LEON W. COUCH II

Professor of Electrical Engineering University of Florida, Gainesville

DIGITAL AND ANALOG COMMUNICATION SYSTEMS

Second Edition

Macmillan Publishing Company

New York

Collier Macmillan Publishers

London

Copyright © 1987, Macmillan Publishing Company, a division of Macmillan, Inc.

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Earlier edition copyright © 1983 by Macmillan Publishing Company

Macmillan Publishing Company 866 Third Avenue, New York, New York 10022

Collier Macmillan Canada, Inc.

Library of Congress Cataloging in Publication Data

Couch, Leon W. Digital and analog communication systems. Bibliography: p. Includes index. 1. Telecommunication systems. 2. Digital communications. I. Title. TK5101.C69 1987 621.38'0413 86-8739 ISBN 0-02-325380-0

Printing: 1 2 3 4 5 6 7 8 Year: 7 8 9 0 1 2 3 4 5

ISBN 0-02-325380-0

To my wife, Margaret Wheland Couch, and To our children, Leon III, Jonathan, and Rebecca

PETITIONERS EXHIBIT 1012 Page 4 of 49

PREFACE

This new edition provides the latest up-to-date treatment of digital and analog communication systems. It is written as a textbook for junior or senior engineering students and is appropriate also for an introductory graduate course or as a modern technical reference for practicing electrical engineers. It covers *practical aspects* of communications systems developed from a sound *theoretical basis*.

The Theoretical Basis

- Representation of digital signals
- Representation of analog signals
- Magnitude and phase spectra
- Fourier analysis
- Power spectral density
- Linear systems
- Nonlinear systems

- Modulation theory
- Random variables
- Probability density
- Random processes
- Calculation of (S/N)
- Calculation of BER
- Optimum systems

vii

PETITIONERS EXHIBIT 1012 Page 5 of 49

- Simulation of communication systems
- Intersymbol interference

- Block codes
- Convolutional codes

The Practical Applications

- PAM, PCM, DPCM, DM, PWM, and PPM baseband signaling
- OOK, BPSK, QPSK, MPSK, MSK, and QAM bandpass digital signaling
- AM, DSB-SC, SSB, VSB, PM, and FM bandpass analog signaling
- Time division multiplexing and the standards used
- Frequency division multiplexing and the standards used
- Common carrier systems
- Satellite communication systems
- Effective input-noise temperature and noise figure
- Link budget analysis
- Fiber optic systems
- Spread spectrum systems
- Television systems
- Technical standards for AM, FM, TV, and CATV
- Computer communication systems
- Protocals for computer communications
- Technical standards for computer communications
- Math tables
- Illustrative examples
- 383 homework problems with selected answers
- Extensive references

The practical aspects are exhibited by describing the circuitry that is used in communication systems and summarizing the technical standards that have been adopted for digital, analog, and computer communication systems. The theoretical aspects are presented by using a sound mathematical basis that is made clear by the use of a definition, theorem, proof format with worked examples.

This book is an outgrowth of my teaching of graduate as well as undergraduate communication courses at the University of Florida. I believe that the reader does not fully understand the technical material unless he or she has the oppor-

PREFACE

tunity to work problems. Consequently, over 380 problems have been included. Some of them are easy so that the beginning student will not become frustrated, and some are difficult enough to challenge the more advanced student. All the problems are designed to provoke thought about, and understanding of, communication systems.

The contents of this book may be divided into two main parts. Chapters 1 through 5 develop communication systems from a nonrandom signal viewpoint. This allows the reader to grasp some very important ideas without having to learn (or know) statistical concepts at the same time. In the second part of the book, Chapters 6 through 8 plus Appendix B, statistical concepts are developed and used. Statistical concepts are needed to analyze and design communication systems that are operating in the presence of noise. Some sections of Chapters 1 through 5 are marked with a star (\bigstar). This indicates that the mathematical developments of these sections are more difficult and generally use statistical concepts. On the first reading, the beginning student should be concerned with the results of the starred sections and should not labor over the mathematical details until he or she has gained more mathematical expertise, developed in later chapters. The starred sections are included because the results are significant, and it is hoped that these sections will motivate the beginning student to continue to study the exciting subject of communications.

The contents of the book are further subdivided as follows. Chapter 1 provides clear definitions of digital and analog signals as well as giving historical perspective and theoretical limits on the performance of communication systems. Chapter 2 develops the topics of spectra, orthogonal representations, and Fourier theory. Linear system concepts are reviewed. Chapter 3 covers baseband pulse and baseband digital signaling techniques, line codes and their spectra, and the prevention of intersymbol interference. Chapter 4 introduces bandpass communication circuits and develops the theory and practice of bandpass communication systems (amplitude modulation, frequency modulation, etc.). Chapter 5 provides examples of telephone, television, fiber optic, spread spectrum, digital, and satellite communication systems. Summaries of technical standards are given. Chapter 6 develops the mathematical topic of random processes that is needed for analyzing the effects of noise. Chapter 7 describes the performance of digital and analog communication systems that are corrupted by noise. Chapter 8 is concerned with the design of optimum digital receivers that combat the effects of noise. Coding theory is also developed. A summary of useful mathematical techniques and tables is given in Appendix A. Appendix B covers the topic of probability and random variables. (This appendix is a prerequisite for Chapter 6 if the reader does not already have such knowledge.) Appendix C gives standards and terminology that are used in computer communication systems.

This book is written to be applicable to many different course structures. These are summarized in the table.

I appreciate the help of the many persons who contributed to this book. In particular I appreciate the very helpful comments that have been provided by

Course Length ^a	Chapters Covered	Course Title and Comments
Undergraduate		
1 term 1 quarter	1, 2, 3, 4, 5 (partially) 1, 2, 3, 4	Introduction to Digital and Analog Communication Systems (Student background in signals, networks, and statistics not required)
1 term 1 quarter	1, 2 (rapidly), 3, 4, 5 1, 2 (rapidly), 3, 4	Introduction to Digital and Analog Communication Systems (Student background in statistics not required; knowledge of signals and networks required)
1 term	1, Appendix B, 6, 7	Digital and Analog Communication Systems in Noise (A course in probability, random variables, random processes, and applications to communication systems)
1 quarter	1, Appendix B, 6, Secs. 7-1 to 7-6	Digital Communication Systems in Noise
1 quarter	1, Appendix B, 6, Sec. 7-8	Analog Communication Systems in Noise
1 term	1, 2 (rapidly), 3, 4, 7	Digital and Analog Communication Systems (Prior course in random processes required)
Two terms 1st term 2nd term	1, 2 (rapidly), 3, 4, 5 Appendix B, 6, 7	Communication I—Introduction to Communication Systems Communication II—Performance of Communication Systems in Noise
Three quarters 1st quarter	1, 2 (rapidly), 3, 4	Communication I—Introduction to Communication Systems
2nd quarter 3rd quarter	5, Appendix B, 6	Communication II—Communication Systems and Noise Communication III—Performance of Communication Systems and Optimum
		Digital Receivers
Graduate 1 term	1, Appendix B, 6, 7, Secs. 8-1 to 8-4	Introduction to Communication Systems (Some undergraduate knowledge of communications required)
1 term	1, 6, 7, 8	Introduction to Communication Systems with Optimum Digital Receivers (Knowledge of probability required)

^aOne term is assumed to be equivalent to 3 class hours per week for a semester system or 4 class hours per week for a quarter system. One quarter is assumed to be 3 class hours per week.

the Macmillan reviewers. For the first edition they were Ray W. Nettleton (Litton Amecon), James A. Cadzow (Arizona State University), Dean T. Davis (The Ohio State University), Jerry D. Gibson (Texas A&M University), and Gerald Lachs (Pennsylvania State University). For the second edition they are

Jeff Burl (University of Califore Tryine), Donald J. Healy (Georgia Institute (Iowa State University).

One reviewer was especially helpful in providing marked manuscript pages with suggestions and corrections. I also appreciate the help of my colleagues at the University of Florida, including Dr. Peyton Z. Peebles. Special thanks to the many University of Florida students who have been most helpful in making suggestions for this second edition. I also thank Lawrence K. Thompson and Charles S. Prewitt for assistance in preparing the solution manual. I am also grateful to the late Dr. T. S. George who taught me a great deal about communications while I was a graduate student under his direction. I am also very appreciative of the help of my wife, Dr. Margaret Couch, who has typed th original and revised manuscripts and proofread the entire book.

> Leon W. Couch II Gainesville, Florida

CONTENTS

LIST OF SYMBOLS

INTRODUCTION 1-1 Classification of Information Sources 1-2 Classification of Communication Systems

- 1-3 Deterministic and Random Waveforms
 1-4 Organization of This Book
 1-5 The Block Diagram of a Communication System
- 1-6 Frequency Allocations
- 1-7 Propagation of Electromagnetic Waves
- 1-8 Information Measure Example 1-1 Evaluation of Information and Entropy 14
 1-9 Ideal Communication Systems
 1-10 Preview
 - -10 Preview Problems

XXV

1

3

3

4

5

6

8

10

13

15

16

17

xiii

CONTENTS

2	SIG	NALS AND NOISE	19
	2-1	Properties of Signals and Noise	19
		PHYSICALLY REALIZABLE WAVEFORMS 20	
		TIME AVERAGE OPERATOR 22	
		DC VALUE 23 POWER 23	
		Frample 2-1 Evaluation of Doman 24	
		RMS VALUE AND NORMALIZED DOWER 25	
		ENERGY WAVEFORMS AND POWER WAVEFORMS 20	
		DECIBEL 27	
		PHASORS 29	
	2-2	Fourier Transform and Spectra	30
		DEFINITION 30	50
		Example 2-2 Spectrum of an Exponential Pulse 32	
		PROPERTIES OF FOURIER TRANSFORMS 33	
		PARSEVAL'S THEOREM 34	
		Example 2-3 Spectrum of a Damped Sinusoid 37	
		DIRAC DELTA FUNCTION AND UNIT STEP FUNCTION 37	
		Example 2-4 Spectrum of a Sinusoid 38	
		RECTANGULAR AND TRIANGULAR PULSES 40 Frample 2.5 Spectrum of a Bostongular Dular 42	
		Example 2-6 Spectrum of a Triangular Pulse 42	
		CONVOLUTION 44	
		<i>Example 2-7</i> Convolution of a Rectangle with an	
		Exponential 45	
		Example 2-8 Spectrum of a Triangular Pulse by	
		Convolution 46	
	• •	Example 2-9 Spectrum of a Switched Sinusoid 46	
	2-3	Power Spectral Density and Autocorrelation	
		Function	47
		AUTOCORRELATION EUNOTION 47	
		Frample 2-10 PSD of a Sinusoid 40	
	2-4	Orthogonal Series Representation of Signals	
	_	and Noise	51
		ORTHOGONAL FUNCTIONS 51	51
		ORTHOGONAL SERIES 52	
		VECTOR REPRESENTATIONS OF DIGITAL SIGNALS 54	
		Example 2-11 Representation of a Digital Signal 55	
	2-5	Fourier Series	57
		COMPLEX FOURIER SERIES 57	
		QUADRATURE FOURIER SERIES 59	
		FULAR FUURIER SERIES 60	
		LINE SFECTRA FOR PERIODIC WAVEFORMS 61	

	Example 2-12 Fourier Coefficients for a Square Wave 63	
	POWER SPECTRAL DENSITY PERIODIC	
	WAVEFORMS 66	
2-6	Review of Linear Systems	66
	LINEAR TIME-INVARIANT SYSTEMS 66	
	IMPULSE RESPONSE 67	
	TRANSFER FUNCTION 68	
	Example 2-13 RC Low-Pass Filter 69	
	DISTORTIONLESS TRANSMISSION 71	
	Example 2-14 Distortion Caused by a Filter 72	
2-7	Bandlimited Signals and Noise	74
	BANDLIMITED WAVEFORMS 74	
	SAMPLING THEOREM 75	
	DIMENSIONALITY THEOREM 80	
	DISCRETE FOURIER TRANSFORM 83	
2-8	Bandwidth of Signals and Noise	86
	Example 2-15 Bandwidths for a BPSK Signal 90	
2-9	Summary	94
	Problems	95

З	BAS	SEBAND PULSE AND DIGITAL SIGNALING	105
	3-1	Introduction	105
	3-2	Pulse Amplitude Modulation	106
		NATURAL SAMPLING (GATING) 108	
		INSTANTANEOUS SAMPLING (FLAT-TOP PAM) 111	
	3-3	Pulse Code Modulation	114
		SAMPLING, QUANTIZING, AND ENCODING 115	
		EFFECTS OF NOISE AND EYE PATTERNS 119	
		Example 3-1 Design of a PCM system 121	
		NONUNIFORM QUANTIZING: µ-LAW AND A-LAW	
		COMPANDING 123	
		REGENERATIVE REPEATERS AND BIT	
		SYNCHRONIZERS 127	
	3-4	Digital Signaling Formats	130
		BINARY LINE CODING 130	
		POWER SPECTRA OF LINE CODES 133	
		SPECTRAL EFFICIENCY 138	
		DIFFERENTIAL CODING 138	
		MULTILEVEL SIGNALING 140	
	3-5	Intersymbol Interference	142
	00	NYOUIST'S FIRST METHOD (ZERO ISI) 145	
		RAISED COSINE-ROLLOFF FILTERING 146	

202

1

	Example 3-1 (continued) 148	
	ZERO-FORCING TRANSVERSAL FILTER EQUALIZERS 151	
	NYQUIST'S SECOND AND THIRD METHODS FOR CONTROL	
	OF ISI 154	
	PARTIAL RESPONSE AND DUOBINARY SIGNALING 157	
3-6	Differential Pulse Code Modulation	161
3-7	Delta Modulation	164
	GRANULAR NOISE AND SLOPE OVERLOAD NOISE 167	
	Example 3-2 Design of a DM system 169	
	ADAPTIVE DELTA MODULATION AND CONTINUOUSLY	
	VARIABLE SLOPE DELTA MODULATION 170	
3-8	Time Division Multiplexing	173
	SYNCHRONOUS AND ASYNCHRONOUS LINES 175	
	<i>Example 3-3</i> Design of a Time-Division Multiplexer 176	
	TDM HIERARCHY 178	
	THE T1 PCM SYSTEM 180	
3-9	Pulse Time Modulation: Pulse Duration	
	Modulation and Pulse Position Modulation	186
3-10	Summary	191
	Problems	192
		1/4

BANDPASS SIGNALING TECHNIQUES AND COMPONENTS

4-1	Introduction	202
4-2	Representation of Bandpass Waveforms	
	and Systems	203
	DEFINITIONS-BASEBAND, BANDPASS, AND	-00
	MODULATION 203	
	COMPLEX ENVELOPE REPRESENTATION 204	
	BANDPASS FILTERING 206	
	DISTORTIONLESS TRANSMISSION 207	
	BANDPASS DIMENSIONALITY THEOREM 209	
	REPRESENTATION OF MODULATED SIGNALS 211	
	SPECTRUM OF BANDPASS SIGNALS 211	
	EVALUATION OF POWER 214	
	Example 4-1 Amplitude-Modulated Signal 215	
	DIGITAL COMPUTER SIMULATION 216	
4-3	Components of Communication Systems	220
	FILTERS 220	
	AMPLIFIERS 224	
	LIMITERS 230	

5

	MIXERS, UP CONVERTERS, AND DOWN	
	CONVERTERS 231	
	FREQUENCY MULTIPLIERS 257	
	ENVELOPE DETECTOR 239	
	PRODUCT DETECTOR 240	
	FREQUENCY MODULATION DETECTOR 241	
	PHASE-LOCKED LOOPS 243	254
4-4	CENERAL IZED TRANSMITTERS 254	201
	GENERALIZED RECEIVED, THE SUDEDHETERODYNE	
	GENERALIZED RECEIVER: THE SUPERIETERODINE	
	RECEIVER 230	
4 5	Example 4-2 AM Bloadcast Receiver 257	
4-5	Suppressed Carrier	259
	Suppressed Carrier	
	Example 4.2 Dower of an AM Signal 262	
	AM DROADCAST TECHNICAL STANDARDS 265	
	AM BRUADCAST TECHNICAL STANDARDS 205	
	COSTAS LOOP FOR DEMODUL ATING A DSC-SC SIGNAL OR	
	A ROSK SIGNAL 267	
16	Single Sideband and Vestigial Sideband	268
4-0	Angle Modulation: Phase Modulation and	
4-/	Frequency Modulation	274
	DEDDESENTATION OF PM AND FM SIGNALS 274	
	SPECTRA OF ANGLE MODULATED SIGNALS 279	
	Frample 4-4 Spectrum of a PM or FM signal with	
	Sinusoidal Modulation 279	
	NARROWBAND ANGLE MODULATION 283	
	WIDEBAND FREQUENCY MODULATION 284	
	<i>Example 4-5</i> Spectrum of WBFM with Triangular	
	Modulation 285	
	PREEMPHASIS AND DEEMPHASIS IN ANGLE MODULATED	
	SYSTEMS 287	
	FM BROADCAST TECHNICAL STANDARDS 289	
	DOLBY AND DBX NOISE REDUCTION SYSTEMS 289	
4-8	Summary	292
	Problems	292
BAN	NDPASS COMMUNICATION SYSTEMS	305

5-1	Introduction		305
5-2	Digital Communication Systems	2	306
	BINARY SIGNALING 306		

On-Off Keying (OOK) 308 Binary-Phase Shift Keying (BPSK) 309 Frequency Shift Keving (FSK) 311 Example 5-1 Spectrum of the Bell 103 Type FSK Modem 313 MULTILEVEL SIGNALING 319 Quadrature Phase Shift Keying (QPSK) and M-ary Phase Shift Keying (MPSK) 320 Quadrature Amplitude Modulation (QAM) 321 PSD for MPSK and QAM 323 Minimum Shift Keying (MSK) 326 5-3 **Common Carrier Systems** 330 TIME DIVISION MULTIPLEXING 332 FREOUENCY DIVISION MULTIPLEXING 332 Example 5-2 FM Stereo 332 FDM TELEPHONE HIERARCHY 335 **TELEPHONE SYSTEMS** 335 CAPACITIES OF COMMON CARRIER LINKS 337 5-4 Satellite Communication Systems 340 **TELEVISION SIGNAL TRANSMISSION 343** DATA AND TELEPHONE SIGNAL MULTIPLE ACCESS 344 Example 5-3 Fixed Assigned Multiple Access Mode Using an FDMA Format 347 Example 5-4 SPADE System 347 5-5 **Received Signal-to-Noise Ratio** 351 SIGNAL POWER RECEIVED 351 THERMAL NOISE SOURCES 354 CHARACTERIZATION OF NOISE SOURCES 355 NOISE CHARACTERIZATION OF LINEAR DEVICES 356 NOISE CHARACTERIZATION OF CASCADED LINEAR DEVICES 361 LINK BUDGET FOR EVALUATION 363 E_b/N_o LINK BUDGET FOR DIGITAL SYSTEMS 365 Example 5-5 Link Budget Evaluation for a TV Receive-Only Terminal for Satellite Signals 366 5-6 Fiber Optic Systems 371 Example 5-6 Link Budget for a Fiber Optic System 371 5-7 Spread Spectrum Systems 373 DIRECT SEQUENCE 374 FREQUENCY HOPPING 378 5-8 Television 380 BLACK-AND-WHITE TELEVISION 380 STEREO SOUND 385 COLOR TELEVISION 386 STANDARDS FOR TV AND CATV SYSTEMS 393

	5-9	Summary Problems	397 398
6	RAN	DOM PROCESSES AND SPECTRAL ANALYSIS	408
	6-1	Some Basic Definitions RANDOM PROCESSES 408 STATIONARITY AND ERGODICITY 410 <i>Example 6-1</i> First-Order Stationarity 411 <i>Example 6-2</i> An Ergodic Random Process 413 CORRELATION FUNCTIONS AND WIDE-SENSE STATIONARITY 414	408
	6-2	COMPLEX RANDOM PROCESSES 417 Power Spectral Density DEFINITION 418 WIENER-KHINTCHINE THEOREM 420 PROPERTIES OF PSD 422 <i>Example 6-3</i> Evaluation of the PSD for a Polar Baseband Signal 423 A GENERAL FORMULA FOR THE PSD OF BASEBAND DIGITAL SIGNALS 427 WHITE NOISE PROCESSES 428	418
		MEASUREMENT OF PSD 429 Analog Techniques 429 Numerical Computation of PSD 429	430
	6-3	Dc and Rms Values for Random Processes	430
	6-4	Linear Systems INPUT-OUTPUT RELATIONSHIPS 432 <i>Example 6-4</i> Output Autocorrelation and PSD for an RC Low-Pass Filter 435 <i>Example 6-5</i> Signal-to-Noise Ratio at the Output of an RC LPF 436	432
	6-5	Bandwidth Measures EQUIVALENT BANDWIDTH 437 RMS BANDWIDTH 437 <i>Example 6-6</i> Equivalent Bandwidth and Rms Bandwidth for an RC Low-Pass Filter 439	437
	6-6	The Gaussian Random Process PROPERTIES OF GAUSSIAN PROCESSES 441 Example 6-7 A White Gaussian Noise Process 444	440
	6-7	Bandpass Processes BANDPASS REPRESENTATIONS 444 PROPERTIES OF WIDE-SENSE STATIONARY BANDPASS PROCESSES 448	444

481

	<i>Example 6-8</i> Spectra for the Quadrature Components of	
	White Bandpass Noise 451	
	Example 6-9 PSD for a BPSK Signal 452	
	PROOFS OF SOME PROPERTIES 452	
	<i>Example 6-10</i> PDF for the Envelope and Phase Functions	
	of a Gaussian Bandpass Process 455	
6-8	Matched Filters	458
	GENERAL RESULTS 458	100
	RESULTS FOR WHITE NOISE 460	
	<i>Example 6-11</i> Integrate-and-Dump (Matched) Filter 462	
	CORRELATION PROCESSING 464	
	<i>Example 6-12</i> Matched Filter for Detection of a BPSK Signal 465	
	TRANSVERSAL MATCHED FILTER 467	
6-9	Summary	460
	Problems	409
		4/1

PERFORMANCE OF COMMUNICATION SYSTEMS CORRUPTED BY NOISE

7-1	Error Probabilities for Binary Signaling	482
	GENERAL RESULTS 482	
	RESULTS FOR GAUSSIAN NOISE 485	
	RESULTS FOR WHITE GAUSSIAN NOISE AND MATCHED	
	FILTER RECEPTION 487	
	RESULTS FOR COLORED GAUSSIAN NOISE AND MATCHED	
	FILTER RECEPTION 488	
7-2	Performance of Baseband Binary Systems	489
	UNIPOLAR SIGNALING 489	407
	POLAR SIGNALING 490	
7-3	Coherent Detection of Bandpass Binary Signals	492
	ON-OFF KEYING 492	
	BINARY PHASE SHIFT KEYING 494	
	FREQUENCY SHIFT KEYING 495	
7-4	Noncoherent Detection of Bandpass Binary Signals	499
	ON-OFF KEYING 499	
	FREQUENCY SHIFT KEYING 503	
	DIFFERENTIAL PHASE SHIFT KEYING 505	
7-5	Quadrature Phase Shift Keying and Minimum	
	Shift Keying	507
7-6	Comparison of Digital Signaling Systems	510
	BIT ERROR RATE AND BANDWIDTH 510	210
	SYNCHRONIZATION 511	

	7-7	Output Signal-to-Noise Ratio for PCM Systems	512
	7-8	Output Signal-to-Noise Ratios for Analog Systems	518
		BASEBAND SYSTEMS 518	
		AM SYSTEMS WITH PRODUCT DETECTION 519	
		AM SYSTEMS WITH ENVELOPE DETECTION 520	
		DSB–SC SYSTEMS 522	
		SSB SYSTEMS 522	
		PM SYSTEMS 523	
		FM SYSTEMS 527	
		FM SYSTEMS WITH THRESHOLD EXTENSION 529	
		FM SYSTEMS WITH DEEMPHASIS 532	
	7-9	Comparison of Analog Signaling Systems	535
		IDEAL SYSTEM PERFORMANCE 536	
	7-10	Summary	537
		Problems	537
C 2			547
Canal State	UFI		
	8-1	Introduction	547
	8-2	Optimization Criteria	548
		BAYES CRITERION 548	
		<i>Example 8-1</i> Bayes Criterion for a Binary Source 549	
		MINIMAX CRITERION 551	
		NEYMAN–PEARSON CRITERION 551	
		MAXIMUM A POSTERIORI CRITERION 551	
	8-3	N-Dimensional Vector Space	553
		SIGNAL REPRESENTATION 553	
		GRAM-SCHMIDT ORTHOGONALIZATION	
		PROCEDURE 557	
		Example 8-2 Vectors for a Rectangular wavelorm	
		Set 559	
		VECTOR CHANNELS AND RELEVANT NOISE 502	
	0.4	PDF FOR THE NOISE VECTOR 504	566
	8-4	MAP RECEIVER	500
		DECISION RULE FOR THE ADDITIVE WHITE GROSSIAN	
		NOISE CHANNEL JOU	
	9 5	RECEIVER SIRUCIURES JUO Drobability of Error for MAD Pacaivars	574
	0-3	Example 8.3 Binary Signaling 574	0/1
		Example 8-4 Quadrature Amplitude Modulation	
		Signaling 576	
		Example 8.5 Pulse Code Modulation Signaling 578	
		LINION DOLIND 580	
		UNION BOUND 300	

	Example 8-6 Quantized Pulse Position Modulation	
	Signaling 581	
8-6	Random Phase and Fading Channels	583
	DOUBLE-SIDEBAND TRANSMISSION WITH RANDOM	
	PHASE 583	
	PROBABILITY OF ERROR FOR ORTHOGONAL BINARY	
	RANDOM-PHASE SIGNALING 591	
	Example 8-7 FSK Orthogonal Signaling 593	
	FADING CHANNELS 593	
	Example 8-8 Probability of Error for a Fading Channel with	
	FSK Signaling 595	
8-7	Bit Error Rate for DPSK Signaling	597
8-8	Coding	601
	BLOCK CODES 603	
	Example 8-9 Hamming Code 605	
	CONVOLUTIONAL CODES 605	
	CODE PERFORMANCE 609	
8-9	Summary	611
	Problems	612
		512

APPENDIX A MATHEMATICAL TECHNIQUES,			
IDER	NTITIES, AND TABLES	618	
A-1	Trigonometry	618	
A-2	Differential Calculus	619	
A-3	Indeterminate Forms	621	
A-4	Integral Calculus	621	
A-5	Integral Tables	622	
A-6	Series Expansions	625	
A-7	Hilbert Transform Pairs	627	
A-8	The Dirac Delta Function	627	
A-9	Tabulation of $Sa(x) = (\sin x)/x$	629	
A-10	Tabulation of $Q(z)$	630	

APPENDIX B PROBABILITY AND RANDOM VARIABLES

VAF	RIABLES	632
B-1	Introduction	632
B-2	Sets	633
B-3	Probability and Relative Frequency	634
B-4	Random Variables	637
B-5	Cumulative Distribution Functions and Probability	
	Density Functions	638
B-6	Ensemble Average and Moments	644

CONTENTS

B-7	Examples of Important Distributions	647
B_8	Functional Transformations of Random Variables	656
D-0	Multivariate Statistics	661
D-9	Multival fate Statistics	670
	Problems	070

APPENDIX C STANDARDS AND TERMINOLOGY FOR COMPUTER COMMUNICATIONS

0/0
681
687
689
691
692
692

REFERENCES

697

676

ANSWERS TO SELECTED PROBLEMS 704

INDEX

713

PETITIONERS EXHIBIT 1012 Page 22 of 49

There are not enough symbols in the English and Greek alphabets to allow the use of each letter only once. Consequently, some symbols may be used to denote more than one entity, but their use should be clear from the context. Furthermore, the symbols are chosen to be generally the same as those used in the associated mathematical discipline. For example, in the context of complex variables, x denotes the real part of a complex number (i.e., c = x + jy), whereas in the context of statistics x might denote a random variable.

Symbols

- a_n A constant
- a_n Quadrature Fourier series coefficient
- A_c Level of modulated signal of carrier frequency f_c
- A_e Effective area of an antenna
- b_n Quadrature Fourier series coefficient

XXV

PETITIONERS EXHIBIT 1012 Page 23 of 49

xxvi

LIST OF SYMBOLS

В	Baseband bandwidth
B_p	Bandpass filter bandwidth
B_T	Transmission (bandpass) bandwidth
С	A complex number where $c = x + jy$
С	A constant
C _n	Complex Fourier series coefficient
С	Channel capacity
С	Capacitance
С	Cost matrix
\overline{C}	Average cost
°C	Degrees Celsius
dB	Decibel
D	Dimensions/sec $(D = N/T_0)$ or baud rate
D_f	Frequency modulation gain constant
D_n	Polar Fourier series coefficient
D_p	Phase modulation gain constant
е	Error
е	The natural number, 2.7183
Ε	Modulation efficiency
Ε	Energy
$\mathfrak{E}(f)$	Energy spectral density (ESD)
E_b/N_o	Energy per bit/noise power spectral density ratio
f	Frequency (Hz)

LIST OF SYMBOLS

- f(x) Probability density function (pdf)
- f_c Carrier frequency
- f_i Instantaneous frequency
- f_{a} A (frequency) constant; the fundamental frequency of a periodic waveform
- f_s Sampling frequency
- F Noise figure
- *F(a)* Cumulative distribution function (cdf)
- g(t) Complex envelope
- $\tilde{g}(t)$ Corrupted complex envelope
- G Power gain
- G(f) Power transfer function
- *h* Planck's constant, 6.2×10^{-34} joule-sec
- h(t) Impulse response of a linear network
- h(x) Mapping function of x into h(x)
- H Entropy
- H(f) Transfer function of a linear network

i An integer

- I_i Information in the *j*th message
- j The imaginary number $\sqrt{-1}$
- k Boltzmann's constant, 1.38×10^{-23} joule/K
- k An integer
- k(t) Complex impulse response of a bandpass network
- K Number of bits in a binary word that represents a digital message

xxviii

K	Degrees Kelvin (°C + 273)
l	An integer
l	Number of bits per dimension
L	Inductance
L	Number of levels permitted
т	An integer
т	Mean value
m(t)	Message (modulation) waveform
$\tilde{m}(t)$	Corrupted (noisy received) message
М	An integer
М	Number of messages permitted
n	An integer
n	Number of bits in message
n(t)	Noise waveform
Ν	An integer
Ν	Number of dimensions used to represent a digital message
Ν	Noise power
No	Level of the power spectral density of white noise
p(t)	An absolutely time-limited pulse waveform
p(t)	Instantaneous power
p(m)	Probability density function of frequency modulation
Р	Average power
P_e	Probability of bit error

LIST OF SYMBOLS

- P(C) Probability of correct decision
- P(E) Probability of message error
- $\mathcal{P}(f)$ Power spectral density (PSD)
- Q(z) Integral of a Gaussian function
- $Q(x_k)$ Quantized value of the kth sample value, x_k
- r(t) Received signal plus noise
- R Data rate (bits/sec)
- R Resistance
- R(t) Real envelope
- $R(\tau)$ Autocorrelation function
- s(t) Signal
- $\tilde{s}(t)$ Corrupted signal
- S/N Signal power/noise power ratio
- t Time
- T A time interval
- T Absolute temperature (Kelvin)
- T_b Bit period
- T_e Effective input-noise temperature
- $T_{\rm o}$ Duration of a transmitted symbol or message
- T_a Period of a periodic waveform
- T_{a} Standard room temperature (290 K)
- T_s Sampling period
- u_{11} Covariance

XXX

LIST OF SYMBOLS

v(t)	A voltage waveform
v(t)	A bandpass waveform or a bandpass random process
w(t)	A waveform
W(f)	Spectrum (Fourier transform) of $w(t)$
x	An input
x	A random variable
x	Real part of a complex function or a complex constant
x(t)	A random process
у	An output
y	An output random variable
у	Imaginary part of a complex function or a complex constant
y(t)	A random process
α	A constant
β	A constant
β_f	Frequency modulation index
β_p	Phase modulation index
δ	Step size of delta modulation
$\delta(t)$	Impulse (Dirac delta function)
ΔF	Peak frequency deviation
$\Delta \theta$	Peak phase deviation
e	A constant
ε	Error
η	Spectral efficiency [(bits/sec)/Hz]

LIST OF SYMBOLS

 $\theta(t)$

Phase waveform

λ	Dummy variable of integration
λ	Wavelength
$\Lambda(r)$	Likelihood ratio
π	3.14159
ρ	Correlation coefficient
σ	Standard deviation
τ	Independent variable of autocorrelation function
τ	Pulse width
$\varphi_j(t)$	Orthogonal function
ϕ_n	Polar Fourier series coefficient
ω _c	Radian carrier frequency, $2\pi f_c$
=	Mathematical equivalents

 $\stackrel{\triangle}{=}$ Mathematical definition of a symbol

Defined functions

- $J_n(\cdot)$ Bessel function of the first kind *n*th order
- $ln(\cdot)$ Natural logarithm
- $log(\cdot)$ Base 10 logarithm
- $log_2(\cdot)$ Base 2 logarithm
- Q(z) Integral of a Gaussian probability density function
- Sa(z) $(\sin z)/z$
- $u(\cdot)$ Unit step function

xxxi

xxxii

LIST OF SYMBOLS

- $\Lambda(\cdot)$ Triangle function
- $\Pi(\cdot)$ Rectangle function

Operator notation

- Im{·} Imaginary part of
- $Re\{\cdot\}$ Real part of
- [·] Ensemble average
- $\langle [\cdot] \rangle$ Time average
- $[\cdot] * [\cdot]$ Convolution
- [·]* Conjugate
- $/[\cdot]$ Angle operator
- [·] Absolute value
- [·] Hilbert transform
- $\mathcal{F}[\cdot]$ Fourier transform
- $\mathscr{L}[\cdot]$ Laplace transform
- $[\cdot] \bullet [\cdot]$ Dot product

Bandpass Signaling Techniques and Components

4-1

INTRODUCTION

This chapter is concerned with *bandpass* signaling techniques. These are applicable to both digital and analog communication systems. As indicated in Chapter 1, the bandpass communication signal is obtained by modulating the baseband signal onto a carrier. The baseband signal might be an analog signal, such as that obtained directly from a microphone, or it might be digital, such as a PCM signal as discussed in Chapter 3. Here the classical bandpass signaling techniques of amplitude modulation, single-sideband, and angle modulation will be studied in detail. Classical modulation theory is directly applicable to the understanding of digital bandpass signaling techniques that are studied in Chapter 5.

For a better understanding of the implementation of communication systems, a description of communication component blocks such as filters, amplifiers, up-and-down converters, and detectors is covered in Sec. 4-3. (This section may be skipped if this material has been covered in electronics courses.)

Block diagrams for the various types of transmitters and receivers will be

illustrated and analyzed. In addition to the theory, practical aspects of transmitter and receiver design will be emphasized.

First, we will study the mathematical basis of modulation theory.

4-2

REPRESENTATION OF BANDPASS WAVEFORMS AND SYSTEMS

What is a general representation for bandpass digital and analog signals? How do we represent a modulated signal? How do we represent bandpass noise? These are some of the questions that are answered in this section.

Definitions: Baseband, Bandpass, and Modulation

Definition. A baseband waveform has a spectral magnitude that is nonzero for frequencies in the vicinity of the origin (i.e., f = 0) and negligible elsewhere.

Definition. A bandpass waveform has a spectral magnitude that is nonzero for frequencies in some band concentrated about a frequency $f = \pm f_c$, where $f_c >> 0$. The spectral magnitude is negligible elsewhere. f_c is called the *carrier frequency*.

For bandpass waveforms the value of f_c may be arbitrarily assigned for mathematical convenience in *some* problems. In others, namely, modulation problems, f_c is the frequency of an oscillatory signal in the transmitter circuit and is the assigned frequency of the transmitter, such as, for example, 850 kHz for an AM broadcasting station.

In communication problems, the information source signal is usually a baseband signal: for example, a transistor-transistor logic (TTL) waveform from a digital circuit, an audio signal from a microphone, or a video signal from a television camera. As described in Chapter 1, the communication engineer has the job of building a system that will transfer the information in this source signal m(t) to the desired destination. As shown in Fig. 4-1, this usually requires the use of a bandpass signal, s(t), which has a bandpass spectrum that is con-

FIGURE 4-1 A communication system.

centrated at $\pm f_c$ so that it will propagate across the communication channel (either a softwire or a hardwire channel).

Definition. Modulation is the process of encoding the source information onto a bandpass signal with a carrier frequency f_c . This bandpass signal is called the *modulated* signal s(t), and the baseband source signal is called the *modulating* signal m(t).

Examples of exactly how modulation is accomplished are given later in this chapter. The definition indicates that modulation may be visualized as a mapping operation that maps the source information onto the bandpass signal s(t) that will be transmitted over the channel.

As the modulated signal passes through the channel, noise corrupts it. The result is a bandpass signal-plus-noise waveform that is available at the receiver input, r(t) (see Fig. 4-1). The receiver has the job of trying to recover the information that was sent from the source. \tilde{m} denotes the corrupted version of m.

Complex Envelope Representation

It is very interesting that *all* bandpass waveforms, whether they arise due to a modulated signal, interfering signals, or noise, may be represented in a convenient form given by the following theorem. v(t) will be used to denote the bandpass waveform canonically; specifically, it can represent the signal when $s(t) \equiv v(t)$, the noise when $n(t) \equiv v(t)$, the filtered signal plus noise at the channel output when $r(t) \equiv v(t)$, or any other type of bandpass waveform.

Theorem. Any bandpass waveform may be represented by

$$v(t) = \operatorname{Re}\{g(t)e^{j\omega_{c}t}\}$$
(4-1a)

where Re{·} denotes the real part of {·}, g(t) is called the *complex envelope* of v(t), and f_c is the associated carrier frequency, $\omega_c = 2\pi f_c$. Furthermore, two other equivalent representations are[†]

$$v(t) = R(t) \cos[\omega_c t + \theta(t)]$$
(4-1b)

and

$$v(t) = x(t) \cos \omega_c t - y(t) \sin \omega_c t \qquad (4-1c)$$

where

$$g(t) = x(t) + jy(t) = |g(t)|e^{j/g(t)}$$

$$\equiv R(t)e^{j\theta(t)}$$
(4-2)

†The symbol = denotes an equivalence and the symbol $\stackrel{\triangle}{=}$ denotes a definition.

PETITIONERS EXHIBIT 1012 Page 33 of 49

4.2 REPRESENTATION OF BANDPASS WAVEFORMS

and

$$\mathbf{x}(t) = \operatorname{Re}\{g(t)\} \equiv R(t) \cos \theta(t) \tag{4-3a}$$

205

$$y(t) = \operatorname{Im}\{g(t)\} \equiv R(t) \sin \theta(t)$$
(4-3b)

$$R(t) \stackrel{\triangle}{=} |g(t)| \equiv \sqrt{x^2(t) + y^2(t)}$$
(4-4a)

$$\theta(t) \stackrel{\triangle}{=} \underline{/g(t)} = \tan^{-1}\left(\frac{y(t)}{x(t)}\right)$$
(4-4b)

The waveforms g(t), x(t), y(t), R(t), and $\theta(t)$ are *all* baseband waveforms and, *except* for g(t), they are all real waveforms. R(t) is a nonnegative real waveform.

Proof. Any physical waveform (it does *not* have to be periodic) may be represented over all time, $T_o \rightarrow \infty$, by the complex Fourier series:

$$v(t) = \sum_{n=-\infty}^{n=\infty} c_n e^{jn\omega_o t}, \qquad \omega_o = 2\pi/T_o$$
(4-5)

Furthermore, since the physical waveform is real $c_{-n} = c_n^*$ and using Re{·} = $\frac{1}{2}{\cdot} + \frac{1}{2}{\cdot}^*$,

$$v(t) = \operatorname{Re}\left\{c_o + 2\sum_{n=1}^{\infty} c_n e^{jn\omega_o t}\right\}$$
(4-6)

Introducing the arbitrary parameter f_c , this becomes[†]

$$v(t) = \operatorname{Re}\left\{ \left(c_o e^{-j\omega_c t} + 2 \sum_{n=1}^{n=\infty} c_n e^{j(n\omega_o - \omega_c)t} \right) e^{j\omega_c t} \right\}$$
(4-7)

so that (4-1a) follows where

$$g(t) \equiv c_o e^{-j\omega_c t} + 2 \sum_{n=1}^{\infty} c_n e^{j(n\omega_o - \omega_c)t}$$
(4-8)

Since v(t) is a bandpass waveform with nonzero spectrum concentrated near $f = f_c$, the Fourier coefficients c_n are nonzero only for values of n in the range $\pm nf_o \approx f_c$. Therefore, from (4-8) g(t) has a spectrum that is concentrated near f = 0. That is, g(t) is a *baseband* waveform. It is also obvious from (4-8) that g(t) may be a complex function of time. Representing the complex envelope in terms of two real functions in Cartesian coordinates, we have

$$g(t) \equiv x(t) + jy(t)$$

†Since the frequencies involved in the argument of $\operatorname{Re}\{\cdot\}$ are all positive, it can be shown that the complex function $c_o + 2 \sum_{n=1}^{\infty} c_n e^{jn\omega_o t}$ is analytic in the upper-half complex t plane. Many interesting properties result because this function is an analytic function of a complex variable.

206

where $x(t) = \operatorname{Re}\{g(t)\}\ \text{and}\ y(t) = \operatorname{Im}\{g(t)\}\ x(t)\ \text{is said to be the in phase}$ modulation associated with v(t) and y(t) is said to be the quadrature modulation associated with v(t). Alternatively, the polar form of g(t), represented by R(t)and $\theta(t)$, is given by (4-2), where the identities between Cartesian and polar coordinates are given by (4-3) and (4-4). R(t) and $\theta(t)$ are real waveforms and, in addition, R(t) is always nonnegative. R(t) is said to be the amplitude modulation (AM) on v(t) and $\theta(t)$ is said to be the phase modulation (PM) on v(t). It is also realized that if v(t) is a deterministic waveform, x(t), y(t), R(t), and $\theta(t)$ are also deterministic. If v(t) is stochastic, for example representing bandpass noise, x(t), y(t), R(t), and $\theta(t)$ are stochastic baseband processes. Thus, in general, bandpass noise includes both AM, R(t), and PM, $\theta(t)$, noise components. This will be discussed further in Chapter 6. The usefulness of the complex envelope representation for bandpass waveforms cannot be overemphasized. In modern communication systems, the bandpass signal is often partitioned into two channels, one for x(t) called the *I* (in-phase) channel and one for y(t) called the Q (quadrature-phase) channel.

Bandpass Filtering

In Sec. 2-6 the general transfer function technique was described for the treatment of linear filter problems. Now a shortcut technique will be developed for bandpass filters. It is emphasized that this technique is applicable only for bandpass filters and waveforms. Here the complex envelope can also be used to describe bandpass filter characteristics. Since the impulse response of a bandpass filter h(t) is a (deterministic) bandpass waveform, it may be represented by a complex envelope k(t) as shown in Fig. 4-2.

Theorem. Referring to Fig. 4-2, the complex envelope out of a bandpass filter is given by

$$g_2(t) = \frac{1}{2}g_1(t) * k(t) \tag{4-9}$$

where $g_1(t)$ is the complex envelope of the input and k(t) is the complex envelope of the impulse response. It also follows that

$$G_2(f) = \frac{1}{2}G_1(f)K(f) \tag{4-10}$$

This theorem may be proved by using the properties of linear systems (Sec. 2-6) and is given as a homework problem at the end of this chapter.

FIGURE 4-2 Filtering bandpass waveforms.

207

It is realized that the linear bandpass filter can produce variations in the phase modulation at the output, $\theta_2(t)$, where $\theta_2(t) = \langle g_2(t) \rangle$, as a function of the amplitude modulation on the input complex envelope, $R_1(t)$, where $R_1(t) = |g_1(t)|$. This is called *AM to PM conversion*. Similarly, the filter can also cause variations on the AM at the output, $R_2(t)$, due to the PM on the input, $\theta_1(t)$. This is called *PM to AM conversion*.

Distortionless Transmission

In Sec. 2-6 the general conditions were found for distortionless transmission. For linear *bandpass filters* (channels), a less restrictive set of conditions will now be shown to be satisfactory. For distortionless transmission of bandpass signals, the channel transfer function, $H(f) = |H(f)|e^{j\theta(f)}$, needs to satisfy the following requirements:

1. The amplitude response is constant. That is,

$$|H(f)| = A \tag{4-11a}$$

where A is a positive (real) constant.

2. The derivative of the phase response is a constant. That is,

$$-\frac{1}{2\pi}\frac{d\theta(f)}{df} = T_g \tag{4-11b}$$

where T_g is a constant called the group delay and $\theta(f) = /H(f)$.

This is illustrated in Fig. 4-3. Note that (4-11a) is identical to the general requirement of (2-150a), but (4-11b) is less restrictive than (2-105b). That is, if (2-150b) is satisfied, (4-11b) is satisfied where $T_d = T_g$; however, if (4-11b) is satisfied, (2-150b) is not necessarily satisfied because the integral of (4-11b) is

$$\theta(f) = -2\pi f T_g + \theta_o \tag{4-12}$$

where θ_o is a phase shift constant, as shown in Fig. 4-3b. If θ_o happens to be nonzero, (2-150b) is not satisfied.

Now it will be shown that (4-11a) and (4-11b) are sufficient requirements for distortionless transmission of bandpass signals. From (4-11a) and (4-12) the channel (or filter) transfer function is

$$H(f) = A e^{j(-2\pi f T_g + \theta_o)} = (A e^{j\theta_o}) e^{-j2\pi f T_g}$$
(4-13)

over the bandpass of the signal. If the input to the bandpass channel is represented by

$$v_1(t) = x(t) \cos \omega_c t - y(t) \sin \omega_c t$$

(a) Magnitude Response

(b) Phase Response

FIGURE 4-3 Transfer characteristics of a distortionless bandpass channel.

then, using (4-13) and realizing that $e^{-j2\pi fT_g}$ causes a delay of T_g , the output of the channel is

$$v_2(t) = Ax(t - T_g) \cos[\omega_c(t - T_g) + \theta_o] - Ay(t - T_g) \sin[\omega_c(t - T_g) + \theta_o]$$

Using (4-12), this becomes

$$v_2(t) = Ax(t - T_g) \cos[\omega_c t + \theta(f_c)] - Ay(t - T_g) \sin[\omega_c t + \theta(f_c)]$$

Furthermore, using (2-150b), the phase shift at $f = f_c$ can be expressed in terms of the phase delay, T_d , since $\theta(f_c) = -2\pi f_o T_d$. (Actually, this is why T_d is called the *phase delay*.) Thus the output bandpass signal reduces to

$$v_2(t) = Ax(t - T_g) \cos[\omega_c(t - T_d) - Ay(t - T_g) \sin[\omega_c(t - T_d)] \quad (4-14)$$

where T_g is the group delay and T_d is the phase delay.

Equation (4-14) shows that the x and y components of the input complex envelope have been delayed by T_g , the group (or information) delay; and the quadrature sinusoidal carriers have been delayed by T_d , the phase delay. This gives an undistorted received transmission since the input complex envelope, g(t) = x(t) + jy(t), has just been multiplied by the gain factor A and delayed by the group delay, T_g . Note that in this application the carrier (phase) delay, T_d , is not equal to the envelope (group) delay, T_g , unless θ_o happens to be zero. This is also verified by looking at Fig. 4-3b.

In summary, the general requirement for distortionless transmission of either baseband or bandpass signals is given by (2-150). However, the linear phase requirement of (2-150b) is overly restrictive for the case of bandpass signaling. From (4-11) for the bandpass case, it is only necessary to have a transfer function with *constant amplitude* and a *constant phase derivative* over the bandwidth of the signal.

Bandpass Dimensionality Theorem

Computer simulation is often used to analyze the performance of complicated communication systems. This is especially true when coding schemes are used. This requires that the RF signal and noise for the system under test be sampled so that the data can be obtained for processing by digital computer simulation. If the sampling is carried out at the Nyquist rate or larger ($f_s \ge 2B$, where B is the highest frequency involved in the spectrum of the RF signal), the sampling rate would be ridiculous. For example, consider a satellite communication system with a carrier frequency of $f_c = 6$ GHz. The sampling rate required would be at least 12 GHz. Fortunately, for the signals of this type (bandpass signals), it can be shown that the sampling rate depends only on the *bandwidth* of the signal, not on the absolute frequencies involved. This is equivalent to saying that we can reproduce the signal from samples of the complex envelope.

Bandpass Sampling Theorem. If a (real) bandpass waveform has a nonzero spectrum only over the frequency interval $f_1 < |f| < f_2$ where the transmission bandwidth B_T is taken to be the absolute bandwidth given by $B_T = f_2 - f_1$, then the waveform may be reproduced from sample values, if the sampling rate is

$$f_s \ge 2B_T \tag{4-15}$$

This theorem may be demonstrated by using the quadrature bandpass representation

$$v(t) = x(t) \cos(\omega_c t) - y(t) \sin(\omega_c t)$$
(4-16)

Let f_c be the center of the bandpass so that $f_c = (f_2 + f_1)/2$. Then, from (4-8) it is seen that x(t) and y(t) are both baseband signals and absolutely bandlimited to $B = B_T/2$. From the baseband sampling theorem the sampling rate required to represent these baseband signals is $f_b \ge 2B = B_T$. Equation (4-16) becomes

$$v(t) = \sum_{n=-\infty}^{n=\infty} \left[x \left(\frac{n}{f_b} \right) \cos \omega_c t - y \left(\frac{n}{f_b} \right) \sin \omega_c t \right]$$

$$\cdot \frac{\sin\{\pi f_b[t - (n/f_b)]\}}{\pi f_b[t - (n/f_b)]}$$
(4-17)

210

BANDPASS SIGNALING TECHNIQUES AND COMPONENTS

For the general case, where the $x(n/f_b)$ and $y(n/f_b)$ samples are independent, two samples are obtained for each value of *n* so that the overall sampling rate for v(t) is $f_s = 2f_b \ge 2B_T$. This is the bandpass sampling frequency requirement of (4-15). In most engineering applications, $f_c >> B_T$. Thus the *x* and *y* samples can be obtained by sampling v(t) at $t \approx (n/f_b)$, but adjusting *t* slightly, so that $\cos \omega_c t = 1$ and $\sin \omega_c t = 1$ at the *exact* sampling time for *x* and *y*, respectively. That is, for $t \approx n/f_s$, $v(n/f_b) = x(n/f_b)$ when $\cos \omega_c t = 1$ (i.e., $\sin \omega_c t = 0$) and $v(n/f_b) = y(n/f_b) = y(n/f_b)$ when $\sin \omega_c t = 1$ (i.e., $\cos \omega_c t = 0$). If f_c is not large enough for the *x* and *y* samples to be obtained directly from v(t), then x(t) and y(t) can first be obtained by the use of two quadrature product detectors as described by (4-71). The x(t) and y(t) baseband signals can then be individually sampled at a rate of f_b , and it is seen that the overall equivalent sampling rate is still $f_s = 2f_b \ge 2B_T$.

In the application of this theorem it is assumed that the bandpass signal v(t) is reconstructed by use of (4-17). This implies that *nonuniformly* spaced time samples of v(t) are used since the samples are taken in pairs (for the x and y components) instead of being uniformly spaced T_s sec apart. Uniformly spaced samples of v(t) itself can be used with a minimum sampling frequency of $2B_T$, provided that either f_1 or f_2 is a harmonic of f_s [Taub and Schilling, 1971 or 1986]. Otherwise, a minimum sampling frequency larger than $2B_T$ but not larger than $4B_T$ is required [Haykin, 1983; Peebles, 1976; Taub and Schilling, 1986]. Referring to (2-173), this phenomenon occurs with impulse sampling because f_s needs to be selected so that there is no spectral overlap in the $f_1 < f < f_2$ band when the bandpass spectrum is translated to harmonics of f_s .

Bandpass Dimensionality Theorem. Assume that a bandpass waveform has a nonzero spectrum only over the frequency interval $f_1 < |f| < f_2$ where the transmission bandwidth B_T is taken to be the absolute bandwidth given by $B_T = f_2 - f_1$ and $B_T << f_1$. The waveform may be completely specified over a T_o -sec interval by

$$N = 2B_T T_o \tag{4-18}$$

independent pieces of information. N is said to be the number of dimensions required to specify the waveform.

The bandpass dimensionality theorem is similar to the dimensionality theorem discussed earlier, (2-174), and may be demonstrated by the use of the complex Fourier series to represent the bandpass waveform over a T_o -sec interval. The number of nonzero Fourier coefficients required to produce a line spectrum over the B_T hertz frequency interval is B_T/f_o since f_o is the frequency spacing between adjacent lines. Since $c_n = |c_n|e^{j/c_n}$ and $c_{-n} = c_n^*$, the number of independent (real value) samples is $2B_T/f_o = 2B_TT_o$.

As mentioned earlier, computer simulation is often used to analyze communication systems. The bandpass dimensionality theorem tells us that a bandpass signal B_T hertz wide can be represented over a T_o -sec interval provided that at least $N = 2B_T T_o$ samples are used.

Representation of Modulated Signals

As defined earlier, modulation is the process of encoding the source information (modulation) m(t) into a bandpass signal (modulated signal) s(t). Consequently, the modulated signal is just a special application of the bandpass representation. The *modulated signal* is given by

$$s(t) = \operatorname{Re}\{g(t)e^{j\omega_{c}t}\}$$
(4-19)

where $\omega_c = 2\pi f_c$ and f_c is the carrier frequency. The complex envelope g(t) is a function of the modulating signal m(t). That is,

$$g(t) = g[m(t)]$$
 (4-20)

Thus $g[\cdot]$ performs a mapping operation on m(t). This was illustrated in Fig. 4-1.

In Table 4-1, examples of the mapping function g[m] are given for various types of modulation: amplitude modulation (AM), double-sideband suppressed carrier (DSB-SC), phase modulation (PM), frequency modulation (FM), single-sideband AM suppressed carrier (SSB-AM-SC), single-sideband PM (SSB-PM), single-sideband FM (SSB-FM), single-sideband envelope detectable (SSB-EV), single-sideband square law detectable (SSB-SQ), and quadrature modulation (QM). The parameter f_c is the assigned carrier frequency. These modulated signals are discussed in more detail in Secs. 4-5, 4-6, and 4-7. Obviously, it is possible to use other g[m] functions that are not listed in Table 4-1. The question is: Are they useful? g[m] functions are desired that are easy to implement and that will give desirable spectral and noise (reduction) properties. Furthermore, in the receiver the inverse function m[g] is required. This needs to exist, to be easily implemented, and to suppress as much noise as possible so that m(t) can be recovered with as little corruption as possible.

Spectrum of Bandpass Signals

The spectrum of a bandpass signal is directly related to the spectrum of its complex envelope.

Theorem. If a bandpass waveform is represented by

$$v(t) = \operatorname{Re}\{g(t)e^{j\omega_{c}t}\}$$
(4-21)

then the spectrum of the bandpass waveform is

$$V(f) = \frac{1}{2}[G(f - f_c) + G^*(-f - f_c)]$$
(4-22)

and the PSD of the waveform is

$$\mathcal{P}_{v}(f) = \frac{1}{4} [\mathcal{P}_{g}(f - f_{c}) + \mathcal{P}_{g}(-f - f_{c})]$$
(4-23)

where $G(f) = \mathcal{F}[g(t)]$ and $\mathcal{P}_g(f)$ is the PSD of g(t).

PETITIONERS EXHIBIT 1012 Page 40 of 49

Type of	Mapping Functions	Corresponding Quadrature Modulation		
Modulation	g[m]	$\mathbf{x}(t)$	<i>y</i> (<i>t</i>)	
AM	1 + m(t)	1 + m(t)	0	
DSB-SC	m(t)	m(t)	0	
PM	$e^{jD_pm(t)}$	$\cos[D_p m(t)]$	$sin[D_p m(t)]$	
FM	$e^{jD_f}\int_{-\infty}^t m(\sigma)d\sigma$	$\cos\left[D_f\int_{-\infty}^t m(\sigma)d\sigma\right]$	$\sin\left[D_f\int_{-\infty}^t m(\sigma)d\sigma\right]$	
SSB-AM-SC ^a	$m(t) \pm j\hat{m}(t)$	m(t)	$\pm \hat{m}(t)$	
SSB-PM ^a	$e^{jD_p[m(t)\pm \hat{jm}(t)]}$	$e^{\mp D_p \hat{m}(t)} \cos[D_p m(t)]$	$e^{\mp D_p \hat{m}(t)} \sin[D_p m(t)]$	
SSB-FM ^a	$e^{jD_f\int_{-\infty}^t [m(\sigma)\pm j\hat{m}(\sigma)]d\sigma}$	$e^{\pm D_f \int_{-\infty}^t \hat{m}(\sigma) d\sigma} \cos \left[D_f \int_{-\infty}^t m(\sigma) d\sigma \right]$	$e^{\mp D_f \int_{-\infty}^t \dot{m}(\sigma) d\sigma} \sin \left[D_f \int_{-\infty}^t m(\sigma) d\sigma \right]$	
SSB-EV ^a	$e^{\{\ln[1+m(t)] \pm j \ln[1+m(t)]\}}$	$[1 + m(t)] \cos \{ \hat{\ln}[1 + m(t)] \}$	$\pm [1 + m(t)] \sin \{ \ln[1 + m(t)] \}$	
SSB-SQª	$e^{(1/2)\{\ln[1+m(t)\pm j\ln[1+m(t)]\}}$	$\sqrt{1 + m(t)} \cos\{\frac{1}{2} \ln[1 + m(t)]\}$	$\pm \sqrt{1 + m(t)} \sin\{\frac{1}{2} \ln[1 + m(t)]\}$	
QM	$m_1(t) + jm_2(t)$	$m_1(t)$	$m_2(t)$	

Table 4-1 Complex Envelope Functions for Various Types of Modulation

L = linear; NL = nonlinear; $\hat{[\cdot]}$ is the Hilbert transform (i.e., -90° phase-shifted version) of $[\cdot]$ (see Sec. 4-6 and Sec. A-7, Appendix A).

^aUse upper signs for upper sideband signals and lower signs for lower sideband signals.

^bIn the strict sense, AM signals are not linear because the carrier term does not satisfy the linearity (superposition) condition.

Proof

$$v(t) = \operatorname{Re}\{g(t)e^{j\omega_{c}t}\} = \frac{1}{2}g(t)e^{j\omega_{c}t} + \frac{1}{2}g^{*}(t)e^{-j\omega_{c}t}$$

Thus

$$V(f) = \mathcal{F}[v(t)] = \frac{1}{2} \mathcal{F}[g(t)e^{j\omega_{c}t}] + \frac{1}{2} \mathcal{F}[g^{*}(t)e^{-j\omega_{c}t}]$$
(4-24)

Using $\mathscr{F}[g^*(t)] = G^*(-f)$ from Table 2-1 and the frequency translation property of Fourier transforms from Table 2-1, this equation becomes

$$V(f) = \frac{1}{2}[G(f - f_c) + G^*(-(f + f_c))]$$
(4-25)

which reduces to (4-22).

PETITIONERS EXHIBIT 1012 Page 41 of 49

Corresponding Phase M	Amplitude and Iodulation		
$\overline{R(t)}$	$\theta(t)$	Linearity	Remarks
1 + m(t)	$\begin{cases} 0, & m(t) > -1 \\ 180^{\circ}, & m(t) < -1 \end{cases}$	L ^b	m(t) > -1 required for envelope detection.
m(t)	$\begin{cases} 0, & m(t) > 0 \\ 180^{\circ}, & m(t) < 0 \end{cases}$	L	Coherent detection required.
1	$D_p m(t)$	NL	D_p is the phase deviation constant (radian/volts).
1	$D_f \int_{-\infty}^t m(\sigma) d\sigma$	NL	D_f is the frequency deviation constant (radian/volt-sec).
$\overline{\sqrt{[m(t)]^2 + [\hat{m}(t)]^2}}$	$\tan^{-1}[\pm \hat{m}(t)/m(t)]$	L	Coherent detection required.
$e^{\mp D_p \hat{m}(t)}$	$D_p m(t)$	NL	
$e^{-D_f \int_{-\infty}^{t} \hat{m}(\sigma) d\sigma}$	$D_f \int_{-\infty}^t m(\sigma) d\sigma$	NL	
$\overline{1 + m(t)}$	$\pm \ln[1 + m(t)]$	NL	m(t) > -1 is required so that the ln (·) will have a real value.
$\sqrt{1 + m(t)}$	$\pm \frac{1}{2} \ln[1 + m(t)]$	NL	m(t) > -1 is required so that the ln (·) will have a real value.
$\overline{\sqrt{m_1^2(t) + m_2^2(t)}}$	$\tan^{-1}[m_2(t)/m_1(t)]$	L	Used in NTSC color TV; requires coherent detection.

The PSD for v(t) is obtained by first evaluating the autocorrelation for v(t).

$$R_{v}(\tau) = \langle v(t)v(t+\tau) \rangle = \langle \operatorname{Re}\{g(t)e^{j\omega_{c}t}\}\operatorname{Re}\{g(t+\tau)e^{j\omega_{c}(t+\tau)}\} \rangle.$$

Using the identity (see Problem 2-42),

$$\operatorname{Re}(c_2) \operatorname{Re}(c_1) = \frac{1}{2} \operatorname{Re}(c_2^*c_1) + \frac{1}{2} \operatorname{Re}(c_2c_1)$$
where $c_2 = g(t)e^{j\omega_c t}$ and $c_1 = g(t + \tau)e^{j\omega_c(t+\tau)}$, we get
$$R_v(\tau) = \langle \frac{1}{2} \operatorname{Re}\{g^*(t)g(t + \tau)e^{-j\omega_c t}e^{j\omega_c(t+\tau)}\} \rangle$$

$$+ \langle \frac{1}{2} \operatorname{Re}\{g(t)g(t + \tau)e^{j\omega_c t}e^{j\omega_c(t+\tau)}\} \rangle$$

PETITIONERS EXHIBIT 1012 Page 42 of 49

BANDPASS SIGNALING TECHNIQUES AND COMPONENTS

Realizing that $\langle \rangle$ and Re $\{ \}$ are both linear operators, the order of the operators may be exchanged without affecting the result, and the autocorrelation becomes

$$R_{v}(\tau) = \frac{1}{2} \operatorname{Re}\{\langle g^{*}(t)g(t+\tau)e^{j\omega_{c}\tau}\rangle\} + \frac{1}{2} \operatorname{Re}\{\langle g(t)g(t+\tau)e^{j2\omega_{c}t}e^{j\omega_{c}\tau}\rangle\}$$

or

$$R_{v}(\tau) = \frac{1}{2} \operatorname{Re}\{\langle g^{*}(t)g(t+\tau)\rangle e^{j\omega_{c}\tau}\} + \frac{1}{2} \operatorname{Re}\{\langle g(t)g(t+\tau)e^{j\omega_{c}\tau}\rangle e^{j\omega_{c}\tau}\}$$

But $\langle g^*(t)g(t + \tau) \rangle = R_g(\tau)$. The second term on the right is negligible because $e^{j2\omega_c t} = \cos 2\omega_c t + j \sin 2\omega_c t$ oscillates much faster than variations in $g(t)g(t + \tau)$. In other words, f_c is much larger than the frequencies in g(t), so the integral is negligible. This is an application of the Riemann-Lebesque lemma from integral calculus [Olmsted, 1961]. Thus, the autocorrelation reduces to

$$R_{v}(\tau) = \frac{1}{2} \operatorname{Re}\{R_{\varrho}(\tau)e^{j\omega_{c}\tau}\}$$
(4-26)

The PSD is obtained by taking the Fourier transform of (4-26) (i.e., applying the Wiener–Khintchine theorem). Note that (4-26) has the same mathematical form as (4-21) when *t* is replaced by τ , so the Fourier transform has the same form as (4-22). Thus,

$$\mathcal{P}_{v}(f) = \mathcal{F}[R_{v}(\tau)] = \frac{1}{4}[\mathcal{P}_{g}(f - f_{c}) + \mathcal{P}_{g}^{*}(-f - f_{c})]$$

But $\mathcal{P}_g^*(f) = \mathcal{P}_g(f)$ since the PSD is a real function. Thus, the PSD is given by (4-23).

Evaluation of Power

Theorem. The total average normalized power of a bandpass waveform, v(t), is

$$P_v = \int_{-\infty}^{\infty} \mathcal{P}_v(f) df = R_v(0) = \frac{1}{2} \langle |g(t)|^2 \rangle$$
(4-27)

where "normalized" implies that the load is equivalent to one ohm.

Proof. Substituting v(t) into (2-67), we get

$$P_v = \langle v^2(t) \rangle = \int_{-\infty}^{\infty} \mathcal{P}_v(f) df$$

But $R_v(\tau) = \mathcal{F}^{-1}[\mathcal{P}_v(f)] = \int_{-\infty}^{\infty} \mathcal{P}_v(f) e^{j2\pi f\tau} df$, so

$$R_{v}(0) = \int_{-\infty}^{\infty} \mathcal{P}_{v}(f) df$$

Also, from (4-26)

$$R_{v}(0) = \frac{1}{2} \operatorname{Re}\{R_{g}(0)\} = \frac{1}{2} \operatorname{Re}\{\langle g^{*}(t)g(t+0)\rangle\}$$

or

$$R_v(0) = \frac{1}{2} \operatorname{Re}\{\langle |g(t)|^2 \rangle\}$$

PETITIONERS EXHIBIT 1012 Page 43 of 49

215

But |g(t)| is always real, so

$$R_v(0) = \frac{1}{2} \langle |g(t)|^2 \rangle$$

Another type of power rating called the *peak envelope power* (PEP), is useful for transmitter specifications.

Definition. The peak envelope power (PEP) is the average power that would be obtained if |g(t)| were to be held constant at its peak value.

This is equivalent to evaluating the average power in an unmodulated RF sinusoid that has a peak value of $A_p = \max[v(t)]$, as is readily seen from Fig. 4-32.)

Theorem. The normalized PEP is given by

$$P_{\rm PEP} = \frac{1}{2} \left[\max |g(t)| \right]^2 \tag{4-28}$$

A proof of this theorem follows by applying the definition to (4-27). As described later in this chapter and in Chapter 5, the PEP is useful for specifying the power capability of AM, SSB, and television transmitters.

EXAMPLE 4-1 Amplitude-Modulated Signal

Evaluate the magnitude spectrum for an amplitude-modulated (AM) signal. From Table 4-1, the complex envelope of an AM signal is

$$g(t) = 1 + m(t)$$

so that the spectrum of the complex envelope is

$$G(f) = \delta(f) + M(f) \tag{4-29}$$

Using (4-19), the AM signal waveform is

$$s(t) = [1 + m(t)] \cos \omega_c t$$
 (4-30)

and, using (4-22), the AM spectrum is

$$S(f) = \frac{1}{2} [\delta(f - f_c) + M(f - f_c) + \delta(f + f_c) + M(f + f_c)] \quad (4-31)$$

where, since m(t) is real, $M^*(f) = M(-f)$, and $\delta(f) = \delta(-f)$ (the delta function was defined to be even) were used. Suppose that the magnitude spectrum of the modulation happens to be a triangular function, as shown in Fig. 4-4a. This spectrum might arise from an analog audio source where the bass frequencies are emphasized. The resulting AM spectrum, using (4-31), is shown in Fig. 4-4b. Note that since $G(f - f_c)$ and $G^*(-f - f_c)$ do not overlap, the magnitude spectrum is

$$|S(f)| = \begin{cases} \frac{1}{2}\delta(f - f_c) + \frac{1}{2}|M(f - f_c)|, & f > 0\\ \frac{1}{2}\delta(f - f_c) + \frac{1}{2}|M(-f - f_c)|, & f < 0 \end{cases}$$
(4-32)

PETITIONERS EXHIBIT 1012 Page 44 of 49

(b) Magnitude Spectrum of AM Signal

FIGURE 4-4 Spectrum of an AM signal.

The "1" in g(t) = 1 + m(t) causes delta functions to occur in the spectrum at $f = \pm f_c$, where f_c is the assigned carrier frequency. Using (4-27), the total average signal power is

$$P_{s} = \frac{1}{2} \langle |1 + m(t)|^{2} \rangle = \frac{1}{2} \langle 1 + 2m(t) + m^{2}(t) \rangle$$
$$= \frac{1}{2} [1 + 2 \langle m(t) \rangle + \langle m^{2}(t) \rangle]$$

Assuming that the dc value of the modulation is zero, as shown in Fig. 4-2, the average signal power becomes

$$P_s = \frac{1}{2}[1 + P_m] \tag{4-33}$$

where $P_m = \langle m^2(t) \rangle$ is the power in the modulation.

Digital Computer Simulation

Often communication systems are too complicated to analyze completely by using only analytical techniques, or a complete analytical approach would be too costly in terms of personnel and time. In these cases, *digital computer simulation* is used to provide a practical approach to system design and analysis. The complex envelope technique and sampling techniques are usually the basis of the computer algorithms. Using the complex envelope:

- Modulated signals can be represented (see Table 4-1).
- Noise can be represented (see Sec. 6-7).

4-2 REPRESENTATION OF BANDPASS WAVEFORMS

- Filters can be simulated [see (4-9), (4-10), and Sec. 4-3].
- Detectors can be simulated (see Sec. 4-3).

Nonlinearities can be represented using time domain algorithms (see Sec. 4-3). The discrete Fourier transform (DFT) can be used for spectral analysis. Signal-to-noise ratios can be evaluated. Monte Carlo techniques can be used to estimate the probability of bit error for digital systems.

Several large-scale computer programs have been developed that simulate communication systems. Some of these programs are described in a special issue of the *IEEE Journal on Selected Areas in Communications*, vol. SAC-2, January 1984. One of these simulation programs, SYSTID, (system time domain) will now be studied in some detail [Fashano and Strodtbeck, 1984]. SYSTID has been in a continuous state of development and improvement by the Hughes Aircraft Company since 1967. Its development was supported under a National Aeronautics and Space Administration (NASA) contract during the early 1970s. SYSTID uses the following techniques:

- Partitioning the communication system into basic functional blocks and processing the signal sequentially from the input to the output.
- Using complex envelope representation for modulated signals, noise, and filters.
- Using discrete time representation (sampling) of continuous time signals and systems.

The block diagram approach allows complicated communication systems to be built up from a set of interconnected functional blocks. The blocks are available from the SYSTID model library (see Table 4-2) or by calling user-defined models that are easy to program. The SYSTID package is written in FORTRAN code, and consists of a precompiler that takes SYSTID statements and generates the FORTRAN source code that simulates a particular communication system. For example, the SYSTID syntax for implementing a block in the simulation is

where MODEL NAME is the name of the model selected from the SYSTID library (or one defined by the user), PARn are pass parameters for the model, INPUT is the name assigned to the input node of the block that is being simulated, and OUTPUT is the output node name. Blocks are connected together by using a common node name for the output of a block that connects to the input of another block.

The communication system is simulated by executing the machine code that results from the compiled FORTRAN source code after it has been linked to the SYSTID library routines. The program output consists of data that are samples of the waveform (as a function of time) at each node of interest. A companion analysis program called RIP is used to look at the SYSTID output data and present a graphic output of the user-requested waveform properties. For example, the user may request plots of the waveform at any node, the PSD, the

Signal Generators	Filters	Miscellaneous	Estimators
White Gaussian noise Arbitrary PDF sources Pulse gen. Transcendental functions Square wave Arbitrary tables PN seq. gen. Random bit stream gen. PN bit stream gen. MSK PN signal gen. Raised cos PN signal gen. QPSK PN signal gen. FM noise loaded baseband signal gen. Biphase L PN gen. ENB signal gen. Impulse noise Continuous wave	Butterworth Chebychev Bessel Butterworth– Thompson Elliptic Quasi-elliptic Lead lag Integrate and dump Quadratic Arbitrary poles and zeros Transversal Zonal (ideal) Measured response Functional form Adaptive transversal equalizer Mods and demods Amplitude Frequency Phase Delta modulator FSK PSK QASK, MPSK Digital echo modulation	Limiters TWT Arbitrary nonlinearities TDA • Up/down converters Differentiator Integration Time delays Phase shifters Latches and gates Threshold detectors Power meter Average meter Rotary joint multipath Recall file Saver/loader	Power spectra Probability of bit error (MPSK, QASK) Noise power ratio Signal distortion Signal to noise Noise bandwidth Delay Correlation Statistics Eye pattern analyzer Intelligible crosstalk Source Encoders Analog-to-digital Digital-to-analog Multilevel PCM Orthogonal Fourier Haar Hadamard Ordered Hadamard Digital interleaving and deinter- leaving Convolutional
	detector		

TABLE 4-2 SYSTID Model L	Library
--------------------------	---------

Source: Michael Fashano and Andrew L. Strodtbeck, "Communication System Simulation and Analysis with SYSTID," *IEEE Journal on Selected Areas in Communications*, vol. SAC-2, Janaury 1984, p. 11. © 1984 IEEE.

autocorrelation function, the eye pattern, etc. An example of a SYSTID simulation for a simple communication system and the associated RIP graphic output is shown in Fig. 4-5.

The SYSTID package can be used to simulate very complicated communication systems. Some typical applications include bit error rate sensitivity, adjacent and cochannel interference, multicarrier frequency division multiple access (FDMA) frequency planning (see Chapter 5 for a description of FDMA), modulation and coding system performance, analog system performance (S/N and distortion), signal detection, adaptive signal processing, device modeling and verification of channel specifications.

219

Page 48 of 49

From the preceding discussion, it is realized that a study of communication system component blocks is needed before an overall study of communication systems (as presented in Chapter 5) is attempted. This study of the basic building block components is presented in the next section.

4.3

COMPONENTS OF COMMUNICATION SYSTEMS

Communication systems consist of component blocks such as amplifiers, filters, limiters, oscillators, mixers, frequency multipliers, phase-locked loops, detectors, and other analog and digital circuits. In most circuit and electronic courses, a great deal of time is spent on circuits that are linear and time invariant since they are relatively easy to analyze and form the basis for understanding other types of circuits. However, it is realized that all practical circuits are nonlinear, and we need to examine the distortion products that are produced by nonlinear effects. Also, as we shall see, nonlinear and time-varying circuits are often needed in communication systems to produce signals with new frequency components.

Filters

As we know, filters are devices that take an input waveshape and modify the frequency spectrum to produce the output waveshape. Filters may be classified in several ways. One is by the type of construction used, such as LC elements or quartz crystal elements. Another is by the type of transfer function that is realized, such as the Butterworth or Chebyshev response (defined subsequently). These two topics of construction types and transfer function characteristics are discussed in this section.

Filters use energy storage elements to obtain frequency discrimination. In any physical filter the energy storage elements are imperfect. For example, a physical inductor has some series resistance as well as inductance, and a physical capacitor has some shunt (leakage) resistance as well as capacitance. A measure of the goodness of a circuit element, or, moreover, a measure of goodness for the whole circuit is given by the quality factor Q.

$$Q = \frac{2\pi(\text{maximum energy stored during one cycle})}{(\text{energy dissipated per cycle})}$$
(4-34)

Of course, a larger value for Q corresponds to a more perfect storage element. That is, a perfect L or C element would have infinite Q. For an *RLC* series or parallel resonant circuit, the Q is

$$Q = \frac{f_o}{B} \tag{4-35}$$

PETITIONERS EXHIBIT 1012 Page 49 of 49