
Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 1 2009-10-6

25
Parallel Algorithms

Guy E. Blelloch
Carnegie Mellon University

Bruce M. Maggs
Duke University and Akamai
Technologies

25.1 Introduction . 25-1
25.2 Modeling Parallel Computations . 25-2

Multiprocessor Models • Work-Depth Models • Assigning
Costs to Algorithms • Emulations among Models • Model
Used in This Chapter

25.3 Parallel Algorithmic Techniques . 25-12
Divide-and-Conquer • Randomization • Parallel Pointer
Techniques • Other Techniques

25.4 Basic Operations on Sequences, Lists, and Trees. 25-16
Sums • Scans • Multiprefix and Fetch-and-Add • Pointer
Jumping • List Ranking • Removing Duplicates

25.5 Graphs . 25-21
Graphs and Graph Representations • Breadth-First Search •
Connected Components

25.6 Sorting . 25-30
QuickSort • Radix Sort

25.7 Computational Geometry . 25-32
Closest Pair • Planar Convex Hull

25.8 Numerical Algorithms. 25-37
Matrix Operations • Fourier Transform

25.9 Research Issues and Summary . 25-38
25.10 Further Information . 25-39
Defining Terms. 25-39
References . 25-40

25.1 Introduction

The subject of this chapter is the design and analysis of parallel algorithms. Most of today’s algorithms
are sequential, that is, they specify a sequence of steps in which each step consists of a single operation.
These algorithms are well suited to today’s computers, which basically perform operations in a
sequential fashion. Although the speed at which sequential computers operate has been improving
at an exponential rate for many years, the improvement is now coming at greater and greater cost.
As a consequence, researchers have sought more cost-effective improvements by building “parallel”
computers—computers that perform multiple operations in a single step. In order to solve a problem
efficiently on a parallel computer, it is usually necessary to design an algorithm that specifies multiple
operations on each step, i.e., a parallel algorithm.

As an example, consider the problem of computing the sum of a sequence A of n numbers.
The standard algorithm computes the sum by making a single pass through the sequence, keeping

25-1

AA/SWA Ex. 1017, p.1 of 44
American Airlines, et. al. v. Intellectual Ventures, et.al.

IPR2025-00785

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 2 2009-10-6

25-2 Special Topics and Techniques

a running sum of the numbers seen so far. It is not difficult however, to devise an algorithm for
computing the sum that performs many operations in parallel. For example, suppose that, in parallel,
each element of A with an even index is paired and summed with the next element of A, which has
an odd index, i.e., A[0] is paired with A[1], A[2] with A[3], and so on. The result is a new sequence
of �n/2� numbers that sum to the same value as the sum that we wish to compute. This pairing and
summing step can be repeated until, after �log2 n� steps, a sequence consisting of a single value is
produced, and this value is equal to the final sum.

The parallelism in an algorithm can yield improved performance on many different kinds of com-
puters. For example, on a parallel computer, the operations in a parallel algorithm can be performed
simultaneously by different processors. Furthermore, even on a single-processor computer the paral-
lelism in an algorithm can be exploited by using multiple functional units, pipelined functional units,
or pipelined memory systems. Thus, it is important to make a distinction between the parallelism in
an algorithm and the ability of any particular computer to perform multiple operations in parallel.
Of course, in order for a parallel algorithm to run efficiently on any type of computer, the algorithm
must contain at least as much parallelism as the computer, for otherwise resources would be left
idle. Unfortunately, the converse does not always hold: some parallel computers cannot efficiently
execute all algorithms, even if the algorithms contain a great deal of parallelism. Experience has
shown that it is more difficult to build a general-purpose parallel computer than a general-purpose
sequential computer.

The remainder of this chapter consists of nine sections. We begin in Section 25.2 with a discus-
sion of how to model parallel computers. Next, in Section 25.3 we cover some general techniques
that have proven useful in the design of parallel algorithms. Sections 25.4 through 25.8 present
algorithms for solving problems from different domains. We conclude in Section 25.9 with a dis-
cussion of current research topics, a collection of defining terms, and finally sources for further
information.

Throughout this chapter, we assume that the reader has some familiarity with sequential algorithms
and asymptotic notation and analysis.

25.2 Modeling Parallel Computations

The designer of a sequential algorithm typically formulates the algorithm using an abstract model
of computation called the random-access machine (RAM) model [2], Chapter 1. In this model, the
machine consists of a single processor connected to a memory system. Each basic CPU operation,
including arithmetic operations, logical operations, and memory accesses, requires one time step.
The designer’s goal is to develop an algorithm with modest time and memory requirements. The
RAM model allows the algorithm designer to ignore many of the details of the computer on which
the algorithm will ultimately be executed, but captures enough detail that the designer can predict
with reasonable accuracy how the algorithm will perform.

Modeling parallel computations is more complicated than modeling sequential computations
because in practice parallel computers tend to vary more in organization than do sequential com-
puters. As a consequence, a large portion of the research on parallel algorithms has gone into
the question of modeling, and many debates have raged over what the “right” model is, or about
how practical various models are. Although there has been no consensus on the right model, this
research has yielded a better understanding of the relationship between the models. Any discussion
of parallel algorithms requires some understanding of the various models and the relationships
among them.

In this chapter we divide parallel models into two classes: multiprocessor models and work-depth
models. In the remainder of this section we discuss these two classes and how they are related.

AA/SWA Ex. 1017, p.2 of 44
American Airlines, et. al. v. Intellectual Ventures, et.al.

IPR2025-00785

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 3 2009-10-6

Parallel Algorithms 25-3

25.2.1 Multiprocessor Models

A multiprocessor model is a generalization of the sequential RAM model in which there is more
than one processor. Multiprocessor models can be classified into three basic types: local-memory
machine models, modular memory machine models, and parallel random-access machine (PRAM)
models. Figure 25.1 illustrates the structure of these machine models. A local-memory machine
model consists of a set of n processors each with its own local-memory. These processors are
attached to a common communication network. A modular memory machine model consists of
m memory modules and n processors all attached to a common network. An n-processor PRAM
model consists of a set of n processors all connected to a common shared memory [32,37,38,77].

The three types of multiprocessors differ in the way that memory can be accessed. In a local-
memory machine model, each processor can access its own local memory directly, but can access
the memory in another processor only by sending a memory request through the network. As in the
RAM model, all local operations, including local memory accesses, take unit time. The time taken
to access the memory in another processor, however, will depend on both the capabilities of the
communication network and the pattern of memory accesses made by other processors, since these
other accesses could congest the network. In a modular memory machine model, a processor accesses
the memory in a memory module by sending a memory request through the network. Typically
the processors and memory modules are arranged so that the time for any processor to access any
memory module is roughly uniform. As in a local-memory machine model, the exact amount of

Shared memory

Processors(c)
P1 P2 P3 Pn

Interconnection network

Processors

Memory

(b)
P1 P2 P3 Pn

M3 M4 MmM2M1

Interconnection network

Processors

Memory
(a)

P1 P2 P3 Pn

M3 MnM2M1

FIGURE 25.1 The three types of multiprocessor machine models: (a) a local-memory machine model; (b) a modular
memory machine model; and (c) a PRAM model.

AA/SWA Ex. 1017, p.3 of 44
American Airlines, et. al. v. Intellectual Ventures, et.al.

IPR2025-00785

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 4 2009-10-6

25-4 Special Topics and Techniques

time depends on the communication network and the memory access pattern. In a PRAM model,
a processor can access any word of memory in a single step. Furthermore, these accesses can occur
in parallel, i.e., in a single step, every processor can access the shared memory.

The PRAM models are controversial because no real machine lives up to its ideal of unit-time access
to shared memory. It is worth noting, however, that the ultimate purpose of an abstract model is not
to directly model a real machine, but to help the algorithm designer produce efficient algorithms.
Thus, if an algorithm designed for a PRAM model (or any other model) can be translated to an
algorithm that runs efficiently on a real computer, then the model has succeeded. In Section 25.2.4
we show how an algorithm designed for one parallel machine model can be translated so that it
executes efficiently on another model.

The three types of multiprocessor models that we have defined are broad and allow for many
variations. The local-memory machine models and modular memory machine models may differ
according to their network topologies. Furthermore, in all three types of models, there may be
differences in the operations that the processors and networks are allowed to perform. In the
remainder of this section we discuss some of the possibilities.

25.2.1.1 Network Topology

A network is a collection of switches connected by communication channels. A processor or memory
module has one or more communication ports that are connected to these switches by communi-
cation channels. The pattern of interconnection of the switches is called the network topology. The
topology of a network has a large influence on the performance and also on the cost and difficulty of
constructing the network. Figure 25.2 illustrates several different topologies.

The simplest network topology is a bus. This network can be used in both local-memory machine
models and modular memory machine models. In either case, all processors and memory modules
are typically connected to a single bus. In each step, at most one piece of data can be written onto the
bus. This data might be a request from a processor to read or write a memory value, or it might be the
response from the processor or memory module that holds the value. In practice, the advantage of
using a bus is that it is simple to build and, because all processors and memory modules can observe

(b)

(a)

P1 P2 P3 Pn

(c)

0000

0010

0100

11111100

1001

1011

1000
1010

1101

0011

0110

0111

01010001

1110

FIGURE 25.2 (a) Bus, (b) two-dimensional mesh, and (c) hypercube network topologies.

AA/SWA Ex. 1017, p.4 of 44
American Airlines, et. al. v. Intellectual Ventures, et.al.

IPR2025-00785

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Atallah/Algorithms and Theory of Computation Handbook: Second Edition C820X_C025 Finals Page 5 2009-10-6

Parallel Algorithms 25-5

the traffic on the bus, it is relatively easy to develop protocols that allow processors to cache memory
values locally. The disadvantage of using a bus is that the processors have to take turns accessing the
bus. Hence, as more processors are added to a bus, the average time to perform a memory access
grows proportionately.

A two-dimensional mesh is a network that can be laid out in a rectangular fashion. Each switch
in a mesh has a distinct label (x, y) where 0 ≤ x ≤ X − 1 and 0 ≤ y ≤ Y − 1. The values X and Y
determine the length of the sides of the mesh. The number of switches in a mesh is thus X · Y . Every
switch, except those on the sides of the mesh, is connected to four neighbors: one to the north, one
to the south, one to the east, and one to the west. Thus, a switch labeled (x, y), where 0 < x < X − 1
and 0 < y < Y − 1, is connected to switches (x, y + 1), (x, y − 1), (x + 1, y), and (x − 1, y). This
network typically appears in a local-memory machine model, i.e., a processor along with its local
memory is connected to each switch, and remote memory accesses are made by routing messages
through the mesh. Figure 25.2b shows an example of an 8 × 8 mesh.

Several variations on meshes are also popular, including three-dimensional meshes, toruses, and
hypercubes. A torus is a mesh in which the switches on the sides have connections to the switches
on the opposite sides. Thus, every switch (x, y) is connected to four other switches: (x, y + 1 mod Y),
(x, y − 1 mod Y), (x + 1 mod X, y), and (x − 1 mod X, y). A hypercube is a network with 2n switches
in which each switch has a distinct n-bit label. Two switches are connected by a communication
channel in a hypercube if and only if the labels of the switches differ in precisely one bit position. A
hypercube with 16 switches is shown in Figure 25.2c.

A multistage network is used to connect one set of switches called the input switches to another set
called the output switches through a sequence of stages of switches. Such networks were originally
designed for telephone networks [15]. The stages of a multistage network are numbered 1 through
L, where L is the depth of the network. The switches on stage 1 are the input switches, and those on
stage L are the output switches. In most multistage networks, it is possible to send a message from any
input switch to any output switch along a path that traverses the stages of the network in order from
1 to L. Multistage networks are frequently used in modular memory computers; typically processors
are attached to input switches, and memory modules are attached to output switches. A processor
accesses a word of memory by injecting a memory access request message into the network. This
message then travels through the network to the appropriate memory module. If the request is to
read a word of memory, then the memory module sends the data back through the network to
the requesting processor. There are many different multistage network topologies. Figure 25.3a, for
example, shows a depth-2 network that connects 4 processors to 16 memory modules. Each switch in
this network has two channels at the bottom and four channels at the top. The ratio of processors to
memory modules in this example is chosen to reflect the fact that, in practice, a processor is capable
of generating memory access requests faster than a memory module is capable of servicing them.

A fat-tree is a network structured like a tree [56]. Each edge of the tree, however, may represent
many communication channels, and each node may represent many network switches (hence the
name “fat”). Figure 25.3b shows a fat-tree with the overall structure of a binary tree. Typically the

(a) (b)

Memory modules

Stage 2 (output switches)

Stage 1 (input switches)

Processors

FIGURE 25.3 (a) 2-level multistage network and (b) fat-tree network topologies.

AA/SWA Ex. 1017, p.5 of 44
American Airlines, et. al. v. Intellectual Ventures, et.al.

IPR2025-00785

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

