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1. Introduction
Molecular imaging is the visualization, characterization,

and measurement of biological processes at the molecular
and cellular levels in humans and other living systems.
Molecular imaging agents are probes used to visualize,
characterize, and measure biological processes in living
systems. These two definitions were put forth by the Society
of Nuclear Medicine (SNM) in 2007 as a way to capture
the interdisciplinary nature of this relatively new field. The
emergence of molecular imaging as a scientific discipline is
a result of advances in chemistry, biology, physics, and
engineering, and the application of imaging probes and
technologies has reshaped the philosophy of drug discovery
in the pharmaceutical sciences by providing more cost-
effective ways to evaluate the efficacy of a drug candidate
and allow pharmaceutical companies to reduce the time it
takes to introduce new therapeutics to the marketplace.
Finally, the impact of molecular imaging on clinical medicine
has been extensive since it allows a physician to diagnose a
patient’s illness, prescribe treatment, and monitor the efficacy
of that treatment noninvasively.

Single-photon emission computed tomography (SPECT)
and positron emission tomography (PET) were the first
molecular imaging modalities used clinically. SPECT re-
quires the use of a contrast agent labeled with a γ-emitting
radionuclide, which should have an ideal γ energy of
100-250 keV. These γ rays are recorded by the detectors
of a dedicated γ camera or SPECT instrument and after signal
processing can be converted into an image identifying the
localization of the radiotracer. PET requires the injected
radiopharmaceutical to be labeled with a positron-emitting
radionuclide. As the radionuclide decays, it ejects a positron
from its nucleus, which travels a short distance before being
annihilated with an electron to release two 511 keV γ rays
180° apart that are detected by the PET scanner (Figure 1).
After sufficient acquisition time, the data are reconstructed
using computer-based algorithms to yield images of the
radiotracer’s location within the organism. Compared with
SPECT, PET has greater advantages with respect to sensitiv-
ity and resolution and has been gaining in clinical popularity,
with the number of PET-based studies expected to reach 3.2
million by 2010.1 While SPECT and PET technologies have
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been around for decades, their use remained limited because
of the limited availability of relevant isotopes, which had to
be produced in nuclear reactors or particle accelerators.
However, the introduction of the small biomedical cyclotron,

the self-contained radionuclide generator, and the dedicated
small animal or clinical SPECT and PET scanners to
hospitals and research facilities has increased the demand
for SPECT and PET isotopes.

Traditional PET isotopes such as 18F, 15O, 13N, and 11C
have been developed for incorporation into small molecules,
but due to their often lengthy radiosyntheses, short half-lives,
and rapid clearance, only early time points were available
for imaging, leaving the investigation of biological processes,
which occur over the duration of hours or days, difficult to
explore. With the continuing development of biological
targeting agents such as proteins, peptides, antibodies and
nanoparticles, which demonstrate a range of biological half-
lives, a need arose to produce new radionuclides with half-
lives complementary to their biological properties. As a
result, the production and radiochemistry of radiometals such
as Zr, Y, In, Ga, and Cu have been investigated as
radionuclide labels for biomolecules since they have the
potential to combine their favorable decay characteristics with
the biological characteristics of the targeting molecule to
become a useful radiopharmaceutical (Tables 1 and 2).2

The number of papers published describing the production
or use of these radiometals continues to expand rapidly, and
in recognition of this fact, the authors have attempted to
present a comprehensive review of this literature as it relates
to the production, ligand development, and radiopharma-
ceutical applications of radiometals (excluding 99mTc) since
1999. While numerous reviews have appeared describing
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certain aspects of the production, coordination chemistry, or
application of these radiometals,2-18 very few exhaustive
reviews have been published.10,12 Additionally, this review
has been written to be used as an individual resource or as
a companion resource to the review written by Anderson
and Welch in 1999.12 Together, they provide a literature

survey spanning 50 years of scientific discovery. To ac-
complish this goal, this review has been organized into three
sections: the first section discusses the coordination chemistry
of the metal ions Zr, Y, In, Ga, and Cu and their chelators
in the context of radiopharmaceutical development; the
second section describes the methods used to produce Zr,
Y, In, Ga, and Cu radioisotopes; and the final section
describes the application of these radiometals in diagnostic
imaging and radiotherapy.

2. The Coordination Chemistry of Cu, Ga, Y, In,
and Zr

2.1. General Considerations
The development of metal-based radiopharmaceuticals

represents a dynamic and rapidly growing research area that
requires an intimate knowledge of metal coordination
chemistry and ligand design. This section of the review
covers general considerations regarding the parameters that
are important in developing stable, kinetically inert radio-
metal complexes that can be incorporated into radiophar-
maceuticals. Additionally, the aqueous coordination chem-
istry of these metals and their coordination complexes that
are most relevant to radiopharmaceutical development are
discussed below.

Relevant properties in aqueous solution of the five metal
cations covered in this review are presented in Table 3. The
acidic cations Ga(III), In(III), and especially Zr(IV) present
precipitation problems at neutral pH in the absence of suitable
complex formation. In terms of plausible aqueous redox
processes relevant to radiopharmaceutical applications, only
Cu(II) and its complexes are susceptible to reduction
chemistry, although the possibility of an ascorbic acid
reduction of a 89Zr(IV) complex has been postulated.19 Based
on Pearson’s hard-soft acid-base theory, the tetravalent
Zr(IV) is an extremely hard acidic cation, followed by Y(III),
Ga(III), and In(III). The Cu(II) cation is considered a
borderline acid.
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with a B.S. in Chemistry from the University of WisconsinsSuperior. In
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Table 1. γ- and �-Emitting Radiometals

Isotope t1/2 (h) production methods decay mode Eγ (keV) E� (keV) ref
67Cu 62.01 accelerator 67Zn(n,p) �- (100%) 91, 93, 185 577, 484, 395 578
67Ga 78.26 cyclotron EC (100%) 91, 93, 185, 296, 388 578
90Y 64.06 90Sr/90Y generator �- (72%) 2288 578
111In 67.9 cyclotron, 111Cd(p,n)111n EC (100%) 245, 172 578

Table 2. Positron-Emitting Radiometals

isotope t1/2 (h) methods of production decay mode E�+ (keV) ref
60Cu 0.4 cyclotron, 60Ni(p,n)60Cu �+ (93%) 3920, 3000 578

EC (7%) 2000
61Cu 3.3 cyclotron, 61Ni(p,n)61Cu �+ (62%) 1220, 1150 578

EC (38%) 940, 560
62Cu 0.16 62Zn/62Cu generator �+ (98%) 2910 578

EC (2%)
64Cu 12.7 cyclotron, 64Ni(p,n)64Cu �+ 19(%) 656 578

EC (41%)
�- (40%)

66Ga 9.5 cyclotron, 63Cu(R,nγ)66Ga �+ (56%) 4150, 935 578
EC (44%)

68Ga 1.1 68Ge/68Ga generator �+ (90%) 578
EC (10%) 1880, 770

86Y 14.7 cyclotron, 86Sr(p,n)86Y �+ (33%) 2335, 2019 578
EC (66%) 1603, 1248

1043
89Zr 78.5 89Y(p,n)89Zr �+ (22.7%) 897 208, 578

EC (77%) 909, 1675, 1713, 1744
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Since the preponderance of radiometal complexes of note
feature at least tetradentate ligands, we have restricted our

discussion here to ligands with four or more donor sites
coordinating the cation of interest. Rather than exhaustive
coverage of all chelators of potential interest, we will discuss
only selected representatives of the most-frequently reported
ligands, especially those with more complete data of
relevance. For the chosen representative chelators of each
cation, we have listed available pertinent data on their
denticity, coordination geometry, and thermodynamic stabil-
ity. Where X-ray structural data are available, geometrical
data on the coordination mode can provide useful insight
into the “goodness of fit” for a specific cation-chelator
pairing, the caveat being that actual solution structures or
indeed number of species may be distinct from solid-state
observations. For the four diamagnetic cations, solution NMR
spectroscopic studies can be used to supplement X-ray data.
Despite the difficulty of comparing stability constants of
complex formation between ligands of different basicity and
denticity, the listed log KML’s provide a convenient gauge
of their relative affinities for a specific metal.

For in ViVo applications, kinetic inertness of metal-chelator
complexes or conjugates can be more relevant than thermo-
dynamic stability.12,20,21 In general, acyclic chelator com-

Figure 1. Cartoon depicting the fundamental principle of positron emission tomography (PET). As the targeting group interacts with the
cell surface receptor, the positron-emitting radiometal decays by ejecting �+ particles from its nucleus. After traveling a short distance in
the electron-rich tissue, the positron recombines with an electron in a process called annihilation. During annihilation, the mass of the
positron and electron are converted into two high-energy photons (511 keV γ rays), which are released approximately 180° apart to ensure
that energy and momentum are conserved. Although attenuation is possible, these two γ rays are usually energetic enough to escape the
organism and be collected by the detectors of a PET scanner.

Table 3. Properties of Relevant Metal Cations

cation/electron
configuration

ionic
radiusa

(CN) pKa
b

kexchange,c
s-1

Ered,d V,
(acid)

hardness
classification

(IA)e

Cu(II)/[Ar]3d9 57 (4) 7.53 2 × 108 +0.34 (Cu0) borderline (2.68)
65 (5) +0.16 (CuI)
73 (6)

Ga(III)/[Ar]3d10 47 (4) 2.6 7.6 × 102 -0.56 (Ga0) hard (7.07)
55 (5) -0.65 (GaII)
62 (6)

In(III)/[Kr]4d10 62 (4) 4.0 4.0 × 104 -0.34 (In0) hard (6.30)
80 (6) -0.49 (InII)
92 (8)

Y(III)/[Kr] 90 (6) 7.7 1.3 × 107 -2.37 (Y0) hard (10.64)
102 (8)
108 (9)

Zr(IV)/[Kr] 59 (4) 0.22 -1.54 (Zr0) hard
72 (6)
84 (8)
89 (9)

a Picometers.579 b As hydrated cation.580 c In H2O.581 d Versus NHE;
ref 582, Table 6.2, p 267; ref 583, Appendix E. e IA ) EA/CA; refs 584
and 585; ref 586, Table 2.3.
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plexes are less kinetically inert than macrocyclic complexes
of comparable stability.22-26 By the same token, acyclic
chelators typically have faster metal-binding kinetics com-
pared with their macrocyclic analogues, which can be a
significant advantage for shorter-lived radiometals.27-30 There
have been efforts to enhance the binding rate of macrocycles
by incorporation of an acyclic polydentate pendant arm.31

A variety of in Vitro assays of metal-chelator complex
integrity can be found in the literature.32-35 A popular assay
of aqueous kinetic inertness is acid decomplexation. This
has some relevance in biological environments that are
relatively acidic such as in hypoxic tissues and certain cell
vesicles. However, the extremely high acidities, for example,
1-5 M HCl, often required to decompose relatively inert
complexes clearly have no parallel to any in ViVo conditions.
Nor can such data be relied upon, without considerations of
other factors, as the sole predictor of biological behavior.36

Typically, the decomplexation of Cu(II) complexes is readily
monitored through their electronic spectra. Demetalation of
the diamagnetic Ga(III), In(III), Y(III), and Zr(IV) complexes
can usually be followed by proton and 13C NMR spectros-
copy in acidified D2O solutions. Where feasible, 71Ga, 115In,
and 89Y NMR studies can also be undertaken.37-39 Although
detailed mechanistic investigations are sometimes reported,
more commonly only pseudo-first-order half-lives are re-
ported, which should only be used to rank inertness
qualitatively. Nonetheless, such data remain useful as a
preliminary indicator of the in ViVo viability of specific metal-
based radiopharmaceuticals.

Competition or challenge assays of complexes of interest
with excess biometals and biochelators are relevant since
their typical concentrations are orders of magnitude higher
than the radiolabeled complex’s, requiring high chelator
selectivity for the radiometal. For example, copper homeo-
stasis is tightly regulated in biology,40 and as a result, a
variety of copper-binding biomolecules are present in ex-
tracellular (serum albumin, ceruloplasmin, transcuprin, etc.)
and intracellular (transporters, chaperones, metallothioneins,
superoxide dismutase, cytochrome c oxidase, etc.) environ-
ments.41-43 A viable Cu(II) chelator should therefore be both
thermodynamically stable and kinetically inert to transche-
lation challenges by these species. Highly charged cations
like Y(III) and Zr(IV) may also have high affinity for bone
tissues, while the avid Ga(III) binding of transferrin is
well-established.44-46 Serum stability studies using radiometal-
labeled chelator complexes or their bioconjugates are routinely
used in inertness assays. These are readily monitored by radio-
TLC, HPLC, and LC-MS techniques.47-49 In Vitro uptake
studies using specific cell lines have also been carried out in
many assays. While simulating extracellular environments to
an extent, these studies cannot always accurately forecast in
ViVo behavior. Ultimately, studies of animal biodistribution and
bioclearance using radiometal-labeled complexes or bioconju-
gates need to be carried out to obtain realistic data on their in
ViVo performance.

The following discussion of pertinent acyclic and macro-
cyclic ligands and their specific metal coordination chemistry
is organized according to their denticity. Most of these
ligands have been designed to provide a minimum of four
donor atoms, usually also incorporating anionic sites for
charge balance (See Figures 2 and 3). While all are given
numerical “L(number)” designations, many have been
labeled additionally with their respective acronyms. Published
X-ray crystal structures of Cu, In, Ga, Y, and Zr coordination

complexes involving these ligands are also provided where
appropriate. They were prepared from published CIF files
using CrystalMaker 8.2 for Mac (CrystalMaker Software
Ltd., Centre for Innovation & Enterprise, Oxford University
Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire,
OX5 1PF, UK; http://www.crystalmaker.com). Each atomic
sphere is scaled to 0.4 times the covalent atomic radius, using
the recently updated radii of Alvarez and co-workers.50 In
addition to the labeled and uniquely colored metal atoms,
common elements are color coded as follows: C ) gray, Cl
) green, F ) light green, N ) blue, O ) red, P ) orange,
and S ) yellow. Hydrogen atoms have been omitted from
the structures for clarity.

2.2. Aqueous Copper Coordination Chemistry
While +1 and +3 oxidation states are both accessible for

copper in the presence of suitable donors, 3d9 Cu(II) remains
the predominant state for radiocopper chemistry in protic
media. The aqueous cupric ion was long believed to have a
tetragonally distorted hexa-aqua structure until a 2001 report
suggested only five-coordination.51 Its water-exchange rate
has been found to be very rapid compared with most common
first-row transition metal cations and as a result it has
relatively facile substitution chemistry despite having some
crystal-field stabilization. This is usually ascribed to the
Jahn-Teller distortion that elongates one or more of its
coordinated ligands. Classified as a cation of borderline
hardness, the high affinity of Cu(II) for borderline nitrogen
donors is well-established. With a relatively small ionic
radius of between 57 and 73 pm for coordination numbers
4-6, it is particularly suitable for the formation of five-
membered chelate rings; indeed the chelate effect is epito-
mized in its ethylenediamine family of complexes.52 The
popular use of polyazamacrocycles, especially cyclen and
cyclam, for strong binding of Cu(II) is a consequence of the
added advantage of the macrocyclic effect,53 as borne out
by their extensive coordination literature.54-57

The importance of in ViVo redox activation of metallodrugs
incorporating Pt(IV), Ru(III), and Co(III) has received
increasing attention.58-61 The role of bioreduction in copper
radiopharmaceutical efficacy has been intensively studied in
their thiosemicarbazone complexes, especially Cu-ATSM
(L9).62-64 Convincing evidence for the formation and selec-
tive retention/decomplexation of Cu(I)-intermediates from
Cu(II) precursors in hypoxic tissues has been presented.65,66

Whether Cu(II)/Cu(I) bioreduction is also a viable pathway
for irreversible in ViVo radiocopper loss from other chelator
complexes and their bioconjugates is an intriguing possibility.
There is some compelling evidence for the deteriorated in
ViVo performance of related Cu(II) complexes differing only
in their reduction propensities. Specifically, the “long arm”
dicarboxyethyl pendant-armed Cu(II) complex of cross-
bridged cyclam has an Ered almost 400 mV higher (or more
positive) than that its carboxymethyl-armed analogue, Cu-
CB-TE2A (L57).67 The former has been found to exhibit
significantly inferior bioclearance behavior despite very
similar coordination geometry and acid-inertness. More
structure-activity studies, including the consequence of
protonation on reduction feasibility, are warranted. Most
polyazamacrocyclic complexes of Cu(II), however, have
rather negative reduction potentials that are well below the
estimated -0.40 V (NHE) threshold for typical bioreductants.
It should be further noted that an appropriate in ViVo donor
able to alter the first or, perhaps even second coordination
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