REVIEW

Open Access

Good practices for ⁶⁸Ga radiopharmaceutical production

Bryce J. B. Nelson¹, Jan D. Andersson^{1,2}, Frank Wuest¹ and Sarah Spreckelmeyer^{3*}

*Correspondence: sarah.spreckelmeyer@charite.de

¹ Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, ABT6G 1Z2, Canada ² Fdmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada ³ Department of Nuclear Medicine, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1 13353 Berlin, Germany

Abstract

Background: The radiometal gallium-68 (⁶⁸Ga) is increasingly used in diagnostic positron emission tomography (PET), with ⁶⁸Ga-labeled radiopharmaceuticals developed as potential higher-resolution imaging alternatives to traditional ^{99m}Tc agents. In precision medicine, PET applications of ⁶⁸Ga are widespread, with ⁶⁸Ga radiolabeled to a variety of radiotracers that evaluate perfusion and organ function, and target specific biomarkers found on tumor lesions such as prostate-specific membrane antigen, somatostatin, fibroblast activation protein, bombesin, and melanocortin.

Main body: These ⁶⁸Ga radiopharmaceuticals include agents such as [⁶⁸Ga]Ga-macroaggregated albumin for myocardial perfusion evaluation, [⁶⁸Ga]Ga-PLED for assessing renal function, [⁶⁸Ga]Ga-*t*-butyl-HBED for assessing liver function, and [⁶⁸Ga]Ga-PSMA for tumor imaging. The short half-life, favourable nuclear decay properties, ease of radiolabeling, and convenient availability through germanium-68 (⁶⁸Ge) generators and cyclotron production routes strongly positions ⁶⁸Ga for continued growth in clinical deployment. This progress motivates the development of a set of common guidelines and standards for the ⁶⁸Ga radiopharmaceutical community, and recommendations for centers interested in establishing ⁶⁸Ga radiopharmaceutical production.

Conclusion: This review outlines important aspects of ⁶⁸Ga radiopharmacy, including ⁶⁸Ga production routes using a ⁶⁸Ge/⁶⁸Ga generator or medical cyclotron, standardized ⁶⁸Ga radiolabeling methods, quality control procedures for clinical ⁶⁸Ga radiopharmaceuticals, and suggested best practices for centers with established or upcoming ⁶⁸Ga radiopharmaceutical production. Finally, an outlook on ⁶⁸Ga radiopharmaceuticals is presented to highlight potential challenges and opportunities facing the community.

Keywords: ⁶⁸Ga-radiolabeling, Gallium-68, Automation, Cyclotron, Radiolabeling, ⁶⁸Ga-tracer, Radiopharmaceuticals

Background

The rise and increasingly widespread clinical use of positron emission tomography (PET) imaging with gallium-68 (⁶⁸Ga) radiopharmaceuticals motivates providing guidance on aspects of ⁶⁸Ga radiopharmaceutical production to aid the community in achieving consistent quality and reliable yields. Radiogallium isotopes have been extensively investigated, starting when gallium was first observed to accumulate at osteogenic activity in the late 1940s (Hayes 1978). Early clinical trials using reactor-produced ⁷²Ga ($t_{1/2}$ =14.1 h) for therapy and diagnostic evaluation of malignant bone lesions were

Der Open

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://

Find authenticated court documents without watermarks at docketalarm.com.

DOCKE.

ineffective, with investigation largely stopping by 1952 due to unsatisfactory patient benefits (Hayes 1978). A primary factor contributing to the negative diagnostic results was the poor detection equipment available at the time, while any further attempts exploit ⁷²Ga for therapy would have been limited by the high energy and intensity beta particle and gamma ray emissions depositing excess radiation dose in healthy tissue surrounding the tumor sites. Subsequently, accelerator-produced 67 Ga (t_{1/2}=3.3 d) was investigated for clinical use, and determined to be an effective tumor and abscess locating agent, with annual usage reaching nearly 250,000 patients by 1977 (Hayes 1978). In 1961, the first ⁶⁸Ga generator system was developed, using decay of germanium-68 (⁶⁸Ge) to provide a continuous supply of ⁶⁸Ga for clinical studies (Gleason 1960). ⁶⁸Ga was viewed as particularly attractive due to its short half-life permitting large activities to be administered for diagnostic imaging, with its rapid decay and clearance preventing excess patient radiation dose. Additionally, ⁶⁸Ga nuclear decay exhibits a high positron branching ratio (88.9%) with minimal co-emitted gamma rays, positioning it favorably compared to other radiometals with respect to dose (https://www.nndc.bnl.gov/nudat2/ reCenter.jsp?z=56&n=77). Alongside advances in ⁶⁷Ga, ⁶⁸Ga was initially considered for potential use in PET imaging, however there was insufficient instrumentation at the time to achieve this application. The advent of ^{99m}Tc for single photon emission computed tomography (SPECT) imaging and ¹⁸F for PET imaging delayed the application of ⁶⁸Ga diagnostic imaging owing to widespread ^{99m}Tc generator commercial distribution, and the longer half-life of ¹⁸F compared to ⁶⁸Ga providing ease of production and clinical application. Additionally, early ⁶⁸Ge/⁶⁸Ga generators precluded direct radiolabeling by providing ⁶⁸Ga eluate complexed with EDTA, further slowing the development and utilization of ⁶⁸Ga radiopharmaceuticals (Banerjee and Pomper 2013). With the recent emergence of more advanced PET cameras, and the next generation of GMP-grade commercially available ⁶⁸Ge/⁶⁸Ga generators that reliably provide ⁶⁸Ga in chemically convenient dilute hydrochloric acid, ⁶⁸Ga use for research and clinical application became more widespread. Development and production of many ⁶⁸Ga radiopharmaceuticals ensued for various purposes including myocardial perfusion, renal and liver function, and tumor imaging. Somatostatin (DOTATOC/DOTATATE/DOTANOC) (Bauwens et al. 2010; Decristoforo et al. 2007), prostate-specific membrane antigen (PSMA) (Fuscaldi et al. 2021; Hennrich and Eder 2021), fibroblast activation protein (FAP) (Spreckelmeyer et al. 2020; Loktev et al. 2018), bombesin (Schuhmacher et al. 2005; Richter et al. 2016) and melanocortin 1 (Froidevaux et al. 2004) targeting ⁶⁸Ga radiotracers have been developed (Fig. 1), with their pharmacokinetics often well matched to the short physical half-life of ⁶⁸Ga (Banerjee and Pomper 2013).

With an increasing number of centers using ⁶⁸Ga on a regular basis for research and clinical application, several challenges have been maintaining consistency of reported parameters and providing sufficient process information for preclinical and production data of new ⁶⁸Ga radiopharmaceuticals. This review will present a set of common guidelines and standards would be useful for the ⁶⁸Ga community to report data in a uniform and reliable format. This review aims to outline key aspects of ⁶⁸Ga radiopharmacy, including means of ⁶⁸Ga production and purification via ⁶⁸Ge/⁶⁸Ga generators or medical cyclotrons, standard techniques for radiolabeling compounds with ⁶⁸Ga, and established quality control procedures for clinical grade ⁶⁸Ga radiopharmaceuticals. It

Fig. 1 Structures of several ⁶⁸Ga radiopharmaceuticals in clinical use (1) PSMA-11 (Fuscaldi et al.2021; Hennrich and Eder 2021) (2) PentixaFor (Sammartano et al. 2020; Spreckelmeyer et al. 2020) (3) FAPI-46 (Spreckelmeyer et al. 2020) (4) R = H DOTA-TOC (Bauwens et al. 2010; Decristoforo et al. 2007); R = CarbonylDOTA-TATE (5) Exendin peptide sequence = HGEGTFTSDL SKQ M EEEAVR LFIEWLKNGG PSSGAPPPS C = Exendin-4-Cys40(DOTA) (Velikyan et al. 2017) (6) Exendin peptide sequence = HGEGTFTSDL SKQ M EEEAVR LFIEWLKNGG PSSGAPPPS K = Exendin-4-Lys40(NODAGA) (Velikyan et al. 2017; Migliari et al. 2021)

also suggests best practices for centers with existing or upcoming ⁶⁸Ga radiopharmaceutical production with respect to preparation of common ⁶⁸Ga tracers, and reporting key production parameters to the community. To conclude, an outlook on the future of ⁶⁸Ga radiopharmaceuticals is presented to highlight some of the upcoming challenges and opportunities presenting the community.

⁶⁸Ga production routes: generators and cyclotrons

⁶⁸Ga generator production

The most common method for obtaining ⁶⁸Ga is via a ⁶⁸Ge/⁶⁸Ga generator. Generators are convenient for many applications since the 270.93-day half-life of the parent nuclide, germanium-68 (⁶⁸Ge), guarantees an ongoing supply of ⁶⁸Ga sufficient for clinical use for up to a year. ⁶⁸Ga/⁶⁸Ge generators were first developed in the early 1960s, however early generators utilizing liquid–liquid extraction and EDTA eluant to obtain ⁶⁸Ga were not conducive to complex syntheses of ⁶⁸Ga radiopharmaceuticals, and the advent of ^{99m}Tc and ¹⁸F radiopharmaceuticals slowed development of ⁶⁸Ga radiopharmaceuticals in the 1970s (Rösch 2013). Advances in radiochemistry led

to availability of new generators providing ⁶⁸Ga³⁺ in hydrochloric acid eluate (Razbash et al. 2005). The eluted ⁶⁸Ga, in the form of [⁶⁸Ga]GaCl₃, can be used for radiolabeling and has led to significant advances in ⁶⁸Ga chemistry and the development of targeted PET radiopharmaceuticals. Modern commercially available ⁶⁸Ge/⁶⁸Ga generators utilize TiO₂, SiO₂, CeO₂, or SnO₂ solid phase matrixes to provide [⁶⁸Ga] GaCl₃ by elution with dilute HCl while the mother ⁶⁸Ge radionuclide remains on the matrix (Table 1). ⁶⁸Ge content is less than 0.001% of ⁶⁸Ga eluate throughout the life of the generator, with the eluate containing minimal metallic impurities (Rösch 2013; Chakravarty et al. 2016; Romero et al. 2020). A recent development is a 4.04 GBq ⁶⁸Ga/⁶⁸Ge generator, capable of producing significantly higher ⁶⁸Ga elution and drug product activities with a longer generator shelf-life compared to previous generators (Waterhouse et al. 2020). The ⁶⁸Ge generator parent radionuclide can be produced via several accelerator-based nuclear transformations, the most common being the 69 Ga(p,2n) 68 Ge reaction. The cross section for this reaction peaks just under 20 MeV, which is within the range of many medical cyclotrons, however, to achieve reasonable commercial scale yields (> 37 GBq) irradiations of ⁶⁹Ga at 40-100 µA for several days are needed (IAEA PUB1436).

 68 Ga can also be produced directly on the cyclotron via the 68 Zn(p,n) 68 Ga nuclear reaction (Tieu et al. 2019; Alnahwi et al. 2020; Lin et al. 2018; Nelson et al. 2020; Thisgaard et al. 2021; Rodnick et al. 2020; Alves et al. 2017; Pandey et al. 2014, 2019; Riga et al. 2018; Jensen and Clark 2011), with various production routes and yields presented in Table 2. Depending on the production technique, cyclotron ⁶⁸Ga yields are typically one to several orders of magnitude greater than currently available ⁶⁸Ga/⁶⁸Ge generators. Significant development has been undertaken in the field of liquid targets for ⁶⁸Ga production. Aqueous solutions of isotopically enriched zinc-68 (⁶⁸Zn) were first subjected to proton bombardment in a regular niobium target mainly used for ¹⁸F production (Jensen and Clark 2011) and later upgraded to use a niobium foil as a beam degrader, producing 1800 MBq at end of bombardment (EOB) (Riga et al. 2018). Subsequently, a modified target design using an aluminum foil as beam degrader was developed (Pandey et al. 2019) where zinc nitrate in nitric acid was irradiated at 20 μ A, producing 9.85 ± 2.09 GBq at EOB. Alternatively, solid targets using electroplated or pressed metal ⁶⁸Zn powder have been used, where ⁶⁸Zn is electroplated or pressed onto metallic target backings. Post-irradiation, the metallic ⁶⁸Zn is dissolved for chemical separation and ⁶⁸Ga purification. An alternative target system combining irradiation and dissolution has recently been developed that aims to address the limitations of solid and liquid targetry.

Table 1 Commercially available ⁶⁸ Ge/ ⁶⁸ Ga generat

DOCKE

Manufacturer	GMP	Matrix	Elution	Size (GBq)
IRE Elit	Yes	TiO ₂	0.1 M HCI	1.85
ITG	Yes	Octadecyl silica	0.05 M HCI	2/4.04 (Waterhouse et al. 2020)
Eckert & Ziegler	Yes	TiO ₂	0.1 M HCI	3.7
iThemba Labs	No	SnO ₂	0.6 M HCI	1.85
Obninsk Cyclotron Co Ltd	No	TiO ₂	0.1 M HCI	3.7
Pars Isotopes	No	nano-SnO ₂	1.0 M HCL	2.59 (Romero et al. 2020)

Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Table 2 Liquid and solid target 68 Ga cyclotron production routes	
---	--

Target	Foil	Beam	Yield	References
[⁶⁸ Zn]ZnCl ₂	Niobium	15 MeV, 20 μA	1800 MBq EOB	Jensen and Clark (2011)
[⁶⁸ Zn]Zn(NO ₃) ₂ (1.7 M) in HNO ₃ (0.2 N)	Aluminum	14 MeV, 20 µA	192.5 ± 11.0 MBq/ μA-hr EOB	Pandey et al. (2014)
[⁶⁸ Zn]Zn(NO ₃) ₂ (1.7 M) in HNO ₃ (0.2 N)	Niobium	12 MeV, 20 µA	$4.3\pm0.3~\mathrm{GBq}$	Riga et al. (2018)
1.4 M ⁶⁸ Zn(NO ₃) ₂ in 1.2 N HNO ₃	Aluminum	14 MeV, 40 µA, 60 min	$9.85 \pm 2.09 \mathrm{GBq}$ EOB	Pandey et al. (2019)
100 mg ⁶⁸ Zn(NO ₃) ₂	Niobium	14 MeV, 45 µA, 50 min	6 GBq EOB	Alves et al. (2017)
1.0 M ⁶⁸ Zn(NO ₃) ₂ in 0.3 N HNO ₃	Niobium/Havar	14.3 MeV, 34 μA, 60 min	$4.6\pm0.4~\mathrm{GBq}$	Rodnick et al. (2020)
Pressed ⁶⁸ Zn	Aluminum	13 MeV, 80 μA, 120 min	194 GBq EOB	Thisgaard et al. (2021)
Pressed ⁶⁸ Zn	Aluminum	12.5 MeV, 30 μA, 73 min	37.5 GBq	Nelson et al. (2020)
Electrodeposited ⁶⁸ Zn		14.5 MeV, 30 μA, 60 min	60.9 GBq	Lin et al. (2018)
Pressed ⁶⁸ Zn		13 MeV, 35 μA, 90 min	145 GBq	Alnahwi et al. (2020)
Electrodeposited ⁶⁸ Zn		14.5 MeV, 35 μA, 8.5 min	6.30 GBq	Tieu et al. (2019)

To effectively establish ⁶⁸Ga production, sites should select a liquid or solid target production route based upon their anticipated ⁶⁸Ga demand, available infrastructure, and existing technical expertise. The following sections outline the advantages and disadvantages of liquid and solid ⁶⁸Zn targetry and ⁶⁸Zn/⁶⁸Ga chemical separation techniques.

⁶⁸Ga solid and liquid cyclotron targetry

Liquid ⁶⁸Zn target solutions are prepared by dissolving isotopically enriched ⁶⁸Zn metal or ⁶⁸Zn oxide in nitric acid to produce [⁶⁸Zn]Zn(NO₃)₂ (Rodnick et al. 2020; Alves et al. 2017; Pandey et al. 2014, 2019; Riga et al. 2018). Alternatively, [68Zn]ZnCl2 can be employed (Jensen and Clark 2011), however [⁶⁸Zn]Zn(NO₃)₂ is preferred, as it was found that irradiating ZnCl₂ leads to a significant pressure buildup of hydrogen and oxygen resulting from beam-induced radiolysis of the target solution (Pandey et al. 2014). Target assemblies can utilize a combination of helium and water cooling to remove heat, with the target solution and cooling fluids separated by aluminum and niobium foils. Targets are typically irradiated at energies of 12-14 MeV up to 45 µA beam current (Rodnick et al. 2020; Alves et al. 2017; Pandey et al. 2014, 2019; Riga et al. 2018), with ⁶⁸Ga yields dependent on the target pressure and concentration of ⁶⁸Zn solution, yielding up to 9.85 GBq after a 60 min irradiation. While irradiating at higher beam energies increases ⁶⁸Ga yield, it increases production of the ⁶⁷Ga radionuclidic impurity, so irradiating at a lower energy of ~ 12 MeV improves radionuclidic purity through avoiding onset of the ⁶⁸Zn(p,2n)⁶⁷Ga reaction. However trace levels of undesired isotopic impurities (0.1% ⁶⁶Zn and 0.48% ⁶⁷Zn) present in highly enriched ⁶⁸Zn (99.3%) lead to unavoidable production of 66 Ga and 67 Ga from the 66 Zn(p,n) 66 Ga and 67 Zn(p,n) 67 Ga reactions, respectively (Nelson et al. 2020). To achieve higher beam currents on liquid targets, pressurized target assemblies are required due to cavitation of the target solution. Advantages of liquid targets include ease of solution loading and removal from the

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

