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Continuous Body and Hand Gesture Recognition for
Natural Human-Computer Interaction

YALE SONG, DAVID DEMIRDJIAN, and RANDALL DAVIS,
Massachusetts Institute of Technology

Intelligent gesture recognition systems open a new era of natural human-computer interaction: Gesturing
is instinctive and a skill we all have, so it requires little or no thought, leaving the focus on the task itself, as
it should be, not on the interaction modality. We present a new approach to gesture recognition that attends
to both body and hands, and interprets gestures continuously from an unsegmented and unbounded input
stream. This article describes the whole procedure of continuous body and hand gesture recognition, from
the signal acquisition to processing, to the interpretation of the processed signals.

Our system takes a vision-based approach, tracking body and hands using a single stereo camera. Body
postures are reconstructed in 3D space using a generative model-based approach with a particle filter,
combining both static and dynamic attributes of motion as the input feature to make tracking robust to
self-occlusion. The reconstructed body postures guide searching for hands. Hand shapes are classified into
one of several canonical hand shapes using an appearance-based approach with a multiclass support vector
machine. Finally, the extracted body and hand features are combined and used as the input feature for
gesture recognition. We consider our task as an online sequence labeling and segmentation problem. A latent-
dynamic conditional random field is used with a temporal sliding window to perform the task continuously.
We augment this with a novel technique called multilayered filtering, which performs filtering both on
the input layer and the prediction layer. Filtering on the input layer allows capturing long-range temporal
dependencies and reducing input signal noise; filtering on the prediction layer allows taking weighted votes
of multiple overlapping prediction results as well as reducing estimation noise.

We tested our system in a scenario of real-world gestural interaction using the NATOPS dataset, an
official vocabulary of aircraft handling gestures. Our experimental results show that: (1) the use of both
static and dynamic attributes of motion in body tracking allows statistically significant improvement of
the recognition performance over using static attributes of motion alone; and (2) the multilayered filtering
statistically significantly improves recognition performance over the nonfiltering method. We also show that,
on a set of twenty-four NATOPS gestures, our system achieves a recognition accuracy of 75.37%.

Categories and Subject Descriptors: I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Motion; I.5.5 [Pattern Recognition]: Implementation—Interactive systems

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Pose tracking, gesture recognition, human-computer interaction, online
sequence labeling and segmentation, conditional random fields, multilayered filtering
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1. INTRODUCTION

For more than 40 years, human-computer interaction has been focused on the keyboard
and mouse. Although this has been successful, as computation becomes increasingly
mobile, embedded, and ubiquitous, it is far too constraining as a model of interaction.
Evidence suggests that gesture-based interaction is the wave of the future, with consid-
erable attention from both the research community (see recent survey articles by Mitra
and Acharya [2007] and by Weinland et al. [2011]) and from the industry and public
media (e.g., Microsoft Kinect). Evidence can also be found in a wide range of potential
application areas, such as medical devices, video gaming, robotics, video surveillance,
and natural human-computer interaction.

Gestural interaction has a number of clear advantages. First, it uses equipment
we always have on hand: there is nothing extra to carry, misplace, or leave behind.
Second, it can be designed to work from actions that are natural and intuitive, so there
is little or nothing to learn about the interface. Third, it lowers cognitive overhead, a
key principle in human-computer interaction: Gesturing is instinctive and a skill we
all have, so it requires little or no thought, leaving the focus on the task itself, as it
should be, not on the interaction modality.

Current gesture recognition is, however, still sharply limited. Most current systems
concentrate on one source of input signal, for example, body or hand. Yet human
gesture is most naturally expressed with both body and hands: Examples range from
the simple gestures we use in everyday conversations, to the more elaborate gestures
used by baseball coaches giving signals to players, soldiers gesturing for tactical tasks,
and police giving signals to drivers. Considering only one source of signal (e.g., body
or hand) severely restricts the expressiveness of the gesture vocabulary and makes
interaction far less natural.

Gesture recognition can be viewed as a task of statistical sequence modeling: Given
example observation sequences, the task is to learn a model that captures spatio-
temporal patterns in the sequences, so that the model can perform sequence labeling
and segmentation on new observations. One of the main challenges here is the task
of online sequence segmentation. Most current systems assume that signal bound-
aries and/or the length of the whole sequence are known a priori. However, interactive
gesture understanding should be able to process continuous input seamlessly, that
is, with no need for awkward transitions, interruptions, or indications of boundaries
between gestures. We use the terms unsegmented and unbounded to clarify what we
mean by continuous input. Continuous input is unsegmented, that is, there is no indi-
cation of signal boundaries, such as the gesture start and end. Continuous input is also
unbounded, that is, the beginning and the end of the whole sequence are unknown, re-
gardless of whether the sequence contains a single gesture or multiple gestures. This is
unlike work in most other areas with continuous input. In speech recognition, for exam-
ple, most systems rely on having signal segmentation (e.g., by assuming that silence of
a certain length indicates the end of a sentence) and deal with bounded conversations
(e.g., making an airline reservation). Interactive gesture understanding from input
that is continuous (both unsegmented and unbounded) requires that sequence labeling
and segmentation be done simultaneously with new observations being made.

This article presents a new approach to gesture recognition that tracks both body
and hands, and combines the two signals to perform online gesture interpretation
and segmentation continuously, allowing richer gesture vocabulary and more natural
human-computer interaction. Our main contributions are threefold: a unified frame-
work for continuous body and hand gesture recognition; a new error measure, based on
Motion History Image (MHI) [Bobick and Davis 2001], for body tracking that captures
dynamic attributes of motion; and a novel technique called multilayered filtering for
robust online sequence labeling and segmentation.

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 1, Article 5, Pub. date: March 2012.

PGR2020-00063 Page 00002f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Continuous Body and Hand Gesture Recognition for Natural Human-Computer Interaction 5:3

We demonstrate our system on the NATOPS body and hand gesture dataset [Song
et al. 2011b]. Our extensive experimental results show that examining both static and
dynamic attributes of motion improves the quality of estimated body features, which
in turn improves gesture recognition performance by 6.3%. We also show that our
multilayered filtering significantly improves recognition performance by 15.78% when
added to the existing latent-dynamic conditional random field model. As we show in
Section 4, these improvements are statistically significant. We also show that our
continuous gesture recognition system achieves a recognition accuracy of 75.37% on a
set of twenty-four NATOPS gestures.

Section 1.1 gives an overview of our system; Section 1.2 reviews some of the most
related work in pose tracking and gesture recognition, making distinctions to our work;
Section 2 describes body and hand tracking; Section 3 describes continuous gesture
recognition; and Section 4 shows experimental results. Section 5 concludes with a
summary of contributions and suggesting directions for future work.

Some of the material presented in this article has appeared in earlier conference
proceedings [Song et al. 2011a, 2011b]. Song et al. [2011a] described gesture recognition
of segmented input. This article extends our previous work to the continuous input
domain and presents a new approach to performing online gesture interpretation and
segmentation simultaneously (Section 3.2). Body and hand tracking was described in
Song et al. [2011b]. Here, we include a deeper analysis of the body tracking, evaluating
the performance of an MHI-based error measure we introduced in Song et al. [2011b]
(Section 4.4). None of the experimental results reported in this article has appeared in
any of our earlier work. Song et al. [2011b] also introduced a body and hand gesture
dataset; here we give an experiment protocol on a set of all twenty-four gestures in the
NATOPS dataset, and report a recognition accuracy of 75.37% (Section 4.7).

1.1. System Overview

Figure 1 shows an overview of our system. The three main components are a 3D upper-
body posture estimator, a hand shape classifier, and a continuous gesture recognizer.

In the first part of the pipeline, image preprocessing (Section 2.1), depth maps are
calculated using images captured from a stereo camera, and the images are background
subtracted using a combination of an offline trained codebook background model [Kim
et al. 2005] and a “depth-cut” method.

For 3D body posture estimation (Section 2.2), we construct a generative model of the
human upper-body, and fit the model to observations by comparing various features
extracted from the model to corresponding features extracted from observations. In
order to deal with body posture ambiguities that arise from self-occlusion, we examine
both static and dynamic attributes of motion. The static attributes (i.e., body posture
features) are extracted from depth images, while the dynamic attributes are extracted
from MHI [Bobick and Davis 2001]. Poses are then estimated using a particle filter
[Isard and Blake 1998].

For hand shape classification (Section 2.3), we use information from body posture
estimation to make the hand tracking task efficient: Two small search regions are
defined around estimated wrist joints, and our system searches for hands in only these
regions. A multiclass SVM classifier [Vapnik 1995] is trained offline using manually-
segmented images of hands. HOG features [Freeman et al. 1998; Dalal and Triggs
2005] are extracted from the images and used as an image descriptor.

In the last part, continuous gesture recognition (Section 3), we form the input feature
by combining body and hand information. A Latent-Dynamic Conditional Random
Field (LDCRF) [Morency et al. 2007] is trained offline using a supervised body and
hand gesture dataset. The LDCRF with a temporal sliding window is used to perform
online sequence labeling and segmentation simultaneously. We augment this with our
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Fig. 1. A pipeline view of our unified framework for continuous body and hand gesture recognition.
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multilayered filtering to make our task more robust. The multilayered filter acts both
on the input layer and the prediction layer: On the input layer, a Gaussian temporal-
smoothing filter [Harris 1978] is used to capture long-range temporal dependencies
and make our system less sensitive to the noise from estimated time-series data,
while not increasing the dimensionality of input feature vectors and keeping the model
complexity the same. The prediction layer is further divided into local and global
prediction layers, where we use a weighted-average filter and a moving-average filter,
respectively, to take weighted votes of multiple overlapping prediction results as well
as reduce noise in the prediction results.

1.2. Related Work

The topics covered in this article range broadly from body and hand tracking to gesture
recognition with online sequence labeling and segmentation. This section reviews some
of the most relevant work; comprehensive survey articles include Poppe [2007] for
body tracking, Erol et al. [2007] for hand tracking, and Mitra and Acharya [2007] and
Weinland et al. [2011] for gesture recognition.

Gesture-based interfaces typically require robust pose tracking. This is commonly
done by wearing specially designed markers or devices (e.g., Vicon motion capture
system or colored gloves [Yin and Davis 2010]). However, the most natural form of
gestural interaction would not require additional markers or sensors attached to the
body. We take a vision-based approach and perform motion tracking based on data from
a single stereo camera, not using any special marker device attached to the body.

Several successful vision-based pose tracking approaches have been reported, falling
generally into two categories: model-based methods, which try to reconstruct a pose
model by fitting a kinematic model to the observed image [Deutscher et al. 2000;
Sminchisescu and Triggs 2003; Lee and Cohen 2006]; and appearance-based meth-
ods, which assume a pose vocabulary and try to learn a direct mapping from features
extracted from images to the vocabulary [Brand 1999; Shakhnarovich et al. 2003;
Mori and Malik 2006]. Model-based methods are in general not affected by a cam-
era viewpoint, do not require a training dataset, and are generally more robust in
3D pose estimation. Appearance-based methods require a large training dataset and
in general are more sensitive to camera viewpoints, but once a mapping function is
learned, classification is performed efficiently. Recent works take a hybrid approach,
combining ideas from the two conventional methods and using advanced depth sensing
cameras for 3D data acquisition (e.g., Time of Flight (ToF) [Gokturk et al. 2004] or struc-
tured light [Fofi et al. 2004]). Schwarz et al. [2011] use a ToF camera to obtain depth
images. They detect anatomical landmarks to fit a skeleton body model, solving con-
strained inverse kinematics. A graph is constructed from the depth data, and geodesic
distances between body parts are measured, making the 3D positions of anatomical
landmarks invariant to pose. Similar to our work, they use optical flow between sub-
sequent images to make tracking robust to self-occlusion. Shotton et al. [2011] obtain
depth images from a structured light depth sensing camera (i.e., Microsoft Kinect).
They take an object recognition approach: A per-pixel body part classifier is trained
on an extensive training dataset. The results are reprojected onto 3D space, and local
means are used to generate confidence-scored 3D proposals of body joints.

In this work, we take a model-based approach for body posture estimation, because
reconstructing body posture in 3D space provides important information, such as point-
ing direction. Hand shapes, by contrast, are more categorical, that is, it is typically not
crucial to distinguish fine-grained details of hand shape in order to understand a body
and hand gesture. Therefore, we take an appearance-based approach to hand shape
classification.
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