker was developed to interface between AACT and the HiPer-D Track 
Correlator and Filter. 
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b. This section documents the JMCIS I AACT I HiPer-D interface architecture and 
software used in the HiPer-D 1998 Demonstration. 

3.2.4.1 JMCIS/AACT/AA W Interface 

Real-time track data and 0TH track data flow through HiPer-D along two different paths. 
Real-time tracks flow from local radar sources, through the ATCF, to the RTDS, which in turn 
distributes them to its clients. JMCIS is the source for 0TH tracks which are forwarded through 
AACT, where they are associated with real-time tracks. AACT uses the CDK track file to store 
both real-time and 0TH tracks. The CDK track file record includes a field which is used to keep 
the 0TH and real-time data separately identifiable. The interface to AACT was implemented by 
developing processes that accessed the CDK track file. This architecture is illustrated in Figure 
3.2.4.1-1. 

AACT CDK to HiPer-D Interface 

ADS_encoder 
Real-Time Tracks othrt _sender .c 

JMCIS 
JMCIS_decoder 

0TH 
Tracks Distribution 

VHC 

l-t-...:....:...::.::..:..:.::...--1-11>, readoth_ls.C 

Real-Time 
Tracks 

r--,::-.::::.::::.::::::::::::=::;---
rea d rt_ c. C 

rtdsrt_c.c 

HiPer-D to CDK Interface 

Figure 3.2.4.1-1 JMCIS / HiPer-D Interface 

3.2.4.2 Real-Time Data AA W Track Path 

RTDS 

a. AACT receives real-time tracks from the RTDS through the HiPer-D to CDK 
Interface shown in Figure 3 .2.4.1-1 above. This interface stores the real-time tracks in the CDK 
track file. The Virtual Hypothesis Correlator (VHC) process in AACT finds associations 
between these real-time tracks and the 0TH tracks that are received from JMCIS. 

b. The RTDS interface is implemented using HiPer-D support libraries, which are 
written in ANSI C. The CDK track file is accessed using CDK libraries, which are written in 
C++. C++ routines cannot easily call C routines. This forces the HiPer-D to CDK interface to 
be composed of two modules that communicate using a Unix Interprocess Communications 
(IPC) mechanism known as a Unix pipe. 

c. The module on the ANSI C side, rtdsrt_c, registers with the RTDS as a client and 
begins receiving real-time track information. It packages this information into the appropriate 
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track data structures (i.e., drop track, new track, or track update) and forwards them across the 
Unix pipe to the C++ side. The module on the C++ side, readrt_c, listens to the Unix pipe and 
decodes the messages that are received. The CDK track file is then updated with this 
information. Data conversions are made, as data is stored in the CDK track file to adapt for 
different units used by the RTDS and CDK. The ads_encoder process periodically scans the 
CDK track file and sends any real-time tracks that it finds to JMCIS. 

3.2.4.3 0TH Track Data Path 

a. The 0TH track reports are forwarded by JMCIS to the CDK track file via the JMCIS 
Combat System Interface (CSI) segment interface developed by International Research Institute 
(INRI). The CSI is composed of an MDX process, which accesses decoder, and encoder 
processes, which are defined by the MDX user. AACT defines the ADS_ encoder and the 
JMCIS decoder routines to MDX The JMCIS decoder process decodes the messages received - -
from JMCIS and writes the information to a file on disk. This disk file is then read by the VHC 
process, which performs the association and inserts the 0TH tracks in the CDK track file. The 
CDK to HiPer-D Interface, as shown in Figure 3.2.4.1-1 above, reads these tracks from the CDK 
track file and distributes them to clients in HiPer-D 

b. The readoth_ls component of the CDK to HiPer-D Interface is written in C++, and the 
othrt sender component is written in ANSI C. These two processes use a Unix pipe to 
communicate. Readoth _ls periodically scans the CDK track file and picks out the 0TH tracks by 
examining the track_type field for each track This module keeps track of the existing 0TH 
tracks to be able to determine if any of the tracks processed on the current scan are new, updated, 
or missing. Once this is determined, the appropriate new track, track update, or drop track is sent 
via the Unix pipe to othrt_sender. Othrt_sender listens on the Unix pipe, decodes messages that 
come across, and broadcasts them using HiPer-D's 0TH data server communications group. 

3.2.4.4 Aegis Air Correlator Tracker (AACT) 

a. AACT interfaces between HiPer-D and JMCIS using the JMCIS CSI segment. When 
JMCIS transmits updates, AACT receives the update and saves it in a temporary data store. 
VHC uses an advanced correlation algorithm to associate JMCIS data with Real Time tracks 
from the Aegis combat system. These associations are placed in the AACT track file where they 
can be displayed by the Common Display Kernel (CDK) display. AACT periodically scans the 
AACT track file and sends real time track information to JMCIS. 

b. The AACT track file contains both real time and JMCIS tracks. This track file 
became the focal point of the interface between C4I and AA W subsystems. This is illustrated in 
Figure 3.2.4.4-1 below. 
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c:::> Pre-existing T2A Components 
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Figure 3.2.4.4-1. AACT to AAAW Interface 

RTDS 
Client 

Display 

c. Every 20 seconds, the READOTH process scans through the AACT track file looking 
for JMCIS data that has been placed there by the VHC process. When it finds new track data, it 
acquires a HiPer-D track number from the HiPer-D TNS and assigns that number to the new 
track. It then forwards that track number to the HiPer-D TCF process. The TCF forwards the 
track to the RTDS which distributes it to other HiPer-D components. READOTH maintains a 
list of JMCIS tracks that it has passed on to the TCF. If it fails to see a track in the AACT track 
file during a scan, it assumes that the track has been dropped and issues a drop track message to 
the TCF. 

d. The READRT process is a client of the RTDS and receives all tracks issued by the 
RTDS. READRT takes these tracks and places them in the AACT track file. This provides a 
path for passing real time data back into JMCIS. 

e. During Demo 98, all inputs into both JMCIS and HiPer-D were scripted using 
HiPer-D's simulation capability. These scripts were deliberately designed so that JMCIS would 
not report tracks that would also be seen by the combat system. No correlation of JMCIS tracks 
and real time tracks was performed. (This was done because the architectural issues associated 
with introducing non-real time tracks into a real time combat system are very complex, and could 
not be resolved in the limited time available.) The architectural issues associated with properly 
integrating the combined data are left for future efforts. 

3.3 Simulation and Support Components 

One of the technical objectives for Demo 98 was to add a physics based DIS compatible 
wraparound simulation capability. This capability would allow the testbed to run more 
operationally oriented scenarios and would provide the ability to interconnect with other 
geographically dispersed organizations for future testing and demonstrations. The Environment 
Simulation components and other simulation components presented in this section meet that 
objective. The support components include time synchronization, near real time instrumentation, 
and system startup. These components are highlighted in Figure 3 .3-1. The support components 
are summarized in Table 3.3-1. 
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Table 3.3-1 Support Components 

COMPONENT FUNCTION 
Simulation Control • Scenario Input Driver 
(SIMCON) 
Sensor Simulator . Dynamic Track Generation Capabilities 

• Missile Track Generation for Intercept Simulation . Distributed Implementation 
• Provides Ownship Speed and Course at Selectable Rate 

KINED • Generates Periodic Reports on Tracks 
• Distribution Implementation 

WCS Simulator • Minimal Simulation of Aegis WCS 
• Initiates Missile Fly-out Upon Engagement 
• Probabilistic Kill/ No Kill Assessment Decision 
• Client of RIDS 

ID U Simulator • Provides ID data to AEC upon Quick ID request or manual 
change of ID by IDU Sim operator 

• Client of RIDS 
System Control . Controls start-up of Track Data Services components 

. Monitors component health . Automatically restarts components on failure 
• Provides "plan language" for specifying component 

interdependencies and start-up order 
• Provides single point operator interface 

3.3.1 Environmental Simulations (EnvSims) 

a. Environmental Simulations (EnvSims) provide a wrap-around simulation capability 
with which to drive the Advanced Computing testbed. The EnvSims in Demo 98 differed from 
those used in previous demos in that, in Demo 98, physics based models were used. Secondly, 
the simulations complied with IEEE Standard 1278.1-1995 for Distributed Interactive Simulation 
(DIS) - Application Protocols. Complying with the standard will enable the EnvSims to interact 
with other DIS simulations off-site. 

b. The EnvSims are broken down into the three categories listed below. 

Entity Simulations 

Platform Generator 

Missile Generator 

NavSim & Helm Control 

SM-2 Flight Sim 

Tomahawk Flight Sim 
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Sensors 

Multi-function Array Radar (MF AR) 

0TH Filter 

DIS to Rainform Gold Converter 

Displays 

Truth Display 

Vertical Profile Display 

c. Figure 3 .3 .1-1 shows the EnvSim elements. 
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Figure 3.3.1-1. EnvSim Elements Using DIS 

3.3.1.1 Entity Simulations 

a. Platform Generator: The Platform Generator simulates all the background tracks in 
the scenario and initializes the NavSim. It reads in a data file specifying what platforms are to be 
simulated and their waypoints. During a scenario, a track follows the path defined by the 
waypoints. Tracks can perform the following actions: 
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(1) Change speed or course 

(2) Change altitude 

(3) Change IFF Modes 

(4) Turn radars on or off 

( 5) Change radar modes 

(6) Launch anti-ship missiles (ASMs) 

If the appropriate command line argument is given to the Platform Generator at start up, 
the Platform Generator will generate a Set PDU and send it to the NavSim. The following data 
is included in the Set Data PDU: 

(1) Force ID 

(2) Entity ID 

(3) Entity Kind 

(4) Domain 

(5) Country 

( 6) Category 

(7) Subcategory 

(8) Specific 

(9) Extra 

(10) Geocentric Coordinates - x, y, and z 

( 11) Velocity in Geocentric Coordinates 

The NavSim in generating the ES PDU uses all the data in the Set Data PDU. The 
Platform Generator sends out the Set Data PDU once every 5 seconds until the NavSim responds 
to the Set Data PDU with an Acknowledge PDU. 

b. Missile Generator: The Missile Generator simulates ASMs that have been launched 
at ownship. The ASMs use proportional navigation during flight and are of four types: 

(1) Type I ASMs have a low cruise altitude and are subsonic 

(2) Type II ASMs are sea-skimmers and subsonic 

(3) Type III ASMs are high-divers and supersonic 

( 4) Type IV ASMs are sea-skimmers and supersonic 
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c. NavSim & Helm Control: Together, the NavSim and Helm Control represent 
ownship. The NavSim is based on a Tomahawk WSN-5 simulation that has been certified by 
Operational Test and Evaluation Force (OPTEVFOR). The NavSim generates position, velocity, 
and attitude data for ownship. The attitude data is sent to the NavSim Data Server at a 16 Hz 
rate. Position data is updated at a 1 Hz rate. The NavSim also generates an Entity State PDU for 
ownship. 

The Helm Control simulates the ownship helm and is used to send helm commands to the 
NavSim. The commands are sent using a Set Data PDU. Figure 3 .3 .1.1-1 shows the Helm Panel 
Display. 

Figure 3 .3 .1.1-1 Helm Panel Display 

d. SM-2 Flight Sim: The SM-2 Flight Sim simulates the SM-2 surface-to-air missile 
once it has been launched. The SM-2 Flight Sim receives launch commands from the AEC. 
After launch, the SM-2 Flight Sim generates an Entity State PDU during flight and uses 
proportional navigation to intercept the target. 

57 

Ex.1009 / Page 67 of 280 
TESLA, INC.



e. Tomahawk Flight Sim: The Tomahawk Flight Sim simulates the Tomahawk Cruise 
Missile once it has been launched. The Tomahawk Flight Sim decouples the missile's flight into 
vertical and lateral equations of motion. The vertical equations of motion describe the missile's 
dynamics in the longitudinal plane as it transitions from its current inertial altitude above sea 
level to its commanded inertial altitude. The lateral equations of motion update the missile 
latitude and longitude as the missile navigates along the great circle path between waypoints. 

The Tomahawk Flight Sim initiates modeling of the missile's trajectory at the end of 
boost conditions. The Tomahawk Flight Sim models the missile in one of3 flight conditions: 
performing a waypoint turn, flying the great circle distance between waypoints, or performing a 
maximum acceleration pull-up terminal maneuver. 

The Tomahawk Missile Model used in Demo 98 was written in C. It is currently in use 
by Scenario Generation and Reconstruction (SG&R), the embedded Tomahawk trainer in 
ATWCS, and by the Commanding Officers Simulated Tactical Display (COSTD), a BFTT­
compatible submarine training system. The C missile model is derived from the Fortran 
Tomahawk missile model, which was certified by the Tomahawk Simulation Management 
Board. 

3.3.1.2 Sensors Simulations 

a. MFAR: The MF AR is the source of the real-time track data in the system. The 
MFAR sorts all DIS ES PDUs to determine potential tracks. The MFAR determines which 
tracks are detected based on radar horizon, sea clutter, standard atmospheric attenuation, specular 
multipath, and the track's radar cross section. Once a track is detected, it is passed on to the 
MF AR Broker. 

b. 0TH Filter: Together, the 0TH Filter and DIS to Rainform Gold Converter are the 
sources of non-real-time tracks in the system. When the 0TH Filter receives an ES PDU, the 
0TH Filter determines if the entity is ownship, an 0TH sensor or an 0TH track. If the entity is 
an 0TH track, the 0TH Filter determines if it is above the radar horizon of ownship and any 
0TH sensors. Once the identification is made, the 0TH Filter determines whether to send, or 
not send, the ES PDU to the DIS to Rainform Gold Converter. Table 3 .3 .1.2-1 provides a 
criteria matrix for sending the Entity State PDU. 

Table 3 .3 .1.2-1 Criteria to Pass Entity State PDU 

OWNSHIP RADAR 0TH SENSOR RADAR HORIZON 

HORIZON Above I Below 

Above Not Sent Not Sent 

Below Sent Not Sent 
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It should be pointed out that the 0TH Filter is receiving ES PDUs on the same port as the 
Platform Generator, Missile Generator, MFAR, SM-2 Flight Sim, Tomahawk Flight Sim and 
NavSim. The ES PDUs sent to the DIS to Rainform Gold Converter are sent on a different port. 

The TACFIRE Processor sends the 0TH Filter an Event Report PDU containing data 
received from Remote Digital Data Link (RDDL) in a Call for Fire (CFF) Message. The 0TH 
Filter uses the data in the Event Report PDU to generate an ES PDU which injects the CFF track 
into the system as an 0TH track. 

3.3.1.3 Displays 

a. Truth Display: The Truth Display shows the location and speed of the tracks in the 
EnvSim, based on the ES PDU. The Truth Display operates in either absolute or relative mode. 
In absolute mode, the tracks are displayed on a grid based on their longitude and latitude. In 
relative mode, the tracks are displayed based on the range and bearing from a specified track 
(polar display). Examples of the absolute mode display and relative mode display are shown in 
Figures 3.3.1.3-1 and 3.3.1.3-2 respectively. 
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Figure 3 .3 .1.3-1 Truth Display in Absolute Mode 
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Figure 3.3.1.3-2 Truth Display in Relative Mode 
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b. Vertical Profile Display: The Vertical Profile Display displays the range and altitude 
of selected tracks from a specified track which, in this case, is ownship. The range from ownship 
is shown on the x-axis and the altitude above ownship is shown on the y-axis. The Vertical 
Profile Display uses the ES PDUs as its source of data. An example of the Vertical Profile 
Display is shown in Figure 3 .3 .1.3-3. 
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Figure 3 .3 .1.3-3 Vertical Profile Display 
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3.3.2 Simulation Control (SIMCON) 

a. The SIMCON program performs two major functions. It reads a specially prepared
16 

script file from disk that it uses to schedule creation of tracks and maneuvers according to 
absolute or relative timing information contained in the script file. It can also read DIS PDUs to 
accept a command to create a ring, or torus, of tracks. This PDU interface and functionality are 
new for Demo 98. Both modes of operation produce various HiPer-D internal messages that are 
broadcast to appropriate communications groups. 

b. If SIM CON is to run only a script, it will terminate normally after it has finished all 
operations associated with the script. When SIMCON is to read PDUs, it will run indefinitely. 

3.3.2.1 Modifications Description 

a. Changes were made to the SIM CON program to allow it to create a ring of tracks in 
response to the newly defined DIS Ring of Death (RoD) Program Data Unit (PDU). Only the 
modifications to the functionality of SIMCON are described here. The new functionality is 
limited to the PDU interface and processing of a new type of PDU, the RoD, which is defined 
and used only by HiPer-D. 

b. To receive PDUs, SIMCON creates a thread that opens a UDP socket and listens to a 
specified port and IP multicast group address. When it receives a message, it decodes the PDU 
header. If the PDU is a RoD PDU, it will decode the rest of the PDU. The RoD PDU is 
considered a request to generate a ring or torus of tracks. SIMCON will only handle such 
requests one at a time. The PDU interface thread will never exit. 

c. To create the tracks described in the RoD PDU, SIMCON will create another thread 
that builds the data structures needed to create a new local track and puts them into the SIMCON 
list that holds time-ordered new local track requests. When the thread has created all its new 
local track requests and put them in the list, the thread exits normally. 

d. If a second request arrives before processing of the first request (which includes 
passing information to SENSIM for all tracks associated with the first request), the second 
request will be rejected and never processed. A mutex is used to prevent simultaneous 
processing of multiple RoD requests. 

3.3.2.2 Restrictions 

a. When SIMCON is executed only to run a script, the program will terminate after it has 
fulfilled all the directives of the script. To run another script at a later time, one must run 
SIMCON again. This can be done without disrupting an ongoing HiPer-D run. 

b. When SIMCON is instructed to read DIS PDUs it will not terminate; it will run 
indefinitely until aborted externally or through an error. It is possible for SIM CON to run a 

16 SIMCON reads a binary file that is created by running a Perl script, simcc, against an ASCII text file. This text 
file is in an easily read table format that defines new tracks, track drop, and track maneuver operations. 
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script and listen for PDUs, but this execution of SIM CON cannot subsequently be used to read 
another script. However, multiple copies of SIMCON can be run simultaneously so a second 
copy can be started to read a script file if desired. 

3.3.3 Kinematics Daemon (KINED) 

KINED generates periodic reports on tracks. It receives track initiation and destruction 
information from the SENSIM process and assigns unique numbers, obtained from the Track 
Number Server, to new tracks entered in the system. Once established, tracks are updated at a 
periodic rate specified by the Sensor Rate Server (SRS). KINED also inserts ownship data into 
the system. It does not, at this point, support any maneuvering of ownship. Multiple KINED 
processes may be run on different machines to distribute the load. 

3.3.4 Weapons Control System Simulator (WCS Sim) 

WCS Sim interfaces with the SENSIM to initiate and terminate engagements, and to 
receive notification of their completion. The WCS simulator randomly predetermines the 
success of the engagement and notifies SEN SIM of this when the engagement is initiated. The 
success/failure is based upon a random number generator that results in an 85 percent 
probabilistic kill. 

3.3.5 Identification Upgrade Simulator (IDU Sim) 

IOU Sim provides identification information when it receives a quick identification 
request from the AEC engagement initiation processing. These requests are made upon track 
entry into the system and upon initiation of an engagement sequence for a particular target. 

3.3.6 NSFS Simulator (NSFSsim) 

a. NSFSsim interfaces with the Engagement Server and the C3I Broker processes in the 
AEC system as part of the land attack engagement sequence. It additionally receives 0TH 
(Over-the-Horizon) track data from the 0TH Data Server (OTHDS) that supplies positional 
information in support of ballistic trajectory calculations. 

b. The Engagement Server delivers the initiating message of the land attack request to 
NSFSsim. This component then performs gun engagement checks and time-of-flight (ToF) 
calculations against the selected 0TH target. NSFSsim then initiates a simulated land attack 
sequence by representing the firing of a 5" gun projectile via a Character-Readout (CRO) textual 
display to the operator. The primary purpose of this capability is to provide a basic 
approximation of the progress and status of the engagement sequence as might be witnessed at a 
prototyped operator position. Target data, a countdown ToF field, and engagement status data 
are represented in this output window. Subsequent spotter corrections are received by NSFSsim 
who recomputes the required parameters, issues the reply back to the C3I_Broker and 
commences follow-on firing sequences. 
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3.3. 7 Digital Call For Fire Support Components 

There are three support components that are part of the Digital Call For Fire capability. 
The Remote Digital Data Link (RDDL), the Tactical Fire Direction System (TACFIRE) 
Processor, and the C3I Broker. 

3.3.7.1 Remote Digital Data Link (RDDL) 

a. The RDDL simulates the Forward Observer/Forward Air Controller (FO/F AC) and 
communicates with the TACFIRE Processor via a TCP/IP connection using TACFIRE Fixed 
Formal messages. 

b. To initiate a Digital Call For Fire sequence, RDDL sends a FR GRID message 
containing target position information. When the gun engagement is commenced and each time 
a round is fired, a "shot" message is received from the TACFIRE Processor to let the FO/F AC 
know that a round has been fired. Five seconds before round detonation, RDDL receives a 
"splash" message to cue the FO/F AC that impact and detonation is imminent. If the round is off 
target then RDDL will return a subsequent adjust (SUBQ_ ADJ) message containing how to 
place the next round. Once the spotting round is on target, RDDL sends a SUBQ_ADJ message 
with the Fire For Effect bit set initiating several rounds from the ship onto the target. When the 
target is destroyed RDDL sends an EOM_SURV message declaring the target destroyed and the 
Call For Fire mission complete. 

3.3.7.2 TACFIRE Processor 

a. The T ACFIRE Processor is a message protocol converter that converts the Fixed 
Format TACFIRE messages received from RDDL to the internal HiPer-D message format and 
converts HiPer-D message formats received from the C3I Broker into Fixed Format TACFIRE 
messages sent to RDDL. TCP/IP connections are used for both communication channels. 

b. The TACFIRE Processor receives the FR_GRID message from the RDDL and uses 
the information to send an Engagement Request message to the C3I Broker. Each time a round 
is fired, a Time of Plight (TOF) message is received from the C3I Broker. The TACFIRE 
Processor then sends the "shot" message to RDDL and at the appropriate time (five seconds 
before impact) sends the "splash" message to RDDL. The TACFIRE processor receives the 
subsequent adjust message from RDDL, converts to HiPer-D message format, and transmits it to 
the C3I Broker. The same processing occurs with the Fire for Effect and End of Mission 
message. 

3.3.7.3 C3I Broker 

The C3I Broker provides ownship and Call For Fire request information to ABMX, ties 
the Call for Fire engagement request to an existing system track, passes the engagement 
information onto the Engagement Server, and returns Time of Flight messages back to the 
TACFIRE Processor. 
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3.3.8 System Control 

a. System Control functions provide automated assistance in the start-up, restart, and 
monitoring of the ATCF processes that are distributed across the computing environment. These 
facilities include 11 agents" and "node managers" that reside on each machine, as well as a master 
"controller" that implements a planned configuration. There is also a simple shell-like language 
for describing the planned configuration (typically called "the plan"). 

b. On start-up, the controller reads and verifies the plan. It then establishes agents on 
each machine (via the node managers), and doles out the appropriate portion of the plan to each 
of the node managers. It then coordinates the overall start-up, assuring that applications 
dependent on others are started after the components upon which they depend. The controller 
also provides a simple user interface for monitoring system operation and effecting changes 
(such as shutdown or start-up of a component). 

c. System Control provides for managing transitions that result from failed applications. 
On failure, an application can be automatically restarted. In cases where it cannot be replicated, 
and had dependent applications, those too would be automatically restarted. If however, it had a 
replica that did not fail, the failed application would be restarted with no action on the dependent 
components. 

3.3.9 Clock Synchronization 

a. A key to distributed processing approaches, and the use of COTS equipment in 
mission critical systems, is the coordination of all the individual clocks located in the system. A 
single time base is necessary for many of these applications and is required for instrumentation 
of a distributed system. In order to obtain a single stable time base, a time service needs to be 
provided. This time service includes the provision of time, the synchronization of time, and the 
ma~agement of the time service. 

b. For this demonstration, the Network Time Protocol (NTP) was used to achieve 
synchronization of time. The NTP is a distributed clock synchronization protocol that provides 
for the coordination of interconnected computer clocks using the existing communication 
infrastructure. Dr. David Mills at the University of Delaware developed NTP for use by the 
Internet community. NTP calculates clock offsets between two peer clocks, and provides 
corrections to the appropriate clock system calls of the operating system. NTP uses a two-way 
exchange oftime information to estimate the actual clock offset better. In addition, data filtering 
and clock selection algorithms are used to improve performance and stability. 

c. For Demo 98, NTP Version 3 was installed on all platforms. The Alphas, Suns, HPs, 
and SGis used the public domain version ofXNTPD, the NTP daemon. A synchronization sub­
net was constructed involving a single server with a backup. All other machines were clients to 
either the server or the backup. 
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3.3.10 Near Real-time Data Collection/Display (JEWEL) 

a. JEWEL is a distributed measurement tool developed by the GMD National Research 
Center for Information Technology in Germany. JEWEL consists of a toolkit for low­
interference on-line performance measurement, integrated with an adaptable graphical 
presentation facility, and a generic interactive experiment control system. Extraction points are 
inserted into the applications where measurements are to be made. When these extraction points 
are activated and executed, the appropriate data is collected, time-stamped, and placed in a 
shared memory buffer via the JEWEL internal sensor. The JEWEL external sensor retrieves the 
data and transfers it over the network (Ethernet used for this demonstration) to the JEWEL 
collector or Graphical Presentation System (GPS), where the data is then graphically displayed in 
a manner determined by the experimenter. The JEWEL instrumentation configuration is shown 
in Figure 3. 3. 10-1. 
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Figure 3.3.10-1 JEWEL Instrumentation Configuration 

b. In order to provide robust instrumentation in the dynamic distributed environment of 
the testbed several significant improvements have been made to the Jewel package. The basic 
Jewel architecture is shown in Figure 3.3.10-2. There is a Jewel daemon component that resides 
on each host where an instrumented application might be placed. The Jewel daemon is 
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responsible for starting up any other Jewel components which need to run on the host. The 
component which sends control orders to the Jewel daemons is the Experiment Control System 
(ECS) component. The ECS component reads in a set of configuration files and then orders the 
startup of components as defined in these files. The key components that the Jewel daemon 
starts up are: 

(1) The External Sensor which creates a shared memory queue for instrumentation 
events and reads events placed in the queue and forwards them to any of the other Jewel 
components which need the events. 

(2) The Graphical Presentation System (GPS) components which start up and control 
the Jewel X/Motif instrumentation displays. 

(3) The Collector components which serve as a broker interface for forwarding 
instrumentation events to external applications. (The Collector serves as the interface to the 
Resource Management components). In addition to these components, there is a library called 
the Internal Sensor which is linked into each instrumented application through which the 
application sends timestamped event data to the shared memory queue. 
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Figure 3.3.10-2. Jewel Instrumentation Architecture 

c. The most significant improvement made was to the shared memory interface between 
the Internal Sensor and External Sensor. The original Jewel design required that all of the Jewel 
infrastructure components be started and running prior to the applications being run. This has 
been changed so that it does not matter whether the applications or the Jewel components are 
brought up first. Further, the Jewel components can also be brought up and down during a run 
with no impact on the behavior of the instrumented applications. The shared memory queue 
implementation has also been enhanced to allow larger message sizes and more messages to be 
stored. Much more reliable shared memory mutex capabilities have been implemented to ensure 
that readers and writers are not accessing the memory simultaneously. Also, the format of the 
instrumentation event messages have been enhanced to include the IP address of the host and to 
allow larger event message sizes. 

d. The Collector component has also been improved to allow it to better serve as a pass­
through for providing instrumentation events to external applications. To accomplish this, the 
XDR (External Data Representation) interface between the Collector and external components 
was considerably simplified. Also, an interface library was developed which allows a client to 
the Collector to request that only specific events are to be forwarded. This has greatly simplified 
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that the interface for receiving instrumentation events from Jewel and has created a 
"standardized" mechanism for requesting and receiving specific Jewel instrumentation events. 

e. Also, changes have made to the Jewel Graphical Presentation System (GPS) X/Motif 
widget library which allows better support for dynamic allocation / reallocation of applications. 
This has been accomplished by adding features that allow the hostname and process id of an 
application to be retrieved and used within the widget library. For the current Jewel displays, 
this has allowed the legends to be updated to show the hostnames of the platforms where 
instrumented applications are currently running. 

3.3.11 Group Communications 

One of the core technologies on which HiPer-D is based is process group 
communications. Process group communications provide a mechanism in which applications 
become members of a communications group. When a member sends a message in a group, all 
other members of the group receive the message. In this respect, process group communications 
are analogous to multicast communications. Process group communications extend the concept 
of multicast by providing reliable communications, by guaranteeing different levels of message 
ordering, and by providing operations associated with membership changes in the group. See 
Appendix E for details of the group communications mechanism used in ATCF portion of 
HiPer-D for Demo 98. 

3.4 Resource Management. 

a. During FY98, the Resource Management capabilities within the HiPer-D testbed have 
been significantly expanded and enhanced. As shown in Figure 3.4-1, the scope of our Resource 
Management efforts are aimed at effectively monitoring and controlling the configuration of an 
interconnected shipboard network consisting of many general-purpose computing platforms. 
Within the HiPer-D testbed, the Resource Management components continuously monitor the 
state and performance of the system, determine when and if Quality of Service (QoS) 
requirements (real-time deadlines, desired throughput, fault tolerance, etc ... ) are not being met, 
and reallocate applications to resources as required in order to ensure that QoS requirements can 
be met. The goal is to allocate and, when necessary, reallocate combat system functions (i.e., 
applications) to computing resources in a manner that ensures that the mission-critical real-time 
requirements of the combat system are met. A paper presented at the 1999 IEEE Real-Time 
Technology and Application Symposium describing the Demo 98 Resource Management 
capabilities and results is attached as Appendix F. 
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Figure 3.4-1. Resource Management Environment 

b. The benefits of this approach include: 
(1) It provides the ability to dynamically map resources based on changing mission 

requirements which permits flexibility during changing tactical situations (as in the case of 
transitioning from an open water environment into a complex, potentially hostile, littoral 
environment). 

(2) It provides the ability to maintain mission capabilities in the event of equipment 
failure, software failure, damage, fire in spaces, flooding, or other catastrophic events. 

(3) Perhaps most importantly, it provides the potential for significant life cycle cost 
savings and manning reductions; by moving away from statically configured stovepipe systems, 
system development, integration, and maintenance costs could be reduced, and by being able to 
reconfigure around failed equipment, at-sea maintenance costs ( and the number of required 
maintenance personnel) could be lowered. 

c. The Resource Management capabilities developed during FY98 were a joint effort 
between NSWCDD and Dr. Lonnie Welch at the University of Texas at Arlington (UTA) who 
was funded under the DARPA Quorum program. Figure 3 .4-2 shows the scope of our Resource 
Management efforts. 
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Figure 3.4-2. Resource Management Scope. 

d. The major functions ofresource management are to monitor, to analyze, and to adapt. 
The monitor function collects selected data concerning the behavioral and performance 
characteristics of all layers of the computer system, from the application layer through the 
computing and networking resources. The data collected during monitoring are analyzed based 
upon the system specifications to determine when computing resources should be reallocated. 
Reallocation will take place when a fault occurs or is predicted to occur. Reallocation will also 
take place when an unacceptable imbalance of application distribution occurs across the 
computing resources. The adapt function determines how to reallocate the application across the 
resources. This determination involves isolating the cause of the fault or overload, discovering 
available computing resources to overcome the fault or overload, and possibly, making tradeoffs 
in the quality of service (QoS) to be delivered to various tactical applications (based on their 
level of importance) in order to remedy the situation. A set of specifications are used to identify 
the processing capabilities of each component of the computing resource pool as well as the 
processing requirements of each of the applications and its level of importance. The Program 
Control components will carry out the reallocation of the applications across the computing 
resources. Also, a series of visualization displays were developed to enhance the monitoring, 
decision making, and control capabilities. 

e. The Resource Management architecture is shown in Figure 3.4-3. Extensive upgrades 
were made to the Resource Management architecture and infrastructure which both provides new 
and enhanced resource management capabilities and also provides an infrastructure that can be 
built on and expanded in future years. 
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Figure 3.4-3 Resource Management Architecture. 

f The key focus areas have been Monitoring, Resource Management Decision Making, 
Control of the Applications, and the development of a QoS Specification grammar for defining 
system and application requirements. 

g. At the Monitoring level, there are host monitors resident on each of the UN1X boxes 
to monitor operating system and network statistics. (Windows NT host monitors were also 
developed but were not fully integrated into the testbed during Demo 98; this is indicated by the 
gray shading in the architecture diagram.) For application-level instrumentation, a modified 
version of the Jewel instrumentation package was used. (Jewel was originally developed at the 
German National Research Center for Computer Science (G:rvtD) in Germany.) Also, several 
initial tests were performed to attempt to determine whether SNMP (Simple Network 
Management Protocol) would be a viable candidate for real-time monitoring of operating system 
data. (The preliminary results have not been promising and these capabilities were not fully 
integrated during Demo 98.) 

h. At the Decision Making level, the Resource Management components analyze the 
system performance, diagnose the cause(s) of poor performance, consider tradeoffs between 
potential resource allocations/reallocations when appropriate, and determine the best course of 
action to take to recover from fault or overload conditions. 

i. At the Control level, the focus has been on providing application-level controls on the 
UN1X platforms. These capabilities include startup, shutdown, and configuration of both tactical 
and infrastructure applications on the UN1X platforms. 
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j. A fourth key area has been the development of a QoS and System Specification 
grammar that allows us to describe the capabilities and requirements of the software and 
hardware components of the testbed. This grammar allows us to define the structure of software 
systems and subsystems (e.g., AAW software components, ATWCS software components, 
Resource Management components, etc ... ). It also allows us to capture dependencies between 
components (such as startup order dependencies), information on how and where applications 
can be started and configured, and QoS requirements (e.g., timing requirements) either within an 
application or across an end-to-end path ( consisting of multiple applications). The grammar also 
provides the ability to define host and network capabilities. The purpose of the grammar is to be 
able to precisely define the statically known structure, capabilities, and requirements of the 
system. This allows the Resource Management Monitoring, Decision Making, and Control 
components to use this information, along with dynamically monitored system status and 
performance data, to make effective decisions concerning the allocation of applications to 
computing resources. 

k. As can be seen in the Resource Management architecture breakdown in Figures 3 .4-3, 
the Monitor, Decide, and Control functions constitute a classic feedback control loop. 

3.4.1 System Monitoring. 

a. Extensive system monitoring capabilities have been developed and enhanced during 
FY98. The emphasis for FY98 has been the development of extensive monitoring and 
instrumentation capabilities at the application, host, and network levels which form an 
infrastructure that can be built on for future research. 

b. The importance of robust, timely, and accurate monitoring at all levels in the system 
cannot be overemphasized. In order to make effective resource allocation decisions, it is 
imperative that the Resource Management components have access to accurate data on the status 
and performance of applications, middleware components, hosts, and networks. 

c. The major monitoring and instrumentation efforts for FY98 are discussed in the 
remainder of this section. In particular, the major focus areas have been on UN1X OS and 
network monitoring, Windows NT OS and network monitoring, application-level 
instrumentation improvements, and status and history dissemination capabilities. A related effort 
is an ongoing study to determine whether and where current SNJ\1P (Simple Network 
Management Protocol) standard MIB (Management Information Base) implementations can be 
used for real-time monitoring; the major issues being addressed include the overhead (in terms of 
CPU usage) of the SNJ\1P queries and the latency and accuracy of the response data. 

3.4.1.1 UNIX Operating System and Network Monitoring. 

a. Early in FY98 it was determined that the various operating system status and 
performance monitoring techniques available from Network Management/ System Management 
tool vendors were inadequate and/or inappropriate for use within the RM software infrastructure 
due to requirements for extensive monitoring, real-time performance, scalability, and minimal 
intrusiveness of the monitoring solution on the platform being monitored. What was needed was 
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a real-time system performance monitoring capability that could support a network-centric API 
(Applications Program Interface), as well as provide a system-wide user process 
monitoring/alarm capability. As a result of this need, a task was initiated to design, develop and 
implement a software suite, which provided the needed performance and process monitoring 
capabilities within the real-time requirements of the RM software framework. 

b. One of the primary requirements was that the monitoring system software be capable 
of operating within a multi-platform environment while still providing a platform-independent 
API, along with a standardized data representation of system parameters and statistics. More 
specifically, the architectures and operating systems then under investigation were manufactured 
by Silicon Graphics, Sun Microsystems and Hewlett-Packard Corp., and consisted ofvendor­
specific Unix implementations based on the MIPS (IRIX 5.3, 6.3 and 6.5), SPARC (Solaris 
2.5.1, 2.6 and 2.7) and PA-RISC (HPUX 10.20) machine architectures and operating systems. 
These goals were met with the release of SS11D (System Status Monitoring Daemon) which 
provided the requisite real-time performance statistics to the various software components of the 
RM software infrastructure. 

3.4.1.1.1 Methodology. 

a. The development of SS11D began with an analysis of the underlying architecture of 
whatever vendor-supplied system monitoring software was then currently available on the 
various platforms. This analysis led to the development of an initial list of critical system 
statistical parameters that SS11D would need to provide on a real-time basis. Once these 
parameters had been identified, the process of identifying and isolating these parameters within 
the various target Unix implementations began. This process consisted of an examination of each 
vendor's platform-specific system calls and their respective documentation. Where 
documentation was inconsistent or non-existent, experimental software needed to be written to 
allow the investigation of the actual behavior of the system call or parameter under investigation. 

b. As a result oftbis investigation, a number of general categories detailing system 
parameters were isolated. These categories are as follows: 

- System-wide process parameters 
- Overall system process-handling performance parameters. Some of these 

parameters are provided by the OS, and some are synthesized by SSMD during 
its data collection cycle. 

- Per-process parameters 
- Performance parameters of individual processes on a specific system. Some of 

these parameters are provided by the OS, and some are synthesized by SSMD 
during it's data collection cycle. 
System-wide CPU performance parameters 

- The average CPU performance of the system. This usually consists of an average 
of the performance of all the CPUs within the system. This value may be 
provided by the OS, or synthesized by SSMD during its data collection cycle, 
depending on platform. 

- Per-CPU performance parameters 
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The performance of each individual CPU within the system. This will consist of 
items such as clock-tick and "percent" idle time, etc. The percentage based 
parameters are synthesized by SSMD during its data collection cycle. 

- File system pe1f ormance parameters 
A description of each file system mounted on the system. The description 
includes performance and utilization parameters for each individual file system. 

- Network performance parameters 
A description of each active network interface on the system. The description 
includes perlormance and utilization parameters for each individual network 
interface. 

- System Configuration parameters 
- A description of the hardware and software components which make up the 

system, including items such as number of CPUs, CPU architecture, OS version 
numbers, etc. 

SSMD Version 2.0 System Architecture 

Key 

~ FM~ed Process 
-- Shared memory attachment 
~ TCPl!P Client Connection 

,I 

Figure 3.4.1.1.1-1. UNIX Host Monitor Design 

c. A decision was made to build the SSMD server using an I/O model analogous to the 
standard network FTP server implementation. This I/O model, based on the Berkley Sockets 
model, would allow access to the SSMD server using a commonly available network 
communications APL The system statistics collection and distribution tasks were separated into 
two disparate processes, in order to minimize the impact of user API I/0 on data collection 
timing. The resulting design is illustrated in figure 3. 4 .1.1.1-1. As can be seen from this 
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diagram, the SSMD server consists of 2 major processes, and an indeterminate number ofl/O 
processes. This allows the server to handle large amounts ofl/O in a scalable manner. 
Communications between the various processes within the server is handled via shared memory, 
allowing the use of an efficient publish/subscribe methodology. The shared memory interface 
also allows the server to be extended by allowing other platform-resident processes to attach to 
the shared memory area and gain access to system performance parameters without paying the 
performance penalty of using a sockets-based network interface. 

d. Data collection timing is of critical importance. The server needed to provide system 
performance data to client applications on a real-time basis. As a result of this, SSJ\ID was 
designed to allow collection, processing and distribution of system performance parameters 
based on a user-supplied variable timebase. During our initial tests, the timebase value was set at 
2.0 seconds. Later in our testing phase, the timebase value was decreased to 1.0 second. This 
value provided performance data at a sufficient frequency to support the RM application 
software's needs at that time. The actual minimal SSMD timebase value, however, is much 
smaller, (and usually limited by platform dependent issues.) For the user, the limiting factor is 
the impact (or intrusiveness) of SSJ\ID itself on system performance. With a data collection 
timebase value of2.0 seconds, SSMD uses less than 1.0 % of CPU time on most platforms. With 
a timebase value of 1.0 second, the utilization is nominally less than 1.5%. If the user can 
tolerate higher SSMD CPU utilization, much smaller timebase values can be used. 

3.4.1.2 Windows NT Operating System and Network Monitoring. 

The Windows NT Host Monitor development was a joint effort between the University of 
Texas at Arlington (UTA) and NSWCDD. The NT Host Monitor software was written in Visual 
C++ by researchers at UTA as part of the Desiderata project which is funded under the DARPA 
Quorum project. The software was then modified by NSWCDD to add a graphical user interface 
and a TCP/IP network interface for remotely retrieving the machine statistics. Although the 
program was not used during the Demo 98 scenario, it was used for gathering information for 
characterizing the overhead involved in monitoring host and network statistics on the Windows 
NT platforms. 

3.4.1.2.1 Windows NT Statistics Retrieval. 

a. The NT Host Monitor is a Microsoft Windows NT 4.0 based program that provides a 
Windows graphical user interface to allow the user to select areas to monitor and to view the 
areas being monitored. Each area monitored has an icon associated with it. The user clicks an 
icon to start monitoring and displaying the data associated with that area. All areas can be 
monitored simultaneously or any subset of available data can be monitored. The icons act as a 
toggle switch; clicking the icon toggles between viewing the data associated with it and turning 
off the view. All data being displayed is updated at one-second intervals. 

b. There are 5 main areas monitored by the NT Monitor. The first area is the processor 
metrics. It collects and displays all information associated with the time the processor has spent 
in each of the processor states (i.e., user mode, privileged mode, interrupt mode, and wait mode). 
It also collects the interrupts per second rate and displays it. The second area monitored is the 
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process list. It collects and displays all information associated with each of the processes 
residing on the system. It displays the amount of user mode and kernel mode CPU time used by 
the process, the amount of memory used by the process, and the ID of the process and image 
name including the path. The third area monitored is the system metrics. It monitors the data 
associated with the overall system such as file system statistics, CPU usage statistics, interrupts, 
and exceptions. The fourth area is the memory metrics. It monitors the overall usage of the 
memory such as memory used, memory available, paging statistics, cache memory usage, and 
memory available. The fifth area monitored is the network metrics. It monitors the overall 
network traffic. The network traffic is broken up into three categories: 1) network interface, 2) 
TCP interface, and 3) UDP interface. The network interface monitors the bytes sent and 
received and the packets sent and received. The TCP interface monitors connection statistics and 
the segments sent and received. The UDP interface monitors datagrams sent and received. 

c. All data being gathered by the NT Monitor is collected from within the Windows NT 
Registry. The Registry data is maintained by the NT Operating System and updated at various 
rates by the Operating System. Our tests confirm that for the data being monitored and the 
polling rate currently being used ( one second), the Registry is being updated frequently enough 
that problems with "stale data" have not been seen. Preliminary testing appears to indicate that 
monitoring of the system statuses and performance statistics on NT results in a much higher CPU 
load than for comparable system monitoring on Sun, SGI, and HP UNIX platforms. Initial tests 
shows CPU loads of3 to 10% on the NT platforms as opposed to 0.2 to 1.5% for the UNIX 
platforms. However, additional testing is required before any definitive conclusions can be 
stated. 

3.4.1.2.2 Network Interface. 

The network interface to the NT Host Monitor was added by NSWCDD. The network 
interface is implemented as a TCP socket which listens for connections and sends out all 
currently monitored data at a one second rate when a remote connection is established. 
Currently, the format of the data being sent out is formatted ASCII strings which can be easily 
parsed by the receiver. The network interface can also be controlled via a tool bar entry that can 
be used to turn on or turn off the network connection. 

3.4.1.3 Monitoring Status and History Servers. 

a. The Monitoring Status and History Servers are data brokers between the host monitors 
and the other components of Resource Management. The Servers connect to the UNIX Host 
Monitors on the SGI, SUN, and HP platforms and collect and maintain both current and 
historical information about the systems, including processes running on the system, CPU 
information, network information, and file system information. The status and performance data 
and histories are provided to any of the Resource Management components (and potentially to 
other components) which need the data. In data is also filtered and reformatted as required by 
the client applications. Statuses and performance history data are currently being requested by 
and sent to the Resource QoS Monitor, the Host Display, the Graph Displays, and the Path 
Display. 
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b. In the current implementation, approximately 30 minutes of performance and status 
history data are maintained by the Servers for each monitored host in the testbed. For Demo98, 
there are a total of37 hosts being monitored: 18 SUN Solaris 2.6 hosts, 2 SUN Solaris 2.5.1 
hosts, 10 SGI IRIX 6.4 hosts, 1 SGI IRIX 6.3 host, 1 SGI IRIX 5.3 host, and 5 HP HP-UX 10.20 
hosts. 

3.4.2 Dynamic Resource Management. 

a. The approach to adaptive resource and QoS management is based on the dynamic path 
paradigm. A path-based real-time subsystem typically consists of a detection & assessment path, 
an action initiation path and an action guidance path. The paths interact with the environment 
via evaluating streams of data from sensors, and by causing actuators to respond (in a timely 
manner) to events detected during evaluation of sensor data streams. A system operates in an 
environment that is either deterministic, stochastic, or dynamic. A deterministic environment 
exhibits behavior that can be characterized by a constant value. A stochastic environment 
behaves in a manner that can be characterized by a statistical distribution. A dynamic 
environment (such as a war-fighting environment) depends on conditions which cannot be 
known in advance. 

b. For example, an air defense subsystem can be modeled using three dynamic paths: 
threat detection, engagement, and missile guidance. The threat detection path examines radar 
sensor data (radar tracks) and detects potential threats. The path consists of a radar sensor, a 
sensor data stream, a filtering program and an evaluation program. When a threat is detected and 
confirmed, the engagement path is activated, resulting in the firing of a missile to engage the 
threat. After a missile is in flight, the missile guidance path uses sensor data to track the threat, 
and issues guidance commands to the missile. The missile guidance path involves sensor 
hardware, software for filtering, software for evaluating & deciding, software for acting, and 
actuator hardware. 

c. The approach described pertains to detection & assessment paths. This type of path 
continuously evaluates the elements of a sensor data stream to determine if environmental 
conditions are such that an action should be taken. Thus, this type of path is called continuous. 
Typically, there is a timeliness objective associated with completion of one review cycle of a 
continuous path, i.e., on the time to review all of the elements of one instance of a data stream. 
(The data stream is produced by sampling the environment. One set of samples is the data 
stream instance.) 

d. The threat detection path of an air defense system is an example of a continuous path. 
It is a sensor-data-stream-driven path, with desired end-to-end cycle latencies for evaluation of 
radar track data. If it fails to meet the desired timeliness quality of service in a particular cycle, 
the path must continue to process track data, even though desired end-to-end latencies cannot be 
achieved. Peak loads cannot be known in advance for the threat detection path, since the 
maximum number of radar tracks that may exist in a battle environment cannot be known a 
priori. Furthermore, average loading of the path is not a useful metric, since the variability in the 
sensor data stream size is very large - it may consist of zero, 10s, 100s or 1000s of tracks. 
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3.4.2.1 System Model. 

a. A demand space model based on the dynamic real-time path paradigm has been 
developed. A software subsystem, SS, consists of ( 1) a set of applications (SS.A = { a1, a2, ... } ), 
(2) a set of devices ( sensors and actuators) (SS.D { d 1, d2, ... } ), (3) a communication graph 
defining the connectivity between applications and devices (r(SS) E TI((SS.D u SS.A) x (SS.D 
u SS.A)) ), and ( 4) a set of paths (SS.P {P1, P2, P3, ... }). (Note: II denotes the power set). 

b. Each continuous path Pi is represented as (1) a set of applications Pi.A= { au, ai,2, ..... } 
(where Pi.A~ SS(Pi).A), (2) a set of devices Pi.D { di,1, di,2, ..... } (where Pi.D SS(Pi).D), (3) a 
communication graph y(Pi) E TI((Pi.D u Pi.A) x (Pi,D u Pi.A)) (note that y(Pi) ~ r(SS(Pi))), 
and (4) a data stream Pi,DS. (Note: SS(Pi) denotes the subsystem in which path Pi is contained.) 
Profile(ai) is the set of hosts where application 'ai' is eligible to be run (i.e., the set of hosts for 
which ai has been compiled). For the communication graph y(Pi), the head node of the graph 
(which is the application which receives the initial input data stream) is represented as 
ROOT(Pi), and the last node of the graph (which is the application which communicates with 
other applications or paths outside of Pi) is represented as SINK(Pi)- The type of P/s data 
stream is defined as -r(Pi,DS) E { dynamic, stochastic, deterministic}. (For the remainder of this 
paper, it is assumed that the all data stream types are dynamic). 

c. The real-time QoS requirements of a continuous path include one or more of the 
following: (1) required latency of AREQ(Pi) seconds, (2) required throughput of0REQ(Pi) data 
stream elements per second, and (3) required data inter-processing time of bREQ(Pi) seconds (the 
maximum allowable time between processing of a particular element of Pi.DS in successive 
cycles). To mask transient QoS violations during QoS monitoring, a specification may also 
define a sampling window and a maximum number of QoS violations to be tolerated within the 
window; ro(Pi) models the sampling window size and u(Pi) represents the maximum allowable 
number of violations within the sampling window. 

d. The demand space model also captures information that must be obtained a posteriori. 
Some application programs can be replicated for load sharing. The set of replicas of application 
'ai,/ during cycle 'c' of P1 is defined as REPLICAS (aiJ,c) = {a1J,1, a1,j,2, ... }. The host to which 
application 'aij,k' is assigned during cycle 'c' of path Pi is defined as HOST (ai,j,k,C,Pi), 

e. The set of elements that constitutes a data stream can vary dynamically. 
Pi,DS(c)={P1.DS(c)1, P1,DS(c)2, .. . } represents the set of elements in P1,DS during cycle 'c' of P1. 

The tactical load (in number of data stream elements processed) of a continuous path P1 during 
it's cth cycle is IP1,DS( c )I- The processing of elements of a data stream may be divided among 
replicas of an application to exploit concurrency as a means of decreasing execution latency of a 
path. In successive stages of a path that has non-combining applications (applications which, 
after processing data received from a single predecessor, simply divide the data among their 
successors), data will arrive in batches to applications; hence, each application may process 
several batches of data during a single cycle. Thus, the model represents the set of elements from 
all batches of data processed by application/replica 'a' during cycle 'c' as Pi.DS(c, a)={Pi.DS(c, 
a)1, Pi.DS(c, a)2, ... } The cardinality IPi.DS(c, a)\ is the tactical load of 'a' in cycle 'c'. The data 
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stream elements contained in the t batch of' a' are denoted by Pi.DS( c, a, j)={Pi.DS( c, a, j)1, 
Pj.DS( c, a, j)2, ... }. 

3.4.2.2 Adaptive QoS and Resource Management. 

This section defines metrics and techniques for reasoning about the mapping of demand 
space onto supply space, i.e., for resource and QoS management. The approach ( depicted in 
Figure 3 .4.2.2-1) works as follows. Application programs of real-time control paths send time­
stamped events, via the Application Instrumentation component, to the Path QoS Monitor 
component. The Path QoS Monitor component calculates path- and application-level QoS 
metrics, compares observed QoS to required QoS, and notifies the QoS Diagnosis component 
when QoS violations are detected. The Host & NetworkMonitoring component collects 
operating system and network performance, status, and load information, which is then provided 
to the Resource QoS Monitor component. Here, host and network statistics are correlated, 
performance and load histories are maintained, and load metrics are calculated. This information 
is made available to the QoS Diagnosis component for use in determining resource loading, and 
allocation tradeoffs. The QoS Diagnosis component determines the cause of QoS violations, 
analyzes and ranks potential reallocation actions for restoring required QoS, and provides this list 
of recommended actions along with associated host and network load metrics to the Resource 
Allocation component. The Resource Allocation component determines the most beneficial 
allocation of resources for restoring required QoS. The allocation actions selected are then 
implemented by the Application & Resource Control components. The major components in 
Figure 3.4.2.2-1 are explained in more detail in the remainder this section. 
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Figure 3.4.2.2-1 QoS and Resource Management 

3.4.2.2.1 Path QoS Monitor. 

a. The Path QoS Monitor component works as follows. Monitoring ofreal-time QoS 
involves the collection of time stamped events sent from applications. The times when 
application/replica 'a' starts and ends processing of the data stream for cycle 'c' are represented 
as s(P1.DS(c, a)) and e(Pi.DS(c, a)), respectively. The times when application/replica 'a' starts 
and ends processing batch 'j' of data during cycle 'c' of Pi are denoted by s(P1.DS(c, a, j)) and 
e(P1.DS(c, a, j)), respectively. 

b. Observed real-time QoS metrics are defined in terms of these basic events as follows: 
(1) latency of path P1 during cycle 'c' is= AoBs(Pi,c) = max({e(Pi.DS(c, ai,m,n, j)) s(Pi,DS(c, 
ai,x,1, 1)) I ai,m = SINK(Pi), ai,x = ROOT(Pi)}) (note that AoBs is the maximum value from the set 
of latencies of all batches of data processed by all replicas of SINK(Pi) during the cycle), (2) 
data-inter-processing time of application 'a' in path Pi during cycle 'c' of data stream Pi.OS( c,a) 
is approximated as 6oBs(Pi,DS(c,a)) = {s(Pi,DS(c,a))- s(Pi.DS(c-1,a))}, for c> 1, (3) data-inter­
processing time of path P1 during cycle 'c' for data stream Pi,DS(c,a) is OoBs(Pi.DS(c)) = 
60Bs(P1.DS(c,a)), where 'a'= ROOT(P1), (4) observed cycle throughput of path P1 during cycle 
'c' is 0ons(Phc) = IPi,DS(c)I / AoBs(Pi,c), (5) workload of application/replica 'a' of path P1 
during cycle 'c' is WoBs(Pi,c,a) = IP1.DS(c,a)I / OoBs(Pi,DS(c,a)), and (6) workload of path P1 
during cycle 'c' is W0Bs(P1,c) IPi,DS(c)I / 00Bs(P1.DS(c)) (LIP1.DS(c,ank)I) / 00Bs(P1.DS(c)), 
for all replicas k ofROOT(P1). 
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c. Analysis of a time series of the real-time QoS metrics enables detection of QoS 
violations. An overload of a path or application occurs in any cycle 'c' where the number of 
violations within the sample window ro(Pi) equals or exceeds the maximum number of violations 
u(Pi)- As an example, detection of a path-level QoS latency violation occurs when the observed 
path latency "-oBs(Pi) exceeds the required path latency "-REQ(Pi) for u(Pi) samples within the 
sample window of the most recent ro(Pi) samples. This can be expressed as u(Pi) :s; I{ d: (c-d)+ 1 < 
ro(Pi) /\ [("-REQ(Pi) - "-oBs(Pi,d)) < 0)]}I, where 'c' is the current data stream cycle and 'd' 
represents data stream cycles within the sliding window [ c-(ro(P1)-l ), c]. For the experiments 
described in the subsequent section, path latencies (AoBs(Pi, c)) are used for determining QoS 
violations. 

3.4.2.2.2 QoS Diagnosis. 

The QoS Diagnosis component works as follows. When a path-level (end-to-end) real­
time QoS violation occurs, diagnosis determine the cause(s) of the violation (i.e., identifies 
subpaths (application programs) that are experiencing significant slowdown). One diagnosis 
technique declares an application/replica 'a' to be unhealthy during cycle 'c' of path Pi if there 
exists another cycle 'd' such that the following conditions hold. Condition 1: d < c. Condition 
2: HOST (a, c, A)= HOST (a, d, Pi), Condition 3: IA.DS(c, a)I = IPj.DS(d, a)\. Condition 4: \if: 
(f < c) A [HOST (a, c, Pi)= HOST (a, f, Pi)] A [\Pi.DS(c, a)\= \Pi.DS(f, a)\] A max(AoBs(Pi,f)) > 
max(AoBs(Pi,d)). Condition 5: max(AoBs(Pi,d)) < max(AoBs(Pi,c)) - E. Note: Eis the minimal 
difference between cycle latencies that is considered significant. 

3.4.2.2.3 Resource QoS Monitor. 

a. The Host & Network Monitoring component and the Resource QoS Monitor 
component model the supply space a posteriori as follows. A hardware system, HS, consists of 
(1) a set of hosts HS.H {h1, h2, ...... }, (2) a set of Local Area Networks or LANs, HS.L 
{L1,L2, ...... } , and (3) a set of interconnecting devices HS.I { i1,h, ...... } . The system model 
captures several hardware load metrics. The paging score of a host h1 at time t is defined as 
PS(hi,t), and is calculated as the number of page faults per second averaged over the time 
interval t1, divided by a maximum page fault threshold. The cpu score of a host h1 at time tis 
defined as CS(hht), and represents the average percent CPU idle time over time interval h, The 
network score of a host h1 at time t is defined as NS(h1,t), and is calculated as the number of 
packets received plus the number of packets sent averaged over time interval t3, divided by a 
maximum network packet threshold. (All scores fall within the interval [O, 1].) 

b. Fitness scores for each of the host load metrics are calculated as follows: The paging 
fitness is calculated as PF(h1,t) (1 PS(h1,t)). The cpufitness is calculated as CF(h1,t) = 
CS(h1,t). The network.fitness is calculated as NF(hbt) = (1 - NS(hbt)). These fitness score are 
used to calculate the aggregate fitness indices. The notation FI(h1,t) denotes the aggregate 
fitness index of host h1 at time t. One fitness index function that we have found useful is: Fl(hi,t) 

(w1 * PF(hi,t)) + (w2 * CF(hi,t)) + (w3 * NF(hiit)), where Wi is the weight given to the ith load 
metric, and}:: Wi = 1.0. The fitness index is a relative measure of host load: the higher the fitness 
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index, the lighter the load on the host. When making resource allocation decisions, hosts with 
higher fitness scores are preferred over hosts with lower fitness scores. 

3.4.2.2.4 Resource Allocation. 

The Resource Allocation component works as follows. Its kernel is the best-host 
algorithm, which determines the "best" host on which to re-start or scale a candidate application. 
The algorithm only considers the set of hosts that are eligible. An eligible host is a host where an 
application is prepared for execution. The set of eligible hosts of each application is obtained 
from the system specification. The best host is determined using a "fitness" function. The host 
fitness index function used is Fl(hht) = (w1 * PF(hht)) + (w2 * CF(hbt)) + (w3 * NF(hi,t)). 

3.4.2.3 Results. 

a. The ability of the RM components to provide survivability services to real-time 
application systems in a timely manner was tested. In these tests, one replica of the Auto Special 
application was faulted, requiring that the RM compoments 

(1) detect the failure 
(2) restart a replica on the "fittest" of the eligible hosts. 

b. These tests were performed a total of 17 times, and the reallocation decision times and 
total recovery times were measured. The average resource allocation decision time was 
0.00097059 seconds, with a standard deviation of 0.00041648. The minimum, average and 
maximum total latencies of the recovery actions were 0.1296, 0.19401765, and 0.2379 seconds, 
respectively, with a standard deviation of 0.04376704. Thus, across all tests, the total response 
time for application fault detection and recovery services was far less than one second, providing 
adequate response times. 

3.4.3 Resource Control / Program Control. 

The three major areas of Dynamic Resource Management are monitoring, decision­
making, and control. Program Control is the Resource Management "control" solution that 
provides a mechanism to change the status of a software system and the power to reach into a 
resource pool of many hosts and processors. To be put in perspective, Demo98 contained 
approximately 150 applications started through Program Control distributed across eleven 
Silicon Graphics workstations, eighteen Sun workstations, and five Hewlett-Packard 
workstations. In addition, Program Control is the entry-point for human-operators and 
automated functions, such as the resource-manager, for interaction with the computing-plant. 
The architecture is broken down into three major components: 

3.4.3.1 Graphical User Interface. 

a. The concept behind the Program Control interface is to provide a console that 
operators can log in to and gain access to a resource pool for startup and shutdown of any 
number of applications with a simple point and click. The display can create new configurations 
or continue pre-saved configurations. To create a new configuration, the operator can choose 
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from existing systems and components already defined in the System/ QoS Specifications files 
or create their own entries. Figure 3 .4.3 .1-1 shows a typical edit window for selecting and 
customizing applications for a configuration. Once a configuration is built, the operator can save 
the startup order, static host-allocations, command-line arguments, etc ... to a file for future runs. 
Since configuration files are ascii-text, users can easily create their own configuration files 
offline. Here is a configuration file example for the AutoSpecial doctrines used in Demo98: 

Application 
Host 
Auto_Start 
RM_Start 
Directory 
Startup 
Time_Delay 
Args 
Process 
Shutdown 

AA W:Doctrine:Auto _ Special(l) 
altair4 
1 
0 
"$HIPERD _AA W _ VERSION/exes" 
"auto_special.solaris2.6.exe" 
2 
"%(UNIQUE, 1, 32) A_Spcl_%(UNIQUE, 1, 32) -jewel -rstat -splot" 
"auto_special.solaris2.6.exe" 
SIGKILL 

b. A description of each field is as follows: 

Application: 
Host: 
Auto_ Start: 
RM_Start: 
Directory: 
Startup: 
Time_Delay: 
Args: 
Process: 
Shutdown: 

Unique application name 
Static host allocation 
Should this application be part of a one-button startup 
Should the host be dynamically allocated 
Run-time working directory 
Name of application binary/script 
Number of seconds to delay before starting this application 
Command-line arguments to pass to the startup binary/script 
List of processes expected to be seen by this application 
Name of kill signal or script to shutdown this application 
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Figure 3. 4. 3 .1-1. Program Control Edit Window. 

c. Host selection/allocation can be done manually by the operator or automated by the 
resource-manager by simply changing a flag in an applications configuration. For manual 
operation, the user is given a list of "eligible" hosts to choose from. For a host to be "eligible", it 
must satisfy the conditions set forth in the System Specifications file. Of course, if the 
application isn't pre-defined in the specs, the operator must choose from the entire resource pool. 
Dynamic, or automated, host allocations are performed by the resource-manager upon the 
application start request being initiated. 

d. Before any applications can be started, the rest of the Program Control structure must 
be started. Therefore, the operator presses the "Start Managers" button on the display. This 
causes hosts to be selected from the Hardware Specifications file to run managers. Currently, 
each manager will handle up to ten hosts, or agents. Once the managers are started, the operator 
presses the "Start Agents" button on the display to send a request to each manager to start its 
corresponding agents. 

e. The display then provides a "view" into the computing plant by showing the status of 
applications: running, failed, stopped, or simply waiting to be started. Since no one view 
satisfies all operators, three view options are available: system-level view, application run-order 
view, and host view. The first displays applications associated with their relative systems and 
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subsystems; refer to figure 3.4.3.1-2. The second shows the order that applications should and 
will be started based on dependencies specified in the System Specifications; figure 3.4.3.1-3. 
And the last shows applications associated with the host they are/were/will be running on; figure 
3.4.3.1-4. 
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Figure 3.4.3.1-2. Program Control System-Level View. 

f. Upon establishing a "configuration" and starting the infrastructure components, the 
operator has two options to point and click the applications and systems they wish to start from 
any of the three views. First, there is a manual mode that allows the operator to select the set of 
applications they wish to start and then initiate the request. In addition, there is a one-button 
startup capability that allows an operator to start a pre-defined default set of applications. 

g. Since not all control functions are performed by the operator, a socket-level interface 
is provided to the display for the resource-manager to connect to and issue startup, shutdown, 
and allocation commands. This feature relies heavily on the System Specifications files. These 
files provide all the information the resource-manager needs to allocate, start, restart, and stop 
applications. 
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Figure 3.4.3.1-3. Program Control Run-Order View. 

h. One important Program Control feature necessary for the resource-manager to 
dynamically start applications is the support for dynamic arguments in application command-line 
argument lists. Note the AutoSpecial command-line arguments from the configuration file 
example used earlier: "¾(UNIQUE, 1, 32) A_Spcl_¾(UN1QUE, 1, 32) -jewel -rstat-splot11

• 

This argument list requires AEC components to pass in a unique node number. In order for 
Program Control to know this on startup, we use the UN1QUE dynamic argument to generate a 
unique number between 1 and 32 within the AEC system. Other dynamic arguments include 
inserting date, time, and hostnames for other applications already running. The latter is 
important for client-server architectures that do not use location-independent mechanisms for the 
location of the server. Therefore, clients can use dynamic arguments to find out where their 
server is located. 
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Figure 3.4.3.1-4. Program Control Host View. 

3.4.3.2 Subsystem Managers. 

I Hos1Appl'lew --1 

I 

In order to maintain a tiered architecture, the graphical-interface communicates with a set 
of managers. The purpose of each manager is to start its corresponding agents. Each manager is 
configured to handle up to ten agents. Currently they act as a "pass-through" in order to reduce 
the number of open sockets seen by the display process, yet capable of performing more 
functionality in future development. 

3.4.3.3 Host Agents. 

a. The Program Control agents are daemon servers that reside one per host. Their main 
function is to provide a socket interface allowing remote startup and shutdown of various 
application binaries. In addition, they provide feedback as to the up/down status of the processes 
they are controlling. 

b. Demo98 support was restricted to the UNIX platforms Sun, SGI, and HP. This 
solution used the "fork" and "exec" system calls to create new application processes and 
captured UNIX SIGCHLD signals to detect application shutdown. 

c. Special care must be taken when capturing asynchronous signals (SIGCHLD) and 
updating static tables. Race conditions are very likely to occur such that when the process 
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returns from a signal handler, recovery is not transparent. The best solution to this problem was 
to queue process shutdowns and handle them in a synchronous loop. 

3.4.3.4 Summary. 

Figure 3.4.3.4-1 represents the architecture with all three components. IP Multicast was 
selected as the form of socket communications. It proved to be fast and efficient, but 
occasionally unreliable and tricky to fragment packets by the sender and rebuilt by the receiver. 
Reliability was improved by increasing the socket send and receive buffers up to 256k bytes. 
This allowed processes to get further behind and still have free buffer space for newly arriving 
packets, or packets waiting to be sent over the wire. Future development will explore a TCP/IP 
solution. 

Manager 

Socket 
Interface 

Manager 

Program Control 
Display 

Manager Manager 

Figure 3.4.3.4-1. Program Control Architecture. 
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3.4.4 QoS and System Specifications. 

To effectively manage a pool of computing resources, the Resource Manager must have 
some means of determining the capabilities and configuration of the computing resources under 
its control, of determining the software components that need to be executed and the 
dependencies of these software components on both hardware and software resources, 
determining what mission-level and application-level requirements are expected to be met, and 
determining what control capabilities are available to be used to attempt to recover from fault or 
QoS violation conditions. To address these needs, a System and Software Specification 
Grammar has been developed to attempt to capture the "static" information needed by the 
Resource Manager for effectively managing a pool of distributed resources. See Appendix G for 
details of the Grammar. 

3.4.5 Visualization. 

For Demo98, several new displays were developed and/or enhanced to showcase new 
Resource Management capabilities. The main display efforts for Demo98 consisted of 
enhancements to the Host Display, the Graph Display, the Path Display, and the development of 
the Resource Management Decision Review Display. Each of these display efforts is described 
below. (Several enhancements were also made to the Jewel Instrumentation Displays, in 
particular the Multi-AutoSpecial Doctrine display. These enhancements will not be discussed in 
this section since they have been described in detail in other sections of the report.) 

3.4.5.1 Host Display. 

The Resource Management host display depicts the layout of all machines that are 
stationed in either testbed and shows the processes that are running on each of the hosts along 
with each host's connections to the three networks: ATM, Ethernet, and FDDI. The information 
from which this picture is constructed is received from the data server using the ATDNET 
communications package. The data server collects information from the host monitor and passes 
the information along to the host display. Figure 3.4.5.1-1 is an example of the Host Display 
from the SCL. Another function of the host display is to allow the user to choose up to twelve 
hosts and submit requests to the data server for information collected from host monitor such as 
CPU usage, memory usage, packets in, packets out, and paging information. These parameters 
are displayed with respect to current time as line graphs by the graph display. Figure 3.4.5.1-2 is 
an example of a graph display from the SCL. The code for the host and graph displays was 
written in the C language. This code utilizes OpenGL libraries for drawing graphics and Motif 
libraries for user interface. 
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Figure 3.4.5.1-1 Bost Display 

Figure 3.4.5.1-2 Graph Display 
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3.4.5.1.1 Host Display Design. 

The host display initially reads an ASCII text file that contains information on all the 
hosts that are situated in the testbed. A separate file is created for each location listing 
information on each host such as the host name, host platform, host operating system, and 
statuses of host's network connections. Using the information in the file, the display shows a 
layout of all the hosts with boxes representing the hosts and color-coded lines illustrating the 
possible connections of each host to the three networks. This display is then updated on a 
continuous basis, based on messages received periodically from the data server. During this 
update process, box color is used to indicate the current status of each host and each color line 
drawn to a box indicates the host's specific network connection. There may be up to six 
processes listed next to each box denoting the processes being executed on the host. The process 
name color is used to indicate the status of each process (i.e. initializing, running, or faulted). As 
the display is running, the user may request to see actual system information for each of the 
hosts. This is accomplished by selecting up to twelve hosts and may be executed by clicking the 
left mouse button on each host box. After all the required hosts are selected, the middle mouse 
button is pressed to bring up a dialog box showing five different toggle buttons for selection of 
CPU, memory, packets in, packets out, and paging information. As each button is toggled, a 
request is made to both the data server for the specified information and the graph display for 
graphing of such information. The graph display may show up to four line graphs (arranged 
vertically). Untoggling a button allows the host display to send a stop data request to the data 
server and the graph display disabling both the transmission and graphing of data. 

3.4.5.1.2 Data Formats. 

This section illustrates the configuration information that the host display utilizes in order 
to render a layout view of all the hosts, their respective network connections, and the processes 
that are being executed on them. The information comes initially from a configuration file and is 
then periodically updated from the data server. 

3.4.5.1.2.1 Host Configuration File. 

a. To initially depict the layout of the hosts, the host display must read in a host 
configuration file and keep track of the information in a database based on the host name. The 
host display updates its database with the host information. Each host box initially comes up 
gray with only the host name in the box, and no network connections is displayed. An example 
of the configuration file is shown in Figure 3.4.5.1.2.1-1. 

Host Configuration File 

Taurus ALPHA 200 DIGITAL UX 180.0 1 0 1 
Aquilla SPARC=2Sun0S_5.6180.0 111 
Leo ALPHA_200 DIGITAL_UX 90.0 IO I 
Stargate :MICRON WINDOWS_95 180.0 1 0 0 
Carina SPARC_! SunOS_5.6 90.0 IO 1 
Pluto INDIGO IRIX_5.3 270.0 1 0 1 
Myra HP 1210 9000 HP-UX B.10.20 270.0 1 0 1 
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Electral ORIGIN 200 IRIX64 6.4 90.0 1 1 0 
Altairl ENTERPRISE_2 SunOS_5.6 270.0 1 1 0 
Whitty PENTIUM_90 WINDOWS_95 90.0 10 0 

Notes: 
1st parameter - host name 
2nd parameter host platform [default] 
3rd parameter -host operating system [default] 
4th parameter- network connection side (0.0 • top, 90.0 - left, 180.0 - bottom, 

270.0 - right) 
5th parameter- ethemet network status (0 - down, 1 - up) [not used] 
6th parameter - atm network status (0 - down, 1 - up) [not used] 
7th parameter fddi network status (0 • down, 1 - up) [not used] 

Figure 3.4.5.1.2.1-1 Host Configuration File 

b. Each line in the configuration file contains information pertained to a host. The first 
three parameters identify the host's name, platform, and operating system respectively. The 
fourth parameter indicates the side of the box where the network lines are to be drawn. A 
number 0.0 indicates lines will be drawn from the top of the box, 90.0 means from the right of 
the box, 180.0 means from the bottom of the box, and 270.0 indicates from left of the box. The 
last three parameters show the statuses of the Ethernet, ATM, and fddi network connections 
respectively. 

c. The host display allows up to fifty hosts to be shown so the configuration file may 
contain up to fifty hosts. The locations of all fifty boxes have already been configured and saved 
to a default config file, but the user may change these locations by invoking the config option in 
the display and providing new location values. The user can toggle the "i" key in the display to 
show the numbering of host boxes corresponding to the ordering of the hosts in the configuration 
file. This process may be helpful in creating a host configuration file. 

3.4.5.1.2.2 Interface to Data Server. 

There are two messages that are received from the data server. These consist of the host 
config message and the host process message. The host config message provides the name, 
status, platform, and operating system of each host. The host process message provides the three 
network statuses of each host and the status of any processes that are running on that host. 

3.4.5.1.2.2.1 Host Configuration Message. 

a. Figure 3.4.5.1.2.2.1-1 shows the structure that the host display uses to indicate 
whether the host is up or not by box color and to show the host name, platform, and operating 
system in the box. 
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Typedef struct 
{ 

char hostname[GRAPH _HOSTNAMELEN]; 
int status; 
char hosttype[GRAPH _HOST_ TYPE _LEN]; 
char os_type[GRAPH_OS_TYPE_LEN]; 

} graph_ host_ config_message; 

/* Host status (0 = down, 1 = up) */ 
/* Type of machine * / 
/* Operating system and version * / 

Figure 3.4.5.1.2.2.1-1 Host Configuration Message 

b. As the host display receives the message, it checks to see whether the host is in its 
database. If the host is in the database, then the host display updates the database with the 
information and changes the display accordingly. If the host is up and running, the display 
changes the box color to blue and shows the host name, platform, and operating system. If the 
host is not responding to monitoring, then the box color is gray and shows only the name of the 
host in the box. 

3.4.5.1.2.2.2 Host Process Message. 

a. Figure 3.4.5.1.2.2.2-1 shows the structure of the host process message that the host 
display uses to illustrate network connections along with the any processes that are being 
executed on all the hosts. 

Host Process Message 

Typedef struct 
{ 

charprocess_name[GRAPH_PROCESS_NAME_LEN]; 
unsigned pid; /* Process ID*/ 
int status; /* Process status * / 

unsigned long int mem _ size; 
float cpu _ time; 

/* 2 - process is new * / 
/* 1 process is running * / 
/* -2 process just died */ 
/* -1 - process is dead * / 

} graph _process_ data; 

typedef struct 
{ 

char hostname[GRAPH_HOSTNAMELEN]; 
int status; /* Host status (0 = down, 1 =up)*/ 
int ether_status; /* Ethernet connected (0 = down, 1 =up)*/ 
int fddi _ status; /* FDDI connected (0 down, I up) * / 
int atm_status; /* ATM connected (0 = down, 1 =up)*/ 
double timetag; 
int num _processes; 
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graph _process_ data processes[ GRAPH_ NUM _PROCESSES]; 
} graph_ host _process_ message _format; 

Figure 3.4.6.1.2.2.2-1 Host Process Message 

b. As the host display receives the message, it checks to see whether the host is in the 
database. If the host is in the database, then the host display updates its database and makes 
changes to the display accordingly. The host box color changes according to the host's status, 
and network lines are drawn to connect to the host box if the statuses of the networks are up. For 
the host's processes, a yellow color process name indicates that process is new, a green color 
indicates that process is running, and a red color means that process has faulted. 

3.4.5.1.3 Graph Display Interlace. 

a. The host display has an interface to the graph display to enable graphing of CPU 
usage, memory usage, packets in, packets out, and paging information. Once the graphs are 
enabled by user input from the host display, the graph display shows the information received 
from the data server as line graphs with respect to current time. The graph display keeps track of 
the information in databases. Up to four graphs may be displayed at any time, and within each 
graph, there's a limit of up to twelve host lines presenting the actual system performances. Each 
of these lines is drawn from a database containing info on up to 500 points. 

b. The graph display has a user interface that allows the user to change such 
configuration items as y scaling of each graph and time length shown on each graph. 

3.4.5.1.4 User Interface. 

The user may change colors, fonts, and configurations of the components of the display 
by selecting color button, font button, or config button in the popup menu. To enable/disable 
graphing of CPU usage, memory usage, packets in, packets out, and paging information in the 
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graph display, a dialog box may be invoked to allow toggling of the five buttons. The following 
shows the effects of entering key inputs: 

"d" - toggle debug mode 
"i" - toggle show numbering of boxes 
"n" - toggle show network collllections 
"p" - toggle show processes 
"r" - clear the toggle buttons of graph requests 
"t" - save process names to file 
"u" - toggle show last update time of host box 
"w" - toggle show time when display is updated 
"ESC" -exit 

3.4.5.2 Path Display 

The Resource Management path display shows the flow of data and scaling of processes 
for five different paths: Auto-Special Periodic Review Path, Spy Declared Auto Special Path, 
Semi-Auto Periodic Review Path, Auto-SM Doctrine Path, and ATWCS Path. The purpose of 
this display is to demonstrate the distribution of data and its effect on process scaling for each of 
these paths as track load is varied. Using the ATDNET communications package, the path 
display receives the information from the data server, which collects the data from the host 
monitor. The path display also shows application performances of certain processes within each 
path. This information is received from the QoS monitor. The code for the path display was 
written in the C language using OpenGL libraries for drawing graphics and Motif libraries for 
implementing user interface. 

3.4.5.2.1 Path Display Design. 

The information to construct the path display is received from two interfaces, the data 
server and the QoS monitor. The upper half section of the display shows information obtained 
from the data server. It consists of process names in the order that forms the data flow for a path 
and boxes underneath each process name representing the number of copies (up to six) of 
process running on all the host machines being monitored. The color of the box is used to 
indicate the status of the process (i.e. running and faulted), and the name on the box is the host 
on which the process is being executed. Arrows are drawn from the left to right direction of the 
sequence of boxes to indicate the data flow of the processes. At the lower half section of the 
path display, application performances obtained from the QoS monitor is presented as line 
graphs with respect to current time. Up to two graphs may be invoked by the user with key 
inputs or selecting the time lines underneath the specific process. 

3.4.5.2.2 Data Display 

This section deals with two types of information being shown on the path display. The 
first pertains to data flow of process scaling, and the second includes application performances. 

96 

Ex.1009 / Page 106 of 280 
TESLA, INC.



3.4.5.2.2.1 Data Flow 

a. There are twelve processes that comprise the five different paths: Auto-Special 
Periodic Review Path, Spy Declared Auto Special Path, Semi-Auto Periodic Review Path, Auto­
SM Doctrine Path, and ATWCS Path. These processes are as follows: track processor, rtds, 
auto-special, engagement server, wcs _ sim, track control, semi-auto, auto-sm, nav _ sim, navdata 
server, lc_rt, and vls_sim. Figure 3.4.5.2.2.1-1 shows the data flow for all the five paths. 

'AUTO-SPECIAL PERIODIC REVIEW PATH 

TRACK ➔ RTDS ➔ AUTO-SPECIAL ➔ ENGAGEMENT ➔ WCS_SIM 
PROCESSOR SERVER 

SPY DECLARED AUTO SPECIAL PATH 

TRACK ➔ AUTO-SPECIAL ➔ ENGAGEMENT ➔ WCS_SIM 
CONTROL SERVER 

SEMI-AUTO PERIODIC REVIEW PATH 

TRACK ➔ RTDS ➔ SEMI-AUTO ➔ ENGAGEMENT ➔ WCS_SIM 
PROCESSOR SERVER 

AUTO-SM DOCTRINE PATH 

TRACK ➔ RTDS ➔ AUTO-SM ➔ ENGAGEMENT ➔ WCS_SIM 
PROCESSOR SERVER 

ATWCSPATH 

NAV_SIM ➔ NAVDATA ➔ LC_RT ➔ VLS SIM 
SERVER 

Figure 3.4.5.2.2.1-1 System Path Data Flow 

b. As the data server reports the number of copies for each process observed to be 
running on host machines, the path display updates the view by drawing the corresponding 
number of boxes with the host names in the boxes underneath the process name. Box color is 
blue when the process is observed to be running, and box color is gray when process has faulted. 
The box goes away completely when the data server notifies the death of a process. Figure 
3.4.5.2.2.1-2 shows an example of a Semi-Auto Periodic Review Path display. 
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Figure 3.4.5.2.2.1-2 Path Display 

3.4.5.2.2.2 Application and Path Performance Data 

a. Figure 3 .4.5 .2.2.2-1 shows the available application and path performance data for 
each path. The figure also shows the application component(s) from which the data is being 
measured. 

AUTO-SPECIAL PERIODIC REVIEW PATH 
PROCESSES RFORMANCES 

Track.Load 
AUTO-SPECIAL Review Time 

%CPU 
Review Periodicity 

SPY DECLARED AUTO SPECIAL PATH 
PROCESSES PERFORMANCES 
TRACK CONTROL Review Time 
AUTO-SPECIAL %CPU 
ENGAGEMENT SERVER 

TRACK ➔ ENGAGEMENT Path Review Time 
CONTROL SERVER %CPU 

SEMI-AUTO PERIODIC REVIEW PATH 
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PROCESSES 

AUTO-SM DOCTRINE PATH 
ROCESSES 

AUTO-SM 

ATWCSPATH 

NAV_SIM ➔ VLS_SIM 

LC_RT 

PERFORMANCES 
Review Periodicity 
Review Time 
%CPU 

PERFORMANCES 

% Late Tracks 
%CPU 

av Data Delivery Latency 
· ssile Alignment Latency 

%CPU 

Figure 3.4.5.2.2.2-1 Path Performance Data 

b. The user may submit requests to the QoS monitor to see specific application 
performances by key inputs or by selecting the time lines underneath the processes. From the 
information that is received from the QoS monitor, the path display keeps these parameters in 
databases in order to update the line graphs. 

3.4.5.2.3 User Interface. 

The path display provides a user interface to allow some flexibility in displaying the 
view. The ability to change the colors, fonts, and configurations of various components of the 
display is accomplished by selecting the color button, font button, or config button in the popup 
menu. Specific to the path display are the following user interface capabilities: selection of each 
view of the five paths by selecting the corresponding button in the po pup menu, selection of 
graphs by selecting the time lines drawn specifically for the processes, and key inputs for 
specific events. The following are the effects of entering these keys: 

"I" - show AUTO-SPECIAL PERIOD REVIEW PATH 
"2" - show SPY DECLARED AUTO SPECIAL PATH 
"3" - show SEMI-AUTO PERIODIC REVIEW PATH 
"4" - show AUTO-SM DOCTRINE PATH 
"5" - show ATWCS PATH 
"a" - show first graph of path 
"b" - show second graph of path 
"c" - show third graph of path 
"d" - show fourth graph of path 
"e" - show fifth graph of path 
"f' - show sixth graph of path 
"g" - show seventh graph of path 
"h" - show eighth graph of path 
"O" - set the y scale of the displayed graphs to default y scale value 
"8" - set they scale of the displayed graphs to 4 times the default y scale value 
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"9" - set they scale of the displayed graphs to 2 times the default y scale value 
"+" - increase time length of the graphs by 1 minute 
"-" - decrease time length of the graphs by 1 minute 
"ES C" - exit 

3.4.5.3 Resource Management Decision Review Display. 

The Resource Management Decision Review display (Figure 3.4.5.3-1) shows Resource 
Management control events such as selection of where to start an application, recovery of a 
faulted application, and scaleup of an application in response to overload conditions. A scroll 
list displays a history of the Resource Management events. Host load information for the five 
best potential hosts for where to place an application to recover from a fault or overload 
condition is displayed as a set of bar graphs. A text display of the last three events is also shown. 
The information displayed is received from the Resource Manager. The Decision Review 
Display is written in C using OpenGL libraries for the graphics primitives and Motif libraries to 
implement the user interface for the display. 

3.4.5.3.1 Design. 

The layout of the R.1\1 justification display is assembled into three different sections. The 
first (top left) section shows a list of the events history (the last 256 events) divided into five 
columns: Event#, Action Type, Application Name, Host Event, and Host Action. The list has 
scrollbars along the right and bottom edges that allow vertical and horizontal scrolling, and the 
portion of the list data that is visible pertains to the last few events. Also, single selection of the 
events in the list is supported to allow the second section to display information pertaining to the 
selected event. The default selection of an event is the current event. The second (bottom left) 
section shows four bar graphs displaying such information as aggregate score, CPU score, 
network score, and memory score for up to five hosts as each event is received from the resource 
manager. The second section may also show a line graph depicting scale up information if an 
event selected from the list is an action type of application scale up. This graph may be invoked 
by toggling the "Scale-Up Plot" button at the top of the history of events list. The button is 
sensitized for toggling only if the selected event in the list contains the scale up application 
action. The third (right) section shows a text display of the last three events. The order of the 
three events consists of the current event being placed at the top, the previous event in the 
middle, and the event previous to the middle event at the bottom of the section. 
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Figure 3.4.5.3-1. Resource Management Decision Review Display 

3.4.5.3.2 Data Formats. 

This section introduces the two messages received from the resource manager to depict 
the RM justification display. 

3.4.5.3.2.1 Event Message. 

a. Figure 3.4.5.3.2.1-1 shows the structure of the event message that the RM justification 
display utilizes to draw all three sections of the display. 

EVENT MESSAGE 

typedef struct 
{ 

char event_app_name[MAX_ CHARS]; 
int event_pid; 
char event_host_name[MAX_ CHARS]; 
double event_time; 
int event_ num; 
int event_type; 

/* application name associated w/ event */ 
/* UN1X pid of event * / 
/* host on which event occurred*/ 
/* time event occurred in seconds * / 
/* event id number * / 
/* event type 

O :::: request start of annlication 

101 

Ex.1009 / Page 111 of 280 
TESLA, INC.



int action_type; 

char action_ host_ name[MAX _ CHARS]; 
int action _pid; 
double action_ time; 
double response_time; 

double total_action_time; 

double total_response_time; 

char hostnames[ 5] [MAX_ CHARS]; 
float agg_data[5]; 
float cpu_data[5]; 
float net_data[5]; 
float mem_data[5]; 

} event_message_type; 

1 = failure of application 
2 = application overload*/ 

/* action type 
0 = application started 
1 = application restarted 
2 = application scale up */ 

/* host on which action occurred*/ 
/* UNIX pid of action */ 
/* time action occurred in seconds * / 
/* time it took the RM to response 

defined as action_time - event_time */ 
/* time tag for Pro gram Control's 

response to RM * / 
/* delta time between Program Control's 

response to RM and the event time * / 
/* array of 5 best host choices * / 
/* aggregate score data for 5 hosts * / 
/* CPU score data for 5 hosts * / 
/* network score data for 5 hosts * / 
/* memory score data for 5 hosts */ 

Figure 3.4.5.3.2.1-1. Event Message 

b. The first section of the display lists the events as they are received showing the 
following information taken from the parameters of the event message structure: the event 
number, the action type ( application started, application restarted, or application scale up), the 
application name, the name of the host on which the event occurred, and the name of the host on 
which the action occurred. The events are stored in a linked list ofup to 256 events so only the 
last 256 events are displayed in the list. The ability for the user to select an event in the list is 
implemented to allow the second section to display information pertaining to the selected event. 
The default selection of the current event may be invoked by pushing the "Display Current" 
button from the popup menu. 

c. The second section of the display uses the parameters (hostnames, agg_data, cpu_data, 
net_data, and mem_data) of the event message structure to display the four bar graphs showing 
aggregate score, CPU score, network score, and memory score ofup to five hosts for the selected 
event. Information of the hosts may be displayed with different colors of the bars representing 
different hosts. As an event is selected in the list of the first section of the display, the bar graphs 
alter to show the information for the selected event. 

d. The third section of the display uses the parameters of the message structure to fill in 
the information shown in Figure 3.4.5.3.2.1-2. The current event information is placed at the top 
of the section, the previous event is placed in the middle, and the event previous to the middle 
event is placed at the bottom of the section. 
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APPLICATION: EVENT#: 

EVENT: 
PID: ON HOST 

EVENT TIME: 

ACTION: 
PID: ON HOST 

ACTION TIME: 

RESPONSE TIME: 

Figure 3.4.5.3.2.1-2. Event Text Display 

3.4.5.3.2.2 Scaleup Message. 

a. Figure 3.4.5.3.2.2-1 represents the scale up message that the RM justification display 
receives from the resource manager. 

SCALE UP MESSA GE 

typedef strnct 
{ 

double timetag; 
float value; 

} event_plot_type; 

typedef stmct 
{ 

int event_num; 
double start_time; 
double stop_time; 
double event_time; 
float min_ value; 
float max_ value; 
float threshold; 
char threshold_ string[MAX _CHARS]; 
char axis_legend[MAX_ CHARS]; 
char title[MAX _CHARS]; 
int num _ data _points; 
event_plot_type event_data[MAX_DATA_POINTS]; 

} scale_up_message_type; 

Figure 3.4.5.3.2.2-1. Scaleup Message 

b. This information is displayed in the second section of the display if the "Scale-Up 
Plot" button is toggled. The second section consists of texts showing the event time, start time, 
stop time, minimum value, maximum value, and threshold value of the scale up action event. 
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The second section also shows a line graph of the scale-up values for the time tags along with a 
line at the threshold value running across from the start time to the stop time. 

3.4.5.3.3 User Interface. 

The RM justification display implements a user interface to allow changes to the colors, 
fonts, and configurations of the components in the display. The user interface also allows the 
user to clear the events shown on the display by pushing the "Reset Button" button in the popup 
menu. Also, to set the current event to be selected, the user pushes the "Display Current" button 
in the popup menu. Another user interface of the RM justification display is the "Scale-Up Plot" 
toggle button allowing the user to see the scale up information of an application scaleup action 
event. 

3.5 Demo 98 Hardware Configuration 

All the hardware used in Demo 98 was COTS equipment. The hardware configuration 
and computer program allocation are shown in Figure 3. 5-1. This is a very heterogeneous 
system composed of equipment from four vendors, using four operating systems and three 
networks. 
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3.6 Demo 98 Scenario 

a. The scenario for Demo 98 was developed based on the Surface Combatant-21 st 

Century (SC-21) Cost and Operational Effectiveness Analysis (COEA) scenario. A description 
of the geographic setting and tactical objectives follows. 

b. In 2015, the Korean Peninsula is invaded. In one of the responses, a surface battle 
group consisting of ownship, one CG and two DDGs is dispatched as shown in Figure 3. 6-1. 

l =) l - SD- [;ye - ECR, look - H,PerD 132 

! _l'{indow ~ ~ook "jj',w ~l!lllllJlicat1om: ~atlorms 

Figure 3.6-1. Surface Battle Group 

c. The battle group's mission is two-part: to gain sea battlespace dominance, and to 
support land attack. Ownship mission is to coordinate Naval surface fire within the battlegroup. 
This will entail strategic attack and invasion slowing missions accomplished with the Advanced 
Tomahawk Weapon Control System (ATWCS); scheduled and unscheduled digital calls for 
Naval Surface Fire Support (NSFS); AA W self defense; and air space deconfliction. 
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3.7 Integrated System Demonstration 

The Integrated System Demonstration began with a demonstration of the new physics 
based DIS compatible Environmental Simulation capability. This was followed by two ATWCS 
land attack strike missions with the second mission including a fault detection and recovery 
sequence. Next the Fault Tolerant Engagement Server was presented and the impact of its 
faulting during an Aegis SPY Auto-Special engagement was shown. Then a Digital Call for Fire 
sequence was demonstrated. Finally the system track capacity was scaled up as Resource 
Management functionality was demonstrated. It was shown that some of the RM components 
are themselves fault tolerant, that RM recognizes components not meeting their specification as 
track load increases, and reallocating to allow the system to regain expected performance, and 
that RM recognizes software faults and reallocates the faulted process to a different processor. 
At the end of the demo with a track load of approximately 7500, a series of Auto-Special 
engagements were run showing that the system still met critical timeline requirements even 
under very heavy loads. The following subparagraphs describe these demo events in detail. 

3.7.1 Environmental Simulation 

a. The integrated demonstration began with an Environment Simulation scenario that 
entered ownship, three ships in company, an AEW aircraft flying a race track pattern, and eight 
land sites detected by the AEW aircraft. These tracks are shown in the 0TH Filter display in 
Figure 3. 7 .1-1. This portion of the demonstration was used to introduce the various Environment 
Simulation displays such as the Truth displays, the Helm Control display, the Vertical Profile 
display, the MF AR display, and the 0TH Filter display. Also the AA W Tactical display was 
compared with the JMCIS display to illustrate that a consistent track picture was provided by 
both. The AA W and 0TH tracks were received and displayed by both systems. 

b. A second EnvSim scenario depicts an enemy aircraft attack against ownship. As 
depicted in Figure 3.7.1-2, an enemy aircraft starts 37 nmi from Ownship at an altitude of 50'. 
At this point it is detected by the 0TH sensor (the AEW aircraft), but not by the ownship radar 
(:rvrF AR) as the enemy aircraft is below the :rvlF AR radar horizon. It is displayed on both the 
AAW Tactical Picture display and the JMCIS C4I display as an 0TH track, the track being 
provided by the 0TH sensor to JMCIS and then onto the AA W Tactical Picture. As it moves on, 
the enemy aircraft pops up to 2000' at 33 nmi for 35 seconds to target ownship. When it pops 
up it is detected by the ownship MF AR and displayed on the AA W Tactical Picture as an AA W 
track with the ,1\AW track information passed on to JMCIS. On the AA W Tactical Picture 
display the 0TH track symbol is replaced with an AAW track symbol. 
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Figure 3.7.1-1. 0TH Filter Display 
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Figure 3.7.1-2. ASM Launch Scenario 

40 

c. The enemy aircraft then descends back to 50' (below MF AR horizon) and launches 
two ASMs against ownship. Once the AA W track is lost by MF AR the AA W track symbol on 
the Tactical Picture display is replaced with the 0TH track symbol as the 0TH sensor is still 
reporting the track. The two ASMs launched at ownship appear at first as 0TH tracks on the 
AA W Tactical Picture as they are initially below the 1'v1F AR horizon. At 16 nmi from ownship 
the 1'v1F AR detects the two ASMs as SPY Auto-Special tracks, the 0TH symbols are replaced 
with AA W track symbols on the Tactical Picture, and ownship using the auto-special doctrine 
automatically launches a SM-2 missile against each incoming threat. The environment 
simulation vertical profile display shows this attack sequence and the ownship response. 

d. This scenario segment illustrated the 0TH track input into the system via JMCIS and 
the AA W track being entered into the system via the physics-based MF AR simulation. It also 
demonstrated how the 0TH and AA W tracks were shown on the Tactical Picture during the 
phases of the scenario segment. The Vertical Profile display was used to show the attack 
sequence and thus allowing correlation between what the scenario was doing and what the AA W 
Tactical Picture and JMCIS were showing. The defense of ownship via the Auto-Special 
doctrine was also illustrated. 

e. In the third EnvSim scenario, the CVBG ( east of ownship) launches several strike 
forces and an Air Force strike force approaches from the south of ownship. This is shown on the 
truth display in Figure 3.7.1-3. This scenario continued for the length of the demonstration 
providing background tracks for system processing. The total number of tracks being processed 
and entered into the system by MF AR reached over 200 during the demonstration This was done 
to illustrate that Environmental Simulation could generate and process a realistic capacity of 
tracks in its initial entry into the testbed. Larger capacities could have been demonstrated and 
are planned for future demonstrations. 

109 

Ex.1009 / Page 119 of 280 
TESLA, INC.



Truth Display- listening to Port 3271 

Figure 3.7.1-3 Truth Display Showing Air Targets 
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3.7.2 ATWCS Launch Control Real Time Group 

a. The next segment of the demonstration was ATWCS which involved launching 
Tomahawk Land Attack Missiles (TLAMs) at predefined targets significant distances inland. 
The Tomahawk weapon system does not "target" hostile tracks, and does not rely on any real­
time sensor system for targeting. (Real-time track reporting is essential for performing over­
water routing by the launch platform. That part of the Tomahawk weapon system was not 
available for the demo.)" Currently, targeting is accomplished in advance of the launch, 
typically at a Cruise Missile Support Activity (CMSA) ashore. Using available imagery and 
intelligence data, the CMSA plans the overland route to the target from a point (the First 
Preplanned Waypoint, FPPWP) just prior to landfall. Included in the "mission" is the terminal 
attack profile, selected by the planner to maximize damage to the target. 

b. The launch platform's responsibility is to: 

(1) Meet any launch time and position requirements established by the tasking 
authority. 

(2) Define the route from the launch point to the FPPWP. 

(3) Initialize and launch the weapon. 

c. The over water routing must consider the tactical surface track picture to avoid 
unintentional intrusion into "no-fly" zones, and to avoid collision with any hazards along the 
route. 

d. To show the successful integration of the ATWCS LC capability into the 
demonstration, four engagement plans were created and executed. The first three plans specified 
the launch of two TLAMs each, with launch times set to require overlapping initialization of the 
six missiles. This allowed the demonstration to show that the testbed architecture and prototyped 
LC software successfully achieved the real-time performance required for TLAM launch. Figure 
3.7.2 -1 s~ows the console display during missile alignment. 
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Figure 3.7.2-1. ATWCS Display Showing Missile Alignment 
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e. The fourth plan, calling for three missiles, was then executed to demonstrate the fault 
tolerance of the LC RT process, in conjunction with RM. During the missile initialization phase 
for this plan, the LC RT process was abnormally terminated to simulate a fault condition. This 
event was automatically detected by RM, which immediately issued a restart of the LC RT 
process. The restarted LC RT re-established communications with the LC Exec, the simulated 
INS, and the simulated VLS, then resumed the missile initialization process. As is seen in Figure 
3.7.2-2 this resulted in the successful launch of the three TLAMs with a delay of a only few 
seconds. 

112 

Ex.1009 / Page 122 of 280 
TESLA, INC.



- .!-!-I y 

Nov Ool• Delver:, lo!ffllyOJavSin l:O 1,1WGS LC;JIT) Onc-611ot Nov O.t>. Dollvery 

Glock OffMtwtatloo-to-.tatlon 

.o 

100 

., 

., 

"' 

•'---------------
0<12,4.'I lll',r-13 • .s 11a,s-i,,,-s 11,.1r1s,.,:9 11s,s.-iG..A9 118,S-1'3,4!3 

Figure 3.7.2-2 JEWEL Display Showing LC RT Fault and Re-start 
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f Had the LC RT not been restarted and communications with VLS resumed within an 
80 second timeout period, VLS would have automatically deselected and safed the three 
TLAMs. This would have required the ATWCS operator to edit the engagement plan and restart 
missile initialization from the beginning, with a significant delay in launching the TLAMs. 

3.7.3 Fault Tolerant Engagement Server 

a. Prior to Demo 98 the Engagement Server component was not fault tolerant and, 
therefore, represented a single point of failure in the HiPer-D engagement capability. The 
purpose of the Engagement Server in HiPer-D is threefold. First, it validates engagement 
requests from clients and arbitrates any race conditions occurring due to multiple engagement 
requests on the same target. Second, it generates engagement orders to WCSSim for valid 
engagement requests. Third, it distributes engagement status updates to clients as tracks progress 
through their engagement sequence. In fulfilling these responsibilities the Engagement Server 
creates and maintains engagement state data critical to the HiPer-D system. It is imperative that 
this state data is synchronized among replicas when there is more than one Engagement Server 
executing in the system. The engagement servers use a Primary/Shadow scheme to enforce this 
synchronization and provide for fault tolerance. 
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b. During Demo 98 this new Fault Tolerant Engagement Server was demonstrated to 
properly handle engagements prior to, during, and after a fault of the primary replica. A fault 
resulting in a process failure was precisely injected into the primary Engagement Server during a 
SPY-declared Auto-Special engagement. This is the most demanding timing requirement in 
(C&D). The intentional failure was generated in the primary Engagement Server after validation 
checks had been performed but before the engagement order was sent to the WCSSim, (the worst 
possible time since it falls within the SPY-declared Auto-Special timing requirement). This 
failure location in the Engagement Server was chosen to demonstrate state data consistency 
among the surviving replicas as well as performance impact to the SPY-declared Auto-Special 
timeline. 

c. To demonstrate the features of the Fault Tolerant Engagement Server a new JEWEL 
display was created which provides a visual window into the replicated Engagement Servers. 
This new display highlighted the consistency among the replicas with respect to their state as 
well as to the resultants of any input stimulus. Figure 3. 7.3-1 shows an image of this display 
captured during one of the live Demo 98 executions. It was captured immediately after the 
replicas processed an engagement request for a SPY-declared Auto_Special contact. 

d. There are three rows of colored bars on the display, one row for each of the 
Engagement Server replicas. The top row indicates the primary replica; the bottom two rows are 
shadow replicas. Each of the colored bars indicates a unique resultant that must be transmitted in 
response to processing this most recent engagement request. Time is moving from left to right 
across this display, therefore the resultants shown from left to right indicate a sequence of 
activity occurring at each replica. There are four resultants for Auto_Special type engagement 
requests. Notice that the colored bars are taller for the primary replica. This indicates that it has 
actually transmitted the resultants. The half-height bars for the shadow replicas indicate they 
have verified that the primary replica has successfully transmitted the resultants. Notice that 
each replica either transmits or verifies the same set of resultants. This is an important insight 
given by this display. This indicates that the replicas are coming to the same conclusions about 
the processing steps that must be completed for this engagement request. They are "in the same 
state" with respect to this engagement request. If this display ever indicates colored bars that 
lack this "vertical harmony" among the replicas it would mean that they have inconsistent state. 
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Figure 3.7.3-1 JEWEL Display 

3.7.3.1 Fault Injection Control 

a. Prior to Demo 98 the HiPer-D project did not demonstrate precise fault injection 
capabilities. HiPer-D has dealt primarily with process failures and, on a more limited basis, with 
hardware failures. Process failure was accomplished through the use of Ctrl-C and Unix level 
Kill signals. This did not provide the capability to inject a fault, resulting in a process failure, at 
a precise point in time or a precise location in a process. It was necessary to hand tailor a fault 
injection capability to provide this level of control. This was accomplished through the creation 
of a data file that specified the fault injection parameters. It also required application changes to 
read and respond to the fault injection parameters in this data file. 

b. The data file contains the following information: 

(1) Propagate True 
(2) Replica O Trigger 2 Skip 2 

c. The first line indicates whether automatic generation of a fault is enabled or not. A 
value of True for the Propagate variable specifies that fault injection is enabled. This allows the 
injection to be enabled and disabled at runtime. The second line provides the details of the fault 
injection. The Replica variable specifies which of the replicas is to fail; 0 is the primary replica 
and 1 + are Shadow replicas. This allows failure of any replica to be tested and demonstrated. 
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The Trigger variable specifies which location in the process is to generate the fault. There are 
several locations encoded in the Engagement Server component that correspond to unique 
Trigger numbers. This allows the server to proceed to the specified point in the processing 
before the fault is generated. The Skip variable indicates the number of engagement requests to 
skip over before the Replica and Trigger values become active. This allows finer control during 
testing and demonstration. 

d. All Engagement Server replicas read this specification file at a ½ Hertz periodic rate. 
Currently there are five locations in the replicas where code has been modified to test for fault 
generation. These correspond to Trigger values 1-5. At each of these five test locations the 
following conditions must be satisfied before a fault is generated: 

( 1) This is the correct Replica number 
(2) This is the correct Trigger location 
(3) Fault injection Propagation is True 
( 4) The proper number of engagement requests have been Skipped since Propagation 

was enabled. 

e. When all conditions are satisfied then a fault is generated. The fault is in the form of 
an Ada exception that propagates to the main procedure of the engagement server process. At 
this point a process failure is generated. While this technique is somewhat rudimentary in 
nature, it does allow a precise and repeatable fault injection capability. It can be used to fail a 
process at a user-specified location thereby allowing visualization and measurement of the 
resulting impact. 

3.7.3.2 Fault Recovery and Performance Impact 

a. During Demo 98 a fault was intentionally injected into the primary Engagement 
Server replica using the control described in the preceding section. This resulted in a primary 
replica failure that occurred during an engagement request originating from a SPY-declared 
Auto _Special contact. The SPY-declared Auto _Special engagement path is the most stringent 
timing requirement in the C&D Element. The time allowed between the initial SPY qualification 
and the engagement order generated to WCS is very short. 

b. Figure 3. 7 .3 .2-1 illustrates how this path, or timeline, corresponds to components in 
the HiPer-D system. There are four components involved in the SPY-declared Auto_Special 
path; Track_Control, Auto_Special, Engagement Server, and WCSSim. The green and red 
arrows indicate messages that flow between these components in executing this path. The wall 
time taken to process this engagement is shown as the bar with "Begin Review Path" and "End 
Review Path" at each end. The last activity in this path is the transmission of the engagement 
order to WCSSim, i.e. the red arrow in the diagram. The wall time to execute this path must not 
exceed the C&D timing requirement. 
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Figure 3.7.3.2-1 SPY-declared Auto-Special Review Path 

c. The blue arrow indicates that a fault will be injected into the primary Engagement 
Server during this stringent path. Again, this will result in a process failure of that primary 
replica. This is by intent and allows analysis of two important attributes: 

(1) The successful completion of the engagement request even during failure of the 
primary replica. 

(2) The impact on performance in meeting the Auto_ Special timing requirement. 

d. The JEWEL display, previously described in Figure 3.7.3-1, allows insight into the 
first of these attributes. Figure 3.7.3.2-2 shows another image of this JEWEL display. It shows 
this display captured during a live Demo 98 execution shortly after the primary Engagement 
Server has been intentionally failed. The primary replica failed just before transmitting the 
engagement order to WCSSim; (the blue box would have been this resultant). Both shadow 
replicas detected this failure. The oldest shadow replica assumed the primary role. This is seen 
in that this shadow replica verified the first resultant from the failed primary replica, i.e. the red 
box, but it transmitted the remaining resultants after taking on the primary role (remember that 
verifications are half-height and transmissions are full-height). The other shadow replica 
remained in a shadow role even after recovery from the failure. It verified the transmission of all 
resultants regardless of whether they originated from the failed primary replica or the new 
primary replica. 
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Figure 3.7.3.2-2 JEWEL Display Illustrating Failure of Primary Replica 

e. This display showed that the current engagement completed successfully in spite of 
the process failure. This is an important feature of the Engagement Server in that it provides 
automatic continuation of an engagement in progress even if a replica is lost. This display also 
showed that only one resultant of each type was transmitted, i.e. no duplicates or lost messages. 
This is also important in that lost or redundant messages can create error conditions in other 
components that are expecting to see one and only one such message. 

f. The second attribute is the ability to assess the performance impact on the 
Auto_Special path. Figure 3.7.3.2-3 shows an instance of the Auto_Special JEWEL display. It 
was captured during a live Demo 98 execution shortly after the primary Engagement Server 
suffered a process failure. There are five charts on this display. The upper four visualize aspects 
of the Auto_Special doctrine clients' periodic activities. The bottom chart that extends over the 
full width of the display is the only one of relevance to this particular discussion. Figure 
3.7.3.2-1 showed the SPY-declared Auto_Special review path. The bottom chart on this JEWEL 
display in Figure 3.7.3.2-3 is a visual representation of the wall time required by the HiPer-D 
components to successfully process this path. 
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Figure 3.7.3.2-3 Auto_Special JEWEL Display 

g. The C&D timing requirement is represented on this chart as 100%. In other words, as 
long as the HiPer-D components collectively take less than 100% to process a SPY-declared 
Auto_Special contact then the requirement is being met. Typically the HiPer-D components 
consume~ 10-20% of the requirement, well below what is allowed. Notice that the blue line 
drawn from left-to-right across this chart rises sharply about halfway across the chart. This is the 
impact due to the primary Engagement Server failure. Prior to that failure the components were 
using less than 20% of the allowed time. This can be seen by the fact that the left-most scale 
shows numbers at 100% and 200%. The 100% mark is on the fifth gridline. The blue line 
initially starts below the first gridline, a value less than 20%. 

h. At the point where the failure occurs the line increases to ~ 180%. This is a violation 
of the requirement as specified in C&D. But, three important points must be stressed here. First, 
there is not actually a C&D requirement specified for the SPY-declared Auto_Special path under 
failure conditions. HiPer-D has taken this stringent requirement and attempted to meet it even in 
the presence of process failures, an aggressive and challenging undertaking. Second, the visual 
impact and analysis of this performance hit is only enabled by the precise and repeatable fault 
injection capability tailored by HiPer-D. This stride is essential for analysis of both performance 
and resiliency of distributed systems. Third, if C&D is lost in AEGIS, Baseline 5, it must be 
restarted in the N+ 1, ACTS computer (a cold restart). It must progress through the complete 
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initialization phase before it is ready to process Auto _Special engagements; not counting the fact 
that the Auto _Special engagement in progress during the failure could be lost. The recovery 
time for this restart operation is significantly longer than the 100% mark specified for the 
requirement. 

i. There is a hot restart mode in AEGIS that takes advantage of the shadow memory 
feature of the UYK-43 architecture. This failure and recovery mode in C&D is much faster than 
the cold restart mentioned above. Even so, it still could take up to 500% of the Auto_Special 
time we have been discussing to perform a recovery in this manner. With these points in mind it 
follows that 180% of the requirement during a loss of the primary replica is very good 
performance by these HiPer-D components. Nevertheless, it is one of the goals ofHiPer-D to 
continue to analyze and improve recovery performance in the presence of failures. 

3. 7 .3.3 Summary and Future 

a. Adding fault tolerance to the Engagement Server component for Demo 98 created a 
completely fault-tolerant engagement path through the HiPer-D system. The Engagement Server 
design allows these replicas to keep the critical engagement state data consistent among all 
replicas. The engagement state data is potentially affected by messages from several 
communication groups making the design to guarantee consistency a challenging problem to 
solve. The new JEWEL display provides a window into this state and action consistency among 
the replicas. Finally, the precise fault injection addition allows repeatable fault testing as well as 
measurements of system performance. 

b. In the coming year Engagement Servers will have the capability of coming on-line 
even in the middle of an engagement request. Currently, redundant servers can be added back 
into the system, but only when there is no engagement related activity. It is import to ensure that 
a new server receives the proper state as it comes on-line in order to know where in the 
processing sequence it should begin. This is an interesting problem if an engagement request is 
in progress. An additional factor is that multiple communication groups can be involved during 
the processing. Transference of the proper state to this new server under these conditions is a 
challenging endeavor. 

3.7.4 Digital Call for Fire (CFF) 

a. One of the enhancements to the HiPer-D testbed for Demo 98 was the development 
and integration of a remote interface to support simulation of an external digital CFF capability. 
The Demo 98 scenario was designed to demonstrate the expanded CFF capability for both 
scheduled and unscheduled digital calls for Naval Surface Fire Support. 

b. This capability encompassed several major components and processing elements 
within the total system, including: 

(1) The creation and utilization of a remote Forward Observer/ Forward Air 
Controller (FO/F AC) simulation subsystem. 
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(2) Visual deconfliction of the air picture. 

(3) The insertion of an 0TH CFF track into the HiPer-D system, representing the 
target aim point of the CFF engagement. 

( 4) The transmission of engagement requests by the Tacfire Processor to the 
Engagement Server. 

(5) The prosecution of the engagement by the NSFS Simulator (NSFSsim) with 
subsequent spotter adjustment(s) provided by the remote FO/FAC. 

( 6) Successful completion and termination of the CFF engagement. 

c. Each of these functional areas required substantive new design, development or 
upgrading of the software base in the testbed. A high level graphical summary of the system is 
provided in Figure 3.7.4-1. 

3.7.4.1 FO/FAC Subsystem 

a. Figure 3. 7. 4 .1-1 provides details on the FO/F AC components. The drawing highlights 
two areas: 

(1) It illustrates the actual connectivity between the main testbed in Building 1500 
and the remote CFF FO/F AC operator in Building 180, both within the NSWCDD complex. 

(2) It also provides an indication of the CFF interface message flow between the two 
sites and supporting Tacfire/RDDL components that emulate the prototyped FO/F AC capability. 

b. One of the objectives of the demonstration was the creation of a remote FO/F AC 
capability to simulate a spotter on land transmitting CFF requests and corrections digitally to a 
combatant supporting the land attack mission. To achieve a certain degree of reality, the 
following design decisions were made: 

(1) The fixed format Tacfire message specification was selected in accordance with 
"Interface Specification for Maneuver Battalion Fire Support Element (Advanced Field Artillery 
Tactical Data System)" (FSSIS-IS-0093 Rev. A, dated 1 December 1993) as representative of 
this interface. 

(2) The militarized AN/GRA-39 transceiver set was integrated into the remote 
FO/F AC environment. 

(3) Supporting components, Scenario Injection Stimulator (SISTIM) and a Remote 
Digital Data Link (RDDL) provided both the CFF scenario mechanisms and the TCP/IP network 
protocol encoding of the CFF messages. 
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c. The result of these efforts provided the infrastructure approximation that represented 
a remote CFF operator in the HiPer-D Demo 98 testbed. 
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3. 7.4.2 CFF Initiation Sequence 

a. To facilitate the testing and demonstration of the CFF capability, the testbed-specific 
Message-to-Observer (MTO), Start Mission, was defined consistent with the Tacfire 
specification. This initiated each engagement and alerted the remote FO/F AC that the testbed 
was ready to conduct a test mission. 

b. Upon receipt of the Start Mission message, the FO/F AC then selects and executes a 
defined CFF target scenario from the SISTIM. This results in the RDDL transmitting the 
initiating Tacfire CFF Request message. This flow initiates with the remote FO/F AC and is sent 
to the Advanced Computing testbed's Tacfire Processor and ABMX subsystem over a TCP/IP 
socket connection. At this point, a single land attack mission is in progress. 

3. 7 .4.3 Visual Deconfliction 

The Air Battle Management and Execution (ABMX) element supplied by the Naval 
Research Lab (NRL) was integrated into the testbed, primarily to provide a deconfliction facility. 
Upon receipt of the initiating Tacfire CFF Request message from RDDL, ABMX computes and 
plots the start and endpoint of the anticipated ballistic flight path of the land attack mission. This 
data is displayed in both 2-D and 3-D on the ABMX displays. In particular, the 3-D 
visualization, along with the receipt and presentation of the complete track picture from the 
GCCS-M (a.k.a. JMCIS) Jots-1 platform, allows rudimentary visual deconfliction of the air 
picture with the intended projectile flight path. In this version of the prototype, voice 
communications are used as the mechanism for communicating information should safety 
conflicts be detected. 

3.7.4.4 0TH Track Injection 

a. Concurrent with ABMX performing its deconfliction processing, the CFF Demo 98 
design called for the injection of an 0TH track into the system to permit the AEC to prosecute 
this target. Upon receipt of the CFF Request from RDDL, the Tacfire Processor decodes the 
UTM coordinate data of the Tacfire message and sends a DIS Entity State (ES) PDU packet to 
the 0TH Filter component in order to initiate this sequence. The fundamental flow of data 
proceeds through the bottom left section of Figure 3. 7. 4-1: 

0TH Filter ➔ 0TH Message Generator ➔ JMCIS ➔ AACT ➔ 0TH Data Server. 

Ultimately, the 0TH Data Server broadcasts the newly created CFF target track to all registered 
clients of this process. 

b. This represents a departure from the T3 Demo (August 97) CFF approach in that in 
the previous milestone, a simulated fire control sensor was used to designate and create a target 
for this type of engagement. The Demo 98 redesign in this area is considered to be a more 
realistic representation of this capability. 
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3. 7 .4.5 CFF Engagement Transmission 

a. Once the 0TH track DIS ES PDU packet is sent, the Tacfire Processor transmits the 
Engagement Request message to the C3I _Broker. This step begins the functional processing 
within the AEC system. 

b. The C3I Broker receives the Engagement Request message and waits for the arrival of 
the CFF target track before it forwards the engagement. Using basic positional computations, the 
C3l _ Broker performs rudimentary comparisons of the engagement endpoint against the list of 
available 0TH target tracks. Once a match is determined, the sequence proceeds with the 
transmission of the request to the Engagement Server. In the case that C3I_Broker does not find 
a matching track for the requested target within a user-specified time period (defined in an 
adaptation data file), the engagement is terminated with a Cannot Comply (CANTCO) 
acknowledgement in the Time-of-Flight response message sent back to the Tacfire Processor. 

3.7.4.6 Engagement Sequence 

a. After C3I_Broker sends on the request, the Engagement Server queues a CFF alert to 
the ASUWC (Anti-Surface Warfare Coordinator) submode position. The operator reviews the 
alert with the 0TH track hooked, and approves the engagement of the target. This event causes 
an internal AEC message sequence of: 

Manual Engage ➔ Engagement Server ➔ NSFSsim 

which delivers the engagement request to NSFSsim. This simulator performs engageability and 
time-of-flight (ToF) calculations and provides the data directly to the C3I_Broker. As this 
message is delivered, NSFSsim initiates a simulated land attack sequence representing the firing 
of the shipboard gun system. Figure 3.7.4.6-1 shows the ABMX 3-D graphical depiction of the 
projectile. 
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Figure 3.7.4.6-1 ABMX 3-D Display Showing Projectile Ballistic Flight Profile 

b. C3I_Broker responds to the Tacfire Processor indicating that an engagement is in 
progress, and sends along the ToF value. It follows this action with a similar notification to 
ABMX that allows this subsystem to set its displays to change the color and status of the 
engagement to "red," indicating that a firing is currently in progress (i.e., zone is "hot") as shown 
below in Figure 3.7.4.6-2. 

Figure 3.7.4.6-2 ABMX 3-D Display Showing "Hot Zone" 
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c. Tacfire Processor provides a 2-message sequence back to the FO/F AC: 

(1) Indicating the "Shot" has just left the ship; and 

(2) A "Splash" message 5 seconds prior to computed projectile impact. 

d. These notifications permit the fonvard observer to assess fall of shot on target. The 
FO/F AC then provides adjustment, based on assessed error of the previous shot. This data is 
transmitted in a follow-on Spotter Adjust message to the Tacfire Processor which in turn 
forwards the data to the C3I Broker. C31 Broker sends the correction to NSFSsim who 
recomputes the required pa~meters, issu;s his reply back to the C3l_Broker and commences the 
firing sequence. C3l_Broker transmits the ToF data back to the Tacfire Processor who proceeds 
to issue the "Shot" / "Splash" 2-message sequence to FO/F AC. 

e. This series of shot and spotter correction can be repeated as necessary in order to 
allow the FO/F AC to place the fall of shot on target. The corrections and number of spotter 
rounds are completely driven by the commands issued by the remote spotter simulated in 
building 180. 

f. Once the FO/F AC is satisfied that spotter rounds are on target, he issues a fire-for­
effect request. In Demo 98, this was done to allow multiple rounds to be fired at the CFF target 
in rapid succession, under remote spotter control, in order to destroy the mission objective. The 
specific messages are identical to the ones discussed above, with the only exception being that 
the final series of "Shot" / "Splash" messages back to the FO/F AC represent the starting and end­
point times of the multi-round sequence. 

g. Once the spotter is satisfied that the target is destroyed, he issues a Tacfire End-of­
Mission (EoM) notification. This message permits both the AB:M:X subsystem and the AEC 
system to clear the engagement from their databases. The Tacfire Processor forwards the data to 
C3I_Broker that sends an Engagement Termination message to Engagement Server. Engagement 
Server issues internal status messages to its clients and queues a Kill information alert to the 
ASUWC operator to complete the termination processing. At this point, the system is ready to 
receive another remote CFF request against a new target. 

h. The defined sequence of events and messages is shown in Table 3.7.4.6-1. 
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Table 3. 7 .4.6-1 CFF Primary Message Processing Flow 

.. ,., ... ,:.,.SOURCE ., . . · .. .. DESTJJYATION . ..... : .... .-:•.• ... Ml$SSA(;E .. 
,, ' 

'::··:·· ....... ' . ' ' . . ' '••· 

0 Tacfire Processor FO/FAC MTO: start mission 

1 FO/FAC Tacfire Processor, Tacfire CFF request 
ABMX (info) 

2 Tacfire Processor 0TH Filter DIS entity state (Create Target) 

3 T acfire Processor Cjl Broker Engagement request 
4 C:;I Broker Engagement Server NSFS land attack engagement 

( waits on receipt of request 
0TH track report) 

5 Engagement Server NSFSsim Target engage request 
( operator initiated via 
Manual Engage) 

6 NSFSsim C:;I Broker Land attack engagement data 
7 CjI Broker Tacfire Processor, Time-of-flight (ToF) (MT-99) 

ABMX (info) 
8 Tacfire Processor FO/FAC Shot/Splash (2 msg sequence) 
9 FO/FAC Tacfire Processor, Spotter adjust (5-10 secs after hit) 

ABivIX (info) 
10 Tacfire Processor Cjl Broker Subsequent adiust (MT-100) 
11 C3l Broker NSFSsim Shot adjust 
... (repeat 9-11 then 6-8 as required for multiple spot ad:iustments) 
12 FO/FAC Tacfire Processor, Fire for effect 

ABMX(info) 
13 Tacfire Processor Cjl Broker Subsequent adjust (MT-100) (# of 

effect rounds in originating CFF 
message) 

14 C3I Broker NSFSsim Shot adjust 
15 NSFSsim C_;I Broker Land attack engagement data 
16 C3l Broker T acfire Processor ToF (MT-99) (for first effect 

rounds) 
17 T acfire Processor FO/FAC Shot 
18 FO/FAC Tacfire Processor, End-of-mission (EoM) 

ABMX 
19 Tacfire Processor Cjl Broker Engagement complete 
20 CI Broker Engagement Server Engagement termination 
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3.7.5 Demo 98 Resource Management Scenario 

a. The Resource Management efforts for FY98 resulted in the development of many 
capabilities and features that could have been demonstrated in Demo 98. Due to time 
limitations, however, it was decided to focus on only a handful of key capabilities. This section 
describes the Demo 98 Scenarios which highlighted several key Resource Management 
capabilities. 

b. During the demonstration, the following three key capabilities were demonstrated: 

(1) Fault Tolerance ofResource Management Components (survivability of Resource 
Management) 

(2) Scalability of the AAW Doctrine Processes (load-balancing for handling 
increasing tactical load and changing mission requirements) 

(3) Fault Tolerance of the AA W Doctrine Processes (ability to continue to meet 
mission requirements in the event of software failures) 

c. In addition to the demonstrated capabilities, the following capabilities were also 
shown but not specifically focused on: 

(1) Monitoring and control across all UNIX platforms in the testbed. 
(2) Startup and shutdown of infrastructure components (RM, displays, etc ... ). 
(3) Initial host selection by RM for selected applications. 
( 4) Startup, shutdown, and configuration of applications based on QoS Specifications. 

d. The remainder of this section discusses each of the Resource Management 
capabilities and scenarios that were demonstrated during Demo 98. 

3.7.5.1 Overview. 

a. The Resource Management portion of the demonstration was the concluding section 
of Demo 98. The capabilities demonstrated were broken down into four main sections. 

b. For the first section of the demo, some of the fault tolerant capabilities of the 
Resource Management components themselves were demonstrated. Since Resource 
Management is envisioned as controlling the configuration and allocation of other shipboard 
systems, in order to be effective, it must be survivable. This year, restart fault-tolerance for most 
of the Resource Management components was implemented; almost any component of the 
architecture and infrastructure can be faulted and restarted with the exception of the Resource 
Manager itself In particular, multiple host monitors, being faulted and restarted, were 
demonstrated. The key point was to demonstrate the kinds of survivability capabilities needed 
by the Resource Management components to handle and recover from hardware or software 
failures. 

c. For the second part of the demonstration, the AAW AutoSpecial and SemiAuto 
Doctrine processes were scaled up based on detection of overload conditions by Resource 
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Management. The doctrine processes themselves are designed to perform load balancing 
between replicas. This capability was demonstrated as well as demonstrating Resource 
Management detecting the existence of overload conditions (based on increasing tactical load), 
and deciding when and where the scaled up doctrine processes should be started. The key point 
was to demonstrate the ability of the Resource Management components to dynamically detect 
overload conditions and effectively scale up in order to continue to meet mission requirements. 

d. During the third section of the demo, several AAW Doctrine processes (AutoSpecial 
and SemiAuto) were faulted in order to demonstrate fault detection and automatic restart of the 
AA W Doctrine processes by the Resource Management component. During this part of the 
demonstration the reconfiguration and load-balancing capabilities of the AA W applications were 
highlighted. (Also, earlier in the Demo, during the ATWCS section, the ability of the Resource 
Manager to detect the failure of an ATWCS application, the LC-RT component, and 
automatically restart it was demonst,rated.) The key point was to demonstrate the ability for the 
Resource Manager to reconfigure the system to continue to meet mission requirements even in 
the event of software failures. 

e. The fourth section of the demo involved ramping up the track load to over 7000 
tracks and scaling up to five copies each of the Auto Special and SemiAuto Doctrine processes. 
While this was being done, the Resource Management sections were summarized, and the 
overall demo summary was presented. The demo concluded, as it has in previous years, by 
demonstrating that even at extremely high system loads, the AutoSpecial engagement timelines 
still fell well within spec. 

f. The next three sections look in detail at each of the three main Resource Management 
capabilities that were demonstrated: 

(1) Fault Tolerance of Resource Management Components 
(2) Control of Application Scalability of the AA W Doctrine Processes 
(3) Application Fault Detection and Recovery 

3. 7.5.2 Fault Tolerance of Resource Management Components 

a. The first section of the demonstration involved faulting several (arbitrarily selected as 
five) UNIX host monitor components of the Resource Management infrastructure. The Host 
Monitors selected to be faulted were running on a mix of SGI, SUN, and HP workstations. 
Before the Host Monitors were faulted, they were hooked on the Host Display (Figure 3.7.5.2-1), 
and data being collected by the Host Monitors was displayed in real-time on the Graph Display 
(Figure 3.7.5.2-2). 

b. When the Host Monitors were faulted, depending on the timing of the faults, several 
of the hooked boxes on the Host Display would turn gray for a short time and then tum back to 
blue when the Host Monitors had been restarted. (Typically, the Host Monitors would be 
restarted and reconnected into the Resource Management system within a couple of seconds.) In 
other cases, depending on the exact timing, the restart of the Host Monitors and reconnection of 
the Host Monitors back into the Resource Management Infrastructure would result in no color 
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change, which indicates that from the display' s perspective, no interruption of data was even 
noted. 

Figure 3.7.5.2-1 Hosts can be hooked for display. 

Figure 3.7.5.2-2 Performance data plotted from hooked hosts. 
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c. When the Host Monitors were faulted the application failure was detected by the 
Program Control agents. The agents then passed this information to the Program Control 
components which informed the Resource Manager that the Host Monitors had abnormally 
terminated. At this point the Program Control component also informed the Program Control 
Display (Figure 3.7.5.2-3) that the Host Monitors had been faulted and the corresponding 
element on the Program Control Display was turned red to indicate 
the failure. 
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Figure 3. 7 .5.2-3 Program Control Display with faulted host monitors 

d. The Resource Manager then determined from the QoS Specification information that 
the Host Monitors were restartable and should be restarted. The Resource Manager then ordered 
Program Control to restart the faulted Host Monitors. The Program Control component then 
consulted the QoS Specifications to determine exactly how to start the Host Monitor, and passed 
the order to the Program Control agents. The Program Control agents then started the Host 
Monitors. Once the Host Monitors successfully began executing, the Program Control agent 
informed Program Control that the Host Monitors had been restarted. Program Control then 
informed the Program Control Display that the Host Monitors were back up and the 
corresponding element on the Program Control Display was turned back to green. Program 
Control also informed the Resource Manager that the Host Monitors were successfully restarted. 
At the same time the Host Monitors were reconnecting back into the Resource Management 
Infrastructure and once again began sending data which was reflected on the Host Displays and 
the Graph Display. 

e. All of this occurred extremely quickly and automatically with no operator 
intervention. The Program Control Display typically blinks red and back to green so fast that it 
is hard to be seen. On the other hand, the Graph Display typically shows a second or two of 
missed data, and the Host Display may show the Host Monitor being down for several seconds. 
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APPLICATION: HostMonitor EVENT#: 1 

EVENT: Application Fault 

PIO :3924 ON HOST altairB 

EVENTTIME: 14:50:33.0278 

ACTION: Application Restarted 

PID :3957 ON HOST altairS 

ACTION TIME: 14:50:33.0290 14:50:33.1975 

RESPONSE TIME: 0.0012 0.1697 

Figure 3.7.5.2-4 Resource Manager Decision Display response times for fault/restart 

f The exact fault detection and recovery timing can be seen on the Resource 
Management Decision Review Display (Figure 3.7.5.2-4). This display typically shows that 
from the time the fault is detected and reported to the Resource Manager to the time the 
Resource Manager decides what to do usually takes between 0.2 and 2.0 milliseconds. The 
display also typically shows that from the time the fault is detect to the time the Host Monitor is 
restarted and begins executing is typically 0.1 to 0.3 seconds. These are extremely fast fault 
recovery times, however they do not include the time required by the application to reinitialize 
and rejoin and reconnect back into the rest of the system. Hence, it sometimes appears that from 
the Host and Graph Displays that several of the Host Monitors are down for several even though 
they have actually been restarted almost immediately. 

g. The key point of this section of the demonstration is to show the types of fault 
recovery capabilities needed in order for the Resource Management components to effectively 
handle and recover from hardware and software failures. 

3.7.5.3 Control of Application Scalability. 

a. For the next section of the RM demonstration, Resource Management monitored and 
detected AA W Doctrine process overload conditions, and responded by scaling up additional 
load-sharing replicas of the processes to being the timing requirements back within 
specifications. 

b. The demonstration began with a background track load of about 500 tracks. As 
shown on the Jewel Multi-AutoSpecial Display (Figure 3.7.5.3-1), there was one copy of the 
Auto Special doctrine process running which was reviewing all of the tracks on a periodic basis 
to determine if any of the tracks met engagement criteria. The AutoSpecial doctrine review time 
for the single Auto Special typically takes about 50ms to complete. Also, on the Path Display 
(Figure 3.7.5.3-2), multiple copies of the Track Processor which forms the tracks in the system, 
multiple copies of the Radar Track Data Server (RIDS) which distributes the track data to 
clients, 1 copy of the Auto Special Doctrine Process which periodically (about every half second) 
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checks the tracks against doctrine criteria and if the criteria is met sends out an engagement 
request, multiple copies of the Engagement Servers, and 1 copy of the WCS (Weapon Control 
System) simulator which actually performs the engagement are seen. 
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Figure 3.7.5.3-1 Jewel Multi-AutoSpecial Display 

c. The doctrine review time requirement for the Auto Special doctrine process, as 
specified in the QoS Specifications, is 65 ms. As an additional 200 tracks are entered into the 
system, the doctrine review time steadily increases until it is violating the 65 ms threshold 
defined in the Specifications. The Resource Manager is monitoring the doctrine review times 
and when a certain number of samples within a sliding window (i.e., 10 of 20 samples) exceeds 
the threshold, the Resource Manager orders an additional copy of the AutoSpecial process to be 
started. As the second copy joins the system, the track load is redistributed among the two 
replicas, with each replica handling approximately half the track load, and the Multi-Auto Special 
Display (Figure 3.7.5.3-3) shows that the review time drops from a high of about 80 ms to about 
40 ms for each of the replicas. 

d. Also, as the new replica is started, the new Auto Special application shows up in 
yellow on the Host Display when it is first started (to indicate that a new process has been · 
detected). The new copy of Auto Special also shows up on the Path Display. 
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Figure 3.7.5.3-2 Path Display showing Auto-Special path 

Figure 3. 7 .5.3-3 Path Display showing Scale-Up 

e. To accomplish this the AutoSpecial application sends out instrumentation events (via 
Jewel) indicating how long it is taking to review its track load. These events are correlated and 
forwarded to the Path QoS Managers which determines (using a sliding window algorithm) 
whether or not the AutoSpecial doctrine review time requirement (as read from the QoS 
Specifications) is being violated. If a violation is detected and the Auto Special application is 
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specified as scalable (in the QoS Specifications), the Path QoS Managers inform the Resource 
Manager that the application is overloaded, and the Resource Manager in tum attempts to find 
the best host on which to run the new application. If a suitable host exists, the Resource 
Manager orders Program Control to start up a new copy of the application on the specified host. 
Program Control then starts up the new replica which joins into the system and triggers the 
RTDS's to redistribute the track load between the replicas. 

f. The Resource Management Decision Review Display shows that the typical time 
from when an overload is detected to the time the Resource Manager decides where to scaleup an 
additional replica takes approximately 1.0 to 2.0 milliseconds. Typically, from the time the 
overload is detected to the time that the new replica is actually started and begins executing is 
about 0.1 to 0.3 seconds. Once again, as was noted for the faulted Host Monitors, application 
startup times are extremely low. However, from the Jewel data on the Multi-AutoSpecial 
Display, it is shown that it takes up to several seconds for the application to initialize and join 
into the track client group and several additional seconds for the redistribution of the track load 
to occur. 

g. On the Resource Management Decision Review Display the gold bar represents the 
host where the replica was selected to be started (i.e, the host with the "best" host load score). 
The other bars indicate the next best hosts that could have been selected. As can be seen on the 
display, the aggregate host load score is a roll-up score based on CPU, network, and paging 
scores. The host load data being used is being generated by the Resource QoS Monitor 
components which is receiving the "raw" data value from History Servers (and indirectly from 
the Host Monitors). 

h. At this point in the scenario, an additional 700 tracksare entered, which once again 
pushes the Auto Special review times above the 65 ms threshold and triggers a second 
AutoSpecial scaleup. Also, the SemiAuto Path Display, (Figure 3.7.5.3-4), shows that there is a 
single copy of the SemiAuto Doctrine process. As the SemiAuto review time approaches and 
then exceeds the 20 ms SemiAuto review time threshold (as defined in the QoS Specifications), 
the Path QoS Managers detect the overload and the Resource Manager triggers a scaleup of the 
SemiAuto Doctrine process. (The mechanism by which the SemiAuto scaleup occurs is identical 
to that of the AutoSpecial scaleup.) 

i. What this demonstrates is the ability of the Resource Manager to dynamically detect 
application overload conditions and effectively scale up additional load-sharing replicas in order 
to continue to meet mission requirements. 
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Figure 3.7.5.3-4 Path Display showing Semi-Auto Scale-Up 

3.7.5.4 Application Fault Detection and Recovery. 

a. In the third segment of the RM demonstration, AutoSpecial and SemiAuto Doctrine 
processes were faulted and automatically restarted by the Resource Manager. This section of the 
demonstration highlighted the ability of the Resource Management components to both detect 
application faults and to automatically determine where to restart the failed application. 

b. For this part of the demonstration, there were three copies of the Auto Special 
Doctrine process running and two copies of the SemiAuto Doctrine process running. One of the 
copies of AutoSpecial was faulted and the Resource Manager detected the fault, determined that 
the application should be restarted, decided where to restart the application, and restarted the 
application. When the AutoSpecial application was restarted, the track load was redistributed 
properly and the review times remained at about the same times as before the fault. 

c. During the fault and restart, the faulted application turned red on the Host Display (to 
indicate loss of the application), and the process turned gray on the Auto Special Path Display. 
On the Jewel Multi-AutoSpecial Display, the bar and line color corresponding to the faulted 
copy went away (and the colors assigned to the remaining copies may have been remapped). 
When the new AutoSpecial application was restarted, the new application appeared in yellow on 
the Host Display, and the new copy of AutoSpecial appeared on the Path Display. Also, the new 
AutoSpecial was assigned a new color on the Jewel display and the data was plotted. 

d. All of this happened very quickly as determined by the timing information on the 
Resource Management Decision Display. The fault detection and recovery times are equivalent 
to the response values in the previous segment, typically about 1.0 to 2.0 milliseconds from the 
time the fault was detected until the Resource Manager decides where to restart the application, 
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and typically between 0.1 to 0.3 seconds from the time the fault was detected until the 
application was restarted and began executing. Again, the same caveats as in the previous 
sections apply; these times do not include the time needed for the application to initialize itself 
and join back in which the rest of the system. 

e. Once again, the sequence of what happened is that the application fault was detected 
by the Program Control agent. The Program Control agent then informed Program Control. 
Program Control in tum informed the Program Control Display which turned the corresponding 
display element red. Program Control also informed the Resource Manager of the application 
failure. The Resource Manager then determined from the QoS Specification that the application 
was restartable and should be restarted. The Resource Manager than determined from the QoS 
Specifications the list of hosts where the application could be restarted. The Resource Manager 
then picked the "best" host based on host load scores provided by the Resource QoS Monitor, 
and sent the order to restart the application to Program Control. Program Control then sent the 
order to the Program Control agent which started the new application. Once the application had 
successfully begun executing, the Program Control agent informed Program Control that the 
application had been started. This information was then passed to both the Program Control 
Display (where it was used to update the corresponding display element) and to the Resource 
Manager (to verify that the order had been successfully enacted). 

f After the AutoSpecial application had been faulted and successfully restarted, a copy 
of the SemiAuto Doctrine process was then faulted. (The same Resource Management detection 
and recovery mechanism that was used for the AutoSpecial fault and restart was used for the 
SemiAuto fault and restart.) The SemiAuto doctrine process was successfully restarted with the 
same typical response times. 

g. This part of the demonstration showed the ability for the Resource Manager to 
quickly reconfigure the system to continue to meet mission requirements in the event of software 
failures. 

3.7.5.5 Summary. 

a. Many features and capabilities of the enhanced Resource Management architecture 
were shown during the demonstration. In particular, significant improvement in fault detection 
and response times were demonstrated. In the FY97 T3 Demo, fault recovery times were in the 
range of 5 to 12 seconds; they are now typically in the sub-second range. First-step fault tolerant 
capabilities of the Resource Management infrastructure itself was demonstrated. Also, improved 
monitoring and control capabilities were shown; building this part of the infrastructure has been 
a key goal for this year since extensive near-real-time monitoring and control capabilities are 
essential for effective management of distributed mission-critical systems. The utility and 
effectiveness of our QoS Specification has also been demonstrated; the QoS Specifications are 
currently integrated throughout the Resource Management architecture. 

b. Application fault detection and recovery capabilities have also been demonstrated. 
This was shown earlier in the demonstration with the restart of the failed ATWCS LC-RT 
component and was shown in the RM part of the demonstration using the mission-critical AA W 
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Doctrine processes. Host selection for the restarted components, based on host load metrics 
within constraints defined in the QoS Specifications, was demonstrated. 

c. Resource Management detection of application overload conditions and Resource 
Management control of application scalability in order to continue to meet mission requirements 
was also demonstrated. This was demonstrated using the AA W Doctrine processes using 
review time thresholds defined in the QoS Specifications. 

4.0 LESSONS LEARNED 

4.1 CORBA Plan Server Lessons Learned 

The goals to be achieved by investigating the CORBA technology were to: 

(1) Gain first hand working knowledge of the CORBA technology standard. 

(2) Gain experience in developing code that uses many of the key features that 
developers need to know to make effective use of CORBA. 

(3) Gain experience in Object-Oriented distributed computing paradigm. 

(4) Gain experience in "wrapping" legacy systems to use CORBA technology. 

(5) Keep abreast of the latest CORBA standards and state of the market. 

4.1.1 Advantages Offered by the CORBA Technology 

CORBA is an object-oriented distributed system integration technology standard. Many 
distributed applications operate by passing messages. Message passing in distributed computing 
is very similar to method invocation on an object in object-oriented programming. CORBA 
offers distributed applications with many of the same benefits that object-oriented design 
provides to non-distributed computing; mainly reusable software, encapsulation, inheritance, as 
well as portability and extensibility. A primary objective of CORBA is to enable developers to 
program distributed applications using familiar techniques such as method calls on objects. In 
order to do this, CORBA significantly raises the level of abstraction, so that programmers do not 
have to deal with the low-level communication details. This results in ease of use for the 
programmer. However, keep in mind that this ease of use in programming is gained at the 
expense of some control and performance that is available at the lowest levels of 
communications programming. 

4.1.2 CORBA Learning Curve 

CORBA is more than just another middleware, it is an entire object-oriented distributed 
computing infrastructure with many components; for example; an ORB, IDL compilers, 
implementation repository, interface repository, Naming Service, Events Service, daemons, 
libraries, etc. just to mention a few. There is a substantial learning curve involved in effectively 
and proficiently use CORBA to design and build systems. This includes learning about object­
oriented design and distributed object computing. In addition, depending on the CORBA 
implementation that is being used, there will be vendor specific features that must be learned. 
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4.1.3 Difficulties with Legacy Systems: 

Many large, complex distributed computing systems already exist, many of which were 
not designed using object-oriented techniques. As a result, the task of migrating these systems 
from their existing middleware infrastructure to CORBA will be substantial. Some of the 
components may not be able to be treated as objects. It is important to keep in mind that it does 
not necessarily make sense to force an object-oriented middleware (such as CORBA) on non­
object-oriented applications. Also, in migrating existing systems to CORBA, or even in 
designing and building systems from scratch, there are new and challenging design issues that 
will arise and must be addressed when an object-oriented middleware is used. 

4.1.4 CORBA Specifications versus Available ORB Implementations 

The OMG, which is the organization that oversees the adoption of new CORBA 
standards, states that on average, the length of time to approve and adopt a new specification is 
from 12 to 15 months. This is probably on the optimistic side. In reality, it can take much 
longer. In addition, availability of CORBA products that implement the specifications lag by 
many months and even years, if implemented at all. To be considered CORBA compliant, 
vendors must offer the CORBA core features. Although the elements that make up the CORBA 
core specification are very useful, they basically constitute a framework, and many of the 
additional features and services specified by the standard are not mandatory. Many of these 
optional services and features could be considered essential for developing large complex 
distributed systems. Initially, ORB vendors provide the features that most customers want and it 
varies as to which optional specifications are implemented. Also, because of the length oftime 
required to adopt new standards, many vendors will offer proprietary solutions for features 
demanded by the market. As a result, different ORB vendors provide value-added services and 
functionality to the core in different ways which limits the portability of CORBA based 
applications. These proprietary features may even persist after standards are approved. Often 
these proprietary features provide important functionality and cannot be ignored when selecting 
an ORB. 

4.1.5 CORBA in Perspective 

a. For most large-scale, complex, distributed computing systems, it is highly unlikely 
that there will be a single middleware product that can provide all of the services needed with the 
required quality of service and performance. Many systems will most likely require a 
combination of different middleware products both object-oriented and non-object-oriented 
- using each where it makes the most sense. Also, even if an object-oriented middleware such 
as CORBA is used, it may very well be that a single ORB will not be available that meets all of 
the requirements. Therefore, the system may have to use multiple ORB implementations that 
provide different features and levels of performance. The CORBA standard does provide for 
interoperability between different ORBs. Basically, in designing large, complex, distributed 
systems, CORBA should be considered along with message-oriented middleware and other 
object-oriented middleware. 
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b. For Demo 98, the Doctrine/Plan Server was modified to use CORBA to receive 
requests (via the ORB) from the clients for the weapon doctrine database. In addition, the ability 
for non-CORBA clients to request the weapon doctrine data using Isis was left intact. The 
clients were modified to use CORBA to make their requests (via the ORB) to the Doctrine/Plan 
Server by invoking the IDL "interface" operation getWeaponDoctrine on the CORBA 
Doctrine/Plan Server object. The ORB is responsible for ensuring that this invocation results in 
a call to the corresponding remote CORBA Doctrine/Plan Server object method, and returns the 
results to the client. 

c. This experiment proved the feasibility of using CORBA in conjunction with group 
communication middleware such as Isis and provided insight into the practical aspects involved 
in using CORBA with legacy systems. Also, by choosing a non-critical area without strict 
real-time characteristics, it was possible to demonstrate successfully the use of the CORBA 
technology without affecting the overall system performance. The CORBA implementation ( or 
ORB) used in this experiment was IONA Technologies Orbix MT 2.3c for SUN/Solaris2.6 
which is CORBA 2. 0 compliant. However, since CORBA is a standard, the lessons learned and 
knowledge gained should be applicable to other ORBs that follow the standard. 

4.2 CORBA TNS Lessons Learned 

a. The current CTNS architecture occasionally has difficulty shutting down all CTNS 
processes during HiPer-D shut down. Experimentation led to the discovery that the GMS 
communication layer thread (GMS_listen_thread) created for the CTNS_Broker application is 
often the receptor of the RUN.csh "termination" signal. This thread is created before an 
application's main function is executed, so that the application cannot control what action takes 
place when it receives a signal. The following conditions were observed: 

(1) When CTNS_Broker (parent process) is started in an xterm, it and 
CORBA_TNS_Bridge (child process) both shut down most of the time. Occasionally, the child 
process does not shut down. This seems to occur whenever GMS is doing a great deal of 
logging. 

(2) When the parent process is executed without an xterm, the child process does not 
shut down at all. 

b. The xterm is not being utilized, except for allowing the parent and child to shutdown, 
because no output is being generated to the xterm by either the parent or child process. 

c. A related issue has to do with the Orbixd debug modes. The default mode is non­
silent, resulting in some output. The debug mode can also be specified in the application code. 
If a non-silent mode is specified in the code, launching Orbixd in silent mode does not override 
the mode specified in the code. If Orbixd is running with a non-silent debug mode, a destination 
for the output must be specified; otherwise CORBA applications will crash, with no indication 
why. 
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d. The Orbix version 2.2 documentation describes the ability to have different users 
launch and access a COREA server, regardless of which user registered the server (using the 
putit utility) with the Orbix daemon. Supposedly, this was possible by using the chmodit utility 
to allow universal access to a server. As it turns out, this never seemed to work. Whichever user 
registered a server using putit had to be the user to launch the client application. This meant that 
each time HiPer-D was run, the user had to register the server, and then unregister the server 
when the run was complete. Otherwise, no other users would be able to run HiPer-D 
successfully. This problem was discovered just prior to the first scheduled on-site COREA TNS 
test and delayed on-site testing for CTNS. Fortunately, the Orbix daemon under version 2.3 
comes with an option to manage an unregistered server, so that use of the Orb ix putit utility can 
be avoided. 

e. Using a Naming Service is the COREA-compliant procedure for connecting a client 
and a server. Orbix provides different versions of its Naming Service. The older, free version 
(OrbixNames version 1.03) was requested from Orbix, but there were substantial delays in 
receiving it. Because CORBA is not widely used on HiPer-D, the delays in receiving 
OrbixNames, and the difficulty in migrating from version 2.2 of Orbix to version 2.3, the 
Naming Service capability was not implemented. Instead, the Orbix-specific method was used 
to bind the client to the server, with the object reference returned to the client in the IIOP format. 
This method was much simpler to implement and seemed sufficient given the limited scope of 
CORBA applications on HiPer-D. Experiments with the Naming Service should run in future 
COREA development, to achieve COREA compliance. 

f When running Orbix 2.3 applications, there are a few very important environment 
variables to specify as follows: 

(1) IT _CONFIG_PATH- This specifies the location of the Orbix configuration file 
(Orbix.cfg) which contains initialization for the main Orbix environment variables. To use a 
customized configuration file, this variable should point to location of user's personal Orbix.cfg. 

(2) IT _ERRORS - This variable specifies the file containing the standard Orbix error 
messages. This is very useful during debugging. 

(3) IT_DAEMON_PORT This variable specifies the port on which Orbixd listens 
for requests. This variable is important because multiple users can run without interfering with 
one another, by choosing unique variable values other than the default value (1570). 

( 4) LD _LIBRARY _p ATH Include the Orbix lib directory here; otherwise there is 
no CORBA functionality. 

4.3 Engagement Server Lessons Learned 

The Engagement Server design depended on several features of the Isis middleware tool. 
A goal in the Engagement Server was to identify the minimal set oflsis features required to build 
a fault tolerant engagement service. This was especially pertinent in light of the ensuing Isis 
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obsolescence and it's subsequent replacement by another middleware tool. These features are 
enumerated here because they are relevant to the discussion of lessons learned. 

(1) FIFO message delivery between a transmitter and a receiver. 
(2) Reliable and Atomic delivery of messages transmitted to a process group (i.e. all 

surviving members or no members receive the message). 
(3) Group membership events are ordered with respect to the message flow in the 

group. 

4.3.1 Synchronization and Determinism 

a. One of the design goals of the Fault Tolerant Engagement Server was to minimize 
hand shaking among the primary and shadow replicas. Another goal was to take advantage of 
the parallelism inherent in a distributed computing environment. These goals helped shape the 
design of the Engagement Server. The servers use a semi-active form of a primary/shadow 
execution and recovery model. It is semi-active in that the shadow replicas are actually 
processing requests and not acting as complete shadows to the primary replica. It is a 
primary/shadow model in that the shadow replicas must wait for synchronization events 
originating from the primary. 

b. A key synchronization event is a message from the primary replica that informs the 
shadow replicas which message to begin processing. This is done to ensure that all replicas are 
processing the input messages in the same order. This is necessary to ensure that internal state is 
maintained and updated consistently among the replicas. Engagement Servers receive messages 
in several groups as well as from several transmitters within each group. This collection of 
messages might not be received at all replicas in the same order. It is the responsibility of the 
primary replica to inform the shadow replicas which of these inputs to begin processing, thus 
creating the necessary level of ordered processing. 

c. Based on the Isis features above, the primary replica can know that the shadow 
replicas have received, or will receive, the message it is informing them to process. It also can 
know that the shadow replicas will see messages from any transmitter in the same order that it is 
seeing them. (This is FIFO on a node-by-node basis, not a total ordering of all messages 
received at all nodes.) The primary replica can, therefore, know that the shadow replicas will 
begin to process this particular message from the specified node and be assured it is the same 
message. 

d. At this point the shadow replicas are released to process the message at best possible 
speed. Only at points in their processing where non-deterministic activities occur, e.g. a timer 
expiration, do they need to wait for another synchronization message from the primary. When 
the shadow replicas complete the processing for this message they begin performing another 
aspect of synchronization with the primary replica. Each shadow replica must verify all of the 
resultant transmissions from the primary replica. Each shadow replica receives these resultants 
in the appropriate groups and can immediately attempt to match and remove them. This will be 
the same set of resultants that each shadow replica has determined must be transmitted. This has 
not added any extra communications overhead because the middleware is already performing 
atomic multicasts to all group members. 
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e. The question this raises is "How can we be assured that each replica has come to the 
same conclusion about the processing for any given message?" Also, "How can we be sure each 
replica has determined the same set of resultants?" As previously mentioned, all replicas 
proceed in processing a message at best possible speed once the primary replica has notified all 
shadow replicas which message to process. Due to the nature of Engagement Server algorithms 
the only place where comparisons, calculations, or actions could produce differing results is in 
the timer expiration for an engagement response. Errors could arise, though, from the host and 
network environment. In a language such as Ada, hardware faults, out-of-range values, data 
corruption, etc. will manifest as exceptions. These exceptions are propagated into the application 
code for the replicas to handle. Error recovery can commence in these exception handlers. This 
error processing requires handshaking among the replicas to determine the appropriate course of 
action. Time did not permit the completion of this aspect of the design; therefore, it is still in 
development. But, apart from such errors, the replicas will agree on the processing conclusions 
and the set of resultants. Non-determinism only enters in at the point of timer expiration. An 
indicator from the primary replica handles this by specifying whether the shadow replicas should 
proceed with normal processing for this engagement request or enter the time-out processing. 

f. An additional point here in regard to determinism is that the Engagement Server 
design is not sensitive to process or thread suspension. Suspensions of this type will not have a" 
value" effect on the engagement state data. Again, this is because of the nature of the state data 
that is maintained by the replicas. Timer expirations could be affected by such suspensions, but 
a synchronization indicator from the primary replica already handles this. This reveals that 
completely deterministic execution is not necessary for fault tolerance. Determinism as it relates 
to the state data maintained by the replicas is what is important and necessary. 

g. There are some weaknesses with the described approach. First, applications that 
perform heavy mathematical and floating-point calculations would require additional 
handshaking. Different microcode precision in each processor could produce different or 
deviating results in the redundant copies. But, additional handshaking for value comparison 
would address this issue. Second, a robust error detection and exception handling approach must 
be taken in the application code. This is not difficult to do in Ada but must be done 
systematically and in layered fashion. Third, some knowledge of what constitutes a non­
deterministic activity relative to the state data being maintained must be built into the application 
code. This requires some savvy on the part of application designer and coders. This is 
specifically true in this approach, but is true of fault tolerant programming in general. Finally, 
this approach does not address N-Version programming. 

h. There are strengths of the approach as well. First, it is a very efficient performer in 
the tactical realm. The overhead to the primary replica is negligible. It has a couple of 
synchronization messages it must transmit to the shadow replicas. The shadow replicas have 
slightly more overhead because they must perform verification of the resultant transmissions. In 
fact, that is the majority of their overhead. Second, the handshaking has been minimized to 
reduce network traffic. The only additional messages generated by this approach are the 
synchronization messages. Third, the overhead cost is high only when it needs to be. The design 
is efficient in handling process failure. It is when errors arise that the overhead and 
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synchronization costs increase. But this is where they must increase because of the high 
probability of state data inconsistency. The probability of these error events is low; therefore, 
the design only pays this high synchronization cost a low percentage of the time. This approach 
has used minimal handshaking as well as capitalized on parallelism in the distributed 
environment. With those design attributes it has constructed a synchronized and deterministic 
fault tolerant engagement service. 

4.3.2 Cross-Group Data Difficulties 

a. As mentioned in the previous section, Engagement Server replicas join several groups 
to send and receive messages. In the case of group membership change events, Isis guarantees 
that these events are ordered in the message flow for that group. In other words, all group 
members will see notification of new or lost members at the same point relative to the message 
flow. This attribute is provided on a group by group basis. Since the replicas join several groups 
a failing replica will generate several of these events, one for each group it fails out of The 
surviving replicas will see each of these events in the respective groups. The difficulty arises in 
that there is no ordering guaranteed across the groups because each change is a group event 
independent of other groups. 

b. The Engagement Servers receive ID information about a track in an ID group, 
engagement requests in an Engagement group, etc. The engagement state data is built by 
combining and processing these pieces of data from different groups into a composite structure. 
When failure of the primary replica occurs, the shadow replicas will detect these membership 
change events. The shadow replicas must synchronize these events across all of the groups. 
This is done to ensure that each replica has the proper view of state held by the primary replica 
when it failed. This is a non-trivial task, but one that was accomplished by the suspension and 
resumption of message queues internal to each of the shadow replicas. The shadow replicas 
suspend internal queues as they detect the loss of the primary replica. The shadow replicas then 
resume these queues upon receipt of the primary indication from the shadow replica that has 
assumed the primary role. This allows the shadow replicas to guarantee a consistent view of the 
failed primary replica's state prior to its failure. 

c. Ideally, systems could be built such that this intersection of data across groups would 
not occur in any component. Then components would not have to perform this cross group 
synchronization. This is not a realistic assumption in our advanced computing systems. While 
some components could be constructed in this manner, it will be difficult if not impossible to 
build all components such that their state was constructed from data sent and received in only 
one group. In any component where this is not the case, cross group synchronization will be a 
component-level task unless there are middleware tools that provide a synchronization capability 
across a user-specified set of groups. This synchronization capability currently exists in the 
Engagement Server design and it is a HiPer-D work-in-progress to modify this into a layered, 
adaptable capability. 
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4.3.3 Recovery Time and Group Coupling 

a. There were two types of application changes to the fault tolerant Engagement Server 
that impacted the group structure. Some legacy functionality was moved from the Engagement 
Server to a more appropriate HiPer-D component. There were also some minor changes to the 
data formats of messages transmitted in existing groups. Both of these types of changes allowed 
the Engagement Servers to join fewer overall groups. These group reductions improved the 
overall timeliness of failure detection and recovery in the Engagement Server replicas. The 
specific recovery time was apparent when examining the Auto_Special Timeline display during 
Demo98 (refer to Section 3.7.3.2, Figure 3.7.3.2-3 for a discussion and example of this display). 
During normal SPY-Declared Auto_Special engagements the total processing required by the 
HiPer-D components took only 10-20% of the allowable AEGIS requirement. When the primary 
Engagement Server replica was intentionally failed, during such an engagement request, the 
percentages grew to 140-200%. This difference of 130-180% is the group-based recovery time 
required by the Engagement Servers. This recovery time includes the failure detection, 
notification, and synchronization provided by the middleware as well as necessary processing 
within the surviving replicas. One of the shadow replicas must become the new primary replica 
and complete the processing steps associated with the current engagement request. While, the 
recovery time indicated here is within AEGIS requirements, it was not necessarily bounded by 
the Isis middleware used in Demo 98. 

b. The timeliness ofrecovery is greatly impacted by the level of "group coupling" in the 
system. In the group-based programming model all components that join common groups are 
"coupled" together by virtue of these common groups. This coupling is a necessary attribute of 
group-based middleware that allows it to provide message and event orderings as well as 
delivery guarantees. Upon failure of a group member all surviving members are notified of this 
membership change event. This event is ordered in that all surviving members will receive it at 
the same point relative to message traffic occurring in the group. The middleware is performing 
a hand shaking service to provide this ordered view of the failure event. In the middleware all of 
the surviving members must agree to the new view of membership, i.e. minus the failed member, 
before they can pass this event to the application. If any surviving member is slow to come into 
agreement then all members will be delayed until consensus is reached. This slowness will 
manifest itself as longer recovery times because of the increased latency between the actual 
failure and the application notification of such failure. 

c. There could be many reasons for application slowness with respect to a new 
membership view. For example, it could be executing on a badly overloaded host or be suffering 
from priority inversion and, in both cases, be delayed in coming to consensus. There are 
architectural issues as well. The group coupling must be carefully analyzed and engineered. The 
recovery times will be lengthened if groups are very large because many members must come 
into consensus for each membership change event. The data required by each application 
component, what group(s) that data must be transmitted in, etc., are critical decisions in 
eliminating unnecessary group coupling. In the Engagement Server design, effort was made to 
reduce coupling as much as possible. Obviously, the. existing HiPer-D group architecture had an 
impact on the reduction level that could be achieved. The critical issue is that group coupling 
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will have a direct impact on failure detection and recovery timeliness. These group architecture 
decisions must be considered at the beginning of the Engineering Process where that is possible. 

4.3.4 Precise Fault Injection 

As was shown in Demo 98 the Engagement Servers were able to recover from a fault that 
was precisely injected into the primary replica. This fault injection capability was described in 
Section 3.5.4.3. This technique made an important contribution to the testability aspects of the 
system. Our Advanced Computing Systems will contain hundreds of processes executing of 
hundreds of platforms. The ability to test the system's behavior in response to various faults 
cannot be overstated. There must exist mechanisms to inject faults of various types into the 
system and assess the system's response both functionally and with respect to performance. This 
was shown in Demo 98 by the ability to directly assess the impact of a primary replica failure 
during a Spy declared Auto_Special engagement. This analysis revealed an increase in the time 
required to process that engagement request; an increase due to the recovery time of the shadow 
replica that was assuming the primary role. But, the ability to perform this analysis is solely due 
to the precise fault injection capability developed in the Engagement Server work. General­
purpose tools of this nature are not yet forthcoming, but they are essential to overall system 
validation. 

4.4 Remote Digital Call for Fire (CFF) Lessons Learned 

a. It was shown successfully that a remote FO/F AC spotter is capable of issuing digital 
CFF request and updates using the interfaces and equipment in the Advanced Computing testbed. 
The demonstrated functionality is considered representative of a potential real-world sequence 
that can serve as a basis for follow-on experimentation. 

b. Improvements in track insertion processing depicting the CFF target were addressed, 
and the Demo 98 design is considered to be a more realistic design than that used in previous 
demonstrations. As a result, new issues relative to dependencies on the 0TH track path have 
been identified for pursuit in out-year efforts. In particular, the value of creating a CFF 
dependency on the timely and reliable reception of an 0TH track by the combat system needs to 
be revisited. 

c. The need to support multiple CFF targets simultaneously was identified. Due to 
program constraints, the implementation was confined to a single engagement in Demo 98. 

d. From a logistics standpoint of executing a test or demonstration, having a remote 
operator in a separate lab was, at best, an awkward and problematic configuration. There was 
never a guarantee that the actual network path would be available between the two locations. 
Invariably, periodic difficulties arose during process start-ups to establish network connections 
between the two labs. Furthermore, from the standpoint of smoothly staging a CFF engagement 
into the flow of an overall demonstration, a telephone connection between the buildings was 
required. Voice communications between the two labs during the course of a demo added 
additional coordination overhead and required the presence of an operator for extended periods 
of time in the remote building. 
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e. Coordinate conversion and accuracy issues were only addressed at a coarse-grain 
level. Further analysis and experimentation are deemed necessary in this area. 

f. Engagement deconfliction was only assessed to the degree where an operator could 
perform this task visually. Further concept definition and system engineering of this function are 
also called for. 

h. Future work is warranted to move towards variable format Tacfire messages as well 
as insertion of the latest NSFS prototypes and simulators in order to keep up with this rapidly 
moving area. Nevertheless, HiPer-D now has a respectable prototype approximation of this 
future capability. 

4.5 RM Lessons Learned and Future Direction 

a. Demo98 has demonstrated significant Resource Management capabilities that involve 
monitoring, decision-making, control, system specifications, and visualization. Figure 3.4-2 in 
Section 3 .4 shows the high-level view of the data flow that occurs in this type of architecture. 

b. Accomplished goals for Demo98 include: 

• 
• 
• 

• 
• 
• 

• 
• 
• 
• 
• 

General-purpose dynamic resource allocation 
Application scale-up based on load and QoS assessment 
Reconfiguration based on fault-recovery, damage-status, damage-prediction, and 
recognition of QoS problems 
Dynamic monitoring and instrumentation across three UN1X platforms 
Human operator and automated control interface across three UNIX platforms 
Startup and shutdown control of third-party applications (ATWCS) as well as 
resource management infrastructure components 
Initial host allocation for selected AEC applications 
QoS performance analysis at application and path levels 
Host selection algorithms based on improved load metrics 
Monitoring, decision-making, and control driven by System Specification files 
Integrated visualization tools 

4.5.1 Monitoring 

a. Runtime monitoring with data-collection and storage are key to understanding the 
"health" of a system of resources. Providing monitoring services for each resource can be 
difficult. For instance, a compute-intensive daemon collecting massive amounts of data, or 
simply a tight performance requirement on a monitoring daemon will cause excess resource 
utilization and begin to defeat the purpose of providing resource management. An example was 
seen with SNMP daemons/services provided through the operating system on a DEC Alpha. In 
order to collect the data necessary for performance evaluation as well as process status, the 
workstation would use upwards to 80% of its resources executing SNMP requests. Obviously 
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this is an unacceptable solution to monitoring. Hence, special care must be taken to ensure that 
the monitoring components do not place a significant load on a computer's resources. 

b. Since it is critical to provide monitoring daemons on all platforms in the resource 
pool, it therefore becomes important to provide monitoring support for multiple platforms. Our 
current monitoring components run on UN1X platforms. Future endeavors will include porting 
of these components to other operating systems such as Windows NT, Linux, VxWorks, and 
LynxOS. 

c. Demo98 encompassed thirty-four UNIX workstations. In future years, the number of 
host platforms included in the demonstrations are expected to increase significantly. Supporting 
our goal for a diverse, configurable, upgradeable resource pool translates to requirements for a 
highly scalable monitoring infrastructure. 

4.5.2 Resource Management Decision Making 

a. The decision-making portion ofDemo98 consisted of three major components: QoS 
Path-Managers, Resource QoS Managers, and Resource Manager. The inter-process 
communication for the Decision Making components was provided by a package developed at 
the University of Texas at Arlington (UTA) which was built on TCP/IP and required a name 
server for location independence. The communications package performed well but had several 
drawbacks. The name server was a bottleneck for scalability and survivability. In addition, the 
communications library performed dynamic memory allocation during message sends and 
receives which resulted in less than optimal performance. As a result, the choice of 
communication mechanisms being used within the Resource Management decision making 
components will be reassessed. 

b. The Resource QoS Manager proved to be much more effective than the previously 
used FY97 "voting" mechanism. Resource allocation times were reduced from 10-12 seconds to 
under 500 milliseconds. The biggest difference involved precalculating host "fitness" scores for 
all hosts in the resource pool with periodic updates being performed every second to maintain 
up-to-date data. In addition to these changes, we also need to "normalize" the performance of 
each host. This would allow a symmetric multi-processor server to have a higher score than a 
single processor desktop or a Sun Ultra-60 to be "better fit" than a Sun Sparc-10. 

c. The Resource-Manager component in Demo98 performed initial allocation, 
reallocation, and scale-up based on overload detection. Additional features will include scale­
down based on underload, application move to correct poor performance, and pro-active scaleup 
based on prediction of overload. Application profiling, both in the static and dynamic sense, will 
also be an important key enabler for better resource allocation decisions. Static profiling will 
allow benchmarking to occur offline in a closed system and data provided to the Resource­
Manager at runtime. Dynamic profiling will allow data to be collected and assessed at runtime. 
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4.5.3 Resource Control / Program Control 

a. Program Control was the key component for providing startup and shutdown­
capabilities both by an operator and automated by the Resource Manager. A user-friendly 
display allowed operators to easily take control of tens to hundreds of hosts in a distributed, 
heterogeneous environment. 

b. One issue that arose was the role of the display and control processes. During the 
course of the design and development of the Program Control components, the line between 
control and operator interface capabilities became blurred with the display handling several 
features that probably should have been implemented within the control process. 

c. Security is another significant issue with distributed control. With the power to 
startup and shutdown processes across a large resource pool brings the problem of who is 
privileged to start and stop processes and on which machines. User-level control will need to be 
incorporated into the display and control daemons to ensure that only process owners and 
privileged users can control the system configuration ( e.g., stop running processes, etc ... ). 

4.5.4 System and Software Specifications 

a. The Resource Management System and Software Specifications Grammar, RMSpec, 
was introduced in Demo98. It provided a convenient and centralized way for requirements for 
QoS, configuration, dependency, etc., to be delivered to the resource management components. 
Application software changes and system requirements changes that affect system performance 
are handled by simply modifying a specification file. Therefore, a 65ms Auto-Special review 
time can easily be lowered to 50ms. 

b. Several implicit assumptions of the specifications grammar are concerns with regards 
to the general-purpose nature of the grammar. For instance, paths are defined with implicit 
concepts of "load". A more generic, explicit approach must be pursued for the RMSpec 
grammar. There needs to also be a way to "tag" data coming from the monitoring components 
and correlate it for use in the grammar. This way a path can be defined and measured by using 
text strings that map to data being delivered through instrumentation. 

4.5.5 Visualization 

a. Visualization is a key component for presenting data and decisions to operators. A 
glimpse of the Host Display quickly shows which processes are allocated to which processors, 
the status of all hosts, and the status of the network connections on all the hosts. The Graph 
Display allowed hardware performance (i.e. Cpu-Idle, Network Packets-In and Out, Memory 
Paging, etc ... ) to be monitored at runtime, thus keeping the operator informed. as to the "health" 
of the hardware systems in the resource pool. The Path Display graphically depicted the QoS 
paths identified in the specifications files and allowed runtime plots of the data instrumented 
along those paths. Finally, the Resource Management Decision Display informed operators of 
all actions performed by the Resource-Manager including insight into the reasoning behind the 
specific allocations. 
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b. In order to monitor QoS requirements placed on applications and systems in Demo98, 
a modified version of the Jewel Instrumentation package was used. The displays used were very 
similar to those in previous demonstrations. A more generic approach to instrumentation 
displays is planned which would allow a display to be built using drag-and-drop techniques and 
hooked to data through a point-and-click mechanism built into the display and instrumentation 
infrastructure. 

4.5.6 Summary 

Demo98 unveiled a sound infrastructure base for dynamic resource management. Further 
algorithm development to utilize more of the available data will allow for better and more robust 
allocation and reallocation decisions to be made. Evolution of the existing architecture and the 
features that lie within will move us closer to our goal of providing a scalable, fault-tolerant, 
generic, dynamic resource allocation and control infrastructure. 
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APPENDIX A 

EVALUATING THE PERFORMANCE OF MULTICAST COMMUNICATIONS 

Philip M. Irey IV and David T. Marlow 

ABSTRACT 

System Research and Technology Department 
Combat Systems Branch 

Naval Surface Warfare Center, Dahlgren Division 
Dahlgren, Virginia 22448-5000 

{pirey, dmarlow}@nswc.navy.mil 

In the distributed shipboard environment of interest to the United States Navy, there is an 
increasing interest in the use of multicast communications to reduce bandwidth consumption and 
to reduce latencies. The bandwidth required to transmit large volumes of information ( e.g. track 
files, maps, etc.) to multiple receivers could potentially be reduced significantly by the use of 
multicast data transmission. Many types of real-time shipboard data, such as navigational and 
gyro data, need to be distributed to a large number of hosts. The distribution of this type of data 
might also benefit from the reduced latency possible using multicast techniques instead of 
sequential unicast transmission. Before multicast communications can be used in this 
environment, however, a characterization of its performance must be made. This appendix 
proposes a number of metrics, and data collection and analysis techniques for assessing multicast 
communications performance. Of particular significance is a metric that correlates reception of 
message and shows promise in analyzing topology-related problems. While the concepts 
presented in this appendix are applicable to the general forms of multicast, this appendix 
specifically focuses on the use of IP Multicast in an internal shipboard environment. The 
MCAST Tool Suite (MTS), which uses the metrics and data collection techniques presented, is 
then described. The results of applying this toolset to simulate and instrument several IP 
Multicast-based application scenarios is then presented. 

A.l INTRODUCTION 

a. In the distributed shipboard environment, there are many data streams that multiple 
hosts need to receive. These data streams may be large in volume and sent often (in some cases, 
hundreds of times per second). Examples of such data streams include gyro and other positional 
update information. Multicast transfer, where each message forwarded by a sender is passed on 
to multiple receivers, is expected to decrease bandwidth resources on the interconnected data 
networks. In addition, it is expected that there will be reduced latency to pass each message to 
all receivers for this technique when compared to sequential unicast transmission to each 
receiver. The reduced bandwidth load is expected to enable other communications using the 
same network resources to gain bandwidth and low latency advantages. 

b. The Internet Engineering Task Force (IETF) has defined IP Multicast [RFCI 112] 
which provides the most universal approach to implementing multicast transfer with Commercial 
Off The Shelf (COTS) products. IP Multicast is an extension to the standard Internet Protocol 
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suite which provides mechanisms for receivers to register for particular message types and for 
routers to discover which multicast messages are needed by hosts it serves. IP Multicast 
provides a means of supporting multicast transfer to a number of hosts which may be 
interconnected by a variety of LAN types (e.g., Ethernet, FDDI or ATM). IP Multicast provides 
a connectionless (i.e., unacknowledged) transfer service on top of which reliable transfer 
mechanisms are being developed by the research community. 

c. This appendix focuses on the use of UDP on top of IP Multicast which provides a 
connectionless transfer service for application software. It is assumed that a multicast routing 
protocol is in place among the routers or switches serving the multicast users. The details of 
these protocols are outside the scope of this appendix. 

A.2 RELATED WORK 

A large body of work has been published on unicast metrics [IREY98] and [IPPM]. 
Previous work in unicast metrics can provide a foundation for multicast metrics; however, the 
multicast transfer breaks some of the fundamental assumptions of unicast data transfer. Some of 
the previously defined unicast metrics can be used as a foundation and upon which new multicast 
metrics can be defined. The IETF has also initiated efforts in defining metrics targeted at 
multicast exchanges [BMWG]. 

A.3 MULTICAST MODEL 

a. This appendix focuses on 1 ➔ N communications model as shown in Figure A-1. 

• • • 

Figure A-1 1-N Communications Model 

b. While, 1 ➔ N groups can be constructed from a series of unicast communications, the 
metrics for measuring the performance of these groups are outside the scope of this appendix and 
will not be discussed. 

A.4 MULTICAST PERFORMANCE METRICS 

Although this appendix specifically focuses on IP multicast, the metrics defined in this 
section have applicability to multicasting in general (e.g. 802.3 datagrams, ATM UN1 point-to­
multipoint connections, etc.). Two types of metrics are defined for accessing multicast 
performance: local metrics and group metrics. Local metrics are measured at a single sender or 
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single receiver. Group metrics, on the other hand, represent an aggregate performance for all 
receivers in a multicast group. 

A.4.1 Metric Notation 

Metric names are defined with capital letters ( e.g. XYZ). An individual measurement of a 
metric from a set of measurements is represented using subscript notation (e.g. XYZi), The 
subscript , is used to select a particular measurement from a set of measurements. The subscript j 
is used to select a particular host from a set of hosts. To represent a particular measurement on a 
particular host, a double subscript notation is used. For example, LIAT; represents LIAT 

l 

measurement number z on host number j. Statistics can also be applied to a set of measurements. 
Subscripts are used to represent the statistics computed for a set of measurements: "avg" 
represents the average value; "min" represents the minimum value; "max" represents the 
maximum value; and "sdev" represents the standard deviation. For example, XYZavg represents 
the average value of the set of measurements of the XYZ metric. To denote a statistical 
measurement from a particular host in group metrics, the statistic subscript again is subscripted. 
For example, XYZavg. represents the average value oftheXYZ metric on receiver}. In the 

) 

equations below, m represents the number of messages sent on a data stream and N represents the 
number of multicast receivers in the group to which the data stream was sent. 

A.4.2 Metric Instrumentation Points 

Both the multicast sender and multicast receivers are instrumented at the application to 
communications subsystem interface as shown in Figure A-2. The communications subsystem is 
generally contained within the operating system ( e.g. in an Unix environment, the application to 
communications subsystem interface is often the sockets API). Because the measurements are 
made at this interface, the performance observed by the application is measured and includes 
delays introduced by transmission on the media, queuing delays in the communications 
subsystem, and delays in the operating system. 

Application L) Application - Application 

Communication Operating System Operating System 
Subsystem 

Communication Communication 
Operating System Subsystem Subsystem 

TCP I UDP TCP I UDP ••• TCP I UDP 

IP IP IP 

Communications Communications Communications 
Media Media Media 

FDDI I ATM I Ethernet FDDI I A TM I Ethernet FDDI l ATM l Ethernet 

I t t 
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Figure A-2 Metric Instrumentation Points 

A.4.3 Messages 

a. Messages are units of data sent from the multicast transmitter to the multicast 
receivers in the group. They are application level entities as opposed to packets which may be 
used within the communication subsystem. Performance data is collected on individual 
messages or a stream of messages. 

b. Each message sent contains a sequence number, (seq), a timestamp, (tsl), and data. 
The sequence number is used by multicast receivers to order messages and to determine the 
distance (in messages) between messages in the data stream. In this appendix, sequence numbers 
are assumed to be monotonically increasing starting from one on a data stream from a particular 
transmitter ( e.g. increased by one each time a message is transmitted). Other sequence 
numbering algorithms can be used as long as they allow message order to be determined and the 
distance between messages to be computed. The timestamp identifies when the message was 
sent by the transmitter and is used by the receivers to measure latency and throughput. Finally 
the data is "filler" at the end of a message to ensure that the message is a particular size. The 
size of a message is important when trying to simulate a particular application scenario. 

A.4.4 Local Metrics 

a. Metrics with the "local" prefix are measured at either the single sender or at a single 
receiver as shown in Figure A-3. 

Figure A-3 Local Metric Instrumentation Points 

b. The "local inter-send time" metric and "local messages sent" metrics are measured at 
the sender. All other "local" metrics are measured at a single receiver. Even though these 
metrics are measured at a single receiver, information from the sender ( e.g. sequence numbers, 
timestamps, etc.) may be used to compute them. Figure A-4 and A-5 show pseudo-code similar 
to the "C" programming language which shows the operation of the sender and receiver. It 
should be noted that the local metrics are appropriate for the measurement of local multicast 
performance and for local unicast performance as well. Unicast transfer is essentially an 
exchange between a single sender and a single receiver. In this case, the metrics are valid 
regardless of whether a unicast protocol (e.g. UDP over IP) or a multicast protocol (e.g. UDP 
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over IP multicast) is used to exchange the data (though this may affect the measured 
performance). 

seq=LMS=O 

while ( done==F ALSE) { 

} 

ts 1 =gettimeof day( ts 1) 

send(A,++ seq,tsl,data) 

ts2=gettimeofday( ts2) 

LIST[ ++LMS]=timediff(ts2,tsl) 

local_ usleep(sleep _time) 

Figure A-4 Transmitter Pseudo-Code 

c. As shown in Figure A-4, messages are sent from the multicast transmitter to the 
receivers using a send() function. Each message is sent to the address A which can address a 
unicast receiver or a multicast group of receivers. Each message sent contains a sequence 
number, seq, a timestamp, ts 1, and data. Since the timestamp is generated at the transmitter and 
is used by the receiver, it is assumed that either the clocks of the sender and all receivers are 
synchronized (e.g. NTP, GPS, etc.) or some method exists for converting between the time 
domains of the transmitter and receivers [NTP]. 

d. As shown in Figure A-5, multicast receivers use the recv() function to receive the 
messages sent to the address A and extract the sequence number, seq, timestamp, tsl, and data 
from those messages. 

A.4.4.1 Local Messages Sent (LMS) Metric 

As shown in Figure A-4, IMS is computed at the transmitter. It is simply the count of the 
number of messages sent to the group. 
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bytes_received =LMR =LMRL=LGC=0 

expected_seq_num=0 

tr1 =gettimeofday0 

first=TRUE 

while (done==FALSE) { 

prev_trl =tr1 

recv( A, seq,ts1,data) 

trl =gettimeofdayQ 

if (first == TRUE) { 

start_time=ts1 

FIRST=F ALSE 

process_packet FALSE 

if (seq== expected_seq_num) { 

process_packet=TRUE 

} 

else if (seq< expected_seq_num) { 

++LMRL 

} 

else { /* seq > expected_seq_num * / 
LGB[ ++ LGC]= (expected_seq_num,seq) 

LGL[LGC] =seq-expected_seq 

process_packet=TRUE 

if (process_packet) { 

} 

LOWL[ ++ LMR]=timediff(tr1,ts1) 

LIAT[LMR]=timediff(tr1,prev_tr1) 

expected_seq_num =seq+ 1 

bytes_received =bytes_received + 

sizeof(data) 

end_time=gettimeofday0 

LAT= bytes_received/ timediff ( end_time,start_time) 

Figure A-5 Receiver Pseudo-Code 

A-7 

Ex.1009 / Page 169 of 280 
TESLA, INC.



A.4.4.2 Local Inter-Send Time (LIST) Metrics 

The LIST metrics are used to statistically characterize the time between successive 
message sends at the multicast transmitter as shown in Figure A-4. Computing LIST is important 
because the measured value may not always correspond to the expected value as shown in 
[IREY97]. The "sleep _time" or target time between successive message sends directly affects 
the LIST values measured. Setting sleep_time is useful in simulating specific application 
scenarios. The average, maximum, and minimum values can be computed for a set of LIST 
measurements as shown in Equations 1, 2, and 3 respectively. The standard deviation for a set of 
LIST measurements can be computed as shown in Equation 4. 

m 
LIST 

LIST avg= L ~ 
i = I (EQ 1) 

IST = MAX{LIST 
max Vi 

(EQ2) 

LIST . = MIN{LIST mm . 
\i1 (EQ 3) 

m 

LIST i = 1 
sdev = m----n-.,..1---

(EQ 4) 

A.4.4.3 Local Messages Received (LMR) Metric 

As shown in Figure A-5, LMR.j is computed at a single receiver. It is the count of the 
number of messages received. IMR1 includes messages received in sequence and those whose 
sequence number was greater than the sequence number expected for the next message in the 
data stream. Messages received with a sequence number less than the expected one are not 
counted in IMR1 but are counted in IMRL defined below. 

A.4.4.4 Local Messages Received In-order (LMRI) Metric 

LMRI; is defined to count only the messages which were received with a sequence 
number equal to the expected sequence number as shown in Equation 5 (where LGN is defined 
in paragraph A.4.4.11). 

rvtRI . = LMR . - LGN . 
J J J (EQ 5) 
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A.4.4.5 Local Percent Messages Received (LPMR) Metric 

LPMRj is defined to compute the percentage of the messages sent by the multicast 
transmitter which were received by a multicast receiver. It is simply the number of messages 
received by the receiver (lMRj) divided by the number of messages sent by the transmitter 
(IMS) as shown in Equation 6. 

= LMR; 
LPMRj LMS 

(EQ 6) 

A.4.4.6 Local Messages Received Late (LMRL) Metric 

lMRLj is defined to count the messages received by a receiver with seq less than 
expected_seq as shown in Figure A-5. Both messages which arrive out of order and duplicate 
messages are classified as "late" using this criteria. Although "late" packets are not common in 
the shipboard environment of interest in this appendix, they can occur (particularly in failure 
scenarios) and must be considered. In a Wide Area Network (WAN), "late" packets are more 
common. 

A.4.4.7 Local One-Way Latency (LOWL) Metrics 

LOWL metrics are used to statistically characterize the one-way latency between the 
multicast transmitter and a single receiver. These metrics are computed using the difference of 
two timestamps as shown in Figure A-5. The first timestamp, (tsl), is generated by the multicast 
transmitter when the message is sent. The second timestamp is generated at the receiver, (trl), 
when the packet is received. LOWLJ is the difference between trl and tsl (assuming the 
timestamps are in or can be converted to the same time domain). LOWLav~, LOWLmaxj, 
LOWLmin•, and LOWLsaev• are computed as shown in Equations 7 through 10. Since LlV!Rj is 

J J 

used in the computations, messages which are late or lost do not contribute to the computations. 

IMRJ LOWL 
LOWLavo = "'"" J, 

bl L... L ~ AR 
i=l 1Vl, J 

(EQ 7) 

LOWL =MAX {LOWLi } 
max 1 \;Ii 1 

(EQ 8) 

LOWL . =MIN {LOWL } 
mm1 \;I i J, 

(EQ 9) 
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LMI<, 

L (LQWL; - LQWLavgY 
LOWL 1=1 

sdev = ll-----'----------
1 IMRJ-1 

(EQ 10) 

A.4.4.8 Local Inter-arrival Time (LIA T) Metrics 

LIAT metrics are used to statistically characterize the time between the receipt of 
successive messages at a single receiver as shown in Figure A-5. Since LIAT is computed using 
timestamps from the local receiver only, no time domain conversions are necessary. Since 
LIAT O is always equal to zero, it is not used to compute UATavg as shown in Equation 11. 
LIAT max, LIAT mm, and LIATsdev can be computed for the set of LIAT measurements in a manner 
similar to Equations 8-10 except that i starts at 2 and the LMR.1 term in Equation 10 should be 
replaced with the term IMR; -1. Since IMR1 is used in the computations, messages which are late 
or lost do not contribute to the computations. 

L\1RJ LIAT 
LIAT =" 1i 

avg) ~ IMR -l 
1-2 J 

(EQ 11) 

A.4.4.9 Local Application-to-Application Throughput (LAT) Metric 

The LAT metric is used to characterize the end-to-end throughput between the multicast 
transmitter and a single receiver. The term "application-to-application" is used because the time 
interval over which the measurement is made includes the time from which the first message of 
the data stream was transmitted at the sender until the time the last message in the data stream 
was received by the receiver. As shown in Figure A-5, the start of the time interval begins with 
the receiver recording the value of ts 1 in the first message received on the data stream in 
start_time. The receiver then records the time when the last message was received in end_time. 
LAT1 is the number of bytes received divided by the difference between these two times. 

A.4.4.10 Local Gap Boundaries (LGB) Set 

a. LGB1 is the set of ordered pairs of the start and end points of gaps in sequence space 
ofreceived packets. LGB1 is a set from which metrics are derived for host}. The storage space 
required to record which messages were received in order and which were not can be reduced by 
using an LGB set. 

b. When a message is received with a sequence number which is not equal to 
expected_seq (i.e., one greater than the highest previously received in-order message), one of 
two scenarios occurs: 1) the message has a sequence number greater than expected_seq in which 
case the ordered pair ( expected _seq_ num,seq-1) denoting the sequence space gap is recorded in 
LGB1; or 2) the message has a sequence number less than expected _seq in which case the 
message is considered late and no action associated with LGB1 is taken. A new sequence space 
gap is not recorded for the second scenario because the packet was either a duplicate packet 
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(which is actually counted as a late packet as shown below) or was covered by a previously 
recorded sequence space gap. 

A.4.4.11 Local Gap Number (LGN) Metric 

The LGN metric is a count of the sequence space gaps observed during an experiment. It 
is equal to the number of messages received which had a sequence number greater than 
expected _seq. 

A.4.4.12 Local Gap Length (LGL) Metrics 

The LGL metrics are used to statistically characterize the size of sequence space gaps 
observed by a single multicast receiver. LGL1k for sequence space gap LGB1k is computed by 

subtracting the ending sequence number from the starting sequence number as shown in 
Equation 12. (Figure A-5 shows (start, end)-tuples being recorded for LGB). LGLavg is 

J 

computed by iterating over k as shown in Equation 13. LGLma:x:, LGLmm and LGLsdev are 
J J J 

computed similarly to Equations 2 through 4, except that they are computed over k as in 
Equation 13. 

GL- = LGB(end)- - LGB(start)J· 
h h k 

LGCJ LGL. L lk 

k=l LGCJ 

A.4.5 Group Multicast Metrics 

(EQ 12) 

(EQ 13) 

a. Unlike local metrics which look at the performance of a single sender or a single 
receiver at a time, group metrics attempt to characterize the performance of all receivers in a 
multicast group as shown in Figure A-6. 

Figure A-6 Group Metric Instrumentation Points 

b. Group metrics are only defined for multicast receivers. There are no group metrics 
for the multicast transmitter. 
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A.4.5.1 Group One-way Latency (GOWL) Metrics 

GOWL metrics are used to statistically characterize the one-way latency performance of 
the group. LOWL measurements from each multicast receiver are used in the computation. The 
average, maximum, minimum and standard deviation of a set of GOWL measurements can be 
computed as shown in Equations 14 through 17. These equations also serve as prototypes for 
computing average maximum, minimum, and standard deviation on sets for other group metrics 
defined below. 

n LOWL 
GOWL ="' avgJ 

avg L.i 
J=l n 

GOWLmax =MAX{LOWL } 
VJ roax1 

OWL min =MIN {LOWLmm7} 
VJ 

n 

'I(LOWLavgJ GOWLavg) 2 

GOWLsdev = J=l 

n-1 

A.4.5.2 Group Inter-arrival Time (GIAT) Metrics 

(EQ 14) 

(EQ 15) 

(EQ 16) 

(EQ 17) 

GJAT metrics are used to statistically characterize the message inter-arrival performance 
of the group. LJATmeasurements from each multicast receiver are used in the computation. 
GIATavg, GIATmax, GIATmm, and GJATsdev are computed in a manner similar to Equations 14-17. 

A.4.5.3 Group Application-to-Application Throughput (GAT) Metrics 

GAT metrics are used to statistically characterize the end-to-end throughput performance 
from the transmitter to the receivers of the group. LAT measurements from each multicast 
receiver are used in the computation. GAT avg, GATmax, GATmm, and GATsdev are computed in a 
manner similar to Equations 14-17. 

A.4.5.4 Group Gap Number (GGN) Metrics 

GGN metrics are used to statistically characterize the number of message gaps observed 
by the group. LGC measurements from each multicast receiver are used in the computation. 
GGNavg, GGNmax, GGNmm, and GGNsdev are computed in a manner similar to Equations 14-17. 

A.4.5.5 Group Gap Length (GGL) Metrics 
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GGL metrics are used to statistically characterize the size of message gaps observed by 
the group. LGL measurements from each multicast receiver are used in the computation. 
GGLavg, GGLmax, GGLmm, and GGLsdev are computed in a manner similar to Equations 14 
through 17. 

A.4.5.6 Group Reception Correlation (GRC) Metric 

a. The GRC metric is used to measure the degree of correlation in the messages received 
by members of the group. To compute GRC, reception vectors are created for each group 
member. 

b. A reception vector is a representation which records which messages on a data stream 
were received in sequence and which were not received in sequence or not received at all by a 
particular multicast receiver in the group. To compute the reception vector for multicast receiver 

j, V; , component i of V; is set equal to one if the message with sequence number i was received 
in order and is set equal to zero otherwise. The information needed to compute the reception 
vectors is recorded in LGB. The number of components in a reception vector is always equal to 
m. 

c. A set of reception S can then be grouped into a reception matrix, R, as shown in 
Equation 18. Each column j of R contains the reception vector for multicast receiver j. Each row 
i of R contains a Reception Report (RR) for all receivers for message i. The number of rows in R 
is always equal to m. The number of columns in R is equal to \SI (the cardinality of S). The 
reception matrix in Equation 18 shows R constructed from S which contains the complete set of 
reception vectors ( e.g. all multicast receivers in the group). R can be constructed for any subset, 
S, of the complete set of reception vectors as well. 

R= 

Reception Report 
For Message # 1 

~ 

... V mn Reception Vector 
...,______ for Host #2 

(EQ 18) 

d. GRC is computed on a reception matrix R as shown in Equation 21 which is derived 
from Equations 19 and 20. Equation 19 is used to compute the Message Reception Correlation 
(/'vfRC) for message i. In this equation, the sum of Ru is the number of multicast receivers which 
received message i (R,1 = I) and n minus this sum is the number which did not (Ry = 0). The 
absolute value of the difference of these two quantities is then divided by n (the number of 
multicast receivers) which yields a value between O and I. This value represents the degree of 
correlation among the multicast receivers in receiving message i. A degree of correlation equal 
to 1 indicates that all receivers in the group whose reception vectors are contained in R received 
that message. A degree of correlation equal to O indicates that half of the receivers received the 
message and the other half did not. The sum of the MRC values is computed and divided by m 
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(the total number of messages which could have been received) to give the average degree of 
correlation for all messages, or GRC, as shown in Equation 20. The values of GRC range from 0 

to 1. 

(EQ 19) 

m 

"" 11RC i GRC Li 
m 

il= (EQ 20) 

m n 

I 2 I Rij-n 

GRC = i= I j = I 
nxm 

A.4.6 Impact of Unreliable Data Transmission Environment 

(EQ 21) 

The utility of the metrics defined in Sections A.4.4 and A.4.5 are dependent on the test 
environment. In the environment of interest, IP multicast data transmission is used which has 
unreliable semantics which can affect any measurements collected. 

A.4.6.1 Correlation of Group Receivers 

The GRC computed for the group provides a measure of the consistency of data reception 
among the set of multicast receivers. If there is a low degree of correlation among the group 
members, it is unlikely that the receivers are making their measurements on the same set of 
samples. As an extreme example, suppose Host 1 receives all messages with odd sequence 
numbers and Host 2 receives all messages with even sequence numbers which were sent on the 
same datastream to a multicast group. In this case, Host 1 and Host 2 are making measurements 
on what can be viewed as two different sets of data. In this case, GRC is equal to zero. Non-gap 
group metrics should be viewed with caution in this case since GRC indicates no correlation 
among the receivers. The local metrics collected are still valid but care should be taken when 
comparing them among receivers. Cross checking of the data measurements is especially 
important in this case. 

A.4.6.2 GRC Partitioning Algorithm 

Hosts can be partitioned into groups based on the GRC metric computed for those groups. 
First, a threshold value is specified. Next, groups of hosts whose GRC is greater than or equal to 
the threshold value are created. Two partitioning algorithms are presented. The goal of GRC 
Loose Partitioning algorithm is to find the largest sets of hosts which meet the threshold criteria. 
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The goal of the GRC Strict Partitioning algorithm is to find the largest sets of hosts such that all 
subsets of each partition meet the threshold criteria. 

A.4.6.2.1 Loose GRC Partitioning 

A set I1 is created to partition the set of receiving hosts into subsets based on their RR' s 
such that the GRC for each subset is less than or equal to a threshold correlation, 't, as shown in 
Equations 22 and 23. The purpose of Equation 22 is to create the set P which contains all 
subsets of the set ofRR's, R, which meet the threshold correlation. Equation 23 removes all 
subsets of P which are proper subsets of other elements of P to form the set I1 which contains the 
largest subsets of P which meet the threshold correlation. Testing each of these subsets against 
the threshold criteria can be an expensive operation for large sets of RR' s. 

p {s RI GRC(s) 21: 

II = {Ac P\A is not a proper subset of} 

any other element of P 

A.4.6.2.2 Strict GRC Partitioning 

(EQ 22) 

(EQ 23) 

A set I1 is created to partition the set of receiving hosts into subsets based on their RR' s 
such that the GRC for each subset and all subsets of that subset is less than or equal to a 
threshold correlation, 't, as shown in Equation 24 and 25. The purpose of Equation 24 is to 
create the set P which contains all subsets of the set of RR's, R, which meet the threshold 
correlation and all subsets of those sets also meet the threshold criteria. Equation 25 removes all 
subsets of P which are proper subsets of other elements of P to form the set I1 which contains the 
largest subsets of P which meet the threshold correlation. It should be noted that there are 2n 
subsets which can be generated from R (where n = \R\). Testing each of these subsets against the 
threshold criteria can be an expensive operation for large sets ofRR's. 

= { s cR\VT ,Tc s, GRC(T) 2 -r 

IA is not a proper subset of} 

any other element of P 

A.4. 7 Cross-checking of Data Measurements 

The metrics presented have been defined to operate in the presence of the loss, 

(EQ 24) 

(EQ 25) 

reordering, or duplication of data which can result if an unreliable multicast protocol is used ( e.g. 
IP multicast). Despite this, unreliable transmission can result in what appears at first glance to be 
inconsistent results. Cross checking among the various measurements should be done. For 
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example, it is possible to measure a low value for LOWL and a high value for LIAT on a data 
stream. This seems inconsistent since the measured LOWL implies good network performance 
yet the LIAT implies poor network performance. In this case, examining LGC might show a 
large number of gaps which would contribute to the large value for LIA T. LOWL is still low since 
the time interval used for that metric only uses timestamps associated with that message. The 
LIAT metric, on the other hand, uses a timestamp taken when previous message was received on 
the data stream. If messages are lost, the measured value of LIAT becomes larger. 

A.4.7.1 Test Termination 

a. Another consideration when using an unreliable multicast protocol is how to identify 
the end of a data stream at the receiver. If messages can be lost, simply counting received 
messages at the receiver is not sufficient. Figure A-5 shows the receiver executes while the 
value of the variable "done" is equal to FALSE. Although the pseudo-code does not show the 
value of "done" being changed to TRUE, it is assumed that this will be done when the receiver 
has determined that the data stream is completed. 

b. The algorithms for identifying the end of a data stream are not shown in the pseudo­
code because it was felt that this is an implementation detail and does not affect the definition of 
the metric. A variety of methods exist for a receiver to determine when the data stream has 
terminated. MCAST, presented below, sends messages shorter than those in the data stream to 
terminate a test. Metrics affected by any delay introduced by the test termination algorithm 
should be adjusted appropriately. The only metrics affected by this delay are LAT and GAT. 

A.5 THE MCAST TOOL SUITE (MTS) 

a. MTS was developed at the Naval Surface Warfare Center - Dahlgren Division to 
enable the performance analysis of multicast systems. MTS performs data collection and 
analysis related to metrics defined in this appendix. MTS will be used in Section A.6 of this 
appendix for instrumentation and analysis 

b. While the metrics are applicable to generalized multicast communications, the tools 
in MTS focus on testing the performance of UDP on top of IP Multicast. MTS consists of four 
types of components: an instrumentation tool, a test coordination tool, a data extraction tool, and 
several data analysis tools. Although these tools can be used individually, they are generally 
used together. Figure A-7 shows the relationships among the tools in MTS. 

mcast 

nettest.pl _....... ~..,, ~=~ 
File 

R 

Set of Partitions mcast mcast mcast 

{(R1,Rn), (R2,Rn.-1)} ◄1-------, 

GRC?::-r. 

Stat r41--~ 
File 
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Figure A-7 MCAST Tool Suite 

A.5.1 MTS Instrumentation Tool 

a. The main tool in MTS is the Multicast Communications Analysis and Simulation 
Tool (MCAST). MCAST is a "C" program used to instrument a set of systems which are part of 
an IP multicast group. MCAST is run on the single sender associated with the group and on the 
receivers in that group which are to be instrumented. A multiple sender group is considered 
invalid for testing with MCAST. 

b. The MCAST tool reports metrics on the sender and at each receiver ( e.g. local 
metrics). Group metrics are not collected by MCAST, but are computed by the data extraction 
tools as shown in Section A.5.3. 

c. The MCAST tool is controlled by command line options. To illustrate a simple test 
scenario, three command line options must be understood: "-s" denotes that this host is the 
multicast sender; "-r" denotes that this host is a multicast receiver; and "-i" specifies a specific 
network interface on which to send or receive. To start a test with a sender and two receivers, 
"mcast -s -i net_interface" would be run on the sending host, and "mcast -r'' would be run on the 
two receiving hosts. Results of the test are presented on the sender and on each of the receiving 
hosts. 

A.5.2 MTS Test Coordination Tool 

a. For tests which involve a larger number of hosts than the simple case presented in the 
previous section, the process of starting the MCAST sender and receivers and gathering their 
results can be laborious. Each process must be started by hand with the appropriate command 
line options on the appropriate host. When the test is completed, the results reported by each of 
the processes must be collected from those hosts and then collated in a way that the group 
metrics can be computed. (MCAST only collects local multicast metrics). A tool called 
doit_multi.pl was developed to automate this process. 

b. The doit_multi.pl tool interactively prompts the user to enter the names of the sending 
host and each of the receiving hosts. Next, the user is prompted to enter parameters associated 
with the test (e.g. Inter-send time, group address, etc.). In addition, doit_multi.pl allows the user 
to enter a range of message sizes over which to test instead of testing just a single message size 
as MCAST does. 

c. After all of the test parameters are entered, doit_multi.pl starts MCAST with the 
specified parameters on the specified hosts and gathers the results from those hosts into a single 
output file where it can be processed by the data extraction tool presented in Section A. 5 .3. If a 
range of message sizes was selected, doit_multi.pl repeats the process for each of the message 
sizes tested, appending the results of each message size to the output file. 
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A.5.3 MTS Data Extraction Tool 

The output file generated by doit _multi.pl can be quite large, particularly if testing is 
done over a range of message sizes. The data in this output file is in a raw format suitable for 
visual inspection but not for plotting or numerical analysis. To transform output files generated 
by doit_multi.pl into a form suitable for plotting or numerical analysis, a program called 
mcast_extract.pl was developed. This program extracts the data contained in a doit_multi.pl 
output file into three types of data files: gap files, local metric files, and group metric files. 
Output file names are generated by mcast _extract.pl and are based the name of the input file 
(which contains the output of doit_multi.pl). In the data file type descriptions below, the name 
of the input file passed to mcast_extract.pl is assumed to be "ifile". 

A.5.3.1 Gap Files 

a. Gap files describe the start and end of sequence gaps in the stream of messages 
received during a test. These files are a representation of the Local Gap Boundary (LGB) set 
described in Section A.4.4.10. Gap files have the following naming convention: 
"ifile.gaps.node". Here, "ifile" is the name of the input file passed to mcast_extract.pl, ".gaps." is 
generated by mcast _extract.pl to identify the type of file, and "node" is the name of the host 
corresponding to the data file. One file is generated for each host whose data is collected by the 
doit _multi.pl script. 

b. The format of each line of a gap file is as follows: "msglen O _or_l start end". Here, 
"msglen" is the length of the message being tested by doit_multi.pl. (doit_multi.pl can test a 
over a range of message sizes during a single test.) "O _or_ l" is either a zero which means all 
messages in the interval specified by "start" and "end" have not been received or a one which 
indicates that all messages in the interval were received. "start" indicates the sequence number 
of the start of the interval being reported and end indicates the sequence number of the end of 
that interval. The value of "O _or_ l" should alternate between zero and 1 for a given value of 
"msglen" in a data file. 

A.5.3.2 Local Metric Files 

a. Local metric files contain metrics measured at each multicast receiver. These files 
contain a variety of metrics presented in Section A.4.4. Local metric files have the following 
naming convention: "ifile.local.metric". Here, "ifile" is the name of the input file passed to 
"mcast _extract.pl", ".local." is generated by mcast _extract.pl to identify the type of file, and 
"metric" is the type of metric collected in the data file. Current values for "metric" are: "at" for 
Application-to-Application throughput (see LAT defined in Section A.4.4.9); "iat" for Inter­
Arrival Time (see LIAT defined in Section A.4.4.8); "owl" for One-Way Latency (see LOWL in 
Section A.4.4.7); and "pmr" for percent of the messages received (see LPMR in Section A.4.4.5). 
The complete set oflocal metrics defined in this appendix will be added to mcast_extract.pl in 
the future. 

b. The format of a local metric file contains two parts: the key header section and the 
data section. The key header section provides a description of the data contained in each column 

A-18 

Ex.1009 / Page 180 of 280 
TESLA, INC.



of the data section which follows. Each line of the key header has the following format"# 
column X :::: metric ss host": where the "#" prefix is used to denote a comment in plotting 
programs such as gnuplot, "column X" indicates which column is being described by the key 
header entry, "metric_ss" is the search string used to extract the data from the raw doit_multi.pl 
input file for this column, and "host" is the name of the host for which the data in the column 
corresponds. As described in the key header section, the first column of each line of the data 
section contains the message length. Each column thereafter of each line in the data section 
contains the data collected for a particular host as described in the key header section. 

c. The format of the local metric file is intended to allow plots to be easily generated 
with plotting tools such as gnuplot. In gnuplot, for example, column 2 versus column 1, column 
3 versus column 1, column 4 versus column 1, and so on can be plotted simultaneously to show 
the local metric for each receiver on the same graph. 

A.5.3.3 Group Metric Files 

a. Group metric files contain metrics derived from the local metric files. The metrics 
correspond to those defined in Section A.4.5. Group metric files have the following naming 
convention: "ifile.group.metric". Here, the input file passed to "mcast_extract.pl", ".group." is 
generated by mcast _extract.pl to identify the type of file, and "metric" is the type of metric 
collected in the data file. Current values for "metric" are the same as those defined for local 
metric files in Section A.5.3.2. One group metric file is generated for each local metric file 
generated. 

b. The format of group metric files is also the same as that of the local metric files (i.e. a 
key header section followed by a data section). These files are also in a format suitable for 
plotting. Group metric files always have two columns of data. The first column contains the 
message length. The second column contains the measured value of the group metrics. 

A.5.4 MTS Data Analysis Tool 

Once the data has been extracted into the various metric files, the data analysis tools 
available in MTS can process it. The tools enable analysis to be done related to the Group 
Reception Correlation defined in Section A.4.5.6. 

A.5.4.1 GRC Processing Tool 

A tool called grc.pl was developed to compute the GRC for a set of hosts. The GRC can 
be computed for an arbitrary number of hosts involved in a test. The list of hosts are specified on 
the command line. The tool outputs two columns of numbers. The first column contains the 
message length and the second column contains the GRC computed for the message lengths 
specified on the given hosts. Options available to grc.pl are: "-thresh" to specify a GRC 
threshold, "-stats" to output detailed statistics related to the GRC computation, and "-msglen" to 
compute the GRC on a single message length only. The threshold value is used to specify the 
GRC level required for all message lengths tested to be considered successful. The GRC 
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processing tool uses the return code of the program to indicate that either all GRC values 
computed for all message lengths tested meet the threshold value or at least one does not. 

A.5.4.2 GRC Partitioning Tool 

a. A tool called grc _partition. pl was developed to partition hosts into performance 
groups based on the a GRC threshold value as described in Section A.4.6.2. Because there are 2n 
possible subsets which must be tested against the threshold criteria given n hosts, the complete 
enumeration of sets is too costly to compute. A Loose GRC Partitioning algorithm is used by the 
tool. 

b. The algorithm used by the tool tests O(n3
) sets rather than the 2n sets required if a 

Strict GRC Partitioning is done (e.g., all sets are tested). The algorithm is guaranteed to produce 
one or more sets which meet the threshold criteria rather than the largest number of sets which 
meet the threshold criteria. 

A.6 IP MULTICAST PERFORMANCE TESTS 

A number of tests were conducted to evaluate the performance of UDP over IP multicast 
using the metrics developed in Section A.4. Some of the tests were performed in a "stand-alone" 
configuration outside the HiPer-D testbed. Other tests were "integrated" in the sense that they 
were conducted in the HiPer-D testbed to solve specific operational problems. 

A.6.1 Stand-alone Testing 

A number of experiments were conducted outside the HiPer-D testbed to prove the utility 
of the multicast performance metrics and MTS. Eventually the tools evaluated and applied 
during the stand-alone testing were transitioned into the HiPer-D testbed where they were used. 

A.6.1.1 Stand-alone Test Environment 

The test environment consists of a number of Sun Microsystems workstations and servers 
(Ultra 2, SparcStation 5, Ultra Enterprise 450, and SparcServer 4/ 670 MP) running Solaris 2.6. 
Tests were conducted over one Gigabit/second (Gbps) switched ethernet, 100 Megabit/ second 
(Mbps) switched ethernet, and 10 Mbps non- switched ethernet. Figure A-8 shows the hosts in 
the testbed and how they are interconnected. The hosts are interconnected with 10/100/1000 
Mbps Ethernet switches from Extreme Networks. It is important to note that multicast routing is 
not being used in the testbed. In this environment, all multicast and broadcast traffic is 
forwarded across all collision domains. 
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Figure A-8 Multicast Testbed 

A.6.1.2 Stand-alone Unicast Versus Multicast 

a. As described in Section A.4, local metrics are applicable to measuring both unicast 
and multicast performance. MCAST is able to report these metrics for both cases since it 
examines IP addresses passed to it to determine if they are multicast addresses or unicast 
addresses. If an address is a unicast address, the system calls associated with enabling multicast 
functionality are not made. In this case, the system calls made are identical to those made for 
unicast data exchange. If a multicast address is passed to MCAST, it makes the socket and 
system calls which enable the multicast functionality. 

b. In this series chests, Tide is the transmitter and Cheer is the receiver. First a unicast 
data stream is measured between the hosts. Next, a multicast data stream is measured between 
the hosts. The unicast and multicast results are then compared. For these tests, only LET and 
LOWL are examined. 

A-21 

Ex.1009 / Page 183 of 280 
TESLA, INC.



.. 

A.6.1.2.1 100 Mbps Switched Ethernet 

As can be seen in Figures A-9 and A-10, there is little if any difference between Unicast 
and Multicast transmission using 100 Mbps switched Ethernet with Tide as the transmitter and 
Cheer as the receiver. 
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Figure A-9 Unicast Versus Multicast LAT over 100 Mbit Switched Ethernet 
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Figure A-10 Unicast Versus Multicast LOWL over 100 Mbit Switched Ethernet 

A.6.1.2.2 1 Gigabit/Second (Gbps) Switched Ethernet 

a. As shown in Figures A-11 and A-12, there is a noticeable performance difference in 
the LAT and LOWL metrics measured with Tide as the transmitter and Cheer as the receiver over 
Gigabit Ethernet. Figures A-13 and A-14 plot the difference between the two LAT and LOWL 
performance curves to better illustrate the difference between the unicast and multicast 
performance. 
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Figure A-13 Unicast and Multicast LAT difference over Gigabit Ethernet 
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b. At this time, no satisfactory explanation for the performance differences observed 
between Unicast and Multicast transmission in the 1 Gbps tests has been found. The fact that no 
differences were observed in the 100 Mbps tests but differences were observed in the 1 Gbps 
tests might lead to the hypotheses that the multicast forwarding capabilities of the switch do not 
scale in the same way as the unicast forwarding of the switch at higher transmission rates. 
Another hypothesis would be that architectural differences between the Summit 1 switch used in 
the 1 Gbps tests and the Summit 2 switch used in the 100 Mbps contribute to the p~rformance 
differences observed. Further work in this area will attempt to test these hypotheses and attempt 
to identify the source of the performance differences. 

A.6.1.3 Stand-alone Group Multicast Performance 

As previously noted the local metrics are useful to measure both unicast and multicast 
performance. The group performance metrics, on the other hand, are generally only used to 
measure multicast performance. When analyzing the behavior of a multicast group, the GRC 
metric is often a key in the analysis process. 

A.6.1.3.1 Using GRC for Group Performance Analysis 

a. Figures A-15, A-16, and A-17 show three different experiments, El, E2, and E3 
respectively, in which Sunoco was the multicast transmitter and Era, Tide, Timewarp, and 
Vaxless were the multicast receivers. In the tests, Sunoco transmitted 10,000 messages to the 
multicast group. As shown in Figure A-8, the transmitter in this scenario (Sunoco) is connected 
to the network via a 10 Mbps shared Ethernet connection. Consequently, Sunoco cannot exceed 
a transmission rate of 10 Mbps. 

b. Figure A-15 shows a scenario (El) where Sunoco sent messages of length 16384 
bytes to the multicast group with a sleep _time equal to 0. As can be seen visually, few messages 
are not received by any of the receivers. Table A-1 shows a high degree of correlation (.9991) 
among the receiver set and that a high percentage of the messages were received (99.87%). 
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Table A-1 GRC Measurements 

GRC RR=O RR=N O<RR<N 

El 0.9991 0% 99.87% .13% 
E2 0.9989 1.81% 97.99% 0.2% 
E3 0.4498 0% 21.06% 78.94% 

c. Figure A-16 shows a scenario (E2) where Sunoco sent messages of length 16384 
bytes to the multicast group with a sleep_time equal to 0. In this scenario, unlike El and E3, a 
unicast background load of 61\.1bps (between two hosts not involved on the multicast test) was 
introduced on the 101\.1bps Ethernet shown in Figure A-8. As can be seen, in Figure A-16, a 
large number of messages are dropped. Table A-1 shows a high degree of correlation among the 
receiver set (0.9989). It also shows that nearly all the messages which were not received were 
not received by all receivers (RR=O). In this environment, a message not received by all hosts 
probably indicates that the message was lost at the sender. With the background load on the 
shared media attached to the sender, it is likely that collisions caused it's output queue to 
overflow resulting in lost packets. 
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Figure A-16 E2: Reception Vectors or Messages 16384 bytes in length 
( 6 Mbps background load) 

A.6.1.3.2 GRC Performance Partitioning 

Figure A-17 shows a scenario (E3) where Sunoco sent messages of length 256 bytes to 
the multicast group with a sleep _time equal to 0. For E2, Table A-1 shows a much lower degree 
of correlation (.4498) than El. This is also reflected in the Reception Reports (RR) in the table. 
Computing IT for E3 with -c = 0.5 yields the set { {R1,R2}, {R3, R4}} where R1, R2, R3, R4 are the 
reception reports for Tide, Era, Vaxless, and Timewarp respectively. Consequently, Tide and Era 
correlate to the specified degree as do Vaxless and Timewarp. 
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Figure A-17 E3: Reception Vectors for Messages 256 bytes in length (no load) 

A.6.2 Integrated Multicast Testing 

MTS proved useful in diagnosing several unexpected performance behaviors in the 
HiPer- D testbed. These behaviors were operational in nature and thus of significant importance. 
These problems needed to be solved as quickly as possible to ensure successful operation of the 
testbed. 

A.6.2.1 ATM Switch "Performance Problem" 

a. When an ATM Switch "Performance Problem" was being investigated, the complete 
MTS was not available. The only multicast instrumentation tool available was MCAST (which 
would later become part of MTS). MC AST was used to try to duplicate the performance 
problem being experienced by the applications in the testbed using its application performance 
simulation tuning parameters. 

b. Duplicating the problem with the test tool was important since this would show that 
the problem was not necessarily in the applications experiencing the performance problems. 
Also, producing the problem required a significant portion of the HiPer-D testbed to be activated 
along with the applications which ran on those portions of the testbed. This process is very 
resource intensive in both the equipment and personnel required. If the problem could be 
duplicated with MCAST, a single operator could reproduce the problem at will by using only the 
machines on which the applications experiencing the performance problems were run. 
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c. The initial attempts to duplicate the problem proved unsuccessful because of a lack of 
understanding of the actual performance characteristics of the applications being simulated by 
MCAST. Once the performance characteristics of the applications were understood, duplicating 
the problem proved to be quite easy and was repeatable. 

d. When the performance problem was duplicated a great deal of analysis was needed to 
determine the actual cause. Since the MTS test coordination tool, data extraction tool, and data 
analysis tools were not developed yet, running tests was both tedious and time consuming. Also, 
analyzing the data was difficult as well. Despite these problems, the source of the problem was 
found without the tools. 

e. A lesson learned from this process was that better testing, instrumentation, and 
analysis tools were needed. This realization led to the full development of MTS and the 
formalized development of the metrics presented in this appendix. 

f. When the MTS implementation was complete, another attempt was made to duplicate 
the "performance problem". The goal of this experiment was to determine if the additional tools 
developed would reduce the complexity in debugging the problem. Unfortunately, all of the 
conditions required to reproduce the problem could not be duplicated. The utility of the new 
toolset was still shown, however, because a new "performance problem" was identified. 

A.6.2.2 Altair4 Performance Problem 

In trying to duplicate the ATM switch "performance problem", a test was conducted 
which included all of the Altair hosts (Sun Microsystems Ultra2 workstations). This test 
revealed a new performance problem. Plots of the data extracted by using mcast_extract.pl 
showed the LAT and LPMR performance of Altair4 was consistently less than that of the other 
Altair hosts. Furthermore the GRC computed was poor. The GRC data was analyzed with the 
grc _partition. pl tool which placed Altair4 in a partition by itself and all other hosts in a second 
partition. Since all of the Altair hosts have identical hardware and software configurations, this 
result was not expected. 

A.6.2.3 Altair and Electra Performance Differences 

In another experiment conducted to duplicate the switch "performance problem", all of 
the Altair hosts (Sun workstations) and Electra hosts (SGI Origin 200 workstations) were 
included in the test. The data collected showed that all of the Altair hosts had correlated 
performance while the Electra hosts did not. In the testbed, all the Electra hosts are connected to 
one switch and all the Altair hosts are connected to another switch. Since the LANE Broadcast 
Unknown Server (BUS) is located on the switch connecting the Altair hosts, it was speculated 
that the intra-switch traffic required for the Electra hosts to participate in the group was 
contributing to the problem. Another experiment was run in which several Electra hosts were 
moved to the switch with the LANE BUS. Since these hosts still exhibited the performance 
problem, it was concluded that the problem was not switch related. It is speculated that 
performance differences between the Electra and Altair hosts would account for the differences 
in the correlation. Further testing is needed in this area. 
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A. 7 CONCLUSIONS 

The metrics and analysis techniques developed in this appendix as well as their 
realization in MTS have proved to be useful in analyzing the performance of multicast systems. 
The performance of complex applications can be simulated and evaluated on the target hardware 
environment without the complexity of running the application itself. 

A.8 FUTURE WORK 

a. The development of MTS will be completed. The data extraction tool will be updated 
to include all local and group metrics presented herein. 

b. The work to date has focused on instrumenting IP Multicast in a non-routed 
environment. Future work in this area will examine a routed multicast environment and a 
switched VLAN environment. Further investigation into the source of the performance 
differences between 1 Gbps and 100 Mbps ethernet will be conducted. 

c. Another area of future work would be to investigate incorporating the metrics defined 
here into an operational tool which can be used to monitor the health of an operational network. 
The MCAST receiver module would be converted to a daemon process and run on hosts to be 
monitored. 
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APPENDIX B 

HIPER D DATA DISTRIBUTION EXPERIMENT 

Leslie A Madden, Robert B. Anthony, Charles L. Fudge 
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B.1 BACKGROUND - DATA DISTRIBUTION PROBLEM DOMAIN 

a. The data distribution problem domain for command and control systems can be divided 
into two general categories: control data and streaming data, as shown in Figure B-1. Complex 
data ordering, low volume, reliable delivery, and deterministic latency often characterize control 
data. Examples of this type of data for the Aegis Combat System could be Auto-Special and 
Doctrine data. 

DATA DISTRIBUTION 
STREAMING CONTROL 

Best Effort \ Reliable/ Acknowledge Reliable Acknowledge 

Volume High or Low Volume and Rate Low 

Rate High or Low Ordered 
I 

Deterministic 

Figure B-1 Data Categories 

b. Streaming data usually has limited data order dependencies, high volume, requires a 
stable frequency and inter-arrival, and does not require reliable delivery. A message can be 
missed, or possibly several messages depending on the frequency and message type, the next 
received, and still satisfy system requirements. Examples of this type of data could be Gyro and 
Track file update data. 

c. Obviously, not all the message types used in the Aegis Combat system fall neatly into 
one of these two categories. SPY data, for example, could be considered high volume and yet 
require a stringent deterministic latency. 

d. The relevance of these complex issues is very germane to future Aegis baselines. 
Baseline 7 Phase I timing requirements are currently being reviewed on a message type basis. 
Tradeoffs for example, such as deterministic latency versus reliable delivery, are being evaluated 
to determine the most efficient method of distributing data to meet the system's requirements. 

e. Future Aegis baselines will use distributed processing architectures and distributed 
applications that employ commercial off the shelf hardware and software to the greatest extent 
possible. Software companies have developed, and continue to develop, a broad variety of 
commercial middleware products to help system developers implement distributed applications 
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in the data distribution arena. One group of products that appears to meet the data streaming 
requirements is publish/subscribe products. 

f. This paper documents the results of the evaluation of two publish/subscribe products. 

B.2 PUBLISH/SUBSCRIBE PRODUCTS 

a. Publish/Subscribe products are message-based middleware products that provide a 
service, or range of services, to various applications, above and beyond those provided in 
TCP/IP. Applications that need to publish data send it to the publish/subscribe product. The 
product in turn sends the data to any and all clients that have registered with it, for the data. As 
shown in Figure B-2, a publisher can service multiple subscribers, and a network could consist of 
multiple publishers and subscribers. The benefit of the publish/subscribe product is that the 
developer doesn't have to design and develop the code, and can concentrate on the development 
of applications. Second, the application doesn't have to be involved in keeping track of clients 
and the sending and possible re-sending of data. Third, the developer can use the same or similar 
interfaces in all of their servers and clients that utilize the same types of publish/subscribe 
service. Basically it is less costly to buy a messaging middleware product than it is to build one. 

Data Server/Publisher 
A 

Data Server/Publisher 
B 

Publish/Subscribe Middleware 

Data Client/Subscriber 
1 

NETWORK 

Publish/Subscribe Middleware 

Data Client/Subscriber 
2 

Data ClientlSuhscriber 
3 

Data Client/Subscriber 
n 

Figure B-2 Publish/Subscribe Architecture 

b. In its simplest form, a publish/subscribe product requires the following functions: 

(1) Subscriber Registration - Subscribers/clients need to be able to register and un­
register with the publisher for services from the publisher. Typically this is accomplished with a 
daemon that runs in the background. 
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(2) Publisher Advertisement Publishers need to be able to advertise the presence 
of their services. Typically this is accomplished with a daemon that runs in the background. 

(3) Data Publishing - When the application actually publishes its data, the 
publish/subscribe product must take the data and distribute it via the network to all clients that 
have registered for the data. 

(4) Data Reception -The data is received by the publish/subscribe product in each 
of the clients, which in turn provide it to the subscriber application. 

c. While these are the basic functions provided in a publish/subscribe product, there are 
an endless number of additional features that can be added, such as reliability of delivery, fault 
tolerance, different rates of delivery, language bindings, etc. 

B.3 GOALS AND OBJECTIVES 

a. The primary goals of the Data Distribution Experiment (DDE) were to: 

(1) evaluate two Publish/Subscribe middleware products in a data streaming 
application. 

(2) select one product to be used for Navigation Data Distribution for the Advanced 
Computing Testbed Demonstration 98 (Demo 98) 

b. The two products selected for evaluation were Real Time Innovation's NDDS and 
Tibco's Rendezvous (TIB). 

c. The objectives of the DDE were to: 

(1) modify the GDCSim and GDC _ Client programs to incorporate the NDDS and 
TIB products 

(2) modify the GDCSim and GDC _ Client architectures to accommodate future 
middleware products 

(3) install the middleware products in the test bed, and 

(4) compare NDDS and TIB performance; and compare both to UDP performance in 
the following areas: 

(a) Average Message Latency 

(b) Message Latency Variation 

( c) Average Message Inter-arrival time 

( d) Message Inter-arrival Variation 
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( e) Dropped message rate 

(f) ATM network versus FDDI network 

(g) Unicast versus Multicast 

(h) Memory utilization 

(i) CPU utilization 

B.4 EXPERIMENT DESCRIPTION 

B.4.1 Experiment Design 

a. The DDE architecture is shown in Figure B-3. The basic idea was to have a publisher 
application on one workstation transmit messages to a subscriber application on another 
workstation. Successive test runs were made utilizing UDP, followed by inserting NDDS as the 
middleware, and finally with TIB inserted as the middleware. Test data was gathered for the 
parameters listed above, and then used to compare the three products. UDP was used as a 
baseline for several reasons. First, it is a fast protocol in widespread usage. Second, it is the 
protocol that both NDDS and TIB use as their underlying transport protocol. As a result, we 
expected both NDDS and TIB performance to be "worse" than UDP. 

APPLICATION 
(TRANSMITTER/ 

SERVER/PUBLISHER) 

UDP 

MEASURE MESSAGE: 
LATENCY - MIN, MAX, AVG, STD. DEV. 
INTER-ARRIVAL- MIN, MAX, AVG, STD.DEV. 
DROPPED 

APPLICATION 
(RECEIVER/ 

CLIENT/SUBSCRIBER) 

UDP 

PUB/SUB 
DAEMON 

PUBLISH/SUBSCRIBE 
MIDDLEWARE 

PUBLISH/SUBSCRIBE 
MIDDLEWARE 

PUB/SUB 
DAEMON 

TCP/IP 
LAYER 

OPERATING 
SYSTEM 

NETWORK 

TCP/IP 
LAYER 

OPERATING 
SYSTEM 

Figure B-3 Data Distribution Experiment Architecture 
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b. Ideally, once a message stream between the publisher and the subscriber has been 
established, one would expect the only variable to be the middleware. Unfortunately, this is not 
true. Each of the components shown in Figure B-3 inherently inserts some variation in the 
message stream. Therefore, it was very important to minimize the variation each component 
added, and/or keep the variation the same for successive runs. 

B.4.1.1 Definition Of Latency And Inter-Arrival Variation 

a. Most of the parameters being measured, such as latency, dropped message rate, etc, 
are easily understood. The purpose of this section is to describe how we are using the latency 
variation and inter-arrival time variations to discriminate between UDP, NDDS and TIB. 

b. Using inter-arrival time as an example, Figure B-4 shows the ideal frequency 
distribution for a publisher. All of the messages would have an inter-transmit time of exactly the 
desired message rate, in this case, 1. 0 msec. 

messages 

msec 1.0 

Figure B-4 Ideal GDCSim Frequency Distribution 

c. Assuming that we are using UDP, the hypothetical data in Figure B-5 shows that, at 
the subscriber, we would expect most messages to arrive with 1.0 msec inter-arrival times. 
However, we would also expect a certain number of messages to arrive either a little late or a 
little early because they are affected by the TCP/UDP/IP layers, operating systems and network 
layer of the test set-up. This is reflected in Figure B-5, as 0.9 and 1.1 msec. inter-arrivals. 
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messages 

msec 0.9 1.0 1. 1 

Figure B-5 GDC_ Client UDP Frequency Distribution 

d. This leads us to several very important concepts. 

(I) UDP represents the baseline for any measurements and/or comparisons between 
products. 

(2) The combined variation of UDP, the operating systems, network, etc. cannot be 
removed from the experiment. 

(3) Since the products we are measuring are based on UDP and TCP, their variations 
will almost certainly be equal to, or greater than, UDP. 

e. Assuming the above issues, and assuming hypothetical test data from two different 
products, product "A" and product "B", Figures B-6 and B-7 show two different frequency 
distributions that might be seen. All things being equal, then product "A" has better inter-arrival 
times than product "B", and represents a better choice. 

messages 

msec 0.8 0.9 1.0 1.1 1.2 

Figure B-6 GDC _ Client Product "A" 
Frequency Distribution 
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msec 0.7 0.8 0.9 1.0 1.1 12 1.3 

Figure -B7 GDC_Client Product "B" 
Frequency Distribution 

f. Standard deviation is the chosen measure of the spread, or variation, of the inter­
arrival data in comparing the three publish/subscribe products. The standard deviation was 
chosen, first for convenience. GDCSim and GDC _ Client provide a standard deviation for each 
2-second sample. Second, it is a well accepted measure of variation. And third, it is relatively 
easy to calculate. It is very important to recognize that standard deviation is being used as a 
measure of variation introduced by the middleware products as compared to the variation 
associated with UDP. The absolute variance added by the middleware product is not being 
calculated. A similar approach is used for the latency variation, however, instead of the variation 
in inter-arrival, variation in latency is being analyzed. 

B.4.2 Hardware Configuration 

The DDE was conducted on three workstations and two networks as shown in Figure 
B-8. One set oftest runs was conducted between Aquilla and Blofeld (Sun Spare Ultra 2s) over 
the ATM network. Another set of test runs was conducted between Aquilla and Pavo (Sun Spare 
Ultra ls) over the FDDI network. All the test runs consisted of UDP, NDDS and TIB messages. 
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Figure B-8 ODE Hardware Configuration 

B.4.3 Software Architecture 

a. The high-level software architecture is shown in Figure B-9. GDCSim runs on 
Aquilla and the clients, GDC _ Client, each run on Blofeld and Pavo. The purpose of GDCSim is 
to transmit constant streams of messages for various time periods. Multiple combinations of 
message rate and time periods can be set up in a configuration file that GDCSim reads in. For 
example, 100 messages per second may be transmitted for 2 minutes, followed by 500 messages 
for 2 minutes, etc. In addition to sending messages, GDCSim registers with the Isis server 
protos, and transmits control messages to the clients, after they register with GDCSim via protos. 
One of the major modifications to GDCSim consisted of making a "general purpose" interface 
layer where various types of messages could be added for testing. The current message types 
supported at this layer are UDP, TCP, Isis, NDDS and TIB. The idea was to make it easy to add 
additional message types as needed. Note that there are also "network services" layered into the 
system, specifically Isis, NDDS and TIB, which in turn make use of UDP, TCP and IP as 
necessary. Another key point is that there are NDDS and TIB daemons on the workstation that 
are required for the messaging products to work. The purpose of the daemons is to "coordinate" 
the registration of services between the middleware layer in the GDC _ Clients, and the 
middleware layer in the GDCSim. 
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Figure B-9 Software Architecture 

b. When GDC_Sim generates a data message, it is immediately passed to the 
middleware layer. The middleware layer then passes the message to lower network protocol 
layers and out onto the network. At the receiving workstation, the process is reversed, the lower 
network protocol layers pass the message to the middleware layer, which then passes the 
message to GDC _ Client. 

B.4.4 Test Scenario And Conditions 

a. The data transmission protocols were selected and read in via initialization files and 
command line arguments. The UDP protocol was used to gather baseline data for data 
transmission. The messaging middleware products, NDDS and TIB/Rendezvous, were also used 
for data transmission in a unicast mode, and then compared to UDP. The underlying protocol 
that NDDS uses for data and daemon communication is UDP. TIB/Rendezvous uses TCP 
daemon communication and UDP for data transmission. Each product was tested during two 
runs, an A run and a B run. Each test run was identical and consisted of the various message 
rates as shown in Figure B-10. Latencies, interarrival times, standard deviations, etc. were 
collected in two-second intervals, as shown in Figure B-11. 
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120 sec * ( 60 samples 

MESSAGE RATEs 2 sec +j-'- 2 sec +j-'- 2 sec -t>j !"-- 2 sec TOTAL MESSAGES 
Msgs/Sec sample sample sample sample 

10 20Msgs 20 Msgs 20Msgs I • • • 20 Msgs 1200 

20 40 Msgs 40 Msgs 40 Msgs • • • I 
40 Msgs 2400 

100 200 Msgs I 200 Msgs I 200 Msgs I • • • I 200 Msgs I 12000 

400 800 Msgs I 800 Msgs I 800 Msgs I • • • I 800 Msgs I 48000 

1000 I 2000 Msgs I 2000 Msgs I 2000 Msgs I • • • I 2000 Msgs I 120000 

Figure B-10 Message Rates 

120 sec* (60 samples 

2 sec +j"I- 2 sec +j"I- 2 sec +j 
sample sample sample 

!"-- 2 sec 
sample 

TOTAL MESSAGES 

10 20 Msgs 20 Msgs 20Msgs • • • I 20 Msgs 1200 

20 40Msgs 40Msgs 40Msgs • • • I 40Msgs 2400 

100 200Msgs 1 200Msgs I 200 Msgs I • • • I 200Msgs I 12000 

400 800 Msgs 1 800 Msgs 1 800Msgs I • • • I 800Msg• I 48000 

1000 \ 2000 Msgs I 2000 Msgs I 2000 Msgs I • • • \ 2000 Msgs I 120000 

-~---------~------------
~ATISTICS PER SAMPLE PER MESSAGE RATE ~ 

TRANSMIT RECEIVEINTERARRIVAL 
I :Minimum Intertransmit time per Sample 
l Maximum lntertransmit time per Sample 
1 Average Intertransmit time per Sample (Over 20, 40, 200, OR 
800, 2000 observations as appropiate) 
1 Standard Deviation per Sample (Over 20, 40, 200, 800, 2000 
observations as appropiate) 

1 Minimum Interarival time per Sample 
I Maximum Interarrival time per Sample 
1 Average Interanival time per Sample 
I Standard Deviation per Sample 
:RECEIVELAIBNCY 
I Minimum Latency time per Sample 
1 Maximum Latency time per Sample 
1 Average Latency time per Sample 
1 Standard Deviation per Sample 

Figure B-11 Statistics Per Sample 

b. The message transfer rates "requested" by GDC _ Client were also read in via an 
initialization file. The message length was 200 bytes of canned data. It should be noted that 
gyro data for Aegis Baseline 7 Phase 1 is being proposed at a 100-Hertz rate. 
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c. Sun Spare Ultra 1 (Pavo) and Ultra 2 (Aquilla, Blofeld) workstations were used with 
the Solaris 2.6 operating system. Sun Spare Ultra 1 is a uniprocessor workstation and the Ultra 2 
contains two processors. ATM and FDDI network interfaces were used for data transmission. 

B.5 ERROR MITIGATION AND ANALYSIS 

a. The purpose of the error mitigation and analysis effort was to take a rigorous 
approach to identifying, quantifying, and reducing the errors and uncertainties encountered in the 
data collection and subsequent analysis. The end goal of this effort was to minimize the effect of 
errors and uncertainties on the final results and conclusions. 

b. Multiple test runs were conducted to "smooth out" and identify any perturbations 
with data associated with an individual test run. The System Control Laboratory (SCL) was 
physically isolated, and only those applications necessary to conduct the testing were running. 
The Solaris OS real time feature was used to place GDCSim, GDC _ Client, and the NDDS and 
TIE/Rendezvous daemons in real-time mode. Both this and the isolation of the SCL were done 
to minimize the uncertainties associated with the latency and inter-arrival data. 

c. During the runs, when GDCSim was crossing from one frequency to another, data 
that was obviously invalid was identified and characterized by latencies or inter-arrivals 
inconsistent with the frequency, but consistent with the previous frequency. Such data was not 
considered in the final analysis. 

d. The Network Time Protocol (NTP) was used for clock synchronization. Blofeld and 
Pavo, the two clients were synchronized to Aquilla (GDCSim) which was synchronized to Cetus. 
Table B-1 lists the clock data collected at the beginning and end of each test run. All values are 
in microseconds. 

Table B-1 Clock Synchronization Values 

AQUILLA BLOFELD PAVO 
RunA RunB Run A RunB Run A RunB 

NDDS - Start 002 238 000 008 -088 -023 
NDDS- Finish -010 075 145 024 179 087 

UDP - Start 039 -098 -035 100 011 041 
UDP - Finish 528 -108 072 -019 043 -028 

TIB - Start -060 048 -047 057 -006 027 
TIB - Finish 210 655 004 112 -026 117 

e. "Start" and "Finish" data was obtained manually before beginning each test run, and 
at the end each test run. From an absolute value perspective it can be seen that the greatest clock 

Ex.1009 / Page 205 of 280 
TESLA, INC.



drift occurred between 088 and 179 for NDDS Run A on Pavo. It drifted at least 267 
microseconds. At its worst, there was a 179 usecs deviation from Aquilla. However, it should 
be noted that, as it drifted through zero, it was virtually synchronized with Aquilla. The rest of 
the runs fell under 160 usecs. 

f. It is obvious that lacking absolute synchronization of clocks between the sender of the 
data, Aquilla, and the receivers of the data, Pavo and Blofeld, results in measurement error 
through any algorithms used to calculate latency, thus affecting the final value. But the 
magnitude of error possible has, at least, been bounded with the data in Table B-1; that it is 
relatively small and, most importantly, does not change the conclusions reached in the 
experiment. 

g. For a number of reasons there was no attempt to assign a numerical value to this error 
of uncertainty, or to add any positive or negative offsets to the final latency measurements. First, 
the clock drift rates, the NTP resynchronization rate, and the message sample rate are all 
occurring at different rates. Instrumentation and methodology do not currently exist to 
dynamically measure and factor in clock offsets. However, as long as NTP maintains clock 
synchronization within acceptable levels it is probably not necessary. 

B.6 TEST RESULTS 

B.6.1 Latency 

GDC _ Client collected the latency data for messages received in a two-second window. 
The average latencies for each message frequency rate were then averaged via a spreadsheet. 
The end-to-end latency measurement was the difference between the GDCsim time stamp and 
the GDC _ Client time stamp. Figure B-12 illustrates how the latency and messages are related. 
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MessageStream 
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Figure B-12 Message Latency 
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B.6.1.1 Average Latency 

Figures B-13 and B-14 show the average latency for Blofeld (ATM) and Pavo (FDDI) 
respectively. The UDP and NDDS latencies are relatively constant across the frequency 
spectrum on both the ATM and FDDI networks. The Till/Rendezvous latency is relatively 
constant across all message rates for ATM however, it increases 25 to 30% at the 1000 message 
per second rate for FDDI. As the baseline protocol, UDP has the best performance, as would be 
expected. For the messaging middleware products, NDDS has a better absolute latency 
performance than TIE/Rendezvous. It should be noted that all average latencies fell within the 
3. 5 msec. range which is the latency specified for Mission Critical Messages in the Preliminary 
Design Review Data Package for Computing System Requirements Document for Baseline 7 
Phase 1. 

0 
Q.) 
(/) 

E 

AVERAGE LATENCY -ATM (blofeld) 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

>-·· .. 

-+-- UDP-A 

···~··· UDP-8 

NODS-A 
.......... NDDS-B 

···*··· TIS-A 

1 ---.:====:::.=====.===~=---:-:-~; - TIB-B 
::••·············~"-$ .... _ .... _.,_.,_,.;;..-•--··--··---·-lill-··-··---------.. ·-"'-,,.,,. ~---~ 

10 20 100 

Msg/sec 

400 1000 

Figure B-13 Average Latency Results, Blofeld 

B-14 

Ex.1009 / Page 207 of 280 
TESLA, INC.



AVERAGE LATENCY - FDDI (pavo) 

:······· .. ··· ......... , .. . 

0.5 -+------------------' 

0 -+-----,----,-------,------r-----i 

10 20 100 400 1000 

Msg/sec 

--+-UDP-A 

···81'< ... UDP-B 

NODS-A 

.. , .. NDDS-B 

····l!E···· TIS-A 

-··•·- TIB-8 

Figure B-14 Average Latency Results, Pavo 

B.6.1.2 Latency Variation 

Figure B-15 and B-16 show variation in latencies, as measured by the standard 
deviations, for each frequency. The standard deviation captures the variation in latency 
measurements with respect to the mean. The average standard deviation for UDP and NDDS are 
consistent throughout the frequencies and relatively small. The standard deviation for 
TIE/Rendezvous begins to climb dramatically at 400 messages per second. This indicates the 
product is beginning to have a significant number of messages with relatively high latencies. 
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Figure B-15 Latency Variations, Blofeld 
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One characteristic of a publish/subscribe middleware product is its ability to deliver 
messages at a constant rate or period. In the DDE, GDC _ Client has the ability to measure the 
time between each successive message, which is called the inter-arrival time. Figure B-17 shows 
the relationship between an idealized GDCSim message stream, what we would like to see at the 
GDC _ Client, and what the message stream may actually look like. As discussed earlier, the time 
measurements are made when the message leaves the lower level network layers and actually 
enters the GDC _ Client application. 
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Figure 17 Inter-arrival Time 

B.6.2.1 Average Inter-Arrival 

a. GDC _ Client collected the inter-arrival data for messages received in each two-second 
window. The average inter-arrival times for each message frequency rate were then averaged via 
a spreadsheet. Figure B-18 shows the relationship between message rate and average inter­
arrival times over the ATM network, and Figure B-19 shows the relationship between message 
rate and average inter-arrival times over the FDDI network. 
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b. As shown by the overlapping plots all of the protocols, UDP, NDDS and TIB, were 
capable of producing and receiving message streams that achieved the desired average message 
rates. Notice that the results were virtually identical for both the ATM and FDDI interfaces. 

c. As result, if the only interest is average inter-arrival times, all three of the products 
considered in the DDE are acceptable. 

B.6.2.2 GDCSIM Transmit Variations 

a. Before looking at inter-arrival variation times at the GDC _ Clients, it is necessary to 
look at how well GDCSim could actually transmit messages. Ideally, GDCSim should transmit 
messages at exactly the same inter-transmit time; in other words, at a very constant rate. 
Unfortunately, GDCSim itself has a small but significant variation in inter-transmit times. This 
variation will contribute to the total variation that is seen and measured at the GDC _ Client. As a 
result, some effort must be made to quantify its variation and analyze its impact on the 
experiment. 

b. Figure B-20 shows the variations in inter-transmit times at various message rates, 
over the ATM network. Figure B-21 shows the inter-arrival time at the GDC _ Client. In general, 
at each respective message rate the standard deviations of the inter-arrival times are at least twice 
the size of the inter-transmit times. 
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Figure B-20 Inter-Transmit Standard Deviation Aquilla 
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Figure B-21 Inter-arrival Variation Blofeld 

a. Figure B-22 shows the variations in inter-transmit times over the FDDI network, and 
Figure B-23 shows the inter-arrival time at the GDC_Client. Once again, at each respective 
message rate, the standard deviations of the inter-arrival times are at least twice the size of the 
inter-transmit times. 
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b. Looking at the UDP protocol, while the inter-transmit variation is significant, there is 
also a significant component of variation in the inter-arrival variation that can be attributed to the 
TCP/IP layers, operating systems and the network associated with the testbed. This variation is 
inherent to the testbed and cannot be removed. The UDP plots are relatively flat and well 
behaved over all the message rates. 

c. For NDDS, the data shows pretty much the same results as UDP, with the exception 
that there is a small rise in inter-transmit variation at the 1000 msg/sec rate. Interestingly 
enough, there was no corresponding rise observed in the inter-arrival variation. 

d. Finally, for TIB, the inter-transmit times are small but not very consistent between the 
different networks. At the clients, the inter-arrivals are fairly flat, until we get to the 400 and 
1000 msg/sec rates, where the variations get significantly larger. The magnitude and rate of 
change at these rates are very significant. 

e. In both the case of 1\1DDS and TIB, there appears to be a significant component of 
inter-arrival variation above and beyond what can be attributed to GDCSim, or the other 
components such as TCP/IP, the operating systems, network, etc. Since everything in the test 
system is held reasonably constant, this variation is attributed to the middleware products. 
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B.6.2.3 Inter-Arrival Variation 

a. Figure B-20 shows the inter-arrival variation for each message rate at Blofeld. The 
standard deviation captures the variation in inter-arrival measurements with respect to the mean. 
The average standard deviation for UDP and NDDS are consistent throughout the frequencies 
and relatively small. The standard deviation for TIE/Rendezvous begins to climb significantly at 
400 and 1000 messages per second. This indicates the product is beginning to have a significant 
number of messages arriving either late or early. Figure B-23 shows identical results at Pavo 
over the ATM network. 

b. There are two interesting yet conflicting things happening with TIB. While the 
standard deviation is rising rapidly, it is indicating that a proportionately small number of 
messages are having significant deviations. As shown earlier, the average inter-arrivals are very 
good. On the other hand, the direction of the growth is ominous. 

B.6.3 Dropped Message Rate 

Dropped message rate data was gathered to identify any differences in performance 
between UDP, NDDS and TIB. Over all the test runs, there were no dropped messages. 

B.6.4 ATM Network versus FDDI Network 

As expected, both the ATM and FDDI networks produced the same results. The only 
real numerical differences were in average latency, which were minor differences in TIB at 1000 
msg/sec over the FDDI network. 

B.6.5 Multicast 

Multicast testing was not performed because Pavo did not have an ATM interface, and 
because the multicast configuration over the FDDI was not working at the time of the test runs. 

B.6.6 Memory Utilization 

a. Table B-2 illustrates the typical memory values recorded during the testing. The 
application programs, GDCSim and GDC _ Client were consistently around 7 to 8 MB for UDP, 
NDDS and TIE/Rendezvous. There were two NDDS daemons and a license manager running on 
one workstation, plus a start daemon which ran on all workstations. The NDDS daemons were 
consistently around 2 MB. 

b. The Till/Rendezvous daemon on the clients was approximately 2 MB also. The 
Rendezvous daemon on the server grew from 2 MB to 37 MB in approximately 120 seconds 
from the start of the test. A default feature of TIE/Rendezvous is that it provides 60 seconds of 
reliability. It accomplishes this by buffering the last 60 seconds worth of data. According to 
discussions with the vendor, "37 MB is not out of the ordinary, unless you are observing 

B-22 

Ex.1009 / Page 215 of 280 
TESLA, INC.



persistent growth over long period of time". Persistent growth over a period of time was not 
observed. 

Table B-2 Memory Allocation 

APPLICATION/DAEMON START END 
GDCSim (Aquilla) 81113 7 l'vIB 
GDC Client (Blofeld) 81113 71113 
GDC Client (Pavo) 81113 81113 
NDDS Daemons (Server and Clients) 21113 2MB 
TIB Rendezvous Daemon 21113 21113 
TIB Rendezvous Daemon (Server) 2MB 37MB 

B.6.7 CPU Utilization 

CPU utilization data was gathered, but was not analyzed due to time constraints. 

B.7 COl\IBINING STANDARD DEVIATIONS ACROSS SAMPLES 

a. As discussed earlier, GDCSim and GDC _ Client calculated the standard deviation for 
both latency and inter-arrival time for each 2-second sample of data. (Note, that GDCSim and 
GDC _ Client, collected data on every message sent. As a result, data is available on the entire 
population of any given test run.) To compare UDP, NDDS and TIB at the various message 
rates, the variation across all the samples at a given message rate was needed as shown in Figure 
B-24. This section details the mathematical approach taken to combining the separate variations 
into a single variation at each message rate. 
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Figure B-24 Statistics Across All Samples 

b. The calculation for the standard deviation across all the samples at a given message 
rate is possible, because the averages of the individual samples are all extremely close. The 
standard deviation is calculated as follows. 

Individual Sample Variance Calculations 

The formula for calculating the variance is as follows: 

n n 

n(Lxi2)-(Lxi )2 
i=l l=l 

n(n-I) (Equation 1) 

Where each individual measurement is x, 
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For large values of n, the variance can be defined as: 

(Equation 2) 

(It is important to note, that the assumption of a large values of n is valid for 100, 400 and 1000 
messages per second, because we have 200, 800 and 2000 observations respectively, per sample. 
However, the assumption is not true for message rates of IO and 20 because they result in 20 and 
40 observations per sample. The same formulas were used for calculating all of the standard 
deviations because the absolute standard deviations at these message rates represent an extremely 
small value when compared to the actual values of the latencies and interarrivals being 
measured. Secondly, the interesting deviations in latency and inter-arrival all occurred at the 400 
and 1000 messages per second rates.) 

n n 2 

L,xi2 L,xi 
s2 i=l i=l 

n n (Equation 3) 

For an individual sample of n observations: 

n 2 

Lxji 
i=l 

n for j = 1, 2, ... m (Equation 4) 

(Equation 5) 
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a) 

(The above equation is used in a later substitution.) 

Overall sample variance 

The overall sample variance is 

m n 

LLxJi 
s2 = j=l l=l 

mn 

m n 

LLx~i 
s2 = J=l i=l 

mn 

Substituting in equation (a) from above, 

m 

~ s~ +x~ L. J J 
S2 = _J_=l ___ _ 

m 

2 

mn 

2 

m 

2 

if X J = X (all of the averages are very close to each other), then 

B-26 

(Equation 6) 

(Equation 7) 

(Equation 8) 

(Equation 9) 

Ex.1009 / Page 219 of 280 
TESLA, INC.



and 

m 

m 

Lx1 =mx 
J=l 

LsJ 
S2 = ...;_J=_l_+_m_X_

2 -(-m_X_J
2 

m m m 

m 

Ls; 
S2 =-i=_l_ 

m 

(Equation 10) 

(Equation 11) 

(Equation 12) 

c. The above formula was used to combine the standard deviations across multiple 
samples for latency, inter-arrival and inter-transmit variations. 

B.8 EXPERIMENT CONCLUSIONS and SUMMARY 

a. NDDS was selected to be used for Navigation Data Distribution for Demo 98 for the 
following reasons: 

(1) NDDS had the best absolute latencies 

(2) NDDS had smaller variations in latency and inter-arrival times 

(3) TIB appears to be reaching its limits at 1000 msgs/sec based on growing 
variations in latency and inter-arrival times observed 

b. All three products, UDP, NDDS and TIB demonstrated latencies within the 3 .5 msec 
definition in the Preliminary Design Review Data Package For Computing System Requirements 
Document For Baseline 7 Phase 1. 

c. Two commercial messaging products were integrated into the GDCSim/GDC _ Client 
and evaluated. The programs were modified to accommodate other products in the future. The 
products are viable products for use based on their proper application. 
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d. The publish/subscribe products performed essentially the same over both ATM and 
FDDI networks. 

e. As expected, both NDDS and TIB functioned well in the testing. Even though NDDS 
was chosen over TIB, TIB is a perfectly acceptable product for use within the limits of its 
capability. 

B.9 LESSONS LEARNED 

a. The following lessons were learned: 

(1) Installing publish/subscribe middleware products requires a significant amount of 
effort. There are so many features in these products that close attention has to be paid to 
installation to ensure that any evaluation is fair to both products. 

(2) It was possible to discriminate between products based on average latencies and 
variations in latency and inter-arrival times. 

(3) Efforts to evaluate products at rates above 1000 msgs/sec will have to pay special 
attention to clock synchronization and the magnitude of variations inherent in the testbed. 

(4) The shape of the latency and inter-arrival frequency distributions should be 
characterized. 

B.10 FUTURE EFFORTS 

a. The current experiment was a "raw speed" test. Future evaluations should be more 
like the "real world" environment and utilize more of the basic features of the products. 

b. Also, testing with multiple clients would give a better idea of the scalability of the 
product. 

c. Perform multicast testing 
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C.1 Background 

APPENDIXC 

WINDOWS NT INVESTIGATIONS 

The Johns Hopkins University 
Applied Physics Laboratory 

Laurel, Maryland 20723-6099 

In June 1998, the Navy's Chieflnformation Officer (CIO) released his Information 
Technology Standards Guidelines (ITSG). The guidelines recognized the growing presence of 
Windows NT, as well as its possible application to the Navy's requirements for a powerful 
operating system. The ITSG indicated an organization-wide shift towards NT over the next few 
years, encompassing systems such as ashore and on-ship installations. The question now was 
not, "Should we use NT?" but ''What do we need to do to make NT work the way we want?" 
The focus of the activities outlined here was to begin investigations that would ultimately answer 
the latter question for HiPer-D. 

C.2 Objectives and Overview 

a. Our primary objective was to create an advanced distributed system, running on NT 
that could be used to evaluate the suitability of NT to these types of systems. JHU/APL's 
HiPer-D components constitute a system of this type. All of JHU/APL's HiPer-D components 
are written on top of a JHU/ APL-developed middleware layer called Amalthea. Amalthea 
isolates the application from the specifics of the underlying operating system. Moving the 
system to NT was accomplished by porting Amalthea to NT. 

b. Amalthea also contains a communications layer that isolates the applications from the 
underlying ISIS process group communications system that formed the backbone ofHiPer-D. 
Stratus, the vendor of ISIS, is removing ISIS from the commercial market. This prompted a 
separate activity to move Amalthea communications away from ISIS and on to the AL. This 
would isolate Amalthea communications from the underlying group communications product. 
This effort is described in Appendix E. The decision was made to port the AL to NT rather than 
investing effort in the short-lived ISIS environment. The process group communications 
package chosen to replace ISIS was Spread. Spread runs under Unix and NT and was used to 
allow the components of HiPer-D that ran on NT to interoperate with the components that 
remained on Unix. The HiPer-D components ported included KINED, SIMCON, SENSIM, and 
the gen_* 1 applications. 

c. Once a working hybrid system was in place, JHU/APL's next objective was to 
optimize the performance as much as possible. NT is generally believed to have a less efficient 
networking subsystem as compared to Unix, so a drop in performance was expected. However, 

1 The gen_* components are used to enter and delete tracks manually in HiPer-D. 

C-2 

Ex.1009 / Page 223 of 280 
TESLA, INC.



JHU/ APL had to determine exactly how much of a loss would be incurred and whether 
performance would remain at acceptable levels. 

C.3 Steps Taken 

Migration of the HiPer-D system to NT involved two major tasks: porting the underlying 
Amalthea API and configuring the Spread group communications package to run on NT. These 
two tasks were conducted in parallel. Because the HiPer-D applications were built using 
Amalthea, the task of moving those applications to NT was subsumed by the task of porting of 
Amalthea. 

C.3.1 Deep Porting of Amalthea to Win32 

a. The primary step in migrating HiPer-D to the NT platform was to port the underlying 
Amalthea libraries upon which most of the HiPer-D applications were built to the Win32 API. 
The purpose of Amalthea was to hide the underlying implementation and platform details from 
applications, providing uniform interfaces to thread models, event models, and the like. 
Amalthea was designed to allow applications using Amalthea libraries to compile and run on 
different platforms with no code change. 

b. Two options were considered. One possibility was to perform a "shallow" port of the 
libraries using a third-party interface such as Cygnus' GNU Win32 environment. Such an 
interface translates Unix system calls into corresponding Win32 calls. However, this 
development path was not followed due to the lack of thread support in the translation interfaces. 

c. It was decided instead to use the other option: perform a "deep" port of Amalthea, 
that is, manually translate the Posix-based calls inside Amalthea into a Win32 implementation. 
An effort was made to maintain a compatible Unix code base by using compiler #if def directives 
to conditionally generate code for different platforms. This directly supports the future goal of 
reintegrating Unix and NT versions into a single code base. 

d. All code was compiled using Microsoft Visual Studio 97 C++ Compiler (SP3) and 
linked with multithreaded C libraries. Compiler warnings were set to their highest level. 
Consequently, as is common when compiling C code with C++ compilers, loose type 
specifications in the Unix code surfaced. All relevant Unix code was modified to use explicit 
type casting. This was a change in syntax to the Unix code base, not an algorithmic 
modification. In general, existing code was not touched in order to maintain a close match 
between the original Unix and new Unix/NT code bases. 

e. There were enough parallels between Unix and Win32 that the majority of the porting 
was straightforward. However, libthea presented some interesting issues, namely in the 
implementation of threads, synchronization objects, signals, and events. The Win32 version was 
coded to simulate the required operations as well as possible. To date, only one situation in 
which the simulated behavior produced discrepancies has been found: The way that Win32 
handles events causes some notifications to arrive at different times. The situation was corrected 
by verifying that the correct notification was received rather than assuming it was correct. 
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f. Table C-1 provides a list of the libraries and capsules that were ported to Win32. In 
addition, one new library was developed to handle NT service integration. This library 
facilitated the creation ofNT services (daemons). Using the services library, three new 
components were created: service_manager,process_manager, andproxy_client. Of those 
three, process_manager and proxy _client were instrumental in creating a hybrid system. The 
service _manager was more of a utility component that closely mirrored the operation of NT' s 
own Services applet. 

Table C-1 Items Ported or Created on NT 

Libraries Components 

libthea kined 

Ported 
lib sys sensim 

libenvelope simcon 
libal gen* 

service_manager 
Created service process_ manager 

proxy_ client 

C.3.2 Spread on NT 

a. At the same time that Amalthea was being ported to Win32, investigations of the 
Spread group communications package on NT were undertaken. 

b. Testing of Spread was performed in several steps, each subsequent step adding 
another variable into the configuration. At this stage, testing stressed compatibility and 
operational stability more than robustness or performance. Three utilities were used to test 
communications compatibility: 

(1) A version of the Spread-supplied sample user program modified for multithreaded 
operation under NT 

(2) A similarly modified version of the Spread-supplied sample.flooder 
(3) A custom program that sent n messages of b bytes, ported for both NT and Solaris 

c. Numerous test cases were run under each of the following configurations, listed by 
purpose and order of complexity: 

(1) NT single daemon operation Multiple clients on a single NT box 
(2) NT daemon to NT daemon interaction - Multiple clients on multiple NT boxes 
(3) NT daemon to Solaris daemon interaction - Multiple clients on multiple NT 

boxes and multiple Solaris boxes 
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d. Spread was configured to use the same TCP/IP communication method as the current 
HiPer-D system, that is, multiple point-to-point connections. The first time an NT daemon was 
introduced into a network of Spread daemons running on Solaris, all of the other daemons 
crashed. This just turned out to be an interesting requirement of the Spread configuration files. 
Nodes had to appear in the same order in each configuration file. A likely assumption is that 
each Spread daemon determines its unique identifier according to its location within the 
configuration file. This problem was not experienced under Solaris because our Unix systems 
shared a common file system. 

e. Other than that initial stumble, no errors were encountered through this stage of 
testing. Performance testing was deferred until tests could be conducted against the actual 
system. Additionally, the communications layers of Amalthea were ready to be linked with the 
Spread library, so focus was shifted to that task. One problem encountered was a program model 
inconsistency between Amalthea and Spread. Microsoft's compiler refused to link to Spread, 
giving errors related to errno. The primary suspicion was that Spread was built using single­
threaded C libraries. (Recall Amalthea was compiled using multithreaded C libraries.) Dr. Y air 
Amir, the developer of Spread, confirmed this and built a version that utilized the multithreaded 
C libraries. Following this modification, compilation of the ported Amalthea libraries was 
complete. 

C.4 Running the System 

a. Although all of the SENSIM capsules had been ported, only two capsules, namely, 
KlNED and SENSIM, were directly integrated into a running system. The remainder of the 
SEN SIM modules were peripheral components and were not required in order to run the system. 
The various gen* capsules were manually started, so technically they did not have to be 
integrated. However, gen_ newt was used often enough that a specific plan file was created for it. 

b. Before running any of these capsules on NT, the corresponding Solaris capsules had 
to be disabled. This involved removing some of the capsule execution dependency definitions in 
the System Control plan files. Execution dependencies existed on KINED from 
KINED_BROKER, TRACK_CONTROLLER, and TRACK_GEN. Execution dependencies on 
SENSIM existed from TRACK_GEN. The plan files for those modules were modified to allow 
them to start without waiting on KINED or SENSIM. For now, the NT modules would be 
started by hand. Automatically starting NT modules through System Control was deferred until 
JHU/ APL had a better understanding of the more basic integration details. 

c. System performance would be measured in terms of track loads and track latencies. 
Track load refers to the number of tracks that the system is handling at any one time. A track 
report is generated for each track at some defined periodic interval. These reports formed the 
bulk of the network traffic sent throughout the system. For simplicity's sake, an interval of one 
report per second was used so that the track load corresponds on a one-to-one basis with the 
number of reports. The higher a track load the system could handle, the better. Previous tests on 
a full Unix system showed that it could handle track loads approaching 8000 tracks (at one report 
per second). 
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d. Track latency refers to the time interval between when a track report was sent by one 
capsule and when it was received by another. Lower latency numbers represent better 
performance. Latency measurements were taken at various points in the progression of a track, 
starting at KINED and ending at model_client. On a full Unix system, track latency between any 
two adjacent capsules averages under 30 ms. In the hybrid system, the interval between KINED 
and KINED _BROKER is of particular interest because it represents the first point of transition 
between NT and Unix. 

e. The first tests were run on a uniprocessor Pentium 200-l'vIHz machine with 64 M 
RAM (machine name a2dwl). Almost immediately the first interoperability issue surfaced; 
neither KINED nor SENSIM would join the RTDS _ Signon group. The Spread-supplied USER 
program was used to monitor what, if any, messages where being sent to that group. By 
monitoring the RTDS _Signon group, the problem was traced to an unhandled endian conversion 
in rtds_if and tns_if While these interfaces properly converted most messages, they did not 
convert zero-length messages. Although no actual endian conversion was required on zero­
length messages, Spread reports endian differences and the AL layer issues an up-call to the 
conversion function. The conversion function did not properly handle this situation, resulting in 
the message being dropped rather than acknowledged. 

f. After making the appropriate changes and recompiling the affected capsules, both 
KINED and SENSIM were able to join the required groups. In fact, the entire system seemed to 
be running. An ownship process could be started from Unix, tracks injected into the system 
through both Solaris and NT versions of gen_newt, and track flow observed from KINED 
through to the model client. 

g. On the first run, the system showed extremely high ( 4 to 5 seconds or more) latency 
times, but it was soon realized that the NT and Solaris machines were not properly time 
synchronized. Since latency times are calculated using the local machine clock, an accurate 
reading can only be obtained if all machines in the system are properly synchronized. Time on 
the Solaris machines was maintained via Network Time Protocol (NTP) daemons on each Solaris 
box and a single time source. To synchronize the NT machine to the rest of the system, a 
suitable NTP service for NT was needed. Seven freeware and shareware NTP clients were 
obtained from the TUCOWS software repository (http://www.tucows.com/). Each client was 
examined in the areas of ease of use and simplicity. Many of the clients offered more 
functionality than necessary, such as time server capabilities. In the end, Dimension 4 by Think 
Man Software (http://www.thinkman.com/~thinkman/dimension4) was selected because of its 
simplicity, ease of use, and availability. 

h. The NT system was synchronized to the same NTP server that the Solaris machines 
used. This resulted in latencies that were in the neighborhood of 200 ms as measured at 
KINED _BROKER. This was still an unacceptably high latency. It was suspected that the 
network connection of the NT machine, at the time a 1 0baseT switched connection, was the 
major limiting factor. All of the Solaris machines were running on shared l00baseT 
connections. In this configuration, the NT machine was only able to maintain approximately 

C-6 

Ex.1009 / Page 227 of 280 
TESLA, INC.



1000 tracks before flooding its network connection. Further testing was postponed until a 
1 00baseT connection could be established. 

i. Following the connection of the 100-Mbit line to the NT machine, performance gains 
were immediately noticeable. Average track latencies dropped to 70 to 80 ms - still high 
compared to the Solaris machines, but acceptable for the time being. As the track load of the 
system was increased, strange results appeared in the average track latencies reported at each 
capsule. At just over 3000 tracks model_client would show stale track reports (latencies in 
excess of 500 ms). Because the only change introduced into the system was the addition of NT, 
the assumption is that one of those components, or perhaps NT itself, is causing a bottleneck. A 
perplexing aspect of this problem is that both KINED _BROKER and TRACK_PROCESSOR 
show track latencies around 100 ms. Therefore, between TRACK_PROCESSOR and 
model_ client something is causing latencies to increase drastically. JHU / APL is still unsure 
what is causing this problem. 

j. Ignoring the model_ client latency mystery for the time being, JHU/ APL continued to 
increase the track load. Unfortunately, as track loads neared 6000, CPU utilization in the 200-
1vffiz Pentium approached 100%. JHU/APL decided to move testing to a more powerful 
Symmetric Multiprocessor (SMP) system with two Pentium II 300-1v1Hz CPUs and 128 MB 
RAM (machine name taurus). A switched l00baseT connection was established and NTP time 
synchronization was installed. However, HiPer-D was unstable on this machine configuration. 
As tracks were injected into the system, the Spread daemon crashed with packet creation and 
packet delivery errors. The crashes seemed to occur at random points with no identifiable trigger 
events. It was not clear whether this was an issue with the SMP configuration, Spread, the NT 
capsules, the NT machine configuration, or some combination thereof. Ilill/ APL consulted Dr. 
Amir for assistance in exploring the possibility of an error in Spread. He built a modified 
daemon with increased debugging capabilities, but it was not possible to determine anything else 
about the problem through the use of this new daemon. 

k. Because the error manifested itself only on this particular machine (taurus), we 
suspected a hardware or software configuration error or an S:MP incompatibility. To isolate this 
suspicion, JHU/ APL ran the hybrid system using another NT machine. Similar in configuration 
to taurus, the new machine was also an S:MP but with only a single Pentium II 400-MHz, with 
128 MB RAM (machine name gemini). Again a switched l00baseT connection was made and 
time synch software installed. On this machine, the Spread daemon did not exhibit any 
unexpected packet handling. Further investigation consisted of starting daemons on both gemini 
and taurus, then running the system from gemini. No HiPer-D components were executed on 
taurus, only the Spread daemon. Interestingly, the daemon running on taurus still crashed in this 
situation, indicating a problem with the underlying hardware or software installed on taurus. 
Following a clean reinstallation of NT, taurus no longer exhibited packet-handling problems. 

1. Both taurus and gemini now appeared capable of running the hybrid system. 
However, an intermittent problem with KINED was experienced on both machines. At times, 
KINED stopped responding to the injection of new tracks. It would still send track updates for 
any tracks that were already in the system, but it would not start any new tracks. The error 
occurred at track levels ranging from no tracks Gust starting) to hundreds of tracks before 
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locking. The nonnal solution was a shutdown and restart of the HiPer-D system. In the interest 
of time, investigations into the cause of the error were shifted into the background as other test 
and performance measurements were continued. 

m. Analysis of all running HiPer-D threads revealed two threads that consumed the 
majority of all system resources. One was the single Spread daemon thread, the other was a 
KINED thread that listened for new Spread messages. On the first machine (a2dwl), each of 
these two threads accounted for nearly 50% of all processor utilization at 6000 tracks, effectively 
inundating the entire machine. As expected, the faster Pentium II machines were much more 
capable of handling the CPU demands of the system. At 6000 tracks, processor utilization was 
approximately 35% on gemini, and approximately 20% per processor on taurus. Network 
utilization averaged 1.5% per 1000 tracks. It certainly seemed like these machines and 
connections could handle the resource requirements that HiPer-D put forth. However, there were 
still high latencies in certain parts of the system. Again, KINED _BROKER and 
TRACK_PROCESSOR maintained relatively low latencies while model_client still reported 
much higher numbers. Performance tuning was delayed reliability and Unix interface issues 
could b resolved. 

C.5 Integration with System Control 

a. At this point the hybrid system was stable enough to include as part of Demo 98. As 
with the Unix-only configuration, JHU/ APL wanted to be able to start up the entire system with 
a single command to system_controL Until now, all of the NT capsules had been started by 
hand. Therefore, the first step in an automated startup was an interface module between Unix 
system_control and the NT capsules. One option was to port System Control's node_manager 
and agent programs to Win32. System Control could then communicate directly with the ported 
modules. However, node_ manager and agent utilized platform-specific features such as forking 
and parent-child relationships, which extended beyond the capabilities of the Amalthea library. 
This made this option neither practical nor feasible given the time constraints. A more 
applicable solution involved the integration of System Control on the Unix side and a separate 
program called process_manager on the NT side. 

b. Process_manager was created as an NT system service that allowed the remote 
invocation, monitoring, and tennination of an application. Commands and requests can be sent 
to process_manager through a regular socket connection. A single process_manager host can 
service multiple client connections, allowing the remote invocation of multiple applications on a 
machine (see Figure C-1 ). 
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Figure C-1 Hybrid System Configuration 

c. A new Unix program called proxy_ client was developed. Proxy_ client runs as a 
normal System Control client and connects to process_ manager through a socket. Through 
command line and environment variables, JHU/ APL could specify what application to run, along 
with an initial environment. Proxy_ client can be started from any machine, local or remote as 
long as it can make a socket connection to an NT host running process_ manager. Each 
proxy_client is bound to exactly one application. In addition, eachproxy_client maintains a 
heartbeat between itself and the application to which it is bound. If the application exits, 
proxy _client will also exit. Similarly, if proxy _client exits, the application it started will exit as 
well. If the host process_manager service somehow dies, all proxy _clients and applications tied 
to that ho st will exit. 

d. A version of proxy _client was developed for NT during the Amalthea Unix-to-NT 
porting process. It was used as the starting point for the creation of a Solaris version of 
proxy _client. Fortunately, the NT version of proxy _client was written using the Amalthea 
libraries, facilitating a port to Solaris. However, creating a Solaris version involved more than a 
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simple recompile of proxy_ client because a number of Amalthea packages were added or 
modified to implement the necessary features (see Table C-2). 

e. Porting the affected packages from Win32 back to Solaris was a straightforward 
process. Again compiler #define directives had been used to separate platform-specific code. As 
a result, simply overwriting the relevant Unix versions with the new NT versions was all that 
was required to synchronize the affected modules. 

Table C-2 Amalthea Packages Ported Back to Unix 

Packa e Modification 
thea socket 

Added 

f. After updating the Amalthea libraries, proxy _client compiled on Solaris without any 
modification. However, changes were needed to handle platform-specific characteristics in the 
user environment. The Win3 2 version of proxy_ client was designed to forward all environment 
variables to the application it starts, but it does not make any sense to pass a complete Unix 
environment to an NT application. For the purposes of this phase, JHU/APL restricted the 
forwarding of user information to only those variables that applied to the Windows environment 
(see Table C-3). Three new variables were introduced under Unix to specify an NT home 
directory (WIN_HOME), NT account username (WIN_ USER), and NT account password 
(WIN_PASSWORD). In general, these variables were not used; however, they were added to 
parallel the functionality of the original NT version of proxy_ client. Without any modification, 
proxy _client would try to authenticate account information on NT using the Unix account. This 
would work if an account exists under NT with the same username, but this is both impractical 
and unnecessary. Process_ manger did not require authentication to start an application. 

Table C-3 Environment Variables Forwarded by proxy_client (Unix) 

Environment Variable Values Purpose 
LOGGING YES !NO Enable/ disable logging of output 
CONSOLE YES INO Enable/ disable console interaction (should be ON) 
CAPSULE string Specify the capsule name 

STDIN string Specify and new STDIN source 
STDOUT string Specify a new STDOUT destination 
STDERR string Specify a new STDERR destination 

WIN HOME NT path NT application home directory; replaces HO:ME 
WIN USER string NT account usemame; replaces USER 

WIN PASSWORD string NT account password; replaces PAS SWORD 

g. The Solaris proxy_ client was able to start, monitor, and stop an application remotely 
on an NT host. JHU/ APL now had all the necessary components to implement an automatic 
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startup. HiPer-D would be configured just as it was on the Unix-only system, with the exception 
that KINED and SENSIM would be running on NT. 

h. To start the NT versions ofKINED and SENSIM automatically, system_control was 
used to start two instances of proxy _client. Plan files were created for two proxy_ clients as 
system_ control capsules. One proxy_ client would be bound to KINED, the other to SEN SIM. 
Each client was responsible for starting and monitoring its corresponding application. In this 
manner, system_control was able to start, stop, and monitor the NT capsules indirectly. 

i. The results were quite impressive. The hybrid system ran just as it did in a pure Unix 
configuration. All of the functionality from system_ control, such as the ability to include 
capsule dependencies and restart information, was available to the NT capsules. Once a proper 
configuration had been installed on an NT host - that is, process_ manager and Spread were both 
running - no further interaction with the NT machine was necessary. 

C.6 Current Problems and Issues 

a. JHU/APL has recently moved from Spread 3.08 to Spread 3.09, which was released 
in October 1998. No API changes were made in the new version. The major differences were 
the inclusion of a rnultithreaded library (similar to the custom-built library from 3.08) and 
support for IP-Multicast to a specific network segment. 

b. Two problems plagued the system. The first is a seemingly random locking that 
KINED occasionally experiences. Since moving to Spread 3.09 this problem has not been 
observed, but more extensive testing is required before a conclusive statement can be made about 
this error. The second, and more intriguing, issue was a repeatable view change error. The 
problem is as follows: when gen_ newt is run on the same machine as KINED and SEN SIM, 
KINED will report a view change from the unknown group /RefGrp/SIM _ Domains, as well as 
duplicate ownship messages from an external source. After some investigation, it was 
determined that KINED never joins the /RefGrp/SIM _Domains group (it is not supposed to), yet 
it still receives view change messages for that group. To confirm this, two instances of the user 
program were started. The first was used to simulate the group membership ofKINED; the 
second would simulate the actions of gen_ newt. An interesting observation was made: the 
KINED simulation would receive invalid view changes as soon as the gen_ newt simulation was 
started! Furthermore the problem only occurred when gen_newt was started with a private name 
that began with a capital 'K' or earlier (i.e., A, B, J, 3, 4, etc.). Another way of stating this is that 
KINED would receive bad view changes whenever gen_ newt connected with a private name 
whose first character was ASCII value 75 (decimal) or lower. This conclusion was made after 
repeated tests with different private names for gen_newt. By default, gen_newt used the private 
name GEN_ NEWT when connecting to the Spread daemon. When the connection name was 
changed from GEN_NEWT to GEN_NEWT and the entire HiPer-D system was rerun, no errant 
behavior was observed. 

c. Through deeper investigations into the view change error, the problem was traced 
back to an incorrect compiler optimization of the Spread daemon by Microsoft Visual C++ 
Version 5.0. Dr. Amir has built a new version of the daemon without any optimizations. Thus 
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far, no strange view change behavior has been observed, but testing will continue to determine if 
any other problems remain unresolved. 

C.7 Future Goals 

a. A major goal for the near future is a migration of the NT versions of Amalthea and 
the various SENSIM applications back to the single code base that supports the Unix systems. 
Since the NT version of Amalthea was developed, a number of modules on the Unix side have 
undergone major revisions. Message structures and general behavior remain similar for the time 
being, but JHU/ APL cannot guarantee how long this will be the case. It is quite obvious that a 
dual code base will not only be difficult to maintain, but may also introduce additional problems 
into the system. For the majority of the modules within Amalthea, reintegration into a single 
code base will not be that difficult. Compiler #define directives were heavily used to separate 
platform specific code. In addition, no Unix areas were modified when NT code was added. If 
no changes have been made to the Unix code, all that will be needed is to copy the NT version 
over the Unix version. If changes have been made, however, those changes must be incorporated 
into the NT versions, and possibly some of the NT-specific areas must be rewritten to implement 
algorithmic changes. 

b. The last major area of investigation deals with improving performance. Among other 
things, JHU/ APL will address issues such as whether an SJ\/IP system significantly improves 
throughput, or whether the physical location of machines relative to each other has any 
significant effect on latency times. 

C.8 Lessons Learned 

a. Over the course of this investigation JHU/APL came into contact with many aspects 
of Windows NT 4.0. Just like every other system, NT has both its advantages and disadvantages. 
These qualities need to be identified, and in some cases modified, if possible. The following are 
observations regarding the experience of working with NT. 

b. Setting up a new machine for NT is a straightforward process. Machines that 
supported booting from compact disk, read-only memory (CD-ROM) were the easiest to set up: 
Simply insert the NT CD into the CD-ROM drive and power up the system; the installation 
program starts automatically. Systems without bootable CD-ROMs required the use of a boot 
disk, which, although slower, was not any more complicated. Hardware detection and 
compatibility, a common issue in both the Unix and NT domains, was not a problem in this 
situation. NT was able to detect all system-level components such as the peripheral component 
interconnect (PCI) bridging hardware, small computer system interface (SCSI) controllers, and 
Ethernet adapters. Certain subsystem components, including video and sound cards, defaulted to 
a generic driver. However, an area in which NT has an obvious advantage over Unix is 
extensive vendor support for the NT platform. In every case, new device drivers for any 
nonnative devices could be obtained from the manufacturer's website. It is almost guaranteed 
that any new devices, both mainstream commercial and more industry specific, will support 
operation under NT. 
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c. Industry support is also prevalent in the area of application software. Microsoft's 
Windows 9x operating system has dominated the consumer and business markets. Windows 9x 
runs a subset of the Win32 API, while NT utilizes the complete Win32 specification. As a result, 
nearly all applications that run on Windows 9x will run on NT with little or no modification. 
Some vendors take advantage of the added functionality in the NT implementation ofWin32 to 
make their applications even more robust under NT. 

d. A major issue with the state of software deployment on NT is the intentional or 
inadvertent modification to the system through the installation of a user application. Microsoft 
software often causes this problem. For instance, the installation of Microsoft Internet Explorer 
4. O or the Microsoft Office Suite - both user applications in function - added new files to the NT 
system directory. What's more, these applications often modify critical system components and 
dynamic link libraries (DLLs), sometimes going as far as to modify the kernel. The installation 
of one or more select applications, and the subsequent system modifications these applications 
made, caused the original packet instabilities on taurus. It has not been determined which 
particular application or applications are responsible. In setting up NT for running HiPer-D the 
NT system was kept as "clean" as possible; only those things that were absolutely necessary 
were installed. The intent here is not to advocate running a bare system - that would defeat the 
purpose of a computer. However, care should be taken when adding any application to the 
system. One option is the use of some sort of monitoring program, such as any of the 
commercial uninstall programs, that is capable of recording the state of the system before and 
after an application is installed. These utilities can track changes to any files, new files that were 
added, and modifications to the registry. In this manner, system administrators have direct 
knowledge of exactly what has been changed and whether the installation of a particular 
application may cause instabilities. 

e. Growing support of NT in the software vendor community throughout the years has 
prompted the creation of many development tools. Consequently, NT has one of the most 
feature-rich development environments of any platform. Microsoft's Visual Studio Integrated 
Development Environment (IDE), if utilized to its full extent, is extremely versatile. It tracks 
multiple sources, generates dependencies, and provides useful variable browsing capabilities, 
among other things. In terms of debugging, Visual Studio allows source-level debugging, 
attaching to an already running process, debugging individual threads, and a multitude of other 
features. Other vendors have also created various development tools, such as Softlce debugger 
and Wdiffvisual diffutility. Most of our executables were generated through individual 
makefiles and the command line compiler rather than through the IDE. Because of this, 
advanced development features such as automatic dependency generation and incremental 
building were unavailable. As a result, modifications to any of the libraries required a complete 
rebuild instead of a selective relink, slightly increasing time requirements. Fortunately, the 
source level debugger could still be used to trace the operation of the NT capsules. 

f NT is flexible enough to simulate many of the Posix-derived functions that Amalthea 
exposes. Most required functions had some sort of corresponding Win32 call; the functionality 
of those that did not could be simulated through a combination of calls. The more subtle effects 
of simulating Unix in this manner have yet to be determined. Possible implications include 
improper operation, hindered performance, and reduced stability. However, all tests thus far 
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have not shown any errant operation or loss of stability that can be attributed to the porting of 
Unix calls. Win32 was never designed to simulate Unix calls; it is a different programming 
model that supports its own concepts and operations, including access to the characteristic 
Windows Graphical User Interface (GUI) routines. An interesting investigation might be the 
creation of graphical front-ends to the various HiPer-D components, possibly allowing dynamic 
interaction and tweaking of the modules, as well as improved presentation and reporting 
capabilities. 

g. Perhaps the most valuable lesson learned from this experience is that Windows NT is 
a viable operating system that should not be overlooked. Not only was NT capable of running 
HiPer-D applications, but it is able to achieve relatively good performance and reliability from 
those applications without an extensive amount of tweaking. Just looking at latencies and track 
loads will show that HiPer-D running on Unix has a clear-cut lead in terms of performance. 
However, keep in mind that while the Unix configuration has been tweaked and modified for 
years, the migration to NT has occurred in just over 4 months. 
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APPENDIXD 

HISTORY OF HIPER-D TRACK CORRELATOR AND FILTERING PROCESS 

The Johns Hopkins University 
Applied Physics Laboratory 

Laurel, Maryland 20723-6099 

D.1 HiPer-D Correlation and Tracking {HCT) 

a. The earliest HiPer-D work was focused on the ability to move existing tactical 
capabilities into a networked, distributed computing environment. HCT was an effort to provide 
a network-distributed implementation of the CEP correlation and tracking capabilities. This 
actually consisted of three separate functions (Track Management, Gridlock, and Update) as 
depicted in Figure D-1. There were two major objectives for this phase: 

(1) portability 
(2) communications development. 

b. The CEP code was written in C and implemented on Motorola 680x0 Versa Module 
Eurocard (VME) boards with the pSOS executive and a set of ffiU/ APL-developed messaging 
services. The clean, well-defined interfaces among the three application functions (Gridlock., 
Track Management, and Update) provided an obvious strategy for the port to HiPer-D. 
Network-based messaging services were developed to run both on standard network (Ethernet) 
environments, as well as Mach operating system native messaging; 1 and a surrogate for the 
pSOS executive was constructed to run on the host operating system (either Mach or Unix). 

c. The porting efforts were quite successful. At the time of the I1 demonstration, HCT 
ran on Ethernet-networked PCs with Mach, Ethernet-networked Digital Decstation 5000s under 
Digital Unix, and on an Intel MPP machine called the Paragon using Mach and an internal high­
speed switch network. 

d. The communications results were mixed. While the Paragon high performance 
switch network was effectively able to negate the performance distinction between local and 
remote communications, the situation in the Mach-based PCs was different. With buffering set 
for tolerable latencies, the PC was still able to achieve only ~ 1000 messages/ sec to a remote 
process vs. over 10,000 messages/sec to a local process. 

1 The Mach operating system, at the time, was a promising research endeavor that emphasized distributed computing 
and provided interprocess messaging services that allowed the processes to be placed among a collection of 
machines transparently. 
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Figure D-1 CEP Tracking and Correlation 

D.2 Track Correlation and Filter (TCF) 

a. The change from the HCT to TCF (Track Correlation and Filter) was motivated by 
the desire to address functionality more directly related to Aegis. Basically, the external 
interfaces initially established for HCT were maintained, but the HCT was completely replaced 
with new correlation and tracking that was derived from the Aegis C&D specification. Aside 
from this shift of focus, the other objectives were to investigate scalability and fault tolerance. A 
major component of this shift was also a change in messaging, away from simple Mach and 
network messaging services to a higher level set of services (the ISIS Distributed Toolkit) that 
offered delivery and ordering guarantees that are helpful in constructing scalable and fault­
tolerant software components. 

l~F--------~----
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Figure D-2 HiPer-D Track Correlation and Filtering 

b. TCF consisted of two modules - Track Init and Track Filter (see Figure D-2). The 
Track Init module performed correlation for a new track and entered the track into the system. 
The Track Filter implemented an alpha beta filter for maintaining state on each track. An "alpha 
beta" filter smooths a set of periodic measurements of some value by means of the equation: 

NewState Alpha * M + Beta * Last 
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Where: 
New State is the current estimate of the variable. 
M is an X or Y position measurement. 
Last is the previous estimate of the variable. 
The alpha and beta coefficients should sum to one. 
For alpha=l beta=O, no filtering is performed. As beta is increased from zero to 

one, the effect of the filter is increased. 

Track Filter implemented a primary/backup form of fault tolerance, but this was not thoroughly 
tested. Track Init had no form of fault tolerance. 

c. A simulator (KINED) was created to model multiple sensors and drive the system 
with input data. Two separate communications groups2 were created for delivering track data 
from the KINED to the TCF. Track change messages (new and lost) were routed into the Track 
Init, correlated, and forwarded to the Track Filter. Track updates were delivered directly to the 
Track Filter from KINED, bypassing the Track lnit module. Track Filter then sent both the track 
change and track update messages to the RTDS (Radar Track Distribution Server), allowing all 
messages to be placed in one ordered stream. The separation of the communications groups 
providing input to TCF allowed for differing delivery characteristics - minimal latency is 
desirable for track change messages, but high throughput is more important for the track updates. 
Track change messages probably account for less than 1 % of the total traffic in a running system. 

d. AutoSpecial handling3 created the need for new and lost track notifications with 
minimal latency (see Figure D-3). The sensor (simulated by KINED) determined whether a new 
track fell within an AutoSpecial region. In the event that one did, the sensor issued an 
AutoSpecial tentative new track message to Track Init. A communications group existed for 
clients interested in AutoSpecial events. Track Init would react to an AutoSpecial Tentative 
message by immediately issuing a tentative AutoSpecial message into the AutoSpecial group. 
The sensor was responsible for issuing a positive or negative resolution message (AutoSpecial 
report) shortly after issuing the tentative message.4 If the resolution was positive, Track Init 
entered a new track, and RIDS clients would begin to receive reports on the new track. 

2 Process group communications are described in Section Error! Reference source not found .. 
3 Auto Special is a term used to describe a high interest or high threat track. Typically, some region around a ship 
would be defined, and any tracks present in this region would be classified as AutoSpecial. Weapons control 
systems would want to receive notice for any detected AutoSpecial tracks as early as possible. 
4 If this confirmation did not arrive within a prescribed time frame, a negative resolution would automatically be 
issued by Track Init into the AutoSpecial communications group. 
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Figure D-3 TCF Information Flow 

e. The Track Init module performed track correlation between sensors. This required 
that Track Init maintain a current state for all tracks in the system. However, track updates were 
only being delivered to the Track Filter. From Track Filter, they were forwarded to the RTDS. 
To obtain track data, Track Init actually became a client of the RTDS in order to receive recent 
state on all tracks (see Figure). This allowed Track Init to evaluate and compare any new tracks 
to the set of existing, composite/filtered tracks being reported by all sensors. 

f. The Track Filter module combined the updates from multiple sensors and applied a 
simple filter to produce a composite track picture. This capsule could be replicated for fault 
tolerance, but filtering was performed by every Track Filter for every track. This simply means 
that the full load had to be carried by each Track Filter. 
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E.1 Introduction 
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a. One of the core technologies on which HiPer-D is based is process group 
communications. Process group communications provide a mechanism in which applications 
become members of a communications group. When a member sends a message in a group, all 
other members of the group receive the message. In this respect, process group communications 
are analogous to multicast communications. Process group communications extend the concept 
of multicast by providing reliable communications, by guaranteeing different levels of message 
ordering, and by providing operations associated with membership changes in the group. 

b. Since its beginning, HiPer-D has used a process group communications package 
known as ISIS. ISIS provided the following characteristics: 

(1) Reliable communications 
(2) Levels of ordering including no ordering, first in first out (FIFO) ordering, causal 

ordering and total ordering 
(3) Group membership change (referred to as group view changes or view changes) 

notifications that are synchronized in the message flow 
(4) A state transfer approach that holds up the message flow to all members and 

allows a synchronized state transfer to take place among group members when a view change 
occurs. 

c. Process group communications have been used throughout HiPer-D as the primary 
means for communicating among distributed processes. In general, the primary features that 
have been used are the reliable communications, message ordering, and group membership 
change notification. For example, the ISIS state transfer facility has been used to implement the 
fault-tolerant and scalable RTDS. 

d. In 1997, STRATUS, the vendor ofISIS, announced that it would stop selling ISIS 
and that there would be no replacement product. This prompted a search for a new middleware 
product. It quickly became obvious that there were no commercial process group 
communications packages available. There were, however, several research packages available. 
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e. The research packages that were considered included HORUS, ENSEMBLE, Spread 
and TOTEM. HORUS is from the continuation of the research efforts that produced ISIS. 
ENSEMBLE is the latest product from the same research group. Spread is a second-generation 
product that is derived from TOTEM. HORUS and ENSEMBLE were not selected due to 
maturity and stability concerns. TOTEM and Spread appeared to have the stability required for 
use in HiPer-D. Spread was chosen because it is more advanced than TOTEM and because local 
support was available from the developer of Spread, Dr. Yair Amir at The Johns Hopkins 
University Homewood campus. All of the communications packages reviewed, including 
Spread, supported reliable communications, ordered messaging, and group membership services. 
None supported synchronized state transfer, which is a major component of the RTDS design. 
This meant that synchronized state transfer would have to be implemented in a layer above 
Spread and below the application. 

f JHU/APL's original approach to communications for HiPer-D involved the 
development of three thin layers of software between the application and the underlying support 
mechanism. These layers are known collectively as Amalthea Communications or "Amalthea 
comms". The initial research into a replacement for ISIS quickly led to the realization that the 
Amalthea comms components that supported process group communications would have to 
change significantly if the move away from ISIS was to be accomplished without redeveloping 
HiPer-D applications. 

E.2 Amalthea Communications Layers 

a. Amalthea Communications consists of three layers: domain classes, domain class 
support (DCS), and group management services (GMS). Amalthea communications is written in 
ANSI C. Amalthea communications layers are shown in Figure E-1 and are explained in 
subsequent paragraphs. 

JHU / APL 
Applications 

ISIS 

} Domain 
Classes 

Figure E-1 Amalthea Communications Layers 

b. Domain classes are actually part of the application in that they are defined by the 
application. Domain classes contain message definitions and the definitions of all the routines 
that the application would use to send and receive messages. The idea is that this information is 
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defined once and is placed in a domain class library. Any application that needs to send or 
receive messages using that domain class would link with that library. This ensures that all 
senders and receivers of messages defined in a domain class have the same message definitions, 
thus preventing problems associated with senders and receivers operating with different revisions 
of a message structure. 

c. Domain classes support the idea of multiple instances of a domain class. 
Applications have the ability to define a domain class and then to use that same domain class to 
create a separate instance of the domain class. Messages sent in one instance are not received in 
a separate instance. An example of the use of multiple instances is a server's communication 
with multiple clients. The message structures and access routines would be the same for all 
clients but each client would need to receive a different set of messages. The server would create 
a separate instance of the domain class for each client. In this way, each client would receive 
only those messages specifically destined for that client, and the server would be able to use the 
same code to talk to all clients. 

d. Domain classes do not have to be ISIS-based. The concept can be used to implement 
a communications path using any underlying communications protocol. In the 1998 Advanced 
TCF efforts, a domain class was formed that used IP multicast as the underlying communication 
layer. 

e. The domain class support layer contains support utilities used by domain classes. 
These utilities include mechanisms for sending and receiving blocks of data. Domain classes 
form a message and then send a pointer to a DCS send function. The DCS send function actually 
transmits the message via ISIS. Similarly, messages received from ISIS are forwarded to the 
appropriate domain class by DCS. Prior to 1998, DCS was the layer that isolated HiPer-D from 
changes in ISIS. 

f Group management services provide domain classes with special services associated 
with group membership changes. These services include the ability to join a specific group and 
to register a callback routine that will be called when a view change (membership change) 
message is received. An application uses the join call to register a callback routine that will be 
called when a data message is received, and a separate routine that is called if the sending 
machine has a different architecture than the receiving machine. This last callback is known as a 
conversion up-call. Conversion up-calls give the domain class the opportunity to perform byte 
swapping in situations where the sending machine has a different endian ordering than the 
receiving machine. 

g. Other GMS services aid in the management of communications groups that contain 
both servers and clients and that use state transfer to implement fault tolerance. Before these 
services are explained, the basic approach of using ISIS synchronized state transfer must be 
explained. 
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Figure E-2 New Process Joins Group 

h. The left side of Figure E-2 shows Application A sending two messages, MAl 
followed by MA2. The right side of Figure E-2 shows Application B receiving MAl followed 
by the joining of Application C. When C joins, a group view event is started. At this point, ISIS 
completes the delivery of all messages that were sent prior to the view change even though the 
join attempt started before Appl B received MA2. This preserves consistent ordering of events 
among members of a group, even though actual delivery times may vary somewhat in a real-time 
sense. In this example, messages MAI and MA2 are delivered. The left side of Figure E-3 
shows Application B reacting to MAl and MA2 by creating MB 1 and MB2. 

Application B responds to MA 1 and /S/S blocks the delivery of MB1 and 
MA2 by sending MB1 and MB2 MB2 until the view change is complete 

Figure E-3 Messages in Old View are Delivered 

i. MB 1 and MB2 are sent in the new view that includes Application C. ISIS blocks the 
delivery of MB 1 and MB2 until the view change process is complete. This is shown in the right 
side of Figure E-3. After all messages from the previous view have been sent, ISIS provides all 
participants in the group with the opportunity to transfer state to the new joining member. GMS 
filters this and forwards the state transfer option to only the oldest member of the group. In this 
example, assume that Application A is the oldest group member. 
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to the new process ahead of any 

messages created in the new view 

Figure E-4 Sate is Transferred 

j. Figure E-4 shows Application A sending a state message in response to the delivery 
of a view change event from ISIS. The state information includes all information that the new 
member, Application C, will need to become a fully functional member of the group. In this 
example, that might include the fact that MAI and MA2 were sent. This will prepare 
Application C for the arrival ofMBl and MB2. Once all state transfer messages have been sent, 
ISIS resumes the message flows illustrated in Figure E-5. At this point application Chas been 
fully entered into the group, and the view change is complete. 

Normal message processing resumes 

Figure E-5 Message Flow Resumes 

k. Figures E-2 through E-5 illustrate the situation where a new process is added to a 
group. When a process leaves the group, either intentionally or as the result of a failure, a 
similar process occurs. All messages in the old view are delivered, assuming that there are 
receivers still left in the group. ISIS then holds any messages created in a new view and signals 
for a state transfer. GMS then selects the oldest member to perform the state transfer. When the 
state transfer is complete, ISIS resumes the message flow. The state transfer mechanisms 
illustrated here form the basic building blocks that JHU/ APL used to develop fault-tolerant 
servers for HiPer-D. 1 

1. The examples above illustrate the basic case where all members of a group are of the 
same type. This situation is shown graphically in Figure E-6. 

1 Note that the state transfer mechanism is only implemented for applications that are capable of sending or 
receiving state transfer. GMS's use of the capabilities provided by ISIS is such that there is no perfonnance penalty 
for applications that do not use state transfer. 
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/ Communications Group 
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Figure E-6 Bomogenous Applications Sharing a Communications Group 

m. The situation is more complex when the fault-tolerant entity is a server. In this case 
servers must belong to a communications group in which they can communicate with each other 
and they must also belong to a group in which they can communicate with clients. The groups 
must be separate since clearly it would be undesirable for clients to be aware of or involved in 
communications among the servers. Figure E-7 illustrates this situation. 

Server-to-Client 
Group 

Server-to-Server 

~ Group 

Figure E-7 Client/ Server Using Group Communications 

n. The situation where a server belongs to multiple groups complicates state-transfer. 
ISIS uses the synchronized state transfer process when any process joins a group. Clearly, this 
would be inappropriate when a client in Figure E-7 joins the Server-to-Client group because state 
transferred would be server state information. GMS supports the concept of a reference group to 
assist in this situation. 

o. A reference group is a group in which applications of the same type communicate. 
The Server-to-Server group in Figure E-7 is a reference group. GMS implements the concept of 
reference groups with the following rules: 

(1) Only processes of the same type may be in a reference group. 
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(2) State transfer only occurs between processes in the reference group. 
(3) A Process may only belong to a single reference group. 
( 4) Any process using state transfer must belong to a reference group 

p. GMS also supports the concept of fully qualified members of a group. A group 
member is fully qualified if it has completed all of its initialization activities, including joining 
all appropriate groups, and is ready to participate in the group. Scalable servers use this 
capability to determine when a new server is ready to begin processing. 

q. GMS supports the concept of a synchronized group. A group is synchronized if all of 
its members are fully qualified. A group is unsynchronized if any of its members are in the 
process of becoming fully qualified or if any of its members have departed and the view change 
has not completed. GMS provides optional up-calls to signal changes in synchronization. Fault­
tolerant servers use this to maintain consistency during view changes. 

E.3 The Adaptation Layer Approach 

a. In considering the impact of removing ISIS from the system, it was realized that the 
effort would impact both DCS and GMS and to a small degree the domain classes. This would 
be a high-risk process since all of JHU/ APL's HiPer-D components relied heavily on these 
layers. In order to prevent this from happening again in the future, it was decided that a new 
Adaptation Layer (AL) interface would be created. This is shown in Figure E-8. 

JHU / APL 
Applications 

... 

~ s 

Adaptation 
Layer 

Spread 

Domain 
Classes 

-E-- Adaptation Layer 
Interface 

Figure E-8 The Adaptation Layer 

b. The Adaptation Layer Application Programming Interface (AL API) identifies a basic 
set of group communications capabilities on which DCS and GMS can rely.2 If the underlying 
process group communications package supports those capabilities then the AL would be thin 
and would pass calls on to the underlying implementation. Any capabilities specified in the AL 

2 Note that in the following discussions the term "Application" refers to the DCS / GMS layers because they are the 
users of the AL. The users of Amalthea comms, which are HiPer-D applications, never directly reference the AL. 
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API that were not available in the underlying process group communications package would be 
implemented in the AL. 

E.4 Spread 

a. Spread implements process group communications by using daemons that are placed 
on different processors throughout the system. Applications communicate with Spread through a 
linked library that establishes a connection with a daemon. All communications with other 
Spread applications are routed through the daemons and up through the library to the application. 
Spread allows there to be any number of daemons in a system. An application may connect with 
a daemon on the same machine on which it is running or it may connect to a daemon on a remote 
machine. To improve fault tolerance, HiPer-D places a daemon on each machine and requires 
that all applications on a machine connect with the local daemon. This is illustrated in Figure 
E-9. 
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Figure E-9 HiPer-D's Use of Spread 

b. Spread daemons may be configured to communicate using either IP multicast or 
TCP/IP. To date TCP/IP has been used to minimize any potential problems associated with the 
ATM network in use at NSWCDD. 

c. Spread's programming interface is simple compared to ISIS. It consists of a connect 
call, a receive call, a pair of send calls, a join call, a leave function, and a handful of utility 
functions. 

d. The connect function is used to establish a connection between the application and 
the Spread daemon. The dashed lines in Figure E-9 illustrate this connection. This connection 
forms an endpoint to which Spread assigns a name that is unique within the system. Because 
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there is one endpoint per application, the endpoint name can be thought of as Spread's name for 
the application.3 

e. The receive call is the only function through which Spread returns group information 
to the application. Messages from other members of the group are returned from this call as well 
as special Spread-created view change messages. When application messages are returned, the 
name of the endpoint that sent the message is also returned. The receive call also returns a flag if 
the machine that sent the message has a different endian architecture than the receiving machine. 
This warns the user that the data in the message buffer may need to go through a byte swap 
operation. Each view change message identifies the reason that the change occurred and 
contains a list of the endpoints that are in the new view. 

f Spread supports a send call that allows the user to pass the address of a data buffer 
and its size to the call. To use this call the user must marshal the message into a contiguous 
space in memory. Spread also supports a scatter send call that allows the user to forward a list of 
pointers and sizes to Spread. This allows the application to send a message that is made of 
several components without having to first copy them into a contiguous buffer space. 

g. The Spread join call is used to join a group and the leave call is used to leave a group. 
There is no limit to the number of groups that an endpoint can join. All messages from all 
groups that an endpoint has joined are received through the receive function call. The receive 
call returns the name of the group in which the message was sent along with the message. 

E.5 Adaptation Layer API 

a. Those capabilities that are provided by currently available process group 
communications packages have influenced the specification of the AL API. ISIS implemented a 
broad interface with a large number of capabilities. HORUS reorganized the interface and 
eliminated several of the more complex functions. ENSEMBLE went even further in this 
direction. Spread, in contrast, has an extremely simple interface and a limited set of basic 
capabilities. After the tradeoffs were considered the following characteristics were chosen for 
the AL API: 

b. The AL API will support information hiding such that no underlying data structures 
associated with the underlying process group communications package would be used at the 
interface. In addition the interface will be designed such that any of the AL's underlying 
structures can be changed without impacting the AL API or any applications using it. 

(1) The AL API will be multithreaded and will use up-call mechanisms to deliver 
information to the application. 

(2) The AL API will support messages constructed of an unlimited number of variable 
sized buffers. 

(3) The AL API will support the following types of ordering: 
(a) FIFO ordering. 

3 The "one endpoint per application" rule is artificial in that Spread can support multiple connections from a single 
application. The AL does not support multiple connections from a single application. There can only be one AL 
library linked in an application, and the AL only supports a single connection call. 
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(b) Causal ordering Consider the situation where message 1 is delivered to 
processes A and B and A responds by sending message 2 on to process B. Causal ordering 
guarantees that B will receive message 1 followed by message 2. This is illustrated in Figure 
E-10. 

Messsage 1 Appl 
A 

Messsage 1 Appl 
B 

Causal Ordering guarantees 
that Appl B will Receive 

Message 2 after Message 1 

Figure E-10 Causal Ordering 

(c) Total ordering-Assures that all receivers receive all messages in the exact 
same order. This is more strict than causal ordering in that causal ordering deals with message 
exchanges that have a common node, and total ordering applies to all communications, even 
communications over parallel but unrelated paths. This is illustrated in Figure E-11. 
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Total ordering guarantees that all messages 
are received in the same order. Here B & D 

receive Msg 3 followed by Msg 4 

Figure E-11 Total Ordering 

(4) The AL API will support the following primary functions: 
(a) Group join and leave 
(b) Multicast send 
( c) Unicast send 
( d) Multicast RPC RPC Send calls require the receiver to reply explicitly to the 

message. The AL manages the replies and notifies the sender when all replies have been 
received. It also manages situations where expected replies can never be received because a 
message receiver leaves the group before replying. 

( e) Unicast RPC 
(f) Multicast stability- The sender is notified when the AL determines that all 

receivers have received the message. 
(g) Unicast stability 
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(h) Message and buffer management routines. 
(5) The API will support the following required up-calls: 

(a) Message reception 
(b) Endian conversion 
( c) View change 

(6) The API will support the following optional up-calls: 
(a) RPC reply received 
(b) Stability notification 

c. State transfer mechanisms are explicitly not included in the definition of the AL API 
because none of the candidate process group communications packages supported synchronized 
state transfer. If state transfer were written into the AL, it would have to be redeveloped when a 
new middleware package is selected. To avoid this the state transfer capability was written into 
the modified GMS. 

d. An initialization routine is provided in the AL API. In the Spread AL 
implementation, this is where the connection is made to the Spread daemon. The AL API 
requires that this call be made before any other call in the API. 

e. In using the AL API, a user joins a group by making a call to a join routine. In this 
call, the user specifies functions that are to be called when a view change occurs, when an endian 
conversion is required, and when a data message is received. No further action needs to be taken 
to receive a message. The next message received in the group will result in the data received 
function up-call being made. 

f To send a message, the application using the AL must first make an explicit call to 
create the message. In this context, a message consists of a header that contains information 
about the message and data space that contains the data that the user sends with the message. 
The create message function creates the header and returns a pointer to that header. It does not 
allocate storage space for the data associated with the message. The application then creates 
buffers and appends them to the message. This is done by passing the address and size of a piece 
of application-owned storage to create a buffer function. This approach prevents forcing the 
application to copy data into a contiguous space before sending the message. The AL passes the 
buffer pointer and size information down to Spread. Spread then uses this information to form 
the message packet that is transmitted over the network. 

E.6 AL Design 

An adaptation layer has been implemented to connect the AL API to the Spread process group 
communications package. One of the major issues that had to be addressed in this development 
was that Spread implements a standard down-call mechanism for receiving messages. The AL 
API defines an up-call mechanism for receiving information. This conflict was addressed by 
using a multithreaded design for the AL. 

E.6.1 Threading Model 
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a. The thread design inside the AL is driven by the difference in calling paradigms 
between Spread and the AL APL A single Spread listen thread is established that blocks on a 
Spread receive call and waits for messages to be delivered. An additional thread is created each 
time the application joins a group. A new message queue is also established for each group 
joined. The group thread monitors this queue for new messages. When the Spread listen thread 
receives a message from Spread, it places the message on the new message queue that is 
associated with the group in which the message was received. The threading structure is 
illustrated in Figure E-12. 
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Figure E-12 AL Thread Model 
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b. When the group thread gets a message on its new message queue, it first identifies the 
message type. If the message is a view change, the group thread calls the view change function 
defined by the application in the join call. If the message is a data message, the group thread 
first checks to see if the sending machine is of a different endian architecture than the receiving 
machine. If this is the case, the message is passed up to the application as an argument to the 
conversion up-call. This gives the application an opportunity to correct for endian differences 
before the message is processed. The data message up-call is made after any conversion up-calls 
are complete. 

c. The AL thread model allows the application to receive messages from multiple 
groups asynchronously. Within a single group, however, only one up-call will be made to the 
application at any time. The AL layer maintains message order. Up-calls will be made in the 
order that the messages generating the up-call arrived. There is no ordering supported between 
groups. This means that a message destined for group A that arrives after a message destined for 
group B could be delivered to group A before the other message is delivered to group B. 
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E.6.2 Data Structures 

The data structures in the AL consist primarily of doubly and singly linked lists. These 
structures are described in the subsections that follow. The relationships among the data 
structures are illustrated in Figure E-13. 

E.6.2.1 Group List 

The primary data structure is the group list. This is a doubly linked list that contains an 
entry for every group joined by the application. Each entry contains pointers to the new message 
queue for that group, a pointer to the current view for the group, and pointers to a list of records 
that identify any replies expected from other members of the group. Records in this list also 
contain all configuration information associated with the group including the default message 
ordering to be used, the group name, and the up-call functions defined for the group. 

E.6.2.2 New Message Queue 

a. The new message queue is used as common storage between the Spread listen thread 
and the group thread. The group thread reads records from the top of the queue and the Spread 
listen thread places new messages on the bottom of the queue. There is one of these structures 
for every group joined by the application. The head and tail pointers for this structure are held in 
the group record (component of the group list) of the group associated with the queue. 

b. If the new message queue entry represents a view change, a pointer to an array is 
established when Spread listen creates the queue entry. Each entry in this array is a pointer to an 
endpoint record for a member of the new view of the group. If the new message queue entry 
represents a data message, a pointer to the message structure for the message is established. 
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Figure E-13 AL Data Structures 

The message list structure is a doubly linked list that contains all of the messages that 
exist at any single point in time in the system. Messages are linked in a list to provide easy 
access by diagnostic routines that are capable of printing all messages in the system. Messages 
are not related by their position in the linked list. Message records are accessed either through 
direct reference via message handles held by the application or through access via the new 
message queue associated with a particular group. 

E.6.2.4 Buff er List 
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A message list record contains all of the information that pertains to a specific message, 
including a pointer to a list of buffers that hold the data associated with the message. If the 
message was created by the application in preparation for transmission, there will be an entry for 
each buffer appended to the message by the application. If the message was created by Spread 
listen when a message was received from Spread, then there will be only one buffer and that will 
contain all of the data associated with the message. Each buffer record in the list pointed to by a 
message list record contains the memory address of the actual data storage (in effect, this is a 
pointer to the storage), the size of the data storage, and a pointer to the next buffer record. 

E.6.2.5 View List 

A record in the group list contains a pointer to a record in the view list that represents the 
current view for that group. The view list is a doubly linked list of all views ( of all groups) that 
are currently active. This list also holds any expired views that are still being referenced by the 
application (see Section Error! Reference source not found., which describes reference 
counts). Each view record contains all of the information that relates to the view including a 
pointer to an array. Each entry in this array contains a pointer to the endpoint record of a group 
member that is present in the view. 

E.6.2.6 RPC List 

Records in the group list also contain head and tail pointers to an RPC list. There is an 
entry in the RPC list for each outstanding RPC message or stability message that has been sent in 
the group. Each entry contains the up-call routines that are to be called when an RPC reply is 
received or a stability response is determined. Each record also contains a pointer to the view in 
which the RPC or stability request was made. This is used to determine the endpoints from 
which replies are expected. 

E.6.3 Reference Counts 

a. The user of the AL API receives and manages handles for objects created and 
managed by the AL. These handles are implemented as pointers to isolate the AL API and its 
users from changes in the AL layer. Because the AL creates the objects pointed to by these 
handles, it must also be responsible for removing them. It is expected that the AL users will 
need to create copies of these handles. This creates a conflict because the AL layer needs to 
know when copies have been made so that it can know when a structure is no longer needed and 
can be removed. 

b. To address this problem, the concept of reference counted objects was created. When 
the AL user copies a reference counted object, the user must call a routine to increment a 
reference counter associated with that object. The AL also increments this count when the object 
is in use by the AL. When the AL is finished with the object, it decrements the reference count. 
When the AL user is finished with the copy of the object, the user must decrement the reference 
count. When the reference count goes to zero, the object is removed. The reference counted 
objects in the AL API are endpoints, groups, messages, and views. 
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E.6.4 Transmission Formats 

a. When the AL makes a send call to Spread, the AL passes Spread the name of the 
group in which the message will be sent and a data message that is encoded according to the type 
of message that is being sent. The encoding used is shown in Figure 14. 

Multicast Data Message All sizes are in bytes 

0 

0 

0 

0 

0 

0 

-1 Size Data 

4 8 

Multicast RPC Message 

-2 \ RPC Msg# Size Data 

4 8 12 

Unicast RPC Message 

-3 RPC Msg # Target EP Size Data 

4 8 8 + 12 + 
MAX_GROUP _NAME MAX_GROUP _NAME 

Unicast Data Message 

-4 Target EP Size Data 

4 4+ 8+ 
MAX_GROUP _NAME MAX_GROUP _NAME 

RPC Reply Message 

-5 

4 

Requestor 
RPC Msg# 

8 

Multicast Stability Message 

Target EP Size 

8+ 
MAX_GROUP _NAME 

-7 RPC Msg # Size Data 

4 8 12 

Figure E-14 Data Formats 

Data 

12 + 
MAX_GROUP _NAME 

b. The first 4 bytes in each format contain a negative integer that identifies the message 
type. In all formats the data area is preceded by a 4-byte integer that contains the size of the data 
area in bytes. The Target EP field contains the name of the unicast message destination 
endpoint. Receivers ignore the message if the Target EP field does not contain its name. The 
RPC Msg # field in the RPC messages and in the Multicast Stability Message contain an integer 
value that, in combination with the identity of the requesting process, uniquely identifies the 
RPC request. This value is echoed back in the Requestor RFC Msg # field in the RPC Reply 
Message. 

c. The data areas in each message format contain the buffers that are associated with the 
message. This is illustrated in Figure E-15. 
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E. 7 Transformers 
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Figure E-15 Transmitted Data Message 

a. The magnitude of the AL development effort was such that it was a high-risk item for 
the 1998 demonstration. It was not clear that the effort could be completed, integrated with 
HiPer-D, and integrated at NSWCDD in time for the 1998 demonstration. To reduce the risk, 
the decision was made to focus only on the integration of JHU/ APL's components for the 1998 
demonstration. NSWCDD components would continue to use ISIS. Transformers would be 
used to bridge between process groups implemented in Spread and their colleagues implemented 
in ISIS. 

b. A transformer is a standalone process that exchanges messages between a Spread 
group and an ISIS group. Transformers are built with both communications stacks and simply 
exchange messages at the top of each stack. Transformers do not implement any of the state 
transfer protocols. They are strictly limited to basic message exchange. 

c. With one exception, a separate transformer was built for each group that was used by 
both NSWCDD and JHU/APL components. The exception was the RTDS. The structure of the 
RTDS is such that it was easier to convert its inputs to use the new AL directly. The new RTDS 
gets information from the ATCF through the AL layer and distributes the information to its 
clients using ISIS. 

E.8 Results 

a. Development and initial integration were completed at JHU/ APL. A version of 
JHU/ APL's components was delivered to the lab at NSWCDD and integrated in time for the 
1998 HiPer-D demonstration. While several problems were uncovered and corrected during 
integration at JHU/APL, no problems were encountered in the AL, DCS, or GMS during the 
integration efforts at NSWCDD. Two problems were detected and corrected in the transformers 
during this integration. No quantitative comparisons were made, but performance of the new 
system appears to be at least comparable to the ISIS based system. 
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b. Considering the fact that this effort significantly changed the underlying middleware 
of all of JHU/ APL's HiPer-D components, this effort can only be considered a tremendous 
success. The accomplishment is even more striking when it is remembered that the effort started 
relatively late in the year and that developments in other HiPer-D components were carried out 
in parallel. 
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Abstract 
Certain real-time applications must operate in highly 

dynamic environments (e.g., battle environments), thereby 
precluding accurate characterization of the applications' 
workloads by static models. Thus, guarantees of real-time 
performance based on a priori characterizations are not 
possible. However, potential benefits of a posteriori 
approaches are significant, including the ability to 
function correctly in dynamic environments (through 
adaptability to unforeseen conditions), and higher actual 
utilization of computing resources. 

In this paper, we present an approach that is 
appropriate for systems which experience large variations 
in workload. A distributed collection of computing 
resources is managed by continuously computing and 
assessing QoS and resource utilization metrics that are 
determined a posteriori. The utility of our approach is 
shown by applying it to a large, experimental distributed 
Navy computing system. 

1 Introduction 

The majority of real-time computing research has 
focused on the scheduling and analysis of real-time 
systems whose timing properties and execution behavior 
are known a priori. This is not without justification, since 
static approaches to the engineering of real-time systems 
have utility in many application domains (13]. 

Furthermore, the pre-deployment guarantee afforded by 
such approaches is highly desirable. However, there are 
numerous applications which must operate in highly 
dynamic environments (such as battle environments), 
thereby precluding accurate characterization of the 
applications' properties by static models. In such contexts, 
temporal and execution characteristics can only be known 
a posteriori. Thus, guarantees of real-time performance 
based on a priori characterizations are extraneous. 
However, the potential benefits of a posteriori approaches 
are significant. These benefits include the ability to 
function correctly in dynamic environments (through 
adaptability to unforeseen conditions), and higher actual 
utilization of computing resources. 

This paper deals with large, distributed real-time 
systems that have execution times and resource 
utilizations which cannot be characterized a priori. The 
motivation for our work is provided in part by the 
characteristics of combat systems, which are described in 
[6] as follows: 

"Modern naval combatants host many highly 
complex systems. Each system performs one or more 
tactical capabilities. The single large-scale system 
formed via integration of these complex systems is a 
Combat System. . .. 

The combat system processing demand per unit of 
time is defined as follows. Each tactical capability, 
e.g., track management, has its own processing 

1 Sponsored in part by DARPA/NCCOSC contract N66001-97-C-8250, and by the NSWC/NCEE contracts 
NCEE/A303/41E-96 and NCEE/A303/50A-98. 
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demand. This demand is dependent on the number of 
objects, e.g., tracks, that will utilize this capability. 
The total number of capabilities active concurrently 
varies with time. The total number of objects driving 
each capability varies with time. Thus, the combat 
system processing demand per time unit is dependent 
on number of objects per capability in the time unit 
and the number of capabilities active during the time 
unit . ... 

A definition of the demand space features and 
supply space features is needed. The mapping of 
demand space features onto the supply space features 
is needed. Indices that support clustering or 
partitioning of demand features on or across supply 
features also is needed . ... " 

Implications of these requirements are that demand 
space workload characterizations may need to be 
determined a posteriori, and an adaptive approach to 
resource allocation may be necessary. In existing real­
time computing models, the execution time of a "job" is 
often used to characterize workload. and is usually 
considered to be known a priori. Typically, execution 
time is assumed to be an integer ''worst-case" execution 
time (WCET), as in [10, 12, 21, 19, 18, 13, 3]. While [13] 
establishes the utility of WCET-based approaches by 
listing their domains of successful application, others [9, 
7, 5, 8, 16, 12, 17, 15, 14, 11, 1, 2, 4] cite the drawbacks, 
and in some cases the inapplicability, of the approaches in 
certain domains. In [12, 17, 9, 5, l] it is mentioned that 
characterizing workloads of real-time systems using a 
priori worst-case execution times can lead to poor 
resource utilization, particularly when the difference 
between WCET and normal execution time is large. It is 
stated in [14, 1] that accurately measuring WCET is often 
difficult and sometimes impossible. In response to such 
difficulties, techniques for detection and handling of 
deadline violations have been developed [7, 15, 14]. 
Paradigms which generalize the execution time model 
have also been developed. Execution time is modeled as 
a set of discrete values in [8], as an interval in [16], and 
as a probability distribution in [9, 17, 2]. Most models 
consider execution time to apply to the job atomically; 
however, some paradigms [11, 15] view jobs as consisting 
of mandatory and optional portions; the mandatory 
portion has an a priori known execution time in [11 ], and 
the optional portion has an a priori known execution time 
in [15]. Most of these approaches assume that the 
execution characteristics (set, interval or distribution) are 
known a priori. Others have taken a hybrid approach; for 
example, in [5] a priori worst case execution times are 
used to perform scheduling, and a hardware monitor is 
used to measure a posteriori task execution times for 
achieving adaptive behavior. The approach most similar 
to the one presented in this paper is described in [4], 
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where resource requirements are observed a posteriori, 
allowing applications which have not been characterized a 
priori to be accommodated. Also, for those applications 
with a priori characterizations, the observations are used 
to refine the a priori estimates. These characterizations 
are then used to drive resource availability based 
algorithmic and period variation within the applications. 

In this paper we present an approach that is 
appropriate for systems which experience large variations 
in workload. We elaborate the details of the language, 
system model, metrics, and middleware presented in [20]. 
Furthermore, the experimental results presented in [20] 
were performed on a benchmark system, whereas this 
paper presents results from applying the technology 
within an experimental Navy distributed computing 
system. The techniques are used during war-fighting test 
scenarios, demonstrating processing of up to 7500 radar 
tracks while meeting real-time requirements. The testbed 
consists of many application systems (greater than 100 
processes consisting of more than 1 million lines of 
source code) being managed by the middleware, under 
highly dynamic system workloads, and on many 
cooperating hosts (40 hosts with 60 processors). These 
experiments provide a proof of concept for the 
specification language and the a posteriori techniques for 
modeling, monitoring and resource allocation. The results 
also demonstrate very fast (sub-second) detection and 
reallocation services for large-scale systems. 

2 The System Model 

Our approach to adaptive resource and QoS 
management is based on the dynamic path paradigm. A 
path-based real-time subsystem (see [20]) typically 
consists of a detection & assessment path, an action 
initiation path and an action guidance path. The paths 
interact with the environment via evaluating streams of 
data from sensors, and by causing actuators to respond (in 
a timely manner) to events detected during evaluation of 
sensor data streams. A system operates in an environment 
that is either deterministic, stochastic, or dynamic. A 
deterministic environment exhibits behavior that can be 
characterized by a constant value. A stochastic 
environment behaves in a manner that can be 
characterized by a statistical distribution. A dynamic 
environment (such as a war-fighting environment) 
depends on conditions which cannot be known in 
advance. 

For example, an air defense subsystem can be 
modeled using three dynamic paths: threat detection, 
engagement, and missile guidance. The threat detection 
path examines radar sensor data (radar tracks) and detects 
potential threats. The path consists of a radar sensor, a 
sensor data stream, a filtering program and an evaluation 
program. When a threat is detected and confirmed, the 
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engagement path is activated, resulting in the firing of a 
missile to engage the threat. After a missile is in flight, 
the missile guidance path uses sensor data to track the 
threat, and issues guidance commands to the missile. The 
missile guidance path involves sensor hardware, software 
for filtering, software for evaluating & deciding, software 
for acting, and actuator hardware. 

The approach described in this paper pertains to 
detection & assessment paths. This type of path 
continuously evaluates the elements of a sensor data 
stream to determine if environmental conditions are such 
that an action should be taken. Thus, this type of path is 
called continuous. Typically, there is a timeliness 
objective associated with completion of one review cycle 
of a continuous path, i.e., on the time to review all of the 
elements of one instance of a data stream. (The data 
stream is produced by sampling the environment. One set 
of samples is the data stream instance.) 

The threat detection path of an air defense system is 
an example of a continuous path. It is a sensor-data­
stream-driven path, with desired end-to-end cycle 
latencies for evaluation of radar track data. If it fails to 
meet the desired timeliness quality of service in a 
particular cycle, the path must continue to process track 
data, even though desired end-to-end latencies cannot be 
achieved. Peak loads cannot be known in advance for the 
threat detection path, since the maximum number of radar 
tracks that may exist in a battle environment cannot be 
known a priori. Furthermore, average loading of the path 
is not a useful metric, since the variability in the sensor 
data stream size is very large - it may consist of zero, 1 Os, 
1 OOs or 1000s of tracks. 

We have developed a demand space model based on 
the dynamic real-time path paradigm. A software 
subsystem, SS, consists of (1) a set of applications (SS.A 
= { a1, a2, ••• } ), (2) a set of devices (sensors and actuators) 
(SS.D = { d1, d2, ••• } ), (3) a communication graph defining 
the connectivity between applications and devices (r(SS) 
e II((SS.D u SS.A) x (SS.D u SS.A)) ), and (4) a set of 
paths (SS.P = {P1, P2, P3, ••• }). (Note: II denotes the 
power set). 

Each continuous path P1 is represented as (1) a set of 
applications P1.A = {lli,1, ai,2, ..... } (where Pi.A s;;;;; 

SS(Pi).A), (2) a set of devices P1.D = { ~.1, di,2, ..... } (where 
P1.D s;;;;; SS(Pi).D), (3) a communication graph y(Pi) e 
II((P1.D u P1.A) x (P1.D u P1.A)) (note that y(Pi) s;;;;; 

r(SS(Pi))), and (4) a data stream P1.DS. (Note: SS(Pi) 
denotes the subsystem in which path P1 is contained.) 
Profile(ai) is the set of hosts where application 'a/ is 
eligible to be run (i.e., the set of hosts for which a; has 
been compiled). For the communication graph y(Pi), the 
head node of the graph (which is the application which 
receives the initial input data stream) is represented as 
ROOT(Pi), and the last node of the graph (which is the 
application which communicates with other applications 
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or paths outside of Pt) is represented as SINK(Pi). The 
type of P/s data stream is defined as -r(P1.DS)e {dynamic, 
stochastic, deterministic}. (For the remainder of this 
paper, it is assumed that the all data stream types are 
dynamic). 

The real-time QoS requirements of a continuous path 
include one or more of the following: (1) required latency 
of "-REQ(Pi) seconds, (2) required throughput of 0REQ(P1) 
data stream elements per second, and (3) required data 
inter-processing time of 6aEQ(Pi) seconds (the maximum 
allowable time between processing of a particular element 
of P1.DS in successive cycles). To mask transient QoS 
violations during QoS monitoring, a specification may 
also define a sampling window and a maximum number 
of QoS violations to be tolerated within the window; 
ro(Pi) models the sampling window size and u(P,) 
represents the maximum allowable number of violations 
within the sampling window. 

The demand space model also captures information 
that must be obtained a posteriori. Some application 
programs can be replicated for load sharing. The set of 
replicas of application 'a;/ during cycle 'c' of P1 is 
defined as REPLICAS (ay,c) • {aiJ,t, ay,2, ... }. The host 
to which application 'Rij.k' is assigned during cycle 'c' of 
path P1 is defined as HOST (a1J,1t,C,P1). 

The set of elements that constitutes a data stream can 
vary dynamically. P1.DS(c)={P,.DS(c)1, P,.DS(c)z, ... } 
represents the set of elements in P1.DS during cycle 'c' of 
P1• The tactical load (in number of data stream elements 
processed) of a continuous path P1 during it's c!l! cycle is 
tp1.DS(c)I. The processing of elements of a data stream 
may be divided among replicas of an application to 
exploit concurrency as a means of decreasing execution 
latency of a path. In successive stages of a path that has 
non-combining applications (applications which, after 
processing data received from a single predecessor, 
simply divide the data among their successors), data will 
arrive in batches to applications; hence, each application 
may process several batches of data during a single cycle. 
Thus, the model represents the set of elements from all 
batches of data processed by application/replica 'a' during 
cycle 'c' as Pi.DS(c, a}={P;.DS(c, a)1, Pi.DS(c, a)z, ... } 
The cardinality IPi.DS(c, a)I is the tactical load of 'a' in 
cycle 'c'. The data stream elements contained in the j th 

batch of 'a' are denoted by Pi.DS(c, a,j}={Pi.DS(c, a,j)1, 
P;.DS(c, a,j}z, ... }. 

3 QoS Specification 

This section presents a specification language for 
describing the characteristics and requirements of 
dynamic, path-based real-time systems, and incorporates 
the system model constructs described in Section 2. The 
language provides abstractions to describe the properties 
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of the software, such as hierarchical structure, inter­
connectivity relationships, and run-time execution 
constraints. It also allows description of the physical 
structure or composition of the hardware such as 
LANs, hosts, interconnecting devices (such as 
bridges, hubs, and routers), and their statically known 
properties (e.g., peak capacities). Further, the quality 
of service requirements of various system components 
can be described. The constructs of the specification 
language are illustrated within the context of the 
distributed experimental Navy combat system 
components ( described in Section 5). 

A high-level system specification is shown in 
Figure 1. At the highest level, a specification consists 
of a collection of software systems, hardware systems, 
and network systems. A software specification is a 
collection of software systems, each of which consists 
of zero or more software subsystems (SS). This is 
illustrated in Figure 1 for the AA W system. The 
Doctrine SS has a priority, a set of dynamic real-time 
path definitions (SS.P), and a set of application 
program definitions (SS.A). 

A path (P1) is defined as a connectivity graph 
(y (P1) ) of constituent applications, a set of attributes 
(priority and type), QoS requirements, and data/event 
stream definitions (P1.DS). The connectivity 
specification represents the communication 
relationships among applications (P1.A) in a path. 
These relationships form a directed graph, specified as 
a set of ordered application pairs, which indicates the 
primary data flow between applications. (Note that 
the names of the applications specified in the sample path 
are fully qualified as system:subsystem:application.) 

A path's real-time QoS requirement specification may 
include simple deadlines, inter-processing times, 
throughputs, and super-period deadlines. A simple 
deadline is defined as the maximum end-to-end path 
latency (A.ug(P1)) during a cycle of a continuous or quasi­
continuous path, or during an activation of a transient. 
Inter-processing time (6u0(P;)) is defined as a maximum 
allowable time between processing of a particular element 
of a continuous or quasi-continuous path's data stream in 
successive cycles. The throughput requirement (0u0(Pi)) 
is defined as the minimum number of data items that the 
path must process during a unit period of time. Each 
timing constraint specification may also include items that 
relate to the dynamic monitoring of the constraint ( e.g., 
slack). 

The scalability specification indicates whether the path 
is scalable, and includes specifications for defining when 
and how scaling will be accomplished. (For a path to be 
scalable, one or more applications in the path must be 
scalable.) A datastream specification (P1.DS) is also 

HARDWARE SYSTEM Navy_Ship { .•. } 
NETWORK SYSTEM Ship_Net { •.• } 
SOFTWARE SYSTEM ATVVCS { ... } 
SOFTWARE SYSTEM AAW 
{ I/ This line is a comment 

SUBSYSTEM Displays{ ... } 
SUBSYSTEM TacticalServices { ... } 
SUBSYSTEM Docb'ine { 

Priority 2; 
PATH AutoSpecial_Review { 

Connectivity { 
(AAW.TrackServices:Track_Processor, AAW.TrackServices:RTDS); 
(AAW:TrackServlces:RTDS, AAW:Doctrine:AutoSpecial); 
(AAW.Doctrine:AutoSpecial, AAW.TacticalServices:Engage_Server); 
(AAW:TaclicalServlces:Engage_Server, AAW.TacticalServices:VVCS); 

} //end Connectivity 
Type Continuous; 
Priority 1; 
ReafnmeQoS{ 

SimpleDeadline 65.0; 
lnterProcesslngTime 0.600; 
Throughput 200; 
Batchlatency 20.0; 
Batch Inter Arrival 550.0; 
MaxSlack 80; 
MinSlack 20; 
SlidingWindowSize 20; 
Violations 15; 

} fiend of real-time QoS definition 
Scalability { Scalable TRUE; 

PathSettlingTime 30.00;} 
DATASTREAM { Type Dynamic; 

Slack:QoS 400;} 
} I/end path AutoSpecial_Review 
PATH SemiAuto_Review { ..• } 
Application AutoSpecial { ... } 
Application SemiAuto { ..• } 

} I/end of software subsystem Doctrine 
} I/end of software system AAW 

Figure 1. AAW sys & AutoSpecial_Review path. 
given for the sample path. The stream type (,:(P1.DS)) can 
be deterministic, stochastic, or dynamic. 
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The applications (P1.A) which constitute a path are 
included in the QoS specifications (Figure 1 & 2). An 
application is either an executable image that may be 
started as an autonomous process on a host, or a script file 
that potentially forks multiple processes. An application 
has several control characteristics. First, there are time 
delays associated with the application (representing the 
amount of time the control program must wait before 
starting this application, and the time the application 
requires to complete its initialization once it has been 
started). There are also definitions controlling how an 
application is started. The Automatic attribute is used to 
determine which applications should be started 
automatically as part of default system initialization. The 
RMStart field specifies whether the Resource 
Management infrastructure should decide where the 
application should be started or whether a static 
configuration should be used. Console and Display are 
attributes pertaining to the graphical capabilities required 
by the application (mainly used for debugging). Memory 
indicates the minimum amount of memory that the 
application requires in order to execute. 
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An application can have one or more Startup blocks to 
describe the resource requirements of the application. 
This information includes required host type and 
operating system type and version(s); alternately, this may 
be an optional list ofhostnames. The startup information 
also includes the working directory, name of the 
executable, and an ordered list of arguments. (Multiple 
Startup blocks are used when multiple versions of an 
application exist, such as executables compiled for 
different machine architectures.) The Shutdown block 
specifies either a signal used to shutdown the application, 
or a script to gracefully terminate the application. 

The Dependency block describes temporal 
relationships between applications, including startup and 
shutdown dependencies and time delay requirements. 

A survivability QoS specification includes a Boolean 
variable that indicates (1) whether the application should 
be managed to ensure survivability (i.e., fault tolerance) 
and (2) the minimum required level of redundancy. The 
flag, SameHost, indicates whether the application must be 
started on the same host on which it failed (which is 
useful for providing fault tolerance for daemons that must 
run on a specific host). 

The scalability specification indicates if an application 
can be scaled via replication. (Currently, applications 
specified as scalable are assumed to be capable of 
performing load sharing among replicas, and adapting 
automatically to varying numbers of replicas.) 

Hardware system specifications (Figure 3) allow the 
description of zero or more hardware subsystems. Each 

APPLICATION AutoSpecial { 
TimeDelay 4; II Wait this long (secs) before starting 
SettlingTime 5; II App needs this long to initialize to steady state. 
Automatic TRUE; II Automatically start this app 
RMStart TRUE; // This application is to be allocated a host by RM 
Console TRUE; II Start this App in a XTerm 
Display "taetical1 "; II Where to place the display for this App 
Memory 2; // Min amount of Free RAM (Mb) needed 
STARTUP{ 

Type "SUN"; OS "Solaris"; 
Version"2.5.1"; Version ''2.6"; 
Directory "$TACTICAL_BINDIR"; 
Execute •auto_special.solaris.exe"; 
Arg "%(UNIQUE, 1, 32)"; 
Arg "> /usr/bnp/%(USERID)_auto_spec_%(UNIQUE, 1, 32).out''; 

} //end STARTUP 
SHUTDOWN { Script "auto_special_shutclown";} 
DEPENDENCY{ 

} 

Type STARTUP; II STARTUP, SHUTDOWN 
Name "AAW:Tactica1Services:Doc1rine_Server"; 
Delay 1 O; fl seconds 

RestartDelay 1; ff Time to delay starting after a detected failure 
SurvivabilityQoS { Survivable TRUE; 

MinCopies 1; 
SameHost FALSE; 

} 
Scalability { Scalable TRUE; 

Combining FALSE; 
Splitting FALSE; 

Figure 2. Specification of AutoSpecial. 
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hardware subsystem consists of one or more hosts. A host 
specification describes the host's name, type, operating 
system and version, number of processors, processor 
speeds, RAM capacity, and network connectivity. 
Network system specifications describe the networks and 
interconnection devices such as switches, hubs, and 
routers. A network system consists of zero or more 
subsystems which may contain networks (each with an 
associated peak bandwidth specification) and/or 
interconnection devices ( each containing a description of 
network membership). (Hardware and network system 
models employed for characterizing the resource supply 
space features are described in Section 4.) 

4 Adaptive QoS and Resource 
Management 

This section defines metrics and techniques for 
reasoning about the mapping of demand space onto 
supply space, i.e., for resource and QoS management. 
Our approach (depicted in Figure 4) works as follows. 
Application programs of real-time control paths send 
time-stamped events, via the Application Instrumentation 
component, to the Path QoS Monitor component. The 
Path QoS Monitor component calculates path- and 
application-level QoS metrics, compares observed QoS to 
required QoS, and notifies the QoS Diagnosis component 
when QoS violations are detected. The Host & Network 
Monitoring component collects operating system and 
network performance, status, and load information, which 
is then provided to the Resource QoS Monitor component. 
Here, host and network statistics are correlated, 
performance and load histories are maintained, and load 
metrics are calculated. This information is made available 
to the QoS Diagnosis component for use in determining 
resource loading, and allocation tradeoffs. The QoS 

HARDWARE SYSTEM Navy_Ship { 
SUBSYSTEM Compartment_5 { 

} 

HOST tactical_ 12 { 
Type"SUN"; 

} 

OS "Solaris"; Version "2.6"; 
Speed 250; //MHz Memory 256; //MB 
NumCPUs2; 
Default-Network Ship_NetEther _ 100; 
Network Ship_Net:ATM_250; 

HOST tactical_ 13 { ... } 
} 
SUBSYSTEM Compartment_6 { ... } 
SUBSYSTEM Compartment_7 { ... } 

NETVIK>RK SYSTEM Ship_Net { 
LAN Ether_100{ Bandwidth 100;} 
LAN ATM_250 {Bandwidth 250;} 
ICHub_3{ 

}} 

Network Ship_Net:Ether_100; 
Network Ship_Net:ATM_250; 

Figure 3. Host & net. specs. 
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host and network load metrics to the Resource Allocation 
component. The Resource Allocation component 
determines the most beneficial allocation of resources for 
restoring required QoS. The allocation actions selected 
are then implemented by the Application & Resource 
Control components. These techniques are explained in 
more detail in this section. 

Monitoring of real-time QoS involves the collection of 
time stamped events sent from applications. The times 
when application/replica 'a' starts and ends processing of 
the data stream for cycle 'c' are represented as s(P,.DS(c, 
a)) and e(P1.DS(c, a)), respectively. The times when 
application/replica 'a' starts and ends processing batch 'j' 
of data during cycle 'c' of Pi are denoted by s(P1.DS(c, a, 
j)) and e(P1.DS(c, a, j)), respectively. 

Observed real-time QoS metrics are defined in terms 
of these basic events as follows: (1) latency of path P! 
during cycle 'c' is = A.ous(l\c) = max({e(P1.DS(c, a1,m,n, 
j)) - s(P1.DS(c, ai,I,i, 1)) I a1,m = SINK(P1), a1,x = 
ROOT(P1)}) (note that "'OBS is the maximum value from 
the set of latencies of all batches of data processed by all 
replicas of SINK(Pi) during the cycle), (2) data-inter­
processing time of application 'a' in path P1 during cycle 
'c' of data stream P1.DS(c,a) is approximated as 

oQ)S~ 

•Allotallon1radedf analy9ia 

80 us(P1.DS(c,a)) = {s(P,.DS(c,a))-s(P1.DS(c-l,a))}, fore 
> 1, (3) data-inter-processing time of path P! during cycle 
'c' for data stream Pi.DS(c,a) is oous(P1,DS(c)) = 
8ous(P1.DS(c,a)), where 'a' = ROOT(Pt), (4) observed 
cycle throughput of path P1 during cycle 'c' is 0ous(Pi,c) = 
IP1.DS(c)I / A,Qus(Pi,c), (5) workload of application/replica 
'a' of path P1 during cycle 'c' is WoBS(P1,c,a) = 
IPi•DS(c,a)I / 80BS(P1,DS(c,a)), and (6) workload of path 
~ during cycle 'c' is W0us(Pi,c) = IP,.DS(c)I / 
8~BS(P1.DS(c)) = (EIP1.DS(c,amJI) / 80BS(P1,DS(c)), for all 
replicas k ofROOT(Pi). 

Analysis of a time series of the real-time QoS metrics 
enables detection of QoS violations. An overload of a 
path or application occurs in any cycle 'c' where the 
number of violations within the sample window ro(P1) 
equals or exceeds the maximum number of violations 
o(Pi). As an example, detection of a path-level QoS 
latency violation occurs when the observed path latency 
A-OBS(P;) exceeds the required path latency A-REQ(Pi) for 
u(Pi) samples within the sample window of the most 
recent ro(P1) samples. This can be expressed as o(Pi) :s;; 
l{d: (c-d)+l < ro(Pi) A [O .. REQ(P1) - A.oBS(Pi,d)) < O)]}I, 
where 'c' is the current data stream cycle and 'd' 

8'jslan 41111cuce~deUii■akill 

represents data stream cycles 
within the sliding window 
[c-(ro(P1)-1), c]. For the 
experiments described in 
Section 6, path latencies 
(A.oBS(P1, c) ) are used for 
determining QoS violations. •HW- Spe(:!u·ficaicns 
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Figure 4. QoS & resource management. 
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The components of the 
supply space are also 
modeled a posteriori in our 
approach. A hardware 
system, HS, consists of(l) a 
set of hosts HS.H = {hi, h2, 
...... }, (2) a set of Local 
Area Networks or LANs, 
HS.L = {L1,L2, ...... } , and 
(3) a set of interconnecting 
devices HS.I= {ii,iz, ...... } . 
The system model captures 
several hardware load 
metrics. The paging score 
of a host h1 at time t is 
defined as PS(hi,t), and is 
calculated as the number of 
page faults per second 
averaged over the time 
interval ti, divided by a 
maximum page fault 
threshold. The cpu score of 
a host h1 at time t is defined 
as CS(h1,t), and represents 
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the average percent CPU idle time over time interval ti. 
The network score of a host h; at time t is defined as 
NS(hi,t), and is calculated as the number of packets 
received plus the number of packets sent averaged over 
time interval t3, divided by a maximum network packet 
threshold. (All scores fall within the interval [0,1].) 

Fitness scores for each of the host load metrics are 
calculated as follows: The paging fitness is calculated as 
PF(ht,t) = (1 PS(hbt)). The cpu fitness is calculated as 
CF(hi,t) = CS(hi,t), The network fitness is calculated as 
NF(h1,t) (1 - NS(h1,t)). These fitness score are use~ to 
calculate the aggregate fitness indices. The notation 
FI(h1,t) denotes the aggregate fitness index of host h; at 
time t. One fitness index :function that we have found 
useful is: Fl(hi,t) = (w1 * PF(h1,t)) + (w2 * CF(h;,t)) + 
(w3 * NF(h1,t)), where Wi is the weight given to the ith 

load metric, and l: wi = 1.0. The fitness index is a relative 
measure of host load: the higher the fitness index, the 
lighter the load on the host. When making resource 
allocation decisions, hosts with higher fitness scores are 
preferred over hosts with lower fitness scores. 

J ,t, 

5 Experimental Results 

The techniques described in the previous sections have 
been implemented and employed to manage several 
subsystems within a complex distributed experimental 
Navy system. This section describes a set of experim~nts 
that demonstrate the ability of our approach to dehver 
real-time QoS to these subsystems, even in highly 
dynamic environments. 

The experiments were performed in the System 
Control Laboratory (SCL) at the Naval Surface Warfare 
Center in Dahlgren, Virginia. The tactical system 
applications, simulation components, and resource and 
QoS management components were run on Sun, SGI, 
DEC and HP systems, consisting of (a) 12 Sun Ultra 2 
Enterprise dual processor machines in a "compute farm" 
arrangement, (b) 2 Sun Ultra 2 dual processors, ( c) 1 Sun 
Ultra 1, (d) 1 Sun Ultra 60, (e) 1 Sun Spare 10, (f) 7 SGI 
Origin 200 dual processor machines in a compute farm 
arrangement, (g) 3 SGI Onyx 2 computers, (h) 1 SGI 02 
workstation, and (i) 5 HP TAC-4 J210 workstations. In 
addition, there were 3 Sun systems running Solaris 2.~.1, 
two of which were used as file servers, and one of which 
was used as a Network Time Protocol (NTP) server. 

1998 Demo Block Diagram (simplified) 

Scenario 
Generator 

Gerntric 
NavSim 

Geodetic: t:::;;:::::::=:::j. 
0/S Position 

Advanced Computing 1998 Demo Overview 

DIS 

- Geocentric X, Y, Z (DIS-based) 
- Ship Relative• Ownship Tangent Plane 

- Geodetic. WGS-84 
- N/A 

Diagram developed by Wayne Mills 
and Mike Johnson, NSWCDD 

29 September 1998 - p 3 

Figure 5. The software systems ,used in the experiment. 
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There were also 6 DEC Alpha workstations running DEC 
Unix 4.0b which were used for instrumentation displays, 
and 1 SGI Indigo2 running Irix 5.3 which was used for 
visualization of network loading. Four Windows NT 
systems were also part of the testbed but were not used 
during the experiments reported herein. 

Three networks were used in the testbed: ATM, 
FDDI, and Ethernet (both l0baseT and lO0baseT). All 
systems except for the file servers and time server were 
connected to the Ethernet network, and most hosts were 
also connected to either the A TM or FOOi networks. The 
ATM network was used as the primary network for 
tactical communication ( except for hosts that did not have 
ATM connections, in which case FDDI was the preferred 
network). The Ethernet network was used primarily for 
data traffic supporting resource and QoS instrumentation, 
monitoring, and control. 

The block diagram in Figure 5 shows the major 
computer program components that were operational 
during the experiment The components shown outside of 
the shaded region represent simulators controlling targets, 
tracks, Navy ships, radars, and weapon systems. These 
components form an integrated wrap-around simulation 
environment capable of updating and controlling the 
behavior of 1 000s of real-time tracks. The "system under 
test", represented within the shaded region, is composed 
of Command, Control, Communications, Computers, and 
Intelligence (C4I) components, ship combat systems Anti­
Air Warfare (AAW) components, and Advanced 
Tomahawk Weapon Control System (ATWCS) Launch 
Control components. 

The AA W subsystem was the focus of our 
experiments and incorporates the air defense path 
components discussed in Section 2: threat detection 
(detection & assessment path) and engagement (action 
initiation path). The data flows along the AA W 
subsystem paths are initiated by the simulation 
environment. Track data injected by the wrap-around 
simulation environment is provided to the Track 
Correlation and Filtering (TCF) function, which creates 
and maintains a track file representing the ship's view of 
the tactical environment. The TCF function provides this 
data to the Radar Track Data Server (RTDS), which 
distributes the track data to client applications as 
requested. The four weapons doctrine applications 
(Manual Engage, Semi Auto [not shown], Auto-SM, and 
Auto Special) are clients of the RTDS and compare the 
track data against operator selected doctrine criteria. 
They then forward any tracks that match the doctrine 
criteria to the Engagement Server for engagement. The 
Engagement Server validates and schedules the 
engagements and sends the engage order to the Weapons 
Control System Simulator (WCSsim). The WCSsim then 
sends the target information and firing order to the SM-2 
missile flight simulator which launches and flies out a 
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simulated missile which attempts to intercept and destroy 
the simulated target. 

Within the AA W subsystem, the focus of our 
experiments is the AA W Auto Special Doctrine path, 
consisting of the Track Processor component of TCF, the 
RTDS application, the Auto Special Doctrine process, and 
the Engagement Server application. This path specified 
as AA W:Doctrine:AutoSpecial_Review in Figure 1. 

Resource and QoS management components were 
used to monitor, control, and manage the testbed 
environment. Resource management components were 
used for starting up and configuring all of the system and 
simulation components (based on the QoS specifications 
described in Section 2) except for those shown within the 
heavy dashed line. Run-time monitoring of host, network 
and application resource usage and statuses were 
performed for all of the SGI, Sun, and HP systems within 
the testbed. In addition, for components within the AA W 
Doctrine subsystem paths (described above), application 
QoS performance and load metrics were monitored. This 
monitored information was used for determining host and 
network load and health indices, as well as application 
and path-level statuses and QoS performance metrics. 
These statuses, metrics, and load indices were used (as 
described in Section 4) for: ( 1) determining path overload 
conditions (i.e., QoS violations) and for determining the 
"best" method (from the options provided within the QoS 
specifications) for restoring required QoS and (2) 
determining fault recovery actions when software failures 
were detected. Detailed QoS specifications, as described 
in Section 2, were developed for each of the systems 
shown in the diagram ( excluding those within the heavy 
dashed line). These specifications defined the startup, 
configuration, and reconfiguration options available for 
each software application and path. Software fault 
recovery actions were provided for ATWCS, resource 
management, displays, and AA W components during the 
experiments. Scalability options were provided for the 
AA W doctrine components (ManualEngage, SemiAuto, 
AutoSM, and AutoSpecial processes) within the various 
AA W doctrine paths. 

A set of experiments was designed to test our 
approach to adaptive resource and QoS management for 
the class of applications described in [6]. As discussed 
above, the tests focused on the AA W subsystem, in 
particular on the AutoSpecial doctrine review path (the 
path specified in Figure 1 as 
AA W:Doctrine:AutoSpecial_ Review). Hereafter the path 
is referred to as ASRP (AutoSpecial_Review Path). The 
path is described in the specification language as being 
scalable and survivable; thus, our experiments tested both 
of these features. Its real-time QoS requirements are 
maximum latency ["-REQ(ASRP) ] of 65ms with a sliding 
window size [ro( ASRP)] of 20 samples, and maximum 
number of violations during the sliding window [ o( 
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figure 6. Tactical Load I ASRP.DS I over time. 

ASRP)] of 15 samples. The system is stressed with 
dynamic changes in the workload of the path ( e.g., 
increasing track load), resulting in QoS violations. We 
test the ability of the QoS and resource management 
middleware to detect and recover from the violations, and 
to do so in a timely manner. Additionally, a set of 
experiments is run to test the ability of the middleware to 
provide survivability (fault detection and recovery) 
services to real-time application systems in a timely 
manner. The results are summarized in Figures 6 and 7. 

To test the ability of the middleware to manage real­
time QoS in dynamic environments, the workload of the 
path was incrementally increased (see Figure 6) until its 
timing requirement could no longer be met (see Figure 7). 
At that point, the scalability feature of the path was 
exploited ~ the QoS and resource management software 
replicated a program contained in ASRP and assigned the 
replica to the host with the highest fitness. 

Application AAW:Doctrine:AutoSpecial (abbreviated 
as AS) is the one that requires replication in order to 
restore real-time QoS to path ASRP during the test runs. 
The eligible list of hosts where the AS application could 
be run was Profile(AS) = {altairl, altair4, altair5, altair6, 
altairll and altair12}. Initially, only one copy of the AS 
application was run on host altair4. Hence, 
REPLICAS(AS) = {AS1} (indicated by a single line 
representing the application on host altair4 in Figure 6) 
and the tactical load of the path IASRP.DSI = 
IASRP.DS(AS)I = 300 (also as shown in Figure 6). As 
seen in figure 7, the initial review time latency is less than 
the required review time latency of 65ms 0-oBs(ASRP) < 
AREQ(ASRP)). 

Starting at about time 25, the tactical load IASRP .DSI 
is increased gradually until at about time 50, IASRP.DSI 
> 900 and AoBS(ASRP) > AREQ(ASRP). At time 53.27 
(see Figure 7), the QoS monitor detects that at least 
u(ASRP) violations occurred within the sampling 
window co(ASRP), and the QoS management middleware 
reports a real-time QoS violation. The resource 
management software is notified that the AS application 
should be replicated to recover from the violation. Using 
the host fitness indices for all hosts in Protile(AS), the 
host on which to start the replica is selected (which in this 
case was host altair 11 ). The host fitness index function 
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Figure 7. Review Lat~ncy 11.oas{ASRP) as a 
function of time. 

used is Fl(hi,t) = (w1 * PF(h1,t)) + (w2 * CF(hi,t)) + (w3 
* NF(hi,t)), as described in Section 4. The time for the 
resource management response took 0.0009 seconds, and 
the total latency of the recovery actions (including starting 
the new replica of AS) took 0.3017 seconds. 

Following the recovery action, REPLICAS (AS) = 
{AS1, AS2} (indicated by two lines representing hosts 
altair4 and altairl 1 in Figure 6). The tactical load of each 
replica stabilizes at about time 60, such that 
IASRP.DS(AS1)1 = IASRP.DS(ASz)I = 500 (thus the 
path's total tactical load IASRP.DSI 1000). As seen in 
Figure 7, the observed latency for each replica stabilizes 
below the required latency (A.oBS(ASRP) < AREQ(ASRP)). 

This sequence of dynamically increasing the tactical 
load IASRP.DSI until the ASRP path is overloaded is 
repeated several more times, (starting at about time 70) as 
can be observed in Figures 6 and 7. The results are very 
similar to the first case-the QoS violation is quickly 
detected and a scale-up action is taken. Across all the 
tests, the average resource allocation decision time was 
0.0012 seconds (with a standard deviation of 0.0002582) 
and the average total latency of the recovery actions was 
0.32951667 seconds (with a standard deviation of 
0.04376704). These results show the effectiveness of our 
approach for dynamic real-time QoS management within 
a large-scale combat system as described in [6]. Real­
time QoS violations were successfully detected, 
appropriate recovery actions were performed, and the 
required QoS was restored. These actions were 
consistently performed in less than one second, even 
under heavy tactical and system loads. 

In addition to testing the ability of our middleware to 
deliver real-time QoS to dynamic real-time applications, 
we also tested the ability of the middleware to provide 
survivability services to real-time application systems in a 
timely manner. In these tests, one replica of the 
AutoSpecial application was faulted, requiring that the 
middleware (1) detect the failure and (2) restart a replica 
on the "fittest" of the eligible hosts. These tests were 
performed a total of 17 times, and the reallocation 
decision times and total recovery times were measured 
The average resource allocation decision time was 
0.00097059 seconds, with a standard deviation of 
0.00041648. The minimum, average and maximum total 
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latencies of the recovery actions were 0.1296, 
0.19401765, and 0.2379 seconds, respectively, with a 
standard deviation of 0.04376704. Thus, across all tests, 
the total response time for application fault detection and 
recovery services was far less than one second, providing 
adequate response times. 

6 Conclusions and Future Work 

This paper has presented adaptive QoS and resource 
management technology for distributed real-time systems 
with a-posteriori-determined workloads. The 
effectiveness of our approach was demonstrated within an 
experimental large-scale combat system. In particular, test 
results were obtained and evaluated for the 
AutoSpecial _ Review path of the AA W subsystem. The 
results show that real-time QoS violations and program 
faults were successfully detected, appropriate recovery 
actions were performed, and the required QoS was 
restored These actions were consistently performed in 
less than one second, even under heavy tactical and 
system loads. Ongoing work includes formal techniques 
and decentralized algorithms for QoS negotiation, 
resource and QoS management for transient and quasi­
continuous paths, and benchmarking of dynamic real-time 
systems. 
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G.1 QoS and System Specifications. 

a. To effectively manage a pool of computing resources, the Resource Manager must 
have some means of determining the capabilities and configuration of the computing resources 
under its control, of determining the software components that need to be executed and the 
dependencies of these software components on both hardware and software resources, 
determining what mission-level and application-level requirements are expected to be met, and 
determining what control capabilities are available to be used to attempt to recover from fault or 
QoS violation conditions. To address these needs, a System and Software Specification 
Grammar has been developed to attempt to capture the "static" information needed by the 
Resource Manager for effectively managing a pool of distributed resources. The development of 
this grammar has been a joint effort between NSWCDD and the University of Texas at Arlington 
(UTA). The grammar attempts to capture the follow information: 

(1) Hardware and Operating Systems 
• Hardware Configuration 
• Network Configuration 
• Operating System and Version 

(2) Software 
• Systems, Subsystems, Applications, Processes 
• Resource Requirements 
• QoS Requirements 
• Survivability Requirements 
• Path Information: Structure and QoS Requirements 

b. As part of the grammar development effort, a specification library has also been 
developed which parses the specification files and provides an API for accessing the 
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specification information. The specification library was written in C and has been ported for all 
of the UNIX development platforms in the testbed, including Solaris 2.6, Solaris 2.5.1, Irix 5.3, 
Irix 6.3, Irix 6.4, and HP-UX 10.20. The library is currently being used by most of the Resource 
Management components, including Program Control, Resource Manager, Path QoS Managers, 
History Servers, UN1X Host Monitors, and the Host and Path Displays. 

c. The remainder of this section presents the Resource Management System and 
Software Specifications Grammar for describing the characteristics and requirements of 
dynamic, path-based real-time systems. The grammar provides abstractions to describe the 
properties of the software, such as hierarchical structure, inter-connectivity relationships, and 
run-time execution constraints. It also allows description of the physical structure or 
composition of the hardware such as LANs, hosts, interconnecting devices or I Cs (such as 
bridges, hubs, and routers), and their statically known properties (e.g., peak capacities). Further, 
the Quality-of-Service (QoS) requirements on various system components can be described. 

d. At the highest level, a specification consists of a collection of software systems, 
hardware systems, and network systems. The language rules for specifying systems are 
described in the remainder of this section. A high-level system specification is shown below: 

SOFTWARE SYSTEM AA W { ... } 
SOFTWARE SYSTEMATWCS { ... } 
HARDWARE SYSTEM HOST_POOL { ... } 
NETWORK SYSTEM SHJP _NET { ... } 

G.1.1 Software System Specifications. 

A software specification is collection of software systems, each of which consists of one 
or more software subsystems. This is illustrated below: 

SOFTWARE SYSTEM AA W { 
SUBSYSTEM Displays { ... } 
SUBSYSTEM Tactical_ Services { ... } 
SUBSYSTEM Doctrine { ... } 

} //End Software System AA W 

SOFTWARE SYSTEM ATWCS { 
SUBSYSTEM Launch_ Control { ... } 
SUBSYSTEM Engagement_Flan_and_ Control { ... } 
SUBSYSTEM Mission _Data_Plan { ... } 
SUBSYSTEM Scenario_Gen { ... } 

} // End Software System ATWCS 

Note that a comment begins with "If' and extends to the end of a line. 

Qualified references: AA W:Displays, AA W:Tactical _Services, and AA W:Doctrine denote the 
subsystems of software system AA W. This is distinguished from the subsystems of ATWCS, 
which would be identified as ATWCS:Launch_Control, 
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ATWCS:Engagement_Plan_and_Control, ATWCS:Mission_Data_Plan and 
ATWCS: Scenario_ Gen. 

G.1.1.1 Software Subsystem Specifications. 

A subsystem is specified by describing its priority, sets of constituent applications and 
devices, a set of end-to-end real-time path definitions, and a graph representing the 
communication connectivity of the applications and devices. A sample subsystem specification 
is shown below: 

SUBSYSTEM Doctrine { 
Priority 2; 
PATII Spy_Declared_AutoSpecial { ... } 
PATII AutoSpecial_ReviewTime { ... } 
PA TII SemiAuto _ ReviewTime { ... } 
PATII AutoSM_ReviewTime { ... } 

APPLICATION Auto_Special { ... } 
APPLICATION Semi_Auto { ... } 
APPLICATION Auto_SM { ... } 

} // End SubSystem Doctrine 

G.1.1.1.1 Dynamic Real-time Path Specifications. 

a. The definition of a path includes a set of constituent applications, various path 
attributes, QoS requirements, and data/event stream definitions (see example below). The 
attributes of a path include priority, type, and importance. Path type, which defines the 
execution behavior of the path, is either continuous, transient, or quasi_ continuous. 

b. A continuous path is one in which the elements of a data stream are continuously 
evaluated and decisions are continuously made whether or not any of the elements require action. 
Typically, there is a timeliness objective associated with completion of one review cycle, i.e., on 
the time to review each of the elements of the data stream once. The doctrine track-review path 
from track-distribution to doctrine evaluation is an example of a data-stream that is constantly 
undergoing analysis. 

c. Transient paths are typically event-driven. An action in the system initiates a task to 
be performed to completion. A timing objective is typically associated from initiation to task 
completion. A good example of a transient path is the Spy-Declared Auto-Special Engagement. 
Spy initiates the action to send a track through a high-priority path with tight timing 
requirements. 

d. Finally there is the quasi-continuous path. This typically occurs when an action 
"turns-on" a path and a later action "turns-off' the path. There are typically two timeliness 
objectives: (1) completion time for one cycle and (2) deactivation time; typically, it is more 
critical to perform the required processing before the activation deadline than it is to meet the 
completion time for each cycle. Thus, it is acceptable for the completion time of some cycles to 
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violate the requirements, as long as the desired actions are completed by the deactivation 
deadline. 

PATH AutoSpecial_ReviewTime { 
Connectivity { ... } 
Type Continuous; 
Priority 1; 
RealTimeQoS{ ... } 
Scalability { ... } 
DATASTREAM{ ... } 

} // End Path AutoSpecial_ReviewTime 

G.1.1.1.1.1 Path Connectivity Graphs. 

The connectivity specification represents the communication relationships among 
applications in a path. These relationships form a graph, which is specified as a set of ordered 
application pairs. The sample specification (below) indicates that application 
AAW:Track_Control:Track_Controller sends data to application 
AA W:Track_Distribution:RTDS and that application AA W:Track_Distribution:RTDS sends 
data to application AAW:Doctrine:Auto_Special. Note that the names of applications are fully 
qualified, as System: Subsystem:Application. 

Connectivity { 
(AA W:Track _ Control:Track _ Controller, AA W:Track _Distribution:RTDS); 
(AAW:Track_Distribution:RTDS, AAW:Doctrine:Auto_Special); 

} / / End Connectivity 

G.1.1.1.1.2 Real-time QoS. 

RealTimeQoS { 
SimpleDeadline 65.0; 
InterProcessingTime 0.600; 
Throughput 200; 
MaxSlack 80; 
MinSlack 20; 
SlidingWindowSize 20; 
Violations 15; 

} // End RealTimeQoS 

I I Cycle deadline 

// Maximum deadline slack/cycle 
// Minimum deadline slack/cycle 
// Cycles to monitor real-time QoS 
// Max QoS violations w/in window 

As seen in the above example, a real-time QoS specification includes timing constraints 
such as simple deadlines, inter-processing times, and throughputs. A simple deadline is defined 
as the maximum end-to-end path latency during a cycle of a continuous or quasi-continuous 
path, or during an activation of a transient. Inter-processing time is defined as a maximum 
allowable time between processing of a particular element of a continuous or quasi-continuous 
path's data stream in successive cycles. The throughput requirement is defined as the minimum 
number of data items that the path must process during a unit period of time. Each timing 
constraint specification may also include items that relate to the dynamic monitoring of the 
constraint. These include minimum and maximum slack values (that must be maintained at run­
time), the size of a moving window of measured samples that should be observed, and the 
maximum tolerable number of violations (within the window). 
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G.1.1.1.1.3 Scalability. 

The grammar and model consider the scalability of the end-to-end paths and their 
application program constituents. Some paths permit replication of their constituent applications 
to scale to dynamic data stream or event stream loads. If a scalable path is unable to meet its 
real-time requirements, one or more of its constituent applications may be replicated. Similarly, 
if a path is exceeding its real-time requirements by a large margin, one or more of its replicas 
may be removed. The scalability specification contains a flag that is TRUE or FALSE, 
indicating if the path is scalable. Also specified is the PathSettlingTime, which indicates the 
amount of time that must be allowed between successive "scalings" of the path. Below is an 
example of a scalability specification. 

Scalability { 
Scalable TRUE; II Path has scalable components 
PathSettlingTime 40.00; // Seconds between reconfigurations 

} // End Scalability 

G.1.1.1.1.4 Datastream Specification. 

a. For real-time systems it is important to understand the characteristics of the 
environment in which they operate. We have found it useful from an engineering perspective to 
model an environment as deterministic, stochastic or dynamic. A deterministic environment 
exhibits behavior that can be characterized by a constant value (scalar or interval). A stochastic 
environment behaves in a manner that can be characterized by a statistical distribution, which 
may be either a well-known distribution, e.g. normal, or an empirical distribution that has 
properties that can be derived from a data set. A dynamic environment depends on conditions 
that cannot be known in advance. For systems that operate in such environments, it can be 
catastrophic to build systems based on predicted conditions because the system may not be able 
to adapt, even though adequate resources may be available. 

DATASTREAM { 
Type Dynamic; 
SlackQoS 400; 

} // End Datastream 

I I Deterministic, Stochastic, or Dynamic 
// Additional number of data items that the 
// continuous/quasicontinous path should be 
// able to handle at any given time 

b. The data stream size or event arrival rate of a dynamic stream is not described in the 
specification, since it must be observed at run time. 

c. The SlackQoS specification for a datastream indicates an amount of additional 
elements that the path should be able to process in a timely manner. The resource allocator 
should consider this quantity when assessing possible allocations. 

G.1.1.1.2 Application Specifications. 

APPLICATION Auto_Special { 
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TimeDelay 4; // Delay this long after initial startup 
Automatic TRUE; // Automatically start this app. 
Console FALSE; // Start this App in an XTerm or other console 
RM_Start TRUE;// Should allocations be done dynamically 
STARTUP{ ... } 
SHUTDOWN{ ... } 
DEPENDENCY{ ... } 
RestartDelay 10; 
SurvivabilityQoS { ... } 
Scalability { ... } 

} //End Application Auto_ Special 

An application is an executable image that may be started as an autonomous process on a 
host. TimeDelay indicates the amount oftime that must elapse since the startup of the previous 
application (this is sometimes needed to insure proper initialization of cooperating applications). 
Automatic indicates whether the application is part of a default startup configuration for the 
system or not (necessary for one-button system starts). Application attributes also include all 
information necessary to startup and shutdown applications (not elaborated in this paper). 
Console indicates whether or not an application is to be started in an Xterm, or some other type 
of console. RM_Start specifies whether or not the application is to be dynamically allocated at 
startup, or rely on an operator for resource allocation. The startup block and the shutdown block 
describe how to automatically start and stop the application. The dependency block indicates 
any dependencies the application may have with the startup and/or shutdown of other 
applications (e.g. it may be required that a particular application be started before another 
application can be started). RestartDelay indicates the amount oftime that must elapse before 
restarting a "failed" application. The SurvivabilityQoS and Scalability blocks indicate if and how 
survivability and scalability services are to be provided to the application. 

G.1.1.1.2.1 Application Startup Information. 

An application startup block contains all the information necessary to, automatically or 
manually, start an application. This information includes supported hardware (host) type, 
operating-system type, and operating-system version(s) (see example below). This may be 
further constrained by an optional list of the names of hosts that can run the application. The 
startup information also includes the working directory for reading and writing data files, the 
name of the executable, and an ordered list of arguments that must be passed on the command 
line when the application is started. Last is a list of processes expected to be seen on the system 
when the application is running. 

STARTUP { 
Type "SUN"; 
OS "Solaris"; 
Version "2.5.1"; 
Version "2.6"; 
Host altairl; 
Host altair4; 
Host altair5; 
Host altair6; 
Host altair7; 
Host altair8; 
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Host altairll; 
Host aquilla; 
Host blofeld; 
Directory "$HIPERD _AA W _ VERSION/exes"; 
Execute "auto_ special. solaris2. 6. exe"; 
Arg "%(UNIQUE, 1, 32)"; 
Arg "A_Spcl_%(UNIQUE, 1, 32)"; 
Arg "-jewel"; 
Arg "-rstat"; 
Arg "-splot"; 
Arg "> /usr/tmp/%(USERID)_auto_specia1%(UNIQUE, 1, 32).out"; 
PROCESS auto_special.solaris2.6.exe {} 

} // End Startup 

G.1.1.1.2.2 Application Shutdown Information. 

An application shutdown block indicates the command(s) to be used for termination of 
the application. A shutdown command may be a POSIX signal name or may be a shell script or 
batch file. A sample shutdown block is shown below. 

SHUTDOWN { 
Signal "SIGTERM"; 

} // End Shutdown 

SHUTDOWN { 
Script "$HIPERD _AAW _ VERSION/exes/stop_auto_special.sh"; 

} // End Shutdown 

G.1.1.1.3 Inter-application Dependencies. 

DEPENDENCY { 

} 

Type STARTUP; 
Name "AAW:Displays:State_Server"; 
Delay 5; // Seconds 

A dependency block describes a temporal relationship between applications (see above 
example). The relationship indicates the type of the dependency (startup or shutdown), the name 
of the program with which the dependency exists, and the time value associated with the 
relationship. The time value indicates the duration that must elapse between start or stop of the 
named application and the start or stop of the application which has the dependency block in its 
specification. 

G.1.1.1.4 Application Survivability QoS. 

SurvivabilityQoS { 
Survivable TRUE; 
MinCopies 1; 
SameHost FALSE; 

} // SurvivabilityQoS 

// Application is survivable 
// Min replicas of this application 
// Restart on same host on failure? 
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As shown in the above example, a survivability QoS specification includes a boolean 
variable that indicates (1) whether the application should be managed to ensure survivability and 
(2) the minimum required level ofredundancy. SameHost allows an application to be specified 
for restart only on the host it was running upon failure. 

G.1.1.1.5 Application Scalability. 

Scalability { 
Scalable TRUE; 
Combining TRUE; 
Splitting TRUE; 

// Is app scalable? 
// Does combine inputs 
// Does divide outputs 

} // Scalability 

The scalability specification for an application indicates if an application can be scaled 
via replication (see example above). Scalable applications are programmed to exploit load 
sharing among replicas, and can adapt dynamically to varying numbers of replicas. The 
specification also indicates whether an application combines its input stream (which may be 
received from different predecessor applications and/or devices), and splits its output stream 
(which may be distributed to different successor applications and/or devices) are also specified. 
"Combining" and "splitting" are commonly called "forking" and "joining" in parallel computing 
paradigms. 

G.1.1.2 Example. 

The completed software example for an Auto-Special doctrine application would be 
constructed as follows: 

SOFTWARE SYSTEM AA W { 
SUBSYSTEM Doctrine { 

Priority 2; 
PATH AutoSpecial_ReviewTime { 

Connectivity { 
(AA W:Track _ Control:Track _ Controller, AA W :Track _Distribution:RTD S); 
(AAW:Track_Distribution:RTDS, AAW:Doctrine:Auto_Special); 

} // End Connectivity 
Type Continuous; 
Priority l; 
RealTimeQoS { 

SimpleDeadline 65.0; 
InterProcessingTime O. 600; 
Throughput 200; 
Max.Slack 80; 
MinSlack 20; 
SlidingWindowSize 20; 
Violations 15; 

} //End RealTimeQoS 
Scalability { 

Scalable TRUE; 
PathSettlingTime 40.00; 

} // End Scalability 
DATA.STREAM { 
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Type Dynamic; 
SlackQoS 400; 

} // End DataStream 
} //End Path AutoSpecial_ReviewTime 
APPLICATION Auto_Special { 

TimeDelay 4; 
Automatic TRUE; 
Console FALSE; 
RM_Start TRUE; 
STARTUP { 

Type "SUN"; 
OS "Solaris"; 
Version "2.5.1"; 
Version "2.6"; 
Host altairl; 
Host altair4; 
Host altair5; 
Host altair6; 
Host altair7; 
Host altair8; 
Host altairll; 
Host aquilla; 
Host blofeld; 
Directory "$HIPERD _AA W _ VERSION/exes"; 
Execute "auto_ special. solaris2. 6 .exe"; 
Arg "o/o(UNJQUE, 1, 32)"; 
Arg "A_Spcl_o/o(UNJQUE, 1, 32)"; 
Arg "-jewel"; 
Arg "-rstat"; 
Arg "-splot"; 
Arg "> /usr/tmp/%(USERID)_auto_special%(UN1QUE, 1, 32).out"; 
PROCESS auto_special.solaris2.6.exe {} 

} // End Startup 
SHUTDOWN { 

Signal "SIGTERM"; 
} //End Shutdown 
DEPENDENCY { 

Type STARTUP; 
Name "AAW:Displays:State_Server"; 
Delay 5; //secs 

} // End Dependency 
RestartDelay 10; 
SurvivabilityQo S { 

Survivable TRUE; 
MinCopies l; 
SameHost FALSE; 

} // End SurvivabilityQoS 
Scalability { 

Scalable TRUE; 
Combining FALSE; 
Splitting FALSE; 

} // End Scalability 
} //End Application Auto_ Special 

} // End SubSystem Doctrine 
} // End System AA W 
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G.1.2 Hardware System Specifications. 

A hardware system specification construct allows the description of one or more 
hardware subsystems (see example below). Each hardware subsystem consists of one or more 
hosts. A host specification describes the host's name, type, operating system version, speed, 
RAM capacity, CPU quantity, and network connections. 

HARDWARE SYSTEM HOST _POOL { 
HOST altairl { 

Type "SUN"; 
OS " Solaris"; 
Version "2.6"; 
Speed 200; // MHz 
Memory 128; // MB 
NumCPUs l; 
Default-Network SHJP NET:ATM; i 
Network SHJP _NET:ETHER; tf. 

} 
HOST altair2 { ... } 
HOST altair3 { ... } 
HOST altair4 { ... } 

} //End Hardware SystemHOST_POOL 

G.1.3 Network System Specifications. 

A network system specification describes the LANs and ICs (interconnection devices 
such as switches, hubs and routers). A system consists of one or more subsystems. A subsystem 
may contain LANs (each with an associated peak bandwidth specification) and ICs (each 
containing a description of network membership). A sample network specification is shown 
below: 

NETWORK SYSTEM SHJP _NET { 
LAN ATM{ 

Bandwidth 100; 
} 
LAN ETHER{ 

Bandwidth 100; 
} 
IC Router { 

Network SHIP _NET:ATM; 
Network SHIP_ NET:ETHER; 

} 
} //End Network System Shlp_Net 

G.1.4 Summary. 

This section has described a specification grammar for declaring requirements on applications in 
a dynamic, distributed, heterogeneous resource pool. The grammar allows the description of 
environment-dependent application features, which allows for the modeling and dynamic 
resource management of such systems. 
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