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ABSTRACT 

Power amplifiers (PAs) are inherently nonlinear devices and 
are used in virtually all communications systems. Digital 
baseband predistortion is a highly cost effective way to lin­
earize the PAs, but most existing architectures assume that 
the PA has a memory less nonlinearity. For wider bandwidth 
applications such as WCDMA, PA memory effects can no 
longer be ignored, and memoryless predistortion has limited 
effectiveness. In tHis paper, we model the PA as a Wiener 
system and construct a Hammerstein predistorter, obtained 
using an indirect learning architecture. Linearization per­
formance is demonstrated on a 3-carrier UMTS signal . 

1.. INTRODUCTION 

Power amplifiers �rAs) are indispensable components in a 
communication system and are inherently nonlinear. It is. 
well known that there is an approximate inverse relationship 
between the PA efficiency and its linearity. Hence, nonlinear 
PAs are desirable from an efficiency point of view. The price 
paid for higher efficiency is that nonlinearity causes spec­
tral regrowth (broadening) which leads to adjacent channel 
interference. It also causes in-band distortion which de­
grades the bit error rate (BER) performance . Newer trans­
mission formats such as CDMA and OFDM are especially 
vulnerable to PA nonlinearities, due to their high peak to 
average power ratio; i.e. large fluctuations in their signal 
envelopes. In order to comply with spectral masks imposed 
by regulatory bodies and to reduce BER, PA linearization 
is necessary. 

Of all linearization techniques, digital baseband predis­
tortion is among tlie most cost effective. A predistorter is a 
functional block that precedes the PA. It generally creates 
an expending nonlinearity since the PA has a compressing 
characteristic. Ideally, we would like the PA output to be 
a scalar multiple of the input to the predistorter-PA chain. 
For a memoryless PA, (i .e . ; the current output depends only 
on the current input) , memoryless predistortion is sufficient. 
There has been intensive research on memoryless predistor­
tion during the past decade [3]. 

For wider bandwidth applications such as WCDMA, PA 
memory effects can no longer be ignored. Moreover, higher 
power amplifiers such as those used in wireless basestations 
exhibit memory effects. The cause of memory effects can 
be electrical or electro-thermal as suggested in [7]. Memo­
ryless predistortion for a PA with memory often results in 

poor linearization performance. Although Volterra series is 
a general nonlinear model with memory, its predistortion 
is complex and its real-time implementation difficult. In 
[2], Clark et.aI. used a Wiener model; i.e., a linear time­
invariant (LTI) system followed by a memoryless nonlin­
earity, to capture the nonlinear memory effects in the PA 
associated with wideband signals. In this paper, we also 
adopt the Wiener PA model, which has the advantage that 
its predistortion can be easily carried out. A Hammerstein 
system is a memoryless nonlinearity followed by a LTI sys­
tem, and can therefore linearize a Wiener PA. 

In the current literature, predistorters with memory 
mainly fall into the data predistorter category [5, 6), in the 
sense that predistortion is applied before the pulse shap­
ing filter. T he main drawback of data predistortion is its 
dependence on the signal constellation and the pulse shap­
ing filter. Both Volterra model based [5) and Hammerstein 
model based [6] data predistorters have been proposed. In 
[5), Volterra data predistorter is constructed using the in­
direct learning architecture. In [6), the Hammerstein data 
predistorter is obtained using a stochastic gradient method. 

As opposed to data predistortion, we shall pursue sig­
nal predistortion in this paper; i.e., predistortion occurs 
after the pulse shaping filter. To construct a Hammerstein 
predistorter, one approach is to first identify the Wiener 
PA and then find the Hammerstein predistorter as its in­
verse. Since Wiener system identification is generally more 
difficult to carry out than Hammerstein system identifica­
tion, we pursue an alternative approach which generates 
the Hammerstein predistorter without first identifying the 
Wiener PA. Unlike [6], our Hammerstein predistorter will 
be constructed using an indirect learning architecture sim­
ilar to the one used in [5]. In this setup, finding the predis­
torter is essentially equivalent to identifying a Hammerstein 
system. the PA can be modeled as a Wiener system, 

2. INDIRECT LEARNING ARCHITECTURE 

Fig. 1 shows the indirect learning structure that is used 
for Hammerstein predistorter identification. The PA has a 

Wiener structure (LTI followed by memoryless nonlinear­
ity). The feedback path labeled "Predistorter Training" 
(block A) has a Hammerstein structure if we view y(n)/ K 
as its input and zen) as its output. The actual predistorter 
is an exact copy of the feedback path (copy of A); it has 
x(n) as its input and zen) as its output. Ideally, we would 
like yen) = K:z;(n), which renders zen) = zen) and the er-
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Figure 1. The indirect learning architecture for the 
Hammerstein predistorter. 

ror term e(n) = O. Given yen) and zen), our task is to find 
the parameters of block A, which yields the predistorter. 
The algorithm converges when the error energy Ile(n)W is 
minimized. 

Here we consider that the PA characteristics do not
change rapidly with time - changes in PA characteristics 
are often due to temperature drift, aging etc which have
long time constants. After gathering a block of yen) and 
zen) data samples, the training branch (block A) can pro­
cess the data off-line, which lowers the requirement of the
processing power of the predistortion system. Once the pre­
distorter identification algorithm has converged, the new set
of parameters are plugged into the high speed predistorter, 
which can be readily implemented by Application-Specific 
Int�grated Circuits (ASIC) or Field Programmable Gate
Arrays (FPGA) . When the predistorter coefficients have 
been found and it is believed that the PA characteristics 
are hardly changing, the setup in Fig. 1 can be run in open 
100Pi i.e., we temporarily shutdown the training branch, un­
til changes in PA characteristics require a new predistorter. 

3. IDENTIFICATION OF THE 
HAMMERSTEIN PREDISTORTER 

The predistorter training branch can be described by: 

(K-l)/2 

v(n) = E C21c+l y(n)ly(n)12Ic, (1) 
1c=0 

P Q 
z(n) = E apz(n - p) + E bqv(n), (2) 

p=1 q=O 

which implies that for the predistorter, we model the memo­
ryless nonlinearity as an odd-order polynomial and the tTl 
system as a general pole/zero system. Combining the two
equations above, we obtain 

P 

zen) = L apz(n - p) + 

Q (CK-I)/2 )
� bq � C21c+ly(n - q)ly(n _ q)12A: • (3)

Given y(n) and zen), our objective is to estimate the ap, bq
and C2lc+l coefficients. Parameter estimation of this model 

is a classical Hammerstein system identification problem. If 
no additional assumptions are made on the system's input
signal yen), iterative Newton and Narendra-Gallman algo­
rithms are �he two most popular iterative estimation meth­
ods [4). The two algorithms exhibit similar performance as 
shown in 14). The main drawback of these algorithms is 
that they are sensitive to the initial guesses and may con­
verge to a local minimum. A recent method proposed by 
Bai 11] uses an optimal two stage identification algorithm, 
which can lead to a global optimum. The model structure 
introduced in [1) is a Hammerstein system followed by a 

memoryless nonlinearity. However, we can easily modify 
the results of [1) to suit our model. Note that for a given 
set of {y(n),z(n)} values, the bq's and the C2k+l'S are not
unique (i.e.; multiplying bq with a constant and dividing
C2A:+1 by the same constant yields the same model). To 
avoid this problem, we assume,that E�o Ibq l2 

= 1 and the
real part of bo is positive as suggested in [1). 

Next, we will review the Narendra-Gallman (NG) and the
optimal two stage identification (tSISVD) algorithms. 

3.1. Narendra-Gallman algorithm 

The NG algorithm starts with initial guesses for the ap and 
bq coefficients, denoted by a�O) and b�O), respectively. At 
the ith iteration eq. (3) can be rewrit�en as 

p (K-l)/2 
z(n) - Ea�i)z(n - p) = 

p=1 
L C2A:+lU21c+l(n) (4). 
"=0 
Q 

E b�i)y(n - q)ly(n - q)121o•
q=O 

At this stage out objective is to solve for C21c+l' Using 
matrix notations we can reformulate eq. (4) as 

Zo - Za(i) 
= Uc, (5) 

where Z = [ZI' . . •  ,zp ) , Zl = [Or, z(l), . . . , z(N _l»)T, where

01 is a 1 x l all zero vector , a(i) = [a�i), ... ,al)jT, U = 

[Ul, .. ·,UK� ·U21o+1 = [U2k+1(1)'''·,'II.21o+1(N») ,and c = 
[Cl,··· ,CK) . The least-squares solution for eq. (5) is 

(6) 

where H denotes Hermitian transpose. In the second step,
based on the ��+':l 's obtained, we rewrite eq. (3) as, 

zo=Za+Vb =[ZVj [:], (7) 

where V = JVI,"" vQ), VI = [Or, v(I), . . . , v(N _l)]T, b = 

[bo, ... ,bQ) ,and v(n) is given in eq. (1). The least-squares 
solution for eq. (7) is, 

(8) 

With the new aci+1) and f,(i+l) estimates, we can go back 
to the first step and continue until the algorithm converges. 
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3.2. Optimal two stage identification algorithm 

Since the difficulty in estimating the bq's and C2lc+1'S is that 
they appear together as the coefficient on the r.h.s. of eq. 
(3), if we define 

(9) 
we can first estimate dq,2k+ l using least-squares and then 
find bq and C2k+1 from dq,21c+l. Substituting eq. (9) into 
eq. (3), we obtain 

p 

zen) = E Qpz(n - p)
p=1 

Q (K-l)/� 
+ E E dq,2lc+l gq,2Ic+l(n), (10) 

9=0 .=0 

where gq,2k+l(n) = yen - q)ly(n - q)121c. Rewriting in a 
matrix form, we obtain 

Zo = Za+ Gd = [Z G] [ : ] • (11) 

where G = [gOI.···,gOKT .. ·,gQl, .. ·,gQK], gq,21c+1 = 

[gq,2Ic+l(I),···,gq,21c+l(N)] , and d = [dOl,···,doK,···, 
dQ1,'" ,dQK]T. The least-squares solution for eq. (11) is 

[ : ] = (lZ G]H[Z GJr1 [Z G]HZo. (12) 

Eq. (9) can be alternatively expressed as 

[dol 
dll

D= . 

dQl 

dos 
diS

dQ3 

dOK 1 
dlK 

dQK 
=bcT, (13) 

where b = [bo •. • •• bQ]T. c = [Cl, . . . • CKJT. Since the ma­

trix D has rank one, a natural way to estimate b and c from 
D is to perform a singular value decomposition (SVD) on D 
and then find the eigenvectors corresponding to the largest 
singular value. Let the SVD of b be given by. 

min{(C2+11.(K+1I/2} 
D = E aiPw[i . (14) 

i=1 
where I-'i's and lIi'S are Q + 1 and (K + 1)/2 dimensional
orthonormal vectors, respectively. Then b and C can be 
estimated as 

b = S,.l-'l, C = S,.all1;, (15) 
where· denotes conjugate and s,. is the first non-zero ele­
ment of 1-'1. These estimates can be shown to be the closest 
band c to 0 in the least-squares sense [1]. 

In summary, the NG algorithm is a simple and. robust 
algorithm. Although it may have convergence problems. it 
can perform well in many cases as will be shown in the next 
section . The LS/SVD algorithm avoids the potential local 
minimum problem of the NG algorithm. However. using 
SVD to find the bq's and C2Ic+l'S may not result in the best 
bq's and C2.+l·S that minimize the squared error criterion. 
Our exanlples in the next section will show that both work 
well for identifying the Hammerstein predistorter although 
one may outperform the other in a particular scenario. 

-Ie!!. -0.5 0 0.5 
Normalized Frequency 

Figure 2. Comparison of the PSDs. (a) Output 
without predistortlonj (b) Output with memory­
less predistortionj (c) Output with Hammerstein 
predistortion, NG and LS/SVD algorithms (similar 
performance). 

4. SIMULATIONS 

In this section. we illustrate through computer simulations 
the performance of the Harnmerstein predistorter identified 
using the indirect learning architecture. In the first exanl­
pie. the LTI portion of the Wiener PA model has a pole/zero 
form. whose system function is given by 

H( ) = 
1 + 0.3z-2 

z 1- 0.2z-1· 
(16) 

For the memoryless nonlinear portion of the Wiener PA 
model , we use a 5th order nonlinearity with coefficients , 

Cl = 14.9740 + 0.0519j, ca = -23.0954 + 4.9680j, 
C6 21.3936 + 0.4305j, (17) 

which were extracted from an actual Class AB PA. 
The baseband input signal is a 3-carrier Universal Mobile 

Telecommunications System (UMTS) signal. Hammerstein 
predistorter identification is carried out based on 8000 data 
samples. The predistorter parameters usually converge af­
ter a few iterations. Next, we compare the spectra of the 
input and output signals to asses the effectiveness of the 
predistorter in reducing spectral regrowth. In this exam­
ple. we assume that the LTI portion of the Hammerstein 
predistorter is a pole/zero system with two poles and one 
zero (correct model orders for the inverse of the H (z) of 
eq. (16)). In addition, we make the assumption that the 
nonlinearity of the predistorter is 5th order. 

Performance of predistorter identified with the LS/SVD 
and NG algorithms is demonstrated in Fig. 2. Both algo­
rithms fully suppress the spectral regrowth exhibited by the 
PA output when no predistortion is applied. In contrast , we 
observe in Fig. 2 that 5th order memoryless predistortion 
does not fully suppress the spectral regrowth. 

In the second exanlple, the LTI portion of the Wiener PA 
is H(z) = 1+0.3z-2 (FIR), and the LTI portion of the Ham­
merstein predistorter is assumed to be FIR 85 well. Our 
objective here is to see whether the algorithm can correctly 
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Figure S. Comparison of the PSDs. (a) Output 
without predistortion; (b) Output with memory­
less predistortion; (c) Output with Hammerstein 
predistortion (NG); (d) Output with Hammerstein 
predistortion (LS/SVD). 

identify an FIR filter that approximates the inverse of the 
FIR system in the PA. We assume that the FIR system in 
the predistorter has 15 taps. The 'results are shown in Fig. 
3. The two algorithms exhibit different behaviors in this 
time: the NG algorithm performs worse than the LS/SVD
algorithm. When examining the concatenated response of 
the two LTI blocks (one from the Wiener PA and the other 
from the Hammerstein predistorter) , we observe that the 
predistorter's LTI system identified by the NG algorithm 
can only compensate for the PA's LTI system within the 
signal bandwidth. However, the LS/SVD algorithm is able 
to find a good FIR system for the predistorter, both within 
and outside of the signal bandwidth. 

In the third example, we perturb� the Wiener PA model 
coefficients so it is a full Volterra model (not W iener any 
more) . Our objective is to see whether the Hammerstein 
predistorter has any robustness. The result is shown in 
Fig. 4. We still observe significant reduction of spectral 
regrowth with the Hammerstein predistorter. 

In all cases, memoryless predistortion is not very effective 
in suppressing spectral regrowth, which underscores the no­
tion that PA memory effects must be taken into account 
when designing the predistorter. 

5. CONCLUSIONS

We employed the indirect learning structure to identify the 
Hammerstein predistorter for a PA modeled by a Wiener 
model. We compared the performance of two Hammerstein 
system identification algorithms ; i.e., the NG and LS/SVD 
algorithms, in this context. For a Wiener model with a 
simple pole/zero LTI structure , both algorithms show sim­
ilar performance. However, when the LTI portion of the 
Wiener PA as well as that of the Hammerstein predistorter 
are FIR, the LS/SVD algorithm outperforms the NG algo­
rithm. Simulation results illustrate the effectiveness of the 
proposed predistorter design. 
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