Internet Core Protocols
The Definitive Guide

Eric A. Hall

O’REILLY"

Beijing - Cambridge - Farnbam - Koln - Paris - Sebastopol - Taipei - Tokyo

ROKU EXH. 1002

An Introduction
to TCP/IP

If you've been using TCP/IP-based networking products for any length of time at
all, you’re probably already aware of how IP addressing, routing, and other funda-
mental aspects of the Internet family of protocols work, at least from a user’s per-
spective.

What you probably don’t know—unless you've been formally trained in these sub-
jects—is what makes TCP/IP work from the wire’s perspective, or from the per-
spective of the applications in use on your network. This chapter provides you
with an introduction to these viewpoints, providing you with a better understand-
ing of the nature of the traffic on your network.

A Brief History of the Internet

Before you can understand how TCP/IP works—or why it works the way it
does—you first have to understand the origins of the networking protocols and
the history of the Internet. These subjects provide a foundation for understanding
the basic design principles behind TCP/IP, which in turn dictate how it is used
today.

TCP/IP presented a radical departure from the traditional computer networking
services in use during its development. In the early days of commercial comput-
ing (the late 1960s), most companies bought a single large system for all of their
data processing needs. These systems used proprietary networking architectures
and protocols, which primarily consisted of plugging dumb terminals or line print-
ers into an intelligent communications controller, each of which used proprietary
networking protocols to communicate with the central hosts.

Most of the early computer networks used this hierarchical design for their propri-
etary network protocols and services. As users’ computing requirements expanded,

ROKU EXH. 1002

2 Chapter 1: An Introduction to TCP/IP

they rarely bought a different system from a different vendor, but instead added
new components to their existing platforms or replaced the existing system with a
newer, larger model. Cross-platform connectivity was essentially unheard of, and
was not expected. To this day, you still can’t plug an IBM terminal into a DEC sys-
tem and expect it to work. The protocols in use by those devices are completely
different from each other.

As the use of computers became more critical to national defense, it became clear
to the U.S. military in particular that major research centers and institutions needed
to be able to share their computing resources cooperatively, allowing research
projects and supercomputers to be shared across organizational boundaries. Yet,
since each site had different systems (and therefore different networking technolo-
gies) that were incompatible with the others, it was not possible for users at one
site to use another organization’s computing services easily. Nor could programs
easily be ported to run on these different systems, as each of them had different
languages, hardware, and network devices.

In an effort to increase the sharing of resources, the Advanced Research Projects
Agency (ARPA) of the Department of Defense (DOD) began coordinating the
development of a vendor-independent network to tie the major research sites
together. The need for a vendor-independent network was the first priority, since
each facility used different computers with proprietary networking technology. In
1968, work began on a private packet-switched network, which eventually became
known as ARPAnet.

ARPAnet was the world’s first wide-area packet-switching network, designed to
allow individual units of data to be routed across the country as independent enti-
ties. Previous networks had been circuit-switched, involving dedicated end-to-end
connections between two specific sites. In contrast, the ARPAnet allowed organiza-
tions to interconnect into a mesh-like topology, allowing data to be sent from one
site to another using a variety of different routes. This design was chosen for its
resilience and built-in fault-tolerance: if any one organization were bombed or oth-
erwise removed from the network, it wouldn’t affect the rest of the organizations
on the network.

During this same time period, other network providers also began interconnecting
with the ARPAnet sites, and when these various networks began connecting to
each other, the term “Internet” came into use. Over the next few years, more orga-
nizations were added to the ARPAnet, while other networks were also being
developed, and new network technologies such as Ethernet were beginning to
gain popularity as well.

All of this led to the conclusion that networking should be handled at a higher
layer than was allowed by the ARPAnet’s packet-switching topology. It became

ROKU EXH. 1002

A Brief History of the Internet 3

increasingly important to allow for the exchange of data across different physical
networks, and this meant moving to a set of networking protocols that could be
implemented in software on top of any physical topology, whether that be a
packet-switched WAN such as ARPAnet or a local area network (LAN) topology
such as Ethermet.

TCP/IP to the Rescue

In 1973, work began on the TCP/IP protocol suite, a software-based set of network-
ing protocols that allowed any system to connect to any other system, using any
network topology. By 1978, IP version 4 (the same version that we use today) had
been completed, although it would be another four years before the transition
away from ARPAnet to IP would begin. Shortly thereafter, the University of Califor-
nia at Berkeley also began bundling TCP/IP with their freely distributed version of
Unix, which was a widely used operating system in the research community.

The introduction and wide-scale deployment of TCP/IP represented a major
ground-shift in computer networking. Until the introduction of TCP/IP, almost
every other network topology required that hardware-based network nodes send
traffic to a central host for processing, with the central host delivering the data to
the destination node on behalf of the sender. For example, Figure 1-1 shows a
host-centric networking architecture. In this model, devices are attached to a cen-
tralized system that coordinates all network traffic. A user at a terminal could not
even send a screen of text to a printer without first sending the data to the central
host, which would parse the data and eventually send it to the printer for printing,.

—
=%
H

Mainframe

Communications Controller

Nefwork node Network node

Figure 1-1. Host-centric networking

ROKU EXH. 1002

4 Chapter 1: An Introduction to TCP/IP

But with TCP/IP, each network device was treated as a fully functional, self-aware
network end-point, capable of communicating with any other device directly,
without having to talk to a central host first. IP networks are almost anarchic, with
every device acting as a self-aware, autonomous unit, responsible for its own net-
work services, as illustrated in Figure 1-2.

—
=%

Mainframe

Nefwork node Network node

Figure 1-2. Node-centric networking

This design allowed for application- and resource-sharing on a national scale,
since a top-down model simply would not work with millions of widely distrib-
uted devices. In addition, this design also provided reliability in case any part of
the network was damaged, since a host-based model would simply stop function-
ing if the central host was destroyed or disabled.

The Internet Today

Over time, the ARPAnet evolved into an open “network-of-networks” using TCP/IP,
with educational, commercial, and other organizations connected to each other
through an interwoven mesh of networks. Today this type of mesh architecture is
far less common, replaced by a much more structured hierarchy.

Rather than organizations connecting to each other directly, most organizations
now connect to a local network access provider who routes network traffic
upwards and outwards to other end-point networks.

Generally speaking, there are only a handful of top-level Internet Service Provid-
ers (ISPs), each of which provide major interconnection services around the coun-
try or globe. Most of these firms are telecommunications companies that specialize

ROKU EXH. 1002

A Brief History of the Internet 5

in large-scale networking (such as long-distance providers like MCI WorldCom and
Sprint).

Below these top-level carriers are local or regional access providers who offer
regional access and lower-speed connection services to end users directly (these
mid-level carriers are sometimes referred to as Internet Access Providers, or
“IAPs”). This design is represented in Figure 1-3.

National ISPs

Regional IAPs

End-User Nets

Figure 1-3. The hierarchical architecture of the Internet

Visually, the Internet can be thought of as a few major networking companies who
provide large-scale “backbone” services around the world, followed by a large
number of secondary providers that resell bandwidth on those networks. At the
end of the line are the end-leaf organizations that actually generate the traffic that
crosses these networks.

The Internet, Defined

Simply having a lot of interconnected networks does not by itself mean that you
have the “Internet.” To “internet” (with a lowercase “i”) means to interconnect net-
works. You can create an internet of Macintosh networks using AppleTalk and
some routers, for example. The term “Internet” (with a capital “I”) refers to the
specific global network of TCP/IP-based systems, originally consisting of ARPAnet
and the other research networks.

There have been lots of private and public networks that have offered a multi-
layer network design (private SNA* networks from the 1980s are a good example
of this). Therefore, the Internet in particular is a collection of networks that sup-
port host-to-host communications using TCP/IP protocols.

* SNA stands for Systems Network Architecture, a proprietary IBM networking protocol.

ROKU EXH. 1002

6 Chapter 1: An Introduction to TCP/IP

Under this definition, the network is made up of intelligent end-point systems that
are self-deterministic, allowing each end-point system to communicate with any
host it chooses. Rather than being a network where communications are con-
trolled by a central authority (as found in many private networks), the Internet is
specifically meant to be a collection of autonomous hosts that can communicate
with each other freely.

This is an important distinction, and one that is often overlooked. For example,
many of the private networks have offered mail-delivery services for their custom-
ers, allowing a user on one network to send email to another user on another net-
work, but only by going through a predefined mail gateway service. Conversely,
the Internet allows users to exchange mail directly, without going through a cen-
tral politburo first. In this regard, the Internet is a collection of self-deterministic,
autonomous hosts.

Having hosts communicate with each other directly is not enough to make the
Internet, however. Many networks have offered users the ability to communicate
directly with other hosts on those networks, and those networks have not been
considered as parts of the Internet per se. For example, there have been many pri-
vate DECnet networks that have offered this capability, and Novell offers a similar
service using IPX today.

The last key criteria is that the Internet is a collection of networks that allows host-
to-host communications through voluntary adherence to open protocols and pro-
cedures defined by Internet standards. Therefore, in order for these networks to be
parts of the Internet, they must also use Internet protocols and standards, allow-
ing for vendor-neutral networking.

This is perhaps the most important part of the entire definition, since the use of
consistent protocols and services is what allows the Internet to function at all. For
example, it is not enough for a private network to allow users to send email mes-
sages to each other directly. Rather, those users must use the same protocols and
services to exchange email messages, and those protocols must be defined as
Internet standards.

TCP/IP’s Architecture

A key part of understanding the distributed nature of TCP/IP is the realization that
TCP/IP is a modular family of protocols, providing a wide range of highly seg-
mented functions. TCP/IP is not a single monolithic protocol, but instead is a col-
lection of protocols that range from application-specific functions like web
browsing down to the low-level networking protocols like IP and TCP.

ROKU EXH. 1002

TCP/IP’s Architecture 7

One common tool used for comparing different kinds of protocols is the OSI* Ref-
erence Model, which is a simplistic breakdown of networking functions from the
physical wiring up to the applications that run on the network. By comparing
TCP/IP to the OSI Reference Model, it is easier to understand how each of the
major protocols interact with each other.

An Introduction to the OSI Reference Model

The OSI Reference Model is a conceptual model that uses seven “layers” to iden-
tify the various functions provided by a network, and these seven layers can be
used to compare different protocols using a common framework. Each layer
within the OSI Reference Model has a very specific function, and each layer
depends on the other layers in order for the entire model to function properly.
Each layer only communicates with the layers immediately above or below it. If
there is a problem at one layer, it is the responsibility of that specific layer to pro-
vide feedback to the layers surrounding it.

The OSI Reference Model is extremely useful as a tool for discussing various net-
work services. For example, if we were to look at a simple network service such
as printing a document to a locally attached printer, we could use the OSI Refer-
ence Model to determine how this simple task was being achieved. We could also
use the model to determine how printing over a Novell network was done, or
how printing over a TCP/IP network was accomplished. Because all three of these
examples use the same model, they can all be compared to each other even
though they all use extremely different technologies to achieve the same objective.

Not all networking technologies have seven layers, nor do they all match up to the
seven layers in the OSI Reference Model exactly. Most of them do not match it
except in small, specific ways, although all of them can be compared to the model
with a little bit of thought. This flexibility is what makes it such a popular tool.

The following list briefly describes each of the seven layers and the purpose each
serve. Remember that this is a conceptual model, with very little direct meaning to
the real world.

The physical layer
The physical layer is concerned with the physical wiring used to connect dif-
ferent systems together on the network. Examples include serial and parallel
cables, Ethernet and Token Ring cabling, telephone wiring, and even the spe-
cific connectors and jacks used by these cabling systems. Without strictly stan-
dardized definitions for the cabling and connectors, vendors might not
implement them in such a way that they would function with other implemen-
tations, which in turn would make it impossible for any communication

* OSI stands for Open Systems Interconnect, an alternate suite of network protocols.

ROKU EXH. 1002

8 Chapter 1: An Introduction to TCP/IP

whatsoever to occur. Each of these wiring systems therefore follows very strict
standards, ensuring that network devices will at least be able to communicate
without having to worry about issues such as voltage and impedance.

The data-link layer

The data-link layer defines how information is transmitted across the physical
layer, and is responsible for making sure that the physical layer is functioning
properly. Some networks—such as the public telephone network, radio, and
television—use analog sine-waves to transmit information, while most com-
puter networks use square-wave pulses to achieve this objective. If there are
any problems with transmitting the information on the physical cabling (per-
haps due to a damaged wire or circuit), then this layer must deal with those
errors, either attempting to retransmit the information or reporting the failure
to the network layer.

The network layer

The network layer is used to identify the addresses of systems on the net-
work, and for the actual transmission of data between the systems. The net-
work layer must be aware of the physical nature of the network, and package
the information in such a way that the data-link layer can deliver it to the
physical layer. For example, if a telephone line is the physical layer, then the
network layer must package the information in such a way that the data-link
layer can transmit it over an analog circuit. Likewise, if the physical layer is a
digital Ethernet LAN, then the network layer must encapsulate the information
into digital signals appropriate for Ethernet, and then pass it to the data-link
layer for transmission.

On many networks, the network layer does not provide any integrity check-
ing. It simply provides the packaging and delivery services, assuming that if
the data-link layer is not reporting any errors then the network is operational.
Broadcast television and radio work in this manner, assuming that if they can
transmit a signal, then it can also be received. Many digital networking tech-
nologies also take this approach, leaving it up the higher-level protocols to
provide delivery tracking and reliability guarantees.

The transport layer
The transport layer provides the reliability services lacking from the network
layer, although only for basic transmission services, and not for any applica-
tion- or service-specific functions. The transport layer is responsible for verify-
ing that the network layer is operating efficiently, and if not, then the transport
layer either requests a retransmission or returns an error to the layer above it.
Since higher-level services have to go through the transport layer, all transport
services are guaranteed when this layer is designed into the network software
and used. Not all systems mandate that the transport layer provide reliability,

ROKU EXH. 1002

TCP/IP’s Architecture 9

and many networks provide unreliable transport layers for nonessential ser-
vices such as broadcast messages.

The session layer

The session layer is responsible for establishing connections between sys-
tems, applications, or users. The session layer may receive this request from
any higher layer, and then will negotiate a connection using the lower layers.
Once a connection is established, the session layer simply provides an inter-
face to the network for the higher layers to communicate with. Once the
higher layers are finished, the session layer is responsible for destroying the
connection.

The presentation layer

The presentation layer provides a consistent set of interfaces for applications
and services to utilize when establishing connections through the session
layer. Although these interfaces could also exist at the session layer, that
would burden it unnecessarily. It is better to have the session layer only man-
age sessions and not worry about verifying data or providing other extended
services. An example of a service provided by the presentation layer is data-
compression, allowing applications to take advantage of the performance
gains that compression provides without forcing the applications to develop
these services themselves, and without forcing the transport layer to provide
this service when it may not always be needed.

The application layer
Finally, the application layer provides the network’s interface to end-user
application protocols such as HTTP and POP3. This layer should not be con-
fused with the part of the end-user application that displays data to the end
user. That function is an entirely separate service, and is outside the scope of
the OSI Reference Model.

Although every network must use all seven layers of the OSI Reference Model in
some form or another, not every network design provides distinct protocols or ser-
vices that match all seven layers precisely. TCP/IP is one such networking design,
with many layers that do not match up to each of the layers used by the OSI Ref-
erence Model.

Comparing TCP/IP to the OSI Reference Model

TCP/IP does not strictly conform to the OSI Reference Model. Some portions of
the OSI Reference Model map directly to some of the protocols and services pro-
vided by TCP/IP, while many of the layers do not map to each other directly at all.
For example, the actual delivery of data over the network is handled at the physi-
cal layer, and in this case, the wire is the physical layer. There are no services in
TCP/IP that correspond with the physical or data-link layers. Rather, IP passes data

ROKU EXH. 1002

10 Chapter 1: An Introduction to TCP/IP

to a network adapter’s device driver, which provides an interface to the data-link
layer in use with the physical layer.

Figure 1-4 shows how TCP/IP matches up with the OSI Reference Model. Notice
that TCP/IP does not provide any physical or data-link layer services directly, but
instead relies on the local operating system for those services.

0SI MODEL TCP/IP
------ e ASCApes | ginry
Presentation NVE Apps
Session
-------------- TCP and UDP
Transport
Network P
...... '.’?“.’ﬂ- R Network
Physical Topology

Figure 1-4. TCP/IP in comparison to the OSI Reference Model

The specific layers offered by TCP/IP include:

The Internet Protocol
IP itself works at the network layer of the OSI reference model. It is responsi-
ble for tracking the addresses of devices on the network, determining how IP
datagrams are to be delivered, and sending IP packets from one host to
another across a specific segment. In essence, IP provides a virtual representa-
tion of the network that is independent of any of the individual network seg-
ments, acting more like a national delivery service than a local courier service.

The Transport Protocols (TCP and UDP)

TCP/IP provides two protocols that work at the transport layer: TCP and UDP.
TCP provides a highly monitored and reliable transport service, while UDP
provides a simple transport with no error-correcting or flow-control services. It
is also interesting to note that TCP and UDP also provide session layer ser-
vices, managing all of the connections between the different hosts. When an
application protocol such as HTTP is used to exchange data between a web
client and a web server, the actual session-management for this exchange is
handled by TCP.

ROKU EXH. 1002

TCP/IP Protocols and Services In-Depth 11

Presentation Services

TCP/IP does not provide a presentation layer service directly. However, some
applications use a character-based presentation service called the Network Vir-
tual Terminal (NVTs are a subset of the Telnet specification), while others
might use IBM’s NetBIOS or Sun’s External Data Representation (XDR) pro-
gramming libraries for this service. In this regard, TCP/IP has many presenta-
tion layer services that it can use, but it does not have a formal service that
every application protocol must use.

Application Protocols (HTTP, SMTP, etc.)
TCP/IP provides an assortment of application protocols, providing the end-user
applications with access to the data being passed across the transport proto-
cols. These protocols include the Simple Message Transfer Protocol (SMTP),
which is used by electronic mail systems to move mail messages around the
Internet, and the Hyper-Text Transfer Protocol (HTTP), which is used by web
browsers to access data stored on web servers, among many others.

All of these services get called upon whenever an application wants to exchange
data with another application across the Internet. For example, a mail client will
use the SMTP application protocol whenever a user wants to send a mail message
to a remote mail server, and the SMTP protocol uses rules defined by the NVT
specification whenever it exchanges data with TCP. In turn, TCP provides error-
correction and flow-control services back to SMTP. IP is used to move the TCP
segments between the source and destination networks, while hardware-specific
protocols (like Ethernet-specific framing) will be used to move the IP packets
between the various systems on the network itself.

TCP/IP Protocols and Services In-Depth

Whenever data is exchanged between two applications across a TCP/IP network,
each of the major layers provided by TCP/IP come into play.

This can be seen with email clients that use the Simple Message Transfer Protocol
(SMTP) to send mail to a local server, as is shown in Figure 1-5. The email soft-
ware on the client contains local application-specific code for parsing and display-
ing email messages, but everything else is done with network protocols such as
SMTP, TCP, and IP.

As data is passed through each of the different layers, packets are generated that
contain two distinct elements: headers and data. As information is passed down
through the protocol stack, each layer encapsulates the previous layer’s informa-
tion (including both the header and the data) into a new packet, containing a new
layer-specific header and the newly minted data segment. This process is shown in
Figure 1-6.

ROKU EXH. 1002

12 Chapter 1: An Introduction to TCP/IP

Client Server
| Porsngengine | applictonservies | | Flessten /O
Display engine Database 1/0
Mail dient Mail server
P
read and write data SMTP SMTP read and write data
formatdos [WT T w format dota
open connection -“““i&_ ______ network services -“““i&_ ______ open connection
sendlPpacket | P e read IP packet
senddotlink frame | PhyscolMedis | | | [Physical Media | receive dotalink frame
— —

Figure 1-5. Some of the layers used by TCP/IP applications

Web browser

SMTP data

Figure 1-6. The sub-panrts of layers

At the bottom-most layer, the physical network is used to transfer bits of data
(called “frames”) between two devices on the network. IP packets are contained
within these network-specific frames. The only reason IP is used for this process is
because the data can go over a variety of different network topologies, and as
such the TCP/IP applications must have a way of addressing and routing traffic
consistently, regardless of the specific networks in use.

Embedded within the IP datagrams are TCP segments, which provide a reliable
virtual circuit for the SMTP application protocol to use. TCP does things like open
a connection between two application protocol end-points, resend lost data,

ROKU EXH. 1002

TCP/IP Protocols and Services In-Depth 13

remove duplicates, and exert flow control, each of which is beyond the simple
delivery function of IP itself, yet is common enough to be useful as a separate, dis-
tinct service.

The SMTP application protocol contains application-specific semantics. In this
case, this might consist of an SMTP command such as “RCPT TO ehall” and an
application-specific response code such as 250 (“okay”). Note that the commands
and data used by SMTP conform to the NVT specification, which prescribes how
the data should be formatted, the types of data allowed, and so forth, although
SMTP is doing all of the real work.

As can be seen, each of the layers in the TCP/IP suite provide specific functional-
ity to the layers above and below it, making the overall design extremely modu-
lar. It is this modularity that makes TCP/IP so powerful, and also what makes it so
complex.

Data-Link Services

When two devices on a network communicate with each other, they don’t use IP
to do so. Rather, they use protocols that are specific to the wire itself. For exam-
ple, devices on an Ethernet segment use a predefined series of electrical impulses
to communicate with each other. Whenever an Ethernet device wants to send data
to another device on the same network, it raises and lowers the voltage of the
shared medium so that a series of “on” and “off” voltage patterns are generated.
These changes in voltage are interpreted as bits by the other devices on the
network.

The changes in voltage are dictated by protocols that are specific to the different
types of physical networks. Ethernet networks have data-link protocols that will
not work with technologies like Token Ring. Similarly, modems use protocols spe-
cific to different types of modem technology.

Much of IP’s functionality is determined by the physical media that the IP device is
connected to. When an IP device has information that it needs to send to another
device on the same wire, it has to understand the characteristics of the wire in
order to prepare the information so that is usable for that particular medium.

One of the issues that IP has to deal with is the mechanisms used for the network-
specific addressing. Just as physical networks have to provide mechanisms for
encapsulating and disseminating data on the wire, they also have to provide a way
for devices to locate each other, using addressing methods defined by the low-
level protocols.

On shared networks, each device must have a unique hardware address in order
for devices to indicate which node the traffic is for. Ethernet networks use a 48-bit

ROKU EXH. 1002

14 Chapter 1: An Introduction to TCP/IP

Media Access Control (MAC) address for this purpose, while Frame Relay net-
works use Data-Link Connection Identifier (DLCI) addresses, and so on. This con-
cept is illustrated in Figure 1-7, where IP traffic for 192.168.10.40 is sent to the
Ethernet address of 00:00:c0:c8:b3:27, using Ethernet-specific signalling.

Ferret
192.168.10.10 N ————————— 192.168.10.40

ethernet traffic for 00:00:c0:c8:b3:27

Figure 1-7. Topology-specific protocols and addressing

In contrast, modems are point-to-point; only two devices can communicate over
any given circuit. As such, modem circuits don’t use addresses per se, but instead
just send and receive data over dedicated “transmit” and “receive” wires as
needed. The same is true of T-1 lines and most other point-to-point circuit-based
networks.

In all of these cases, the IP stack running on the local device must understand the
addressing mechanisms used by the hardware, and implement it accordingly, just
as it must understand the framing characteristics and signalling mechanisms in use
on the physical network.

The Internet Protocol

When an IP-enabled device wants to send data to another IP node, the data-link
services on that device convert the IP datagrams into a format usable by the local
network medium, and then send the data to the destination system using the
addressing and framing mechanisms dictated by the network.

These steps occur on each of the networks that an IP datagram traverses on its
way to the final destination system. If an IP datagram were sent from a dial-up
user working at her home in Los Angeles to a server in Rome, Italy, the number of
networks that would be crossed could be quite high. But at each step of the way,
the data would be transmitted using the low-level protocols appropriate for each
of the particular networks being crossed.

In this regard, IP provides a virtual representation of the global Internet to the
hosts that are on it. IP provides a datagram formatting and addressing mechanism
that is not dependent upon any of the specific characteristics of the individual

ROKU EXH. 1002

TCP/IP Protocols and Services In-Depth 15

networks that make up the global Internet. Data can be sent to an IP address, and
the data will be encapsulated and transmitted according to the rules of each of the
intermediary networks, with the IP datagram being used to provide delivery clues
to the sending, receiving, and intermediary devices. Essentially, routing occurs at
the network layer (IP), while delivery occurs at the data-link layer (Ethernet,
modems, whatever).

This concept is illustrated in Figure 1-8. In that example, data sent over a modem
would be encapsulated into a form usable by the dial-up connection. Once
received, the data would be determined to be an IP datagram, and would then get
converted into a form that was usable by the LAN connection and sent out again.
The receiving system (Ferret) would eventually get the packets.

" Diok-Clent
192.168.10.6

IP traffic for
192.168.10.10

IP traffic for 192.168.10.10

Sy Ferret
192.168.10.6(modem)
A AL e —— 192.168.10.10

Figure 1-8. IP datagrams versus the topology-specific protocols

One thing to keep in mind is that this was the primary design goal of IP, allowing
it to scale beyond the packet-switched networks that made up the original Inter-
net (which could not be grown easily or cheaply). Without moving to a virtual net-
working protocol like IP, the Internet would still be using packet-switching
networks, and we’d all have WAN connections on our desktops instead of Ether-
net or Token Ring (or, more likely, we wouldn’t be using IP). But by leveraging
the virtual nature of IP, we can use any network we want anywhere we want, and
the IP data will still be deliverable across any of them.

One side effect of this design is that the IP datagram is a separate entity from the
IP packets that are being used to transfer the datagram from the source to the des-
tination. Whenever a device needs to send data, it will form an IP datagram con-
taining both the data that needs to be sent and whatever headers are required to
deliver the data over IP to the destination system. However, as this datagram is

ROKU EXH. 1002

16 Chapter 1: An Introduction to TCP/IP

sent across the network, it will be shipped as a series of packets that get created
and destroyed by each network device that processes or forwards the datagram on
to its final destination. In essence, the datagram becomes a series of packets, each
of which can go anywhere they need to in order for the datagram to be delivered.

Another interesting aspect of IP is that it does not guarantee that any of these
packets will ever get delivered at all. A system may be able to send the data, but
the data may not be received intact, or the data may be ignored by the destina-
tion system due to high processing loads or some other reason. Although some
networking topologies provide an intelligent retransmission mechanism in case
data is lost, many of them do not. As such, IP’s designers had to assume that data
would get lost sometimes.

In this regard, IP offers absolutely no guarantees, leaving it up to higher-layer pro-
tocols to perform this function if required. For this reason, IP can be thought of as
being unreliable, particularly in the sense that application designers (and users)
should not assume that every IP datagram will arrive at its destination intact. Some
people refer to this as “best-effort” delivery, while others refer to it jokingly as
“best-of-luck” delivery.

Another key design goal of IP was the concept of datagram independence. The IP
protocol does not dictate that all datagrams must travel the same route. In fact, IP
dictates just the opposite: any datagram can travel across any network path that
the devices on the network deem most suitable.

For example, a user in California may be downloading data from a host in Ire-
land, and some part of the network may simply stop functioning. The sending sys-
tem (or a router somewhere in between the two systems) would eventually detect
this failure and would begin forwarding datagrams through a different network
path. This feature gives IP a robust and flexible foundation, allowing networks to
become self-healing, in a sense.

Since each datagram is independent, it is likely that some datagrams will take dif-
ferent paths to the same destination. As such, one datagram may end up crossing a
satellite link, while another datagram crosses a fiber-optic line. When this hap-
pens, the second datagram will likely arrive at the destination system before the
first datagram does. In another situation, the satellite link may experience some
sort of problem that results in the first datagram getting sent twice.

In both of these cases, the network has caused the IP datagrams to get out of
synch. But since IP is simply a virtual representation of the network, it does not
care when this happens. If sequencing is important to an application, then it has
to implement that service directly or by using TCP (appropriately the Transmis-
sion Control Protocol) for transport-layer services.

ROKU EXH. 1002

TCP/IP Protocols and Services In-Depth 17

Another related concept is fragmentation. Assume for a moment that the sending
system were on a high-capacity network such as Token Ring, while the destina-
tion system were on a low-capacity dial-up connection. Since the sending system
generates datagrams according to the characteristics of the local network, it gener-
ates large datagrams appropriate for the Token Ring frames.

But when the next system tries to relay the IP datagram to the dial-up recipient,
the TP datagrams are too large for the dial-up network to handle in one frame.
When this happens, the datagram must be split into multiple fragments, with each
of the fragments being sent across the network as independent entities. Each frag-
ment follows all of the other rules outlined earlier, thus being capable of getting
lost in transit, routed separately, or arriving out of sequence.

When the fragments arrive at the destination system (if they arrive), then they
need to be reassembled into their original datagram form. However, this only
occurs at the final destination system, and not at any intermediary routers, since
any of the fragments could have gone off in another direction.

Taken together, these services make IP a highly unreliable and unpredictable net-
work protocol. Datagrams can get lost or may be broken into multiple packets, all
without warning. The only thing IP does is move data from one host to another,
one network at a time. Of course, users have little interest in applications that
must be provided by a higher-level protocol than either IP itself (for example,
TCP) or the application.

Remember this rule: The Internet Protocol is only responsible for
getting IP datagrams from one host to another, one network at a
time.

For more information on IP, refer to Chapter 2, The Internet Protocol.

The Address Resolution Protocol

Since two IP devices on the same physical medium communicate with each other
using the low-level protocols specific to that physical medium, the two devices
must locate each other’s hardware addresses before they can exchange any data.
However, each networking topology has its own addressing mechanisms that are
different from all of the others, and IP has to be able to locate hardware addresses
for each of them.

Since there are so many different types of networking topologies, it is not possi-
ble for IP to be imbued with the specific knowledge of how to build the address

ROKU EXH. 1002

18 Chapter 1: An Introduction to TCP/IP

mappings for each of them explicitly. Attempting to do so would be an extraordi-
narily inefficient use of the IP software’s basic functionality, preventing the rapid
adoption of new networking topologies and introducing other fundamental prob-
lems into the network.

Instead, the Address Resolution Protocol (ARP) is used as a helper to IP, and is
called upon to perform the specific task of building each address mapping when-
ever address conversion is required. ARP works by issuing a broadcast on the
selected medium, requesting that the device using a specific IP address respond
with its hardware address. Once the destination device has responded, the send-
ing system can establish communication with the receiving system and start send-
ing data to the discovered hardware address. This process is shown in Figure 1-9,
with 192.168.10.10 issuing a lookup for 192.168.10.40, who responds with its local

Ethernet hardware address.
W (Il
% % i %
Weasel
192.168.10.10 192.168.10.5 192.168.10.20

Ferret Arachnid
m it el —
0 Who has 407

o A0is 00:00:c0:c8:b3:27

Froggy
192.168.10.40

Figure 1-9. Using ARP to locate the bardware address associated with a known IP address

The ARP requests and responses work at the physical layer and are embedded
directly into the frames provided by the low-level protocols in use on the physical
medium. ARP messages do not use IP, but instead are entirely separate protocols.

For more information on ARP, refer ahead to Chapter 3, The Address Resolution
Protocol.

ROKU EXH. 1002

TCP/IP Protocols and Services In-Depth 19

The Internet Control Message Protocol

From time to time, IP datagrams will fail to get delivered. This may be due to
errors in the datagram structure, a general network outage, or a delivery timeout.
IP doesn’t really care about these problems, since it never promised delivery in the
first place. However, applications care about these problems very much. They
would like to be able to react to a failure, either by taking an alternative course of
action, or by at least informing the user that a problem has occurred.

IP uses the Internet Control Message Protocol (ICMP) for error-reporting services.
When a system needs to report a problem that is preventing delivery from occur-
ring, it generates an ICMP message that describes the general problem, and then
sends it back to the original sender of the original datagram. ICMP messages are
not sent when a packet is lost in transit or when some other transient error occurs.
Rather, ICMP error messages are only sent when there is a detectable problem that
is preventing certain packets or datagrams from being delivered due to a specific
reason. This indicates that the sending host should probably stop trying to send
those kinds of datagrams to this specific destination system, or that a different path
should be used.

Even if two IP-enabled systems are able to communicate effectively, there are no
guarantees that everything will work, since the data inside the datagrams may be
corrupt, or packets may get lost without any ICMP errors being generated. IP is an
unreliable network protocol by its very definition, and as such does not provide
any guarantees. ICMP does not change this fact.

ICMP runs on top of IP, allowing it to traverse the global Internet just as easily as
TCP or UDP messages. This seems a bit confusing to many people: if an IP data-
gram could not be delivered, it would not seem that an ICMP error—delivered
over IP—would make it back to the original sender. However, remember that
most delivery errors occur due to problems on the next leg of the network, and
that the original IP datagram at least made it as far as the system that’s reporting a
problem. In this scenario, the network between the original sender and the host
that’s reporting the problem is likely to be functioning properly.

There are a variety of ICMP message types, and not all of them are limited to
reporting on network errors. There are also ICMP “query” messages, useful for
diagnosing and testing the network interactively. The most common of these are
the ICMP Echo Request and Echo Reply query messages, which are better known
as ping to most users.

For more information on ICMP, refer to Chapter 5, The Internet Control Message
Protocol.

ROKU EXH. 1002

20 Chapter 1: An Introduction to TCP/IP

The Transport Protocols

Application protocols do not communicate with IP directly, but instead talk to one
of two transport protocols: TCP or UDP. In turn, these transport protocols pass
data to TP, which encapsulates the data into IP datagrams that get sent over the
network. In essence, the transport protocols hide the network from the applica-
tion protocols so that they do not have to deal with packet-sizing and other issues,
while also shielding the network from having to multiplex the application proto-
col traffic (a task that IP can leave to the transport protocols).

For example, both UDP and TCP provide a multiplexing service to application
protocols by way of application-specific port numbers. Essentially, port numbers
act as virtual post office boxes for messages to be delivered to within a single host,
allowing multiple applications to run on a single host. When datagrams arrive at a
destination system, they are handed off to the transport protocol specified in the
datagram, which then delivers the transport-specific message data to the port num-
ber specified in the header of the message. In this manner, many different applica-
tion protocols can run on the same host, using different port numbers to identify
themselves to the transport protocols.

The transport protocol that an application protocol uses is determined by the
kinds of network- and application-management services that are required. TCP is a
reliable, connection-oriented transport protocol, providing error-correction and
flow-control services that can tolerate IP’s knack for losing packets. Conversely,
UDP is an unreliable, message-centric transport protocol that offers little function-
ality over IP alone. There are many applications that need to use one of these
models or the other, and there are a handful of applications that use both of them.
A good example of an application that could use them both is a network printer.

If many users share a network printer, all of them need to be kept informed of the
printer’s availability. Using UDP, the printer could send out periodic status mes-
sages such as “out of paper” or “cover open.” The software on the client PCs
would then pick up on these status updates, changing the desktop icon appropri-
ately, or notifying an administrator that something has gone awry. UDP allows the
printer to notify everyone of these updates simultaneously, since it’s not a big deal
if some of these updates get lost.

This concept is illustrated in Figure 1-10, in which the printer at 192.168.10.2 is
periodically sending out UDP broadcasts, indicating its current status. Network sys-
tems that are interested in that information can monitor for those updates and can
change their desktop icons or management station software appropriately. If a sys-
tem does not receive one of these updates for some reason, then it will probably
get the next update message, so it’s not a big deal.

ROKU EXH. 1002

TCP/IP Protocols and Services In-Depth 21

Printer Arachnid
192.168.10.2 192.168.10.5 192.168.10.20

ﬁ#-

printer is low on foner

“TONER LOW”

Ferret
192.168.10.10

Figure 1-10. Using UDP to broadcast status updates

Conversely, when a user wants to print a file, she would prefer to use TCP, since
that would ensure that the printer received all of the data intact. When the user
wants to print, the client software on the end user’s PC establishes a TCP session
with the printer, sends the data to the printer’s software, and then closes the con-
nection once the job was submitted.

If the printer is functioning properly, it accepts the data, and uses the error-
correction and flow-control services offered by TCP to manage the data transfer. If
the printer is not available (perhaps it is out of paper, or low on toner), then it
sends an appropriate message using the existing TCP connection. This ensures that
the client is notified of whatever problem is preventing the print job from being
serviced.

This process is illustrated in Figure 1-11. Here, the desktop PC is trying to print a
file to the printer, but since the printer is out of toner, it rejects the connection.
Because TCP is a reliable, circuit-centric protocol, the client is sure to get the mes-
sage, even if it didn’t get all of the UDP broadcasts sent earlier.

As you can see, both TCP and UDP provide functionality that is above that offered
by IP alone, and both protocols are required to build an effective set of network
applications.

ROKU EXH. 1002

22 Chapter 1: An Introduction to TCP/IP

®1
I r

O I needtoprinta file ------------
7 it
Feret @-------- tear down TCPsession -~ --------- Printer

192.168.10.10 v 192.168.10.2

Figure 1-11. Using TCP for transaction-oriented applications

The Transmission Control Protocol

TCP provides error-correction through the use of a connection-oriented transac-
tion. Whenever an application needs to send data to another host, TCP builds a
“start” segment and sends it to the destination node. When the other system sends
a “start” segment back (along with an acknowledgment that it got the first seg-
ment), a monitored conversation between the two systems begins.

TCP works in much the same way as a telephone conversation. When an applica-
tion wants to trade data with another system, it first tries to establish a workable
session. This is similar to you calling another person on the phone. When the
other party answers (“Hello?”), they are acknowledging that the call went through.
You then acknowledge the other party’s acknowledgment (“Hi Joe, this is Eric”),
and begin exchanging information.

If at any time during the call parts of the data exchange are lost (“Sorry, what did
you say?”), the sender retransmits the questionable data. If the connection
degrades to a point where no communication is possible, then sooner or later both
parties simply stop talking. Otherwise, once all of the data has been exchanged,
the parties agree to disconnect (“See ya”), and close the call gracefully. TCP fol-
lows most of these same rules, as is illustrated in Figure 1-12.

TCP segments are encapsulated within IP datagrams. They still rely on IP to get
the data where it's going. However, since IP doesn’t offer any guarantees regard-
ing delivery, TCP has to keep track of the status of the connection at all times.
This is achieved through the use of sequence numbers and acknowledgment flags
embedded within the TCP header. Every byte of data sent over TCP must be
acknowledged (although these acknowledgments are usually clumped together). If
one of the systems does not acknowledge a segment, then TCP will resend the

ROKU EXH. 1002

TCP/IP Protocols and Services In-Depth 23

0 establish a session (RING) - - - - - -~ - - .

G- acknowledge ("Hello?”) - - - - - -- 0

B e - ocknowldge (Hi) -----====="- > [

v
INNNSN ? (NN NN
EEEE &= acknowledge ("okay”) - - - - - - - 5 2 LhLL
LN N NN NN
O tear down session ("bye”)- - - - -~ -~ - v
- acknowledge ("bye”) - ------ Q-

Figure 1-12. TCP virtual circuits versus telephone calls

questionable data. This provides error correction and recovery functions that over-
come IP’s unreliable nature.

The use of sequence numbers also allows TCP to implement flow control and
other services on top of IP. Applications can send as much data as they need to,
and TCP will break the data into chunks that will fit within IP segments. If the
receiving system is unable to process data quickly enough, it can tell the sending
system to slow down, thereby reducing the likelihood that data will get lost.

In addition, it is important to realize that TCP offers a byte-stream service for appli-
cations to use whenever they need to read and write data. Whenever an applica-
tion needs to send data—whether that data is a 20-byte message or a two-megabyte
file—the application can send the data in a stream to TCP, where it will be con-
verted into manageable chunks of data that are sent (and tracked) over IP cleanly.
Once the IP datagrams are received by the destination system, the data is made
available to the destination application immediately, where it can be read and
processed.

Applications such as the Internet’s Simple Message Transport Protocol (SMTP) and
Hypertext Transfer Protocol (HTTP) both require the reliable and controlled con-
nection services that TCP provides. In addition, these types of application proto-
cols also benefit from TCP’s streaming model, allowing the applications to send
data as a continual stream of bytes that will be read and processed by the recipi-
ent upon their arrival. Without these services, mail messages sent over SMTP and
GIF images sent over HTTP would not flow smoothly, and would likely get gar-
bled. And since TCP provides these services directly, applications do not have to
embed these routines within their internal application code.

For more information on TCP, see Chapter 7, The Transmission Control Protocol.

ROKU EXH. 1002

24 Chapter 1: An Introduction to TCP/IP

The User Datagram Protocol

Not every application requires guaranteed delivery, and these applications typi-
cally use UDP for transport services. Unlike TCP, UDP sends only the data it has
received from the application, and makes no pretense towards guaranteed deliv-
ery or flow control or anything else. As such, UDP is much like IP, but is the pro-
tocol that applications use to communicate with each other, rather than using IP
directly.

UDP is much like a postcard. If you were travelling around a foreign country, you
might send postcards to friends and family from the different cities that you visit,
informing them of recent events. You wouldn’t worry about the postcards getting
delivered quickly, or even if they got lost entirely, since you'll probably send more
postcards from the next town anyway. You wouldn’t necessarily want the post-
cards to get lost, but at the same time you wouldn’t rely on the postcards for any
urgent business (like “send money to the embassy”). For anything important, you’d
use the telephone (TCP) to ensure that your message arrived intact and was pro-
cessed correctly.

You may wonder why a UDP protocol exists, when it would seem that IP could
serve the same function. The reason is simple: IP doesn’t do anything but get data-
grams from one host to another. IP doesn’t provide any application interfaces or
management services. UDP does provide these services, and it provides a consis-
tent environment for developers to use when writing low-overhead network appli-
cations. UDP also provides application multiplexing services through the use of
port numbers, allowing many application protocols to be used on a single host.
Trying to do this with IP would require either a lot more transport protocols, or an
application multiplexing layer within IP directly, neither of which would be very
efficient.

Another benefit of UDP is that it offers a message-centric delivery model, allowing
chunks of data to be sent as single IP datagrams (instead of being streamed over
virtual circuits like they would with TCP). For example, a UDP-based application
protocol can write a four-kilobyte block of data to UDP, and that block will be
handed to IP directly. IP will then create an IP datagram that contains the entire
four kilobytes, and send this data as a series of IP packets to the destination sys-
tem (according to the rules defined for the network medium in use). Once all of
the data arrives, the TP datagram is reassembled and the entire four-kilobyte UDP
message will be handed to UDP for processing.

In this model, it is easy for applications to exchange record-oriented data (such as
a fixed-length file or a database record), since the entire record can be read by a
single operation. Since the IP datagram (and thus the UDP message) will be con-
tained in a single message, if the client has received any of the data, then they will

ROKU EXH. 1002

TCP/IP Protocols and Services In-Depth 25

receive all of the data in that message. Conversely, TCP would require that the cli-
ent continually read the queue, waiting for all of the data to arrive, and having no
clear indication of when all the data for that record had arrived (without also using
application-specific markers in the data stream, anyway).

Also, applications that need fast turnaround or that already have their own inter-
nal error-correction routines can make good use of UDP because of its low over-
head. Some database software packages can be configured to use UDP, and many
file transfer protocols also use UDP because it is a light, fast, and message-centric
protocol that is easier and faster than TCP, and that does not require the overhead
of TCP’s virtual-circuit model.

For more information on UDP, refer to Chapter 6, The User Datagram Protocol.

Presentation Services

Whenever application protocols wish to communicate with each other, they must
do so using a predefined set of rules that define the types of data that will be
exchanged. For example, if an application protocol is to use textual data, then
those characters must have the same byte-order and binary values on both sys-
tems. For example, one system cannot use US-ASCII while the other system uses
EBCDIC characters. Nor can one system pass data in “big-endian” form to a pro-
cessor that only understands “little-endian” data, since the bits will be interpreted
backwards.

For these reasons, the application protocols must agree to use certain types of
data, and must also agree on how to present that data so that it is interpreted con-
sistently. Typically, this falls under the heading of “presentation layer services,”
with some network architectures providing detailed presentation-layer specifica-
tions that cover everything from character sets to numeric formatting rules. How-
ever, TCP/IP does not have a formally defined presentation layer. Instead, it has
many informal mechanisms that act as presentation layers, with each of them pro-
viding specific kinds of presentation services to different kinds of applications.

Most of the application protocols used on the Internet today use the Network Vir-
tual Terminal (NVT) specification for presentation services. NVTs are a subset of
the Telnet specification, and provide a basic terminal-to-terminal session that
applications use to exchange textual data. The NVT specification defines a simple
definition for the characters to use (seven-bit, printable characters from the US-
ASCII character set) and end-of-line markers.

However, NVTs do not provide for much in the way of complex data types, such
as numeric formatting. If an application needs to exchange a complex piece of
data—including extended characters, long integers, and record markers—then
NVTs can not be used alone. For this reason, a variety of other presentation-layer

ROKU EXH. 1002

26 Chapter 1: An Introduction to TCP/IP

services are also used with TCP/IP applications, although typically these services
are restricted to vendor-specific applications and offerings.

One presentation service that is popular with Microsoft-based applications is IBM’s
NetBIOS, a set of network APIs that provide functionality suitable for PC-based
network applications. Another popular service is Sun’s External Data Representa-
tion (XDR) service, a set of APIs that are useful for passing complex data types.
Yet another popular service is the Distributed Computing Environment’s Remote
Procedure Call (DCE RPC) mechanism, useful for passing network-specific data
between highly dissimilar hosts.

Each of these mechanisms is popular with different groups and for different rea-
sons. But most Internet-based applications use just NVTs since they are usable on
a wide variety of systems. Remember that many of the computing systems in use
on the Internet are still quite old and are incapable of supporting anything other
than seven-bit ASCII text.

Application Protocols

A variety of application protocols exist that provide standardized mechanisms for
the exchange of information across vendor bounds. Among these are file transfer
protocols such as FTP, Gopher, and HTTP; groupware and electronic mail ser-
vices such as SMTP, POP3, IMAP4, and NNTP; and protocols for locating network
resources such as DNS, Finger, and LDAP, among many others.

It's important to realize that client applications generally consist of two distinct
components: the application protocol (such as HTTP or POP3), and an end-user
interface that displays information. For example, a web browser uses HTTP (the
protocol) to retrieve HTML and GIFs from a web server, but the code for display-
ing that data is a separate service that is not covered by the protocol specification.

For more on the common application protocols found on the Internet today, refer
to the book Internet Application Protocols, which covers most of these protocols.

How Application Protocols
Commumnicate Over IP

Almost all TP applications follow the same basic model: a client sends a request of
some kind to a server running on another system, and the server examines the
request, acts upon it in some form, and then possibly returns some form of data
back to the client. This is not always the case (many UDP-based “servers” do not
return any data, but simply monitor network activity), but it holds true for most
applications.

ROKU EXH. 1002

How Application Protocols Communicate Over IP 27

Server-based applications (like an email server or web server) are generally loaded
by the operating system when the computer is started. The servers then go into a
“listen” state, watching for incoming connections. Conversely, client applications
will only establish a connection when some sort of action is required (like “get
new messages”).

Applications communicate with the transport protocols through the use of “ports,”
which are unique I/O identifiers used by the transport protocols and the specific
instance of the application protocol. “Ports” are conceptually similar to the mail-
boxes used at your local post office. When a letter comes in for a recipient, it is
placed into a known mailbox reserved for that specific recipient. Whenever the
recipient comes by, he will pick up any messages in that mailbox and process the
data at his convenience.

Similarly, ports provide TCP and UDP with a way to deliver data to higher-layer
application protocols. Every time an application protocol opens a connection to
one of the transport protocols, it will allocate a port from the transport protocol,
and then use that port for all network I/O. Any traffic that is destined for that par-
ticular application will be routed to the appropriate port for the application to deal
with.

Just as every device on an IP network has a unique IP address, every instance of
every application protocol also has a unique port number that is used to identify it
to the transport protocols on the local system. This concept is illustrated in
Figure 1-13, which shows how UDP reserves ports for specific applications. Any
UDP or TCP messages that come into a system will be identified as destined for a
specific port number, and the transport layer will use that information to route the
data to the correct application.

Some applications can open many simultaneous network connections, and in this
case, each instance would get its own port number. One example of this is the
ubiquitous web browser, which can open many simultaneous connections to a
remote web server, depending on the number of files that need to be down-
loaded from a web page. Each of these HTTP connections will get created as inde-
pendent network connections, with each of the connections having unique port
numbers for the client side of the connection. Once the web browser finishes
downloading the objects, then each of the individual connections will be closed.

Every connection between a client and a server consists of four pieces of informa-
tion: a source IP address, a source port number, a destination address, and a desti-
nation port number. All together, these four pieces of information make
connections unique. For example, if a web browser were to open two connec-
tions to a web server, then the IP addresses of both hosts would be the same. In
addition, the well-known server port number (80) would also be the same.

ROKU EXH. 1002

28 Chapter 1: An Introduction to TCP/IP

port 53 (DNS server)
port 69 (TFIP server)
port 1138 (TFIP dlent)
~port 1139 (DNS dlient)
Port Interface
L —upp
IP Interface

Figure 1-13. Application-level multiplexing with port numbers

Therefore, in order for the individual connections to be unique, the client must
use a different port number for each of the unique connections. Servers do not
care if a single client asks for multiple connections, as long as each connection
comes from a unique port number on the client, since each connection must be
uniquely identifiable to the server.

This four-way identifier is called a “socket pair” in IP lingo, and is the basis of all
communications for all application protocols. A “port” identifies a connection point
in the local stack (i.e., port number 80). A “socket” identifies an IP address and
port number together (i.e., port 80 on host 192.168.10.20 could be written as
“socket 192.168.10.20:80.7). A “socket pair” refers to a distinct connection between
two different applications, including the IP addresses and port numbers in use by
both. Each individual connection requires that the socket pair contain at least one
unique element.

Servers Listen for Incoming Connections

Most server-based IP applications use what are referred to as “well-known” port
numbers. For example, an HTTP server will listen on TCP port 80 by default,
which is the well-known port number for an HTTP server. This way, any HTTP cli-
ent that connects to HTTP servers can use the default of TCP port 80. Otherwise,
the client would have to specify the port number of the server that it wanted to
connect with (you've seen this in some URLs that use http://www.somehost.com:
8080/ or the like, where “8080” is the port number of the HTTP server on wwuw.
somehost.com).

ROKU EXH. 1002

How Application Protocols Communicate Over IP 29

Most application servers allow you to use any port number you want. However, if
you were to run your web server on TCP port 8080 for example, then you would
have to tell every Internet user that your web server was not accessible on TCP
port 80. This would be an impossible task. By sticking with the default, all users
can connect to your web server using the default of TCP port 80.

Some network administrators purposefully run application servers on
non-standard ports, hoping to add an extra layer of security to their
network. However, it is the author’s opinion that security through
obscurity is no security at all, and this method should not be relied
upon by itself.

There are a number of predefined port numbers that are registered with the Inter-
net Assigned Numbers Authority (IANA). All of the port numbers below 1024 are
reserved for use with well-known applications, although there are also many
applications that use port numbers outside of this range.

In addition to the reserved addresses that are managed by the IANA, there are also
“unreserved” port numbers that can be used by any application for any purpose,
although conflicts may occur with other users who are also using those port num-
bers. Any port number that is frequently used is encouraged to register with the
TANA.

For a detailed listing of all of the port numbers that are currently registered, refer
to the IANA’s online registry (accessible at bup.//www.isi.edu/in-notes/iana/
assignments/port-numbers). To see the well-known ports used on your system,
examine the /etc/services file on a Unix host, or the C:\ WinNT\System32\ Drivers\
Etc\SERVICES file on a Windows NT host.

Clients Open Connections to Servers

In contrast to server-based applications that are always listening for incoming con-
nections on a fixed port number, client applications will use a randomly assigned
port number for their end of the connection. Whenever an IP application needs to
send data, the transport protocol will allocate a random port number above 1024
and use this port number for all incoming and outgoing data associated with that
application.

For example, when a POP3 client is used to establish a connection with a mail
server, the client application will pass an application-specific command to TCP,
specifying the server’s IP address and port number as the destination. TCP will
then add its own information—including stuff like the port number of the local

ROKU EXH. 1002

30 Chapter 1: An Introduction to TCP/IP

POP3 client—and hand the entire package off to IP for delivery. IP then does its
best to get the message to the destination system.

When the mail server’s IP stack receives the datagram, it verifies that it contains a
TCP segment, and then hands the contents off to TCP for further processing. TCP
will see that the destination port number refers to the local POP3 server, and then
hand off the original application command. Once the server has processed the
command, it will reverse the process, sending whatever data it generates back to
the port number and IP address in use by the client. Once the transaction is fin-
ished, the client’s TCP port will be released. Any subsequent connections would
require a new connection be opened, with a different port number being allo-
cated by the client.

ROKU EXH. 1002

APPENDIX N

ROKU EXH. 1002

(D Ity

| Expanding Possibilities |

PC Companion Products]

ROKU EXH.

i Jamada

HP Jornada 430 Series Palm-size PCs

Part Number
* HP F1796A #001—HP Jornada 430
* HP F1796A #ABA—HP Jornada 430se

Processor
« 133MHz 32-bit Hitachi SH7709a processor

Memory

* 16MB RAM

* 8MB ROM

Display

* 240 x 320 pixels LCD

« 16-hit; 65,536 colors (selectable)

« CSTN backlit

Input

« Pen-and-touch interface (stylus included)

« CIC Jot Pro

« On-screen keyboard

« 4 user-configurable quick launch screen icons

« 4 quick keys (Record, Exit, Start, and Scroll/Action)—can be
disabled

Power

* One standard Lithium-lon battery

* 7 hours' of battery life

* AC adapter

Dimensions
#51x32x09in(13x81x22cm)
Weight
« 8.8 0z (250 g) with standard battery
Ports/Slots

« One IrDA infrared port

« One RS232 serial port

» One CompactFlash Type | and Il card slot

Printer Ready
*N/A

Operating System

* Microsoft® Windows® CE 2.11

Personal Information Management

« HP easy contacts’

« HP voice contacts**

« Microsoft Pocket Outlook (Calendar, Tasks, Contacts, Inbox)
« Microsoft Outlook 2000 (full retail desktop version)*

Presentation/Word Processing

* Note Taker

« PhatWare™ HPC Notes™ 3.0 Lite, HPC Notes 2.03, and HPC
Spell*?

Financial Management

+ LandWare OmniSolve™*

Communications

» Microsoft Channels browser

« AvantGo AvantGo.com"**

« Utopiasoft” Hum" 1.61*

« Audible AudiblePlayer” 1.0 for Windows CE and
AudibleManager” 2.0%*

« Trio® PhoneManager 2.0%*

Connectivity
* Microsoft ActiveSync®

Other Software

« EZOS® EzExplorer™’

« \oice Recorder

« BSQUARE hTASK™*

« Sierra Imaging Image Expert® CE 2.0%*

 HP Jornada settings

* HP Jornada backup

« Inso® Quick View Plus®**

» World Clock

« Solitaire

« Sampler songs from Chang and Eng—The Musical and
Echoboys

« Sample skins for Hum MP3 player

Warranty

« 1 year std. (optional extended warranty available)

! Estimated battery life. Actual battery life will vary based on usage.
? Available in English only.

* Not included with the HP Jornada 430 Palm-size PC.

* Microsoft Outlook 2000 is not available in Portuguese or Chinese.

® Available in English for North America, Europe, Latin America, and Asia Pacific only. Trio PhoneManager is downloadable from the Web for U.S. users.

© Not included with the HP Jornada 430se Palm-size PC.
7 Available for US. only.

HP Jornada 600 Series Handheld PCs

Part Number

* HP F1262A—HP Jornada 680 (with internal modem)

* HP F1263A—HP Jornada 680e (without internal modem)
* HP F1813A—HP Jornada 690 (with internal modem)

* HP F1814A—HP Jornada 690e (without internal modem)

Processor
« 133MHz 32-bit Hitachi SH3 processor

Memory

* 16MB RAM; upgradable (HP Jornada 680)
« 32MB RAM (HP Jornada 690)

* Burst Mode ROM; upgradable

Display

* 6.5-in (16.7-cm) LCD; 65,536 colors

640 x 240 pixels on screen

1024 x 768 pixels on external monitor

Input

« Large (76% full-size) keyboard

« Stylus and touchscreen

Power

« Lithium-lon rechargeable battery

* One 3V CR2032 coin-cell backup battery
« Up to 8 hours' of battery life

* AC adapter

Dimensions

*74x37x13in (189 x 9.5 x 3.4 cm)
Weight

« 1.1 lbs (510 g) with standard battery
Ports/Slots

« Serial port (RS-232C)

« Fast IrDA-compliant port

* Modem port (RJ11)

* One PC Card Type Il card slot

» One CompactFlash Type | card slot
« Audio speaker and microphone

Printer Ready

« Direct printing via IrDA or serial port to PCL printers
Operating System

« Microsoft Windows CE, Handheld PC Professional Edition
Personal Information Management

« Microsoft Pocket Outlook (Calendar, Tasks, Contacts, Inbox)
« Microsoft Outlook 2000 (full retail desktop version)*

* HP Jornada viewer

* HP quick pad

Presentation/Word Processing

* Microsoft Pocket Word

* Microsoft Pocket PowerPoint

* HP Jornada show

Financial Management

* Microsoft Pocket Excel

« Microsoft Pocket Access

« LandWare OmniSolve®

« On The Go Software® Pocket Quicken®’

Communications

« Internal 56Kbps fax modem?®

« Microsoft Pocket Internet Explorer
* HP Jornada dialup

« BSQUARE bFAX® Pro®

Connectivity

» Microsoft ActiveSync

« Starfish™ TrueSync™ CE 2.0°

Other Software

 HP Jornada settings, backup, hot keys, macro, power,
country selector

» Microsoft PowerPoint Viewer/Converter

+ Inso Outside In®°

+ BSQUARE bFIND"*

« Trio PhoneManager 2.0°

« Sierra Imaging Image Expert CE 2.0°

« WESTTEK" JETCET " PRINT HP Lite and
JETCET Print 2.0 trial copy?

Warranty
« 1 year std. (optional extended warranty available)

® Model with internal modem may not be available in some countries. Please check with your reseller for details.

HP Jornada 820 Handheld PC

Part Number
* HP F1260A—HP Jornada 820 (with internal modem)
* HP F1261A—HP Jornada 820e (without internal modem)

Processor
* 190MHz Intel StrongARM" RISC processor

Memory

* 16MB RAM

* 16MB Burst Mode ROM; upgradable
Display

* 8.2-in (21.0-cm) VGA CSTN screen

* 640 x 480 pixels on screen

« 1024 x 768 pixels on external monitor
Input

« Touch-typeable (90% full-size) keyboard
« Integrated touch pad

Power

« Lithium-lon rechargeable battery

« Two 3V CR2032 coin-cell backup batteries
* Up to 10 hours® of battery life

* AC adapter

Dimensions

©9.7x7.0x13in(24.6 x17.8 x 3.3 cm)
Weight
25 Ibs (1.1 kg) with standard battery
Ports/Slots

« Serial port (RS-232C)

« Fast IrDA-compliant port

» Monitor (DB15) and modem (RJ11) ports
« Universal Serial Bus (USB) host support
« One PC Card Type Il card slot

« One CompactFlash Type Il card slot

* Audio speaker and microphone

Printer Ready

« Direct printing via IrDA or serial port to PCL printers
Operating System

* Microsoft Windows CE, Handheld PC Professional Edition
Personal Information Management

» Microsoft Pocket Outlook (Calendar, Tasks, Contacts, Inbox)
 HP Jornada viewer

Presentation/Word Processing

* Microsoft Pocket Word

* Microsoft Pocket PowerPoint
 HP Jornada show

Financial Management

* Microsoft Pocket Excel

« Microsoft Pocket Access
* LandWare OmniSolve*

Communications

« Internal 56Kbps fax modem®

» Microsoft Pocket Internet Explorer

* HP Jornada dialup

* BSQUARE bFAX Pro®

Connectivity

* Microsoft ActiveSync

« Starfish TrueSync CE 2.0*

Other Software

« HP Jornada hot keys, settings, backup

«Inso Outside In°®

* BSQUARE bFIND®

« Trio PhoneManager 2.0°

« Sierra Imaging Image Expert CE 2.0

« WESTTEK JETCET PRINT HP Lite and
JETCET Print 2.0 trial copy?

Warranty

« 1 year std. (optional extended warranty available)

Powered by

Microsoft®
Windows'CE

Palm-size PC

Microsoft, Windows, the Windows CE logo, and ActiveSync are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. OmniSolve is a trademark of

LandWare, Inc. bFIND, bTASK, and bFAX are trademarks or registered trademarks of BSQUARE Corporation. Starfish and TrueSync are trademarks of Starfish Software. Trio is a registered trademark of Trio AB.

Powered by

Inso, Outside In, and Quick View Plus are registered trademarks of Inso Corporation. Quicken is a registered trademark of Intuit Inc. in the United States and/or other countries used by On the Go Software under
license. On the Go Software is a registered trademark of On the Go Software, Inc. EZOS, EZOS EzExplorer, and EzExplorer are either registered trademarks or trademarks of EZOS s.a. in Belgium and/or other
countries. Image Expert is a registered trademark of Sierra Imaging. StrongARM is a trademark of ARM, Ltd. WESTTEK and JETCET are trademarks of WESTTEK, L.L.C. Utopiasoft and Hum are trademarks of
Utopiasoft. AudiblePlayer and AudibleManager are trademarks of Audible Inc. HPC Notes and PhatWare are trademarks of PhatWare Corporation. AvantGo.com is a trademark of AvantGo, Inc. All other brands and
product names are trademarks or registered trademarks of their respective companies.

In a continuing effort to improve the quality of our products, technical and environmental information in this document is subject to change without notice.
© Copyright Hewlett-Packard Company 1999. All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Printed in the U.S.A. 11/99

Microsoft®
Windows'CE

To learn more about HP’s Jornada family of PC companion products, please visit us on the Web at

Y4 -hp.com/jornada

APPENDIX O

ROKU EXH. 1002

Data

S heet

Increase Your Productivity—Take Your Network with You
The RangeLAN2 7410 CE PC Card is a high performance
wireless LAN adapter designed to meet the needs of mobile
users who require continuous LAN connectivity. Delivering
an optimal combination of range, throughput, and low
power consumption, it is the perfect solution for users of
Windows™ CE Handheld devices. And best of all, it is value
priced to deliver cost effective mobile computing.

Imagine being able to take your handheld anywhere in your
workplace with unbroken network connectivity. Scan your
email while listening to a lecture. Call up an important file
during a meeting. Use the web to verify a crucial fact. With
the RangeLAN2 7410 CE PC Card and a RangeLAN2 or
OpenAir™ network backbone in place in your facility, all this
is not just possible, but today it is reality for thousands of
satisfied customers worldwide.

Power Management That Keeps You On the Move
With Marathon™ Power Management, the RangeLAN2
7410 CE PC Card keeps you mobile longer. When your
device is neither transmitting nor receiving but needs to be
network aware, the RangeLAN2 7410 slips into doze mode,
reducing the current draw to below 5 mA, significantly
increasing battery life. Further, the RangeLAN2 7410
features the industry’s lowest transmit (265 mA) and
receive (130 mA) power consumption.

e Priced to Mobilize
Handheld PC Devices

Low-priced RangeLAN2 wireless
LAN adapter, exclusively for use in
Windows™ CE Handheld PCs.

e Industry’s Lowest
Power Consumption

Marathon™ power management delivers
less than 5 mA current draw in doze mode,
significantly extending battery life.

e Driver Built Into Windows CE
Operating System
Driver built into Windows CE 2.11
(Professional Edition 3.0) for plug-and-play
utilization. Standard driver available for
Windows CE 2.0.

® Fast
Delivers a 1.6 Mbps data rate for
responsive network connectivity.

Guaranteed Interoperability through
OpenAir Certification

With the RangeLAN2 7410 CE PC Card, small Windows CE
handheld devices can benefit from wireless network connect-
ivity. And since the RangeLAN2 7410 fully complies with
the OpenAir™ standard, connectivity and interoperability is
guaranteed with all of the large base of OpenAir-certified
products from more than twenty companies belonging to
the Wireless LAN Interoperability Forum.

Standard Drivers and Software Tools for Easy
Network Installation

Proxim’s unique Site Survey software is provided with each
unit to assist in fast and easy wireless network design and
installation. And with drivers built into the Windows CE
Professional Edition 3.0 (Windows CE 2.11) Operating
System, simple plug-and-play installation gets you up and
running quickly. Plus network management has never been
easier with Proxim’s web-based RangeLAN2 Manager.
Using RangeLAN2 Manager software, network managers
can install, configure, monitor and troubleshoot their
wireless LAN from anywhere on the network.

% proxim
ROKU EXH. 1002

S pec.i

fications

General

Radio Data Ratecccccvverrcssinnes 1.6 Mbps per channel, 800 Kbps fallback rate

RaNGE (SNAP-0N) .ovvcvrvvvverrrrrrsssrnnees ~400 feet (~122 m) radius indoors
700 feet (~213 m) radius outdoors (more
with optional dipole antenna)

ChANNEIS ... Supports up to 15 independent, non-interfering
virtual channels (hopping patterns)

Power Management ... 265 mA transmit, 130 mA receive, less than
5mA doze mode, 2 mA sleep mode (all are
typical values)

CertificationS..........c.eeeeeeevevevevnninnnnnnns o US—FCC Part 15
+ International — Contact Proxim for a list of

currently certified countries

ComPALIDIlItY oo Fully interoperable with all RangeLAN2 or
OpenAir*-certified (Wireless LAN Interoperability
Forum) products

WRITANTY cecvvvovveerrrecssirieersseessns 1 year parts and labor (return to factory)

Network Information

Network Architecture Supports ad hoc peer-to-peer networks and
infrastructure communication to wired Ethernet
or Token Ring networks via Access and
Extension Point(s)

DIIVEIS..ovvvvvvvvvivvvivssssssssssssssssssssssssnnens Built into Windows™ CE Professional Edition 3.0
(Windows CE 0S 2.11); Windows CE 2.0 drivers
available for free download on Proxim’s web site

Roaming..... Seamless Roaming

DOMAINS...vvvvvvevvvvvvverssvsssssssssssssssssenens Up to 16 domains for simultaneous
independent networks

7410 CE PC Card

SEOUMLY cevvevvvvevereersessisniesesnessssnes Twenty character alphanumeric encrypted
Security ID
Installation & Diagnostics Site survey tool included. Surveys other wireless

units, reports link quality and ping statistics to
APs. Desktop icon continuously reports

connection status
Radio
Frequency Band...............ccocuereenn 2.4 GHz frequency band. Actual frequencies in
use vary by country
RAIO TYPE....ovvverrcrivrvererrecsesiniien Frequency Hopping Spread-Spectrum (FHSS)
QUEPUE POWET ..o 100 mw
{1 T NN 5V
Antenna OptionsScccccevvvevevversessnns Standard snap-on (0 dBi gain);
Optional dipole (1 dBi gain)
Environmental
Temperature Range........ccocccevvveersns -20 to +60 degrees C (operating)
-20 to +65 degrees C (storage)
Humidity (non-condensing) 20 to 90% typical

Physical Specifications

FOMM FACHOT ..vvvvvecsvovvvverresssireen PCMCIA, Type Il PC Card.
Card and Socket Services 2.1 compliant

L0 L N 1.09 ounces (31 g), PC Card only
Ordering Information

TAL0.cvceeereeiiss RangeLAN2 CE PC Card

TTAL oo Optional dipole antenna
Accessories

Snap-on antenna, operating manual

% proxim

Proxim, Inc

Corporate Headquarters

510 DeGuigne Drive

Sunnyvale, CA 94086 USA

Phone: 408-731-2700 / 800-229-1630
Fax: 408-731-3675
sales@proxim.com

WWW.proxim.com

European Headquarters
78140 Velizy, France
Fax: +33 (0)1 30 70 61 19

europe@proxim.com
WWW.proxim.com

4, avenue Morane Saulnier

Phone: +33 (0)1 30 70 61 18

OpenAir™

© 1999, Proxim, Inc. RangeLAN2 and Proxim are trademarks of Proxim, Inc. OpenAir is a trademark of the Wireless LAN Interoperability Forum (WLI Forum). All other trademarks are the property of their respective owners.

7680-0029 rev.B 11/99 CI/JA

ROKU EXH. 1002

APPENDIX P

ROKU EXH. 1002

Specification Volume 1

Specification
of the Bluetooth System

Wireless connections made easy

BluetOOth December 1s¥i§93

ROKU EXH. 1002

ROKU EXH. 1002

page 3 of 1082

Document No.

1.C.47/1.0B

Date / Day-Month-Year

BLUETOOTH DOC |01 Dec 99

N.B.

Responsible e-mail address Status

Bluetooth.

Specification
of the Bluetooth System

Version 1.0 B

3
ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 4 of 1082

Bluetooth.

Revision History

The Revision History is shown in Appendix | on page 868

Contributors

The persons who contributed to this specification are listed in
Appendix Il on page 879.

Web Site

This specification can also be found on the Bluetooth website:
http://www.bluetooth.com

Disclaimer and copyright notice

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECI-
FICATION OR SAMPLE. All liability, including liability for infringement of any
proprietary rights, relating to use of information in this document is disclaimed.

No license, express or implied, by estoppel or otherwise, to any intellectual
property rights are granted herein.

Copyright © 1999

Telefonaktiebolaget LM Ericsson,
International Business Machines Corporation,
Intel Corporation,

Nokia Corporation,

Toshiba Corporation .

*Third-party brands and names are the property of their respective owners.

ROKU EXH. 1002

http://www.bluetooth.com/default.asp

BLUETOOTH SPECIFICATION Version 1.0 B page 207 of 1082

Link Manager Protocol Bluetooth

initiating LM
LM

LMP_switch_req
- LMP_not_accepted

Y

Sequence 24: Master-slave switch not accepted.

3.13 NAME REQUEST

LMP supports name request to another Bluetooth device. The name is a user-
friendly name associated with the Bluetooth device and consists of a maximum
of 248 bytes coded according to the UTF-8 standard. The name is fragmented
over one or more DM1 packets. When the LMP_name_req is sent, a name off-
set indicates which fragment is expected. The corresponding LMP_name_res
carries the same name offset, the name length indicating the total number of
bytes in the name of the Bluetooth device and the name fragment, where:

» name fragment(N) = name(N + name offset), if (N + name offset) < name length
* name fragment(N) = 0 ,otherwise.

Here 0 <N < 13. In the first sent LMP_name_req, name offset=0. Sequence 25
is then repeated until the initiator has collected all fragments of the name.

M/O PDU Contents

M LMP_name_req name offset

M LMP_name_res name offset
name length
name fragment

Table 3.13: PDUs used for name request.

initiating LM
LM
L LMP_name_req
—- LMP_name_res

Sequence 25: Device’s name requested and it responses.

3.14 DETACH

The connection between two Bluetooth devices can be closed anytime by the
master or the slave. A reason parameter is included in the message to inform
the other party of why the connection is closed.

M/O PDU Contents
M LMP_detach reason

Table 3.14: PDU used for detach.

The Procedure Rules and PDUs 29 November 1999 207

ROKU EXH. 1002

Part E

SERVICE DISCOVERY
PROTOCOL (SDP)

This specificatjon defines a protocol for locating ser-
vices providedlby or available through a Bluetooth

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 324 of 1082

Service Discovery Protocol BluetOOth

324 29 November 1999

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 325 of 1082

Service Discovery Protocol BIU eto Oth
CONTENTS

1 TN o 1U Tox 1 o] o USRI 327

1.1 General DeSCIPLIONccuvvviiiiiiiiiiiiiieii e 327

1.2 MOUVALION ...t 327

1.3 REQUIMEMENES. ..ciiiiiiiiiiiiie e 327

1.4 Non-requirements and Deferred Requirements....................... 328

1.5 CONVENLIONS ...oviiiiiieiiiiiie it ee ettt e e e e 329

1.5.1 Bit And Byte Ordering Conventions..................eeeeeeeeee. 329

2 OVEIVIBW ..ttt e ettt e e e e e e e e e ettt e e e e e e e e e e eeeanssnaaeeeeeeeeeennnes 330

2.1 SDP Client-Server INteractionccceveeeeriniiiieeeee e 330

2.2 SErVICE RECOIM.......uuiiiieiiiiiiiiiie e 332

2.3 SEerViCe AtNDULE.......eeeeicee e 334

2.4 AUIDULE ID .o 335

2.5 AUribute Value.........oooiiiiiiiiii e 335

2.6 SErVICE ClasSuuiiiiiiiiiiiiiii et 336

2.6.1 A Printer Service Class Example ... 336

2.7 Searching for SErVICEScccouurriiiiiiiiiiiiiiieiiiree e 337

2.7.1 UUID .ot 337

2.7.2 Service Search Patterns..........cccccoeeeiiieeeee 338

2.8 Browsing fOr SEIVICESuuuuiuiiiiiiiiiiiiiiiiiiiieiieieieeeeaeeeeaeaeaeaaes 338

2.8.1 Example Service Browsing Hierarchycccuee... 339

3 Data RepreSentation ... 341

3.1 Data Element ... 341

3.2 Data Element Type DeSCIPLOruuuvviiiiiiiiiiiiiiieiieieieeeeeeeeeaeeen 341

3.3 Data Element Size DeSCriPtOr.........uuuvuurriririiiriieieeeeieeereeeeeeeeens 342

3.4 Data Element EXamples.........cccccuuviiiiiiiiiiiiiiiiiiieieieeeee e 343

4 ProtoCol DeSCHIPION ...cciviiiiiiieiieee e 344

4.1 Transfer Byte Orderccccccoeeeiiiiiiee e 344

4.2 Protocol Data Unit FOrmMat.............ceeeeiiiiiiiiiiiiien e 344

4.3 Partial Responses and Continuation Stateccccevvvveeneeee. 346

4.4 Error Handlingooooeieiiieiee e 346

441 SDP_ErrorResponse PDUc.ocoveeiiiiiiiiiiiiiniicii, 347

4.5 ServiceSearch TransSactionccccccuvviiiiiiiiiiiiiiiiieeieeeeeeeeeee 348

45.1 SDP_ServiceSearchRequest PDU............ccccceeeeennnn. 348

4.5.2 SDP_ServiceSearchResponse PDU............ccccccennnnee 349

4.6 ServiceAttribute Transactioncccooeiiiiiiiiiiiiiiiiiiiiiieeeeeeee 351

4.6.1 SDP_ServiceAttributeRequest PDU................coeeeen. 351

4.6.2 SDP_ServiceAttributeResponse PDU...............ccccouee. 352

29 November 1999 325

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 326 of 1082

Service Discovery Protocol BluetOOth_
4.7 ServiceSearchAttribute TransSactioncceevveevivvieieeeevvinnnnn. 354
4.7.1 SDP_ServiceSearchAttributeRequest PDU................. 354
4.7.2 SDP_ServiceSearchAttributeResponse PDU 356
5 Service Attribute DefinitioNS.....coocvee i 358
5.1 Universal Attribute DefinitionS........oocovveeiiiiiiii e 358
5.1.1 ServiceRecordHandle Attribute.............cooeeeviiiiiennnnens 358
5.1.2 ServiceClassIDList Attribute............coeeeeeiiiiiieieeieiiinnnn. 359
5.1.3 ServiceRecordState Attribute........ccooeeeeeiiiiiiieeeiiiiinnnn, 359
5.1.4 ServicelD AttribULEovveeieieeeeee e, 359
5.1.5 ProtocolDescriptorList Attribute...........ccccceveeeeeeenennnnn. 360
5.1.6 BrowseGroupList Attributecccccvvviiiiin, 361
5.1.7 LanguageBaseAttributelDList Attribute....................... 361
5.1.8 ServicelnfoTimeToLive Attributecoooevvvveeieeiiinnnnnnn. 362
5.1.9 ServiceAvalilability Attribute..............coevvviiiiiiieeeee, 363
5.1.10 BluetoothProfileDescriptorList Attribute 363
5.1.11 DocumentationURL Atributeccveeviiiiiiiiieiiininnnnn, 364
5.1.12 ClientExecutableURL Attribute.........cccoooevvvvieiiiiiinnnnnnn. 364
5.1.13 1cONURL AttribUte......ovvvviiieiei e, 365
5.1.14 ServiceName Attributeccoeeieiiiiiiiie e, 365
5.1.15 ServiceDescription Attribute............cccccocieiiieieiiii, 366
5.1.16 ProviderName Attribute........cooveviieiiiiiiieeeeee 366
5.1.17 Reserved Universal Attribute IDScoooovvvieieeiivnnnnnnn. 366
5.2 ServiceDiscoveryServer Service Class Attribute Definitions ... 367
5.2.1 ServiceRecordHandle Attribute.............cooeeeiiiieiennnens 367
5.2.2 ServiceClassIDList Attribute............ccoeeeeeiiiiiieieeieiiinnnn, 367
5.2.3 VersionNumberList Attributeocveeiiiiiiiiiiieeiiiinne, 367
5.2.4 ServiceDatabaseState Attribute............cccooeeil 368
5.2.5 Reserved Attribute IDS........ccovveiiiiiiiiiieeeee e 368
5.3 BrowseGroupDescriptor Service Class Attribute Definitions ... 369
5.3.1 ServiceClassIDList Attribute...........ccoceeeeiiiiiieieciiiiinnnnn. 369
5.3.2 GrouplD ALriDULEuvuiiiiiiiiiiiiiiiiiiieee e 369
5.3.3 Reserved Attribute IDS........cccvveiiiiiiiiiieeeee e 369
Appendix A — Background INformationccccccccciiiiiiiiiiiiii, 370
Appendix B — Example SDP Transactionscccccceeiiiiiiiiiie, 371
326 29 November 1999

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 327 of 1082

Service Discovery Protocol Bluetooth
1 INTRODUCTION

1.1 GENERAL DESCRIPTION

The service discovery protocol (SDP) provides a means for applications to dis-
cover which services are available and to determine the characteristics of
those available services.

1.2 MOTIVATION

Service Discovery in the Bluetooth environment, where the set of services that
are available changes dynamically based on the RF proximity of devices in
motion, is qualitatively different from service discovery in traditional network-
based environments. The service discovery protocol defined in this specifica-
tion is intended to address the unique characteristics of the Bluetooth environ-
ment. See “Appendix A — Background Information,” on page 370, for further
information on this topic.

1.3 REQUIREMENTS

The following capabilities have been identified as requirements for version 1.0
of the Service Discovery Protocol.

1. SDP shall provide the ability for clients to search for needed services based
on specific attributes of those services.

2. SDP shall permit services to be discovered based on the class of service.

3. SDP shall enable browsing of services without a priori knowledge of the spe-
cific characteristics of those services.

4. SDP shall provide the means for the discovery of new services that become
available when devices enter RF proximity with a client device as well as
when a new service is made available on a device that is in RF proximity
with the client device.

5. SDP shall provide a mechanism for determining when a service becomes
unavailable when devices leave RF proximity with a client device as well as
when a service is made unavailable on a device that is in RF proximity with
the client device.

6. SDP shall provide for services, classes of services, and attributes of ser-
vices to be uniquely identified.

7. SDP shall allow a client on one device to discover a service on another
device without consulting a third device.

8. SDP should be suitable for use on devices of limited complexity.

9. SDP shall provide a mechanism to incrementally discover information about
the services provided by a device. This is intended to minimize the quantity

Introduction 29 November 1999 327

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 328 of 1082

Service Discovery Protocol Bluetooth

of data that must be exchanged in order to determine that a particular ser-
vice is not needed by a client.

10.SDP should support the caching of service discovery information by inter-
mediary agents to improve the speed or efficiency of the discovery process.

11.SDP should be transport independent.
12.SDP shall function while using L2CAP as its transport protocol.

13.SDP shall permit the discovery and use of services that provide access to
other service discovery protocols.

14.SDP shall support the creation and definition of new services without requir-
ing registration with a central authority.

1.4 NON-REQUIREMENTS AND DEFERRED REQUIREMENTS

The Bluetooth SIG recognizes that the following capabilities are related to ser-
vice discovery. These items are not addressed in SDP version 1.0. However,
some may be addressed in future revisions of the specification.

1. SDP 1.0 does not provide access to services. It only provides access to
information about services.

. SDP 1.0 does not provide brokering of services.
. SDP 1.0 does not provide for negotiation of service parameters.
. SDP 1.0 does not provide for billing of service use.

a ~ w0 N

. SDP 1.0 does not provide the means for a client to control or change the
operation of a service.

6. SDP 1.0 does not provide an event notification when services, or information
about services, become unavailable.

7. SDP 1.0 does not provide an event notification when attributes of services
are modified.

8. This specification does not define an application programming interface for
SDP.

9. SDP 1.0 does not provide support for service agent functions such as ser-
vice aggregation or service registration.

328 29 November 1999 Introduction

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 329 of 1082

Service Discovery Protocol Bluetooth
1.5 CONVENTIONS

1.5.1 Bit And Byte Ordering Conventions

When multiple bit fields are contained in a single byte and represented in a
drawing in this specification, the more significant (high-order) bits are shown
toward the left and less significant (low-order) bits toward the right.

Multiple-byte fields are drawn with the more significant bytes toward the left
and the less significant bytes toward the right. Multiple-byte fields are trans-
ferred in network byte order. See Section 4.1 Transfer Byte Order on page 344.

Introduction 29 November 1999 329

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 330 of 1082

Service Discovery Protocol Bluetooth
2 OVERVIEW

2.1 SDP CLIENT-SERVER INTERACTION

Client Server
Application Application
SDP requests
SDP » SDP
Client SDP responses Server

<€

Figure 2.1:

The service discovery mechanism provides the means for client applications to
discover the existence of services provided by server applications as well as
the attributes of those services. The attributes of a service include the type or
class of service offered and the mechanism or protocol information needed to
utilize the service.

As far as the Service Discovery Protocol (SDP) is concerned, the configuration
shown in Figure 1 may be simplified to that shown in Figure 2.

SDP requests
SDP » spp

Client SDP responses Server

Figure 2.2:

330 29 November 1999 Overview

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 331 of 1082

Service Discovery Protocol Bluetooth

SDP involves communication between an SDP server and an SDP client. The
server maintains a list of service records that describe the characteristics of
services associated with the server. Each service record contains information
about a single service. A client may retrieve information from a service record
maintained by the SDP server by issuing an SDP request.

If the client, or an application associated with the client, decides to use a ser-
vice, it must open a separate connection to the service provider in order to uti-
lize the service. SDP provides a mechanism for discovering services and their
attributes (including associated service access protocols), but it does not pro-
vide a mechanism for utilizing those services (such as delivering the service
access protocols).

There is a maximum of one SDP server per Bluetooth device. (If a Bluetooth
device acts only as a client, it needs no SDP server.) A single Bluetooth device
may function both as an SDP server and as an SDP client. If multiple applica-
tions on a device provide services, an SDP server may act on behalf of those
service providers to handle requests for information about the services that
they provide.

Similarly, multiple client applications may utilize an SDP client to query servers
on behalf of the client applications.

The set of SDP servers that are available to an SDP client can change dynam-
ically based on the RF proximity of the servers to the client. When a server
becomes available, a potential client must be notified by a means other than
SDP so that the client can use SDP to query the server about its services. Sim-
ilarly, when a server leaves proximity or becomes unavailable for any reason,
there is no explicit notification via the service discovery protocol. However, the
client may use SDP to poll the server and may infer that the server is not avail-
able if it no longer responds to requests.

Additional information regarding application interaction with SDP is contained
in the Bluetooth Service Discovery Profile document.

Overview 29 November 1999 331

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 332 of 1082

Service Discovery Protocol Bluetooth
2.2 SERVICE RECORD

A service is any entity that can provide information, perform an action, or con-
trol a resource on behalf of another entity. A service may be implemented as
software, hardware, or a combination of hardware and software.

All of the information about a service that is maintained by an SDP server is
contained within a single service record. The service record consists entirely of
a list of service attributes.

Service Record
Service Attribute 1

Service Attribute 2

Service Attribute 3

Service Attribute N

Figure 2.3: Service Record

A service record handle is a 32-bit number that uniquely identifies each service
record within an SDP server. It is important to note that, in general, each han-
dle is unique only within each SDP server. If SDP server S1 and SDP server
S2 both contain identical service records (representing the same service), the
service record handles used to reference these identical service records are
completely independent. The handle used to reference the service on S1 will
be meaningless if presented to S2.

The service discovery protocol does not provide a mechanism for notifying cli-
ents when service records are added to or removed from an SDP server.
While an L2CAP (Logical Link Control and Adaptation Protocol) connection is
established to a server, a service record handle acquired from the server will
remain valid unless the service record it represents is removed. If a service is
removed from the server, further requests to the server (during the L2CAP con-
nection in which the service record handle was acquired) using the service’s
(now stale) record handle will result in an error response indicating an invalid
service record handle. An SDP server must ensure that no service record han-
dle values are re-used while an L2ZCAP connection remains established. Note
that service record handles are known to remain valid across successive
L2CAP connections while the ServiceDatabaseState attribute value remains
unchanged. See the ServiceRecordState and ServiceDatabaseState attributes
in Section 5 Service Attribute Definitions on page 358.

There is one service record handle whose meaning is consistent across all
SDP servers. This service record handle has the value 0x00000000 and is a

332 29 November 1999 Overview

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 333 of 1082

Bluetooth.

handle to the service record that represents the SDP server itself. This service
record contains attributes for the SDP server and the protocol it supports. For
example, one of its attributes is the list of SDP protocol versions supported by

the server. Service record handle values 0x00000001-0x0000FFFF are
reserved.

Service Discovery Protocol

Overview 29 November 1999 333

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 334 of 1082

Service Discovery Protocol Bluetooth
2.3 SERVICE ATTRIBUTE

Each service attribute describes a single characteristic of a service. Some
examples of service attributes are:

ServiceClassIDList Identifies the type of service represented by a service record.
In other words, the list of classes of which the service is an
instance

ServicelD Uniquely identifies a specific instance of a service

ProtocolDescriptorList Specifies the protocol stack(s) that may be used to utilize a
service

ProviderName The textual name of the individual or organization that pro-
vides a service

IconURL Specifies a URL that refers to an icon image that may be
used to represent a service

ServiceName A text string containing a human-readable name for the ser-
vice

ServiceDescription A text string describing the service

See Section 5.1 Universal Attribute Definitions on page 358, for attribute defini-
tions that are common to all service records. Service providers can also define
their own service attributes.

A service attribute consists of two components: an attribute ID and an attribute
value.

Service Attribute
Attribute ID
Attribute Value

Figure 2.4: Service Attribute

334 29 November 1999 Overview

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 335 of 1082

Service Discovery Protocol Bluetooth
2.4 ATTRIBUTE ID

An attribute ID is a 16-bit unsigned integer that distinguishes each service
attribute from other service attributes within a service record. The attribute ID
also identifies the semantics of the associated attribute value.

A service class definition specifies each of the attribute IDs for a service class
and assigns a meaning to the attribute value associated with each attribute ID.

For example, assume that service class C specifies that the attribute value
associated with attribute ID 12345 is a text string containing the date the ser-
vice was created. Assume further that service A is an instance of service class
C. If service A's service record contains a service attribute with an attribute ID
of 12345, the attribute value must be a text string containing the date that ser-
vice A was created. However, services that are not instances of service class C
may assign a different meaning to attribute 1D 12345.

All services belonging to a given service class assign the same meaning to
each particular attribute ID. See Section 2.6 Service Class on page 336.

In the Service Discovery Protocol, an attribute ID is often represented as a data
element. See Section 3 Data Representation on page 341.

Type Size Index

N

1 1 Attribute ID
«—5—39¢ 16

v

Figure 2.5:

2.5 ATTRIBUTE VALUE

The attribute value is a variable length field whose meaning is determined by
the attribute ID associated with it and by the service class of the service record
in which the attribute is contained. In the Service Discovery Protocol, an
attribute value is represented as a data element. (See Section 3 Data Repre-
sentation on page 341.) Generally, any type of data element is permitted as an
attribute value, subject to the constraints specified in the service class defini-
tion that assigns an attribute ID to the attribute and assigns a meaning to the
attribute value. See Section 5 Service Attribute Definitions on page 358, for
attribute value examples.

Overview 29 November 1999 335

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 336 of 1082

Service Discovery Protocol Bluetooth
2.6 SERVICE CLASS

Each service is an instance of a service class. The service class definition pro-
vides the definitions of all attributes contained in service records that represent
instances of that class. Each attribute definition specifies the numeric value of
the attribute 1D, the intended use of the attribute value, and the format of the
attribute value. A service record contains attributes that are specific to a ser-
vice class as well as universal attributes that are common to all services.

Each service class is also assigned a unique identifier. This service class iden-
tifier is contained in the attribute value for the ServiceClassIDList attribute, and
is represented as a UUID (see Section 2.7.1 UUID on page 337). Since the for-
mat and meanings of many attributes in a service record are dependent on the
service class of the service record, the ServiceClassIDList attribute is very
important. Its value should be examined or verified before any class-specific
attributes are used. Since all of the attributes in a service record must conform
to all of the service’s classes, the service class identifiers contained in the Ser-
viceClassIDList attribute are related. Typically, each service class is a subclass
of another class whose identifier is contained in the list. A service subclass def-
inition differs from its superclass in that the subclass contains additional
attribute definitions that are specific to the subclass. The service class identifi-
ers in the ServiceClassIDList attribute are listed in order from the most specific
class to the most general class.

When a new service class is defined that is a subclass of an existing service
class, the new service class retains all of the attributes defined in its super-
class. Additional attributes will be defined that are specific to the new service
class. In other words, the mechanism for adding new attributes to some of the
instances of an existing service class is to create a new service class that is a
subclass of the existing service class.

2.6.1 A Printer Service Class Example

A color postscript printer with duplex capability might conform to 4 Service-
Class definitions and have a ServiceClassIDList with UUIDs (See Section 2.7.1
UUID on page 337.) representing the following ServiceClasses:

DuplexColorPostscriptPrinterServiceClassID,
ColorPostscriptPrinterServiceClassID,
PostscriptPrinterServiceClassID,
PrinterServiceClassID

Note that this example is only illustrative. This may not be a practical printer
class hierarchy.

336 29 November 1999 Overview

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 337 of 1082

Service Discovery Protocol BIU etooth
2.7 SEARCHING FOR SERVICES

Once an SDP client has a service record handle, it may easily request the val-
ues of specific attributes, but how does a client initially acquire a service record
handle for the desired service records? The Service Search transaction allows
a client to retrieve the service record handles for particular service records
based on the values of attributes contained within those service records.

The capability search for service records based on the values of arbitrary
attributes is not provided. Rather, the capability is provided to search only for

attributes whose values are Universally Unique Identifiers® (UUIDs). Important
attributes of services that can be used to search for a service are represented
as UUIDs.

2.7.1 UUID

A UUID is a universally unigue identifier that is guaranteed to be unique across
all space and all time. UUIDs can be independently created in a distributed
fashion. No central registry of assigned UUIDs is required. A UUID is a 128-bit
value.

To reduce the burden of storing and transferring 128-bit UUID values, a range
of UUID values has been pre-allocated for assignment to often-used, regis-
tered purposes. The first UUID in this pre-allocated range is known as the
Bluetooth Base UUID and has the value 00000000-0000-1000-7007-
00805F9B34FB, from the Bluetooth Assigned Numbers document. UUID val-
ues in the pre-allocated range have aliases that are represented as 16-bit or
32-bit values. These aliases are often called 16-bit and 32-bit UUIDs, but it is
important to note that each actually represents a 128-bit UUID value.

The full 128-bit value of a 16-bit or 32-bit UUID may be computed by a simple
arithmetic operation.

128_bit_value = 16_bit_value * 2% + Bluetooth_Base_UUID
128_bit_value = 32_bit_value * 2% + Bluetooth_Base_UUID

A 16-bit UUID may be converted to 32-bit UUID format by zero-extending the
16-bit value to 32-bits. An equivalent method is to add the 16-bit UUID value to
a zero-valued 32-bit UUID.

Note that two 16-bit UUIDs may be compared directly, as may two 32-bit
UUIDs or two 128-bit UUIDs. If two UUIDs of differing sizes are to be com-
pared, the shorter UUID must be converted to the longer UUID format before
comparison.

1. The format of UUIDs is defined by the International Organization for Standardization in ISO/
IEC 11578:1996. “Information technology — Open Systems Interconnection — Remote Proce-
dure Call (RPC)”

Overview 29 November 1999 337

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 338 of 1082

Service Discovery Protocol Bluetooth

2.7.2 Service Search Patterns

A service search pattern is a list of UUIDs used to locate matching service
records. A service search pattern is said to match a service record if each and
every UUID in the service search pattern is contained within any of the service
record’s attribute values. The UUIDs need not be contained within any specific
attributes or in any particular order within the service record. The service
search pattern matches if the UUIDs it contains constitute a subset of the
UUIDs in the service record’s attribute values. The only time a service search
pattern does not match a service record is if the service search pattern con-
tains at least one UUID that is not contained within the service record’s
attribute values. Note also that a valid service search pattern must contain at
least one UUID.

2.8 BROWSING FOR SERVICES

Normally, a client searches for services based on some desired characteris-
tic(s) (represented by a UUID) of the services. However, there are times when
it is desirable to discover which types of services are described by an SDP
server’s service records without any a priori information about the services.
This process of looking for any offered services is termed browsing. In SDP, the
mechanism for browsing for services is based on an attribute shared by all ser-
vice classes. This attribute is called the BrowseGroupList attribute. The value
of this attribute contains a list of UUIDs. Each UUID represents a browse group
with which a service may be associated for the purpose of browsing.

When a client desires to browse an SDP server’s services, it creates a service
search pattern containing the UUID that represents the root browse group. All
services that may be browsed at the top level are made members of the root
browse group by having the root browse group’s UUID as a value within the
BrowseGrouplList attribute.

Normally, if an SDP server has relatively few services, all of its services will be
placed in the root browse group. However, the services offered by an SDP
server may be organized in a browse group hierarchy, by defining additional
browse groups below the root browse group. Each of these additional browse
groups is described by a service record with a service class of
BrowseGroupDescriptor.

A browse group descriptor service record defines a new browse group by
means of its Group ID attribute. In order for a service contained in one of these
newly defined browse groups to be browseable, the browse group descriptor
service record that defines the new browse group must in turn be browseable.
The hierarchy of browseable services that is provided by the use of browse
group descriptor service records allows the services contained in an SDP
server to be incrementally browsed and is particularly useful when the SDP
server contains many service records.

338 29 November 1999 Overview

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 339 of 1082

Bluetooth.

Service Discovery Protocol

2.8.1 Example Service Browsing Hierarchy

Here is a fictitious service browsing hierarchy that may illuminate the manner in
which browse group descriptors are used. Browse group descriptor service
records are identified with (G); other service records with (S).

Public Browse Root

Entertainment (5] Mews (5] Reference (5]

| Games (3] | | Maovies (G) | | Dictionary Z (S) | | Encyclopedia ¥ (S)

Starcraft (5)

ABug's Life (5]

| MNew York Times (S) |

| Local Mewspaper (3) |

| Londan Times (3)

Figure 2.6:

This table shows the services records and service attributes necessary to
implement the browse hierarchy.

Service Name

Service Class

Attribute Name

Attribute Value

Entertainment

BrowseGroupDescriptor

BrowseGroupList

PublicBrowseRoot

GrouplD EntertainmentID
News BrowsegroupDescriptor BrowseGroupList PublicBrowseRoot
GrouplD NewsID
Reference BrowseGroupDescriptor BrowseGroupList PublicBrowseRoot
GrouplD ReferencelD
Games BrowseGroupDescriptor BrowseGroupList EntertainmentID
GrouplD GamesID
Movies BrowseGroupDescriptor BrowseGroupList EntertainmentID
GrouplID MoviesID
Starcraft Video Game Class ID BrowseGroupList GamesID
Table 2.1:
Overview 29 November 1999 339

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B

page 340 of 1082

Service Discovery Protocol

Bluetooth.

A Bug'’s Life
Dictionary Z
Encyclopedia X
New York Times
London Times

Local Newspaper

Movie Class ID
Dictionary Class ID
Encyclopedia Class ID
Newspaper ID
Newspaper ID

Newspaper ID

BrowseGrouplList
BrowseGroupList
BrowseGroupList
BrowseGroupList
BrowseGrouplList

BrowseGrouplList

MovielD
ReferencelD
ReferencelD
NewspaperlD
Newspaper|D

NewspaperiD

Table 2.1:

340

29 November 1999

Overview

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 341 of 1082

Bluetooth.

Service Discovery Protocol

3 DATA REPRESENTATION

Attribute values can contain information of various types with arbitrary com-
plexity; thus enabling an attribute list to be generally useful across a wide vari-
ety of service classes and environments.

SDP defines a simple mechanism to describe the data contained within an
attribute value. The primitive construct used is the data element.

3.1 DATA ELEMENT

A data element is a typed data representation. It consists of two fields: a
header field and a data field. The header field, in turn, is composed of two
parts: a type descriptor and a size descriptor. The data is a sequence of bytes
whose length is specified in the size descriptor (described in Section 3.3 Data
Element Size Descriptor on page 342) and whose meaning is (partially) speci-
fied by the type descriptor.

3.2 DATA ELEMENT TYPE DESCRIPTOR

A data element type is represented as a 5-bit type descriptor. The type descrip-
tor is contained in the most significant (high-order) 5 bits of the first byte of the

data element header. The following types have been defined.

Type Valid Size
Descriptor Descriptor Type Description
Value Values
0 0 Nil, the null type
1 0,1,2,3,4 Unsigned Integer
2 0,123,4 Signed twos-complement integer
3 1,2, 4 UUID, a universally unique identifier
4 56,7 Text string
5 0 Boolean
6 56,7 Data element sequence, a data element whose data field
is a sequence of data elements
7 56,7 Data element alternative, data element whose data field is
a sequence of data elements from which one data ele-
ment is to be selected.
8 56,7 URL, a uniform resource locator
9-31 Reserved
Table 3.1:
Data Representation 29 November 1999 341

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 342 of 1082

Service Discovery Protocol Bluetooth
3.3 DATA ELEMENT SIZE DESCRIPTOR

The data element size descriptor is represented as a 3-bit size index followed
by 0, 8, 16, or 32 bits. The size index is contained in the least significant (low-
order) 3 bits of the first byte of the data element header. The size index is
encoded as follows.

Size Additional .
Index bits IRV Sirds
0 0 1 byte. Exception: if the data element type is nil, the data size is 0
bytes.
1 0 2 bytes
2 0 4 bytes
3 0 8 bytes
4 0 16 bytes
5 8 The data size is contained in the additional 8 bits, which are inter-
preted as an unsigned integer.
6 16 The data size is contained in the additional 16 bits, which are
interpreted as an unsigned integer.
7 32 The data size is contained in the additional 32 bits, which are
interpreted as an unsigned integer.
Table 3.2:
342 29 November 1999 Data Representation

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 343 of 1082

Service Discovery Protocol BIU etooth
3.4 DATA ELEMENT EXAMPLES

Nil is represented as:

Type Size Index

0 0
—5—3>

A 16-bit signed integer is represented as:

Type Size Index

AV
|_2 |1 16-bit data value

—5—r 3¢ 16

4

he 3 character ASCII string "Hat" is represented as:

Type Size Index Size

AV /

| 4 | 5 | 3 1H1 lal lt1
—5—393¢—8 P 24 »

Figure 3.1:

Data Representation 29 November 1999 343

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 344 of 1082

Service Discovery Protocol BluetOOth
4 PROTOCOL DESCRIPTION

SDP is a simple protocol with minimal requirements on the underlying trans-
port. It can function over a reliable packet transport (or even unreliable, if the
client implements timeouts and repeats requests as necessary).

SDP uses a request/response model where each transaction consists of one
request protocol data unit (PDU) and one response PDU. However, the
requests may potentially be pipelined and responses may potentially be
returned out of order.

In the specific case where SDP utilises the Bluetooth L2CAP transport proto-
col, multiple SDP PDUs may be sent in a single L2ZCAP packet, but only one
L2CAP packet per connection to a given SDP server may be outstanding at a
given instant. Limiting SDP to sending one unacknowledged packet provides a
simple form of flow control.

The protocol examples found in Appendix B — Example SDP Transactions,
may be helpful in understanding the protocol transactions.

4.1 TRANSFER BYTE ORDER

The service discovery protocol transfers multiple-byte fields in standard net-
work byte order (Big Endian), with more significant (high-order) bytes being
transferred before less-significant (low-order) bytes.

4.2 PROTOCOL DATA UNIT FORMAT

Every SDP PDU consists of a PDU header followed by PDU-specific parame-
ters. The header contains three fields: a PDU ID, a Transaction ID, and a
ParameterLength. Each of these header fields is described here. Parameters
may include a continuation state parameter, described below; PDU-specific
parameters for each PDU type are described later in separate PDU descrip-
tions.

PDU Format:

Header: PDU ID Transaction ID ParameterLength
«1 byte»——2 bytes—«—2 bytes——

Parameters:| Parameter 1 Parameter2 +————-— Parameter N
ParameterLength bytes

v

~

Figure 4.1:

344 29 November 1999 Protocol Description

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 345 of 1082

Service Discovery Protocol Bluetoothm
PDU ID: Size: 1 Byte

Value Parameter Description

N The PDU ID field identifies the type of PDU. l.e. its meaning and the

specific parameters.

0x00 Reserved

0x01 SDP_ErrorResponse

0x02 SDP_ServiceSearchRequest

0x03 SDP_ServiceSearchResponse

0x04 SDP_ServiceAttributeRequest

0x05 SDP_ServiceAttributeResponse

0x06 SDP_ServiceSearchAttributeRequest

0x07 SDP_ServiceSearchAttributeResponse

0x07-0xFF Reserved

TransactionlD:

Size: 2 Bytes

Value Parameter Description

N The TransactionID field uniquely identifies request PDUs and is used to
match response PDUs to request PDUs. The SDP client can choose
any value for a request’s TransactionID provided that it is different from
all outstanding requests. The TransactionID value in response PDUs is
required to be the same as the request that is being responded to.
Range: 0x0000 — OXFFFF

ParameterLength: Size: 2 Bytes
Value Parameter Description
N The ParameterLength field specifies the length (in bytes) of all parame-

ters contained in the PDU.
Range: 0x0000 — OXFFFF

Protocol Description

29 November 1999 345

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 346 of 1082

Service Discovery Protocol BluetOOth
4.3 PARTIAL RESPONSES AND CONTINUATION STATE

Some SDP requests may require responses that are larger than can fit in a sin-
gle response PDU. In this case, the SDP server will generate a partial
response along with a continuation state parameter. The continuation state
parameter can be supplied by the client in a subsequent request to retrieve the
next portion of the complete response. The continuation state parameter is a
variable length field whose first byte contains the number of additional bytes of
continuation information in the field. The format of the continuation information
is not standardized among SDP servers. Each continuation state parameter is
meaningful only to the SDP server that generated it.

InfoLength | Continuation Information
«—1 byte—»«——InfoLength bytes——

Figure 4.2: Continuation State Format

After a client receives a partial response and the accompanying continuation
state parameter, it can re-issue the original request (with a new transaction ID)
and include the continuation state in the new request indicating to the server
that the remainder of the original response is desired. The maximum allowable
value of the InfoLength field is 16 (0x10).

Note that an SDP server can split a response at any arbitrary boundary when it
generates a partial response. The SDP server may select the boundary based
on the contents of the reply, but is not required to do so.

4.4 ERROR HANDLING

Each transaction consists of a request and a response PDU. Generally, each

type of request PDU has a corresponding type of response PDU. However, if

the server determines that a request is improperly formatted or for any reason
the server cannot respond with the appropriate PDU type, it will respond with

an SDP_ErrorResponse PDU.

Any Request
Client Server
SDP_ErrorResponse
Figure 4.3:
346 29 November 1999 Protocol Description

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 347 of 1082

Service Discovery Protocol BIU eto Oth
4.4.1 SDP_ErrorResponse PDU

PDU Type PDU ID Parameters
SDP_ErrorResponse 0x01 ErrorCode,
Errorinfo
Description:

The SDP server generates this PDU type in response to an improperly format-
ted request PDU or when the SDP server, for whatever reason, cannot gener-
ate an appropriate response PDU.

PDU Parameters:

ErrorCode: Size: 2 Bytes
Value Parameter Description
N The ErrorCode identifies the reason that an SDP_ErrorResponse PDU
was generated.
0x0000 Reserved
0x0001 Invalid/unsupported SDP version
0x0002 Invalid Service Record Handle
0x0003 Invalid request syntax
0x0004 Invalid PDU Size
0x0005 Invalid Continuation State
0x0006 Insufficient Resources to satisfy Request
0x0007-OxFFFF | Reserved
Errorinfo: Size: N Bytes
Value Parameter Description
Error-specific Errorinfo is an ErrorCode-specific parameter. Its interpretation depends
on the ErrorCode parameter. The currently defined ErrorCode values do
not specify the format of an Errorinfo field.

Protocol Description

29 November 1999 347

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 348 of 1082

Service Discovery Protocol BluetOOth
4.5 SERVICESEARCH TRANSACTION

SDP_ServiceSearchReque
>
Client Server
SDP_ServiceSearchRespon
Figure 4.4:
4.5.1 SDP_ServiceSearchRequest PDU
PDU Type PDUID | Parameters
SDP_ServiceSearchRequest 0x02 ServiceSearchPattern,

MaximumServiceRecordCount,
ContinuationState

Description:

The SDP client generates an SDP_ServiceSearchRequest to locate service
records that match the service search pattern given as the first parameter of
the PDU. Upon receipt of this request, the SDP server will examine its service
record data base and return an SDP_ServiceSearchResponse containing the
service record handles of service records that match the given service search
pattern.

Note that no mechanism is provided to request information for all service
records. However, see Section 2.8 Browsing for Services on page 338 for a
description of a mechanism that permits browsing for non-specific services
without a priori knowledge of the services.

PDU Parameters:

ServiceSearchPattern: Size: Varies
Value Parameter Description
Data Element The ServiceSearchPattern is a data element sequence where each ele-
Sequence ment in the sequence is a UUID. The sequence must contain at least
one UUID. The maximum number of UUIDs in the sequence is 12". The
list of UUIDs constitutes a service search pattern.

*, The value of 12 has been selected as a compromise between the scope of a service
search and the size of a search request PDU. It is not expected that more than 12
UUIDs will be useful in a service search pattern.

348 29 November 1999 Protocol Description

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 349 of 1082

Service Discovery Protocol BIU eto Oth
MaximumServiceRecordCount: Size: 2 Bytes
Value Parameter Description
N MaximumServiceRecordCount is a 16-bit count specifying the maximum

number of service record handles to be returned in the response(s) to
this request. The SDP server should not return more handles than this
value specifies. If more than N service records match the request, the
SDP server determines which matching service record handles to return
in the response(s).

Range: 0x0001-0OxFFFF

ContinuationState: Size: 1to 17 Bytes
Value Parameter Description
Continuation ContinuationState consists of an 8-bit count, N, of the number of bytes
State of continuation state information, followed by the N bytes of continua-

tion state information that were returned in a previous response from
the server. N is required to be less than or equal to 16. If no continua-
tion state is to be provided in the request, N is set to 0.

4.5.2 SDP_ServiceSearchResponse PDU

PDU Type PDU ID Parameters

SDP_ServiceSearchResponse 0x03 TotalServiceRecordCount,
CurrentServiceRecordCount,
ServiceRecordHandleList,
ContinuationState

Description:

The SDP server generates an SDP_ServiceSearchResponse upon receipt of a
valid SDP_ServiceSearchRequest. The response contains a list of service
record handles for service records that match the service search pattern given
in the request. Note that if a partial response is generated, it must contain an
integral number of complete service record handles; a service record handle
value may not be split across multiple PDUs.

Protocol Description 29 November 1999 349

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 350 of 1082

Service Discovery Protocol Bluetooth

PDU Parameters:

TotalServiceRecordCount: Size: 2 Bytes
Value Parameter Description
N The TotalServiceRecordCount is an integer containing the number of

service records that match the requested service search pattern. If no
service records match the requested service search pattern, this param-
eter is set to 0. N should never be larger than the MaximumServiceRe-
cordCount value specified in the SDP_ServiceSearchRequest. When
multiple partial responses are used, each partial response contains the
same value for TotalServiceRecordCount.

Range: 0x0000-OxFFFF

CurrentServiceRecordCount: Size: 2 Bytes
Value Parameter Description
N The CurrentServiceRecordCount is an integer indicating the number of

service record handles that are contained in the next parameter. If no
service records match the requested service search pattern, this param-
eter is set to 0. N should never be larger than the TotalServiceRecord-
Count value specified in the current response.

Range: 0x0000-OxFFFF

ServiceRecordHandleList: Size: (CurrentServiceRecordCount*4) Bytes
Value Parameter Description
List of The ServiceRecordHandleList contains a list of service record handles.
32-bit handles The number of handles in the list is given in the CurrentServiceRecord-

Count parameter. Each of the handles in the list refers to a service
record that matches the requested service search pattern. Note that this
list of service record handles does not have the format of a data ele-
ment. It contains no header fields, only the 32-bit service record han-

dles.
ContinuationState: Size: 1to 17 Bytes
Value Parameter Description
Continuation ContinuationState consists of an 8-bit count, N, of the number of bytes
State of continuation state information, followed by the N bytes of continua-

tion information. If the current response is complete, this parameter
consists of a single byte with the value 0. If a partial response is con-
tained in the PDU, the ContinuationState parameter may be supplied in
a subsequent request to retrieve the remainder of the response.

350 29 November 1999 Protocol Description

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 351 of 1082

Service Discovery Protocol BIU et 0 Oth
4.6 SERVICEATTRIBUTE TRANSACTION

Client

SDP_ServiceAttributeRequest

Server
SDP_ServiceAttributeRespons

Figure 4.5:

4.6.1 SDP_ServiceAttributeRequest PDU

PDU Type PDU ID | Parameters
SDP_ServiceAttributeRequest 0x04 ServiceRecordHandle,
MaximumAttributeByteCount,
AttributelDList,
ContinuationState
Description:

The SDP client generates an SDP_ServiceAttributeRequest to retrieve speci-
fied attribute values from a specific service record. The service record handle
of the desired service record and a list of desired attribute IDs to be retrieved
from that service record are supplied as parameters.

Command Parameters:

ServiceRecordH

andle: Size: 4 Bytes

Value

Parameter Description

32-bit handle

The ServiceRecordHandle parameter specifies the service record from
which attribute values are to be retrieved. The handle is obtained via a
previous SDP_ServiceSearch transaction.

MaximumAttribu

teByteCount: Size: 2 Bytes

Value

Parameter Description

N

MaximumAttributeByteCount specifies the maximum number of bytes of
attribute data to be returned in the response(s) to this request. The SDP
server should not return more than N bytes of attribute data in the
response(s). If the requested attributes require more than N bytes, the
SDP server determines how to truncate the list.

Range: 0x0007-OxFFFF

Protocol Description

29 November 1999 351

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 352 of 1082

Service Discovery Protocol BI
uetooth.
AttributelDList: Size: Varies
Value Parameter Description
Data Element The AttributelDList is a data element sequence where each element in
Sequence the list is either an attribute ID or a range of attribute IDs. Each attribute

ID is encoded as a 16-bit unsigned integer data element. Each attribute
ID range is encoded as a 32-bit unsigned integer data element, where
the high order 16 bits are interpreted as the beginning attribute ID of the
range and the low order 16 bits are interpreted as the ending attribute ID
of the range. The attribute IDs contained in the AttributelDList must be
listed in ascending order without duplication of any attribute ID values.
Note that all attributes may be requested by specifying a range of
0x0000-0xFFFF.

ContinuationState: Size: 1to 17 Bytes
Value Parameter Description
Continuation ContinuationState consists of an 8-bit count, N, of the number of bytes
State of continuation state information, followed by the N bytes of continua-

tion state information that were returned in a previous response from
the server. N is required to be less than or equal to 16. If no continua-
tion state is to be provided in the request, N is set to 0.

4.6.2 SDP_ServiceAttributeResponse PDU

PDU Type PDU ID Parameters

SDP_ServiceAttributeResponse 0x05 AttributeListByteCount,
AttributeList,
ContinuationState

Description:

The SDP server generates an SDP_ServiceAttributeResponse upon receipt of
a valid SDP_ServiceAttributeRequest. The response contains a list of
attributes (both attribute ID and attribute value) from the requested service
record.

PDU Parameters:

AttributeListByteCount: Size: 2 Bytes
Value Parameter Description
N The AttributeListByteCount contains a count of the number of bytes in

the AttributeList parameter. N must never be larger than the Maximu-
mAttributeByteCount value specified in the
SDP_ServiceAttributeRequest.

Range: 0x0002-0xFFFF

352 29 November 1999 Protocol Description

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 353 of 1082

Service Discovery Protocol
Bluetooth.
AttributeList: Size: AttributeListByteCount
Value Parameter Description
Data Element The AttributeList is a data element sequence containing attribute IDs
Sequence and attribute values. The first element in the sequence contains the
attribute ID of the first attribute to be returned. The second element in
the sequence contains the corresponding attribute value. Successive
pairs of elements in the list contain additional attribute ID and value
pairs. Only attributes that have non-null values within the service record
and whose attribute IDs were specified in the
SDP_ServiceAttributeRequest are contained in the AttributeList. Neither
an attribute 1D nor an attribute value is placed in the AttributeList for
attributes in the service record that have no value. The attributes are
listed in ascending order of attribute 1D value.
ContinuationState: Size: 1to 17 Bytes
Value Parameter Description
Continuation ContinuationState consists of an 8-bit count, N, of the number of bytes
State of continuation state information, followed by the N bytes of continua-
tion information. If the current response is complete, this parameter
consists of a single byte with the value 0. If a partial response is given,
the ContinuationState parameter may be supplied in a subsequent
request to retrieve the remainder of the response.

Protocol Description

29 November 1999 353

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 354 of 1082

Service Discovery Protocol BluetOOth
4.7 SERVICESEARCHATTRIBUTE TRANSACTION

SDP_ServiceSearchAttributeRequest
>
Client Server
SDP_ServiceSearchAttributeResponse
Figure 4.6:
4.7.1 SDP_ServiceSearchAttributeRequest PDU
PDU Type PDU ID | Parameters
SDP_ServiceSearchAttributeRequest 0x06 ServiceSearchPattern,

MaximumAttributeByteCount,
AttributelDList,
ContinuationState

Description:

The SDP_ServiceSearchAttributeRequest transaction combines the capabili-
ties of the SDP_ServiceSearchRequest and the SDP_ServiceAttributeRequest
into a single request. As parameters, it contains both a service search pattern
and a list of attributes to be retrieved from service records that match the ser-
vice search pattern. The SDP_ServiceSearchAttributeRequest and its
response are more complex and may require more bytes than separate
SDP_ServiceSearch and SDP_ServiceAttribute transactions. However, using
SDP_ServiceSearchAttributeRequest may reduce the total number of SDP
transactions, particularly when retrieving multiple service records.

Note that the service record handle for each service record is contained in the
ServiceRecordHandle attribute of that service and may be requested along
with other attributes.

354 29 November 1999 Protocol Description

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 355 of 1082

Service Discovery Protocol Bluetooth

PDU Parameters:

ServiceSearchPattern: Size: Varies

Value

Parameter Description

Data Element
Sequence

The ServiceSearchPattern is a data element sequence where each ele-
ment in the sequence is a UUID. The sequence must contain at least

one UUID. The maximum number of UUIDs in the sequence is 12". The
list of UUIDs constitutes a service search pattern.

*, The value of 12 has been selected as a compromise between the scope of a service
search and the size of a search request PDU. It is not expected that more than 12
UUIDs will be useful in a service search pattern.

MaximumAttributeByteCount: Size: 2 Bytes

Value

Parameter Description

N

MaximumAttributeByteCount specifies the maximum number of bytes of
attribute data to be returned in the response(s) to this request. The SDP
server should not return more than N bytes of attribute data in the
response(s). If the requested attributes require more than N bytes, the
SDP server determines how to truncate the list.

Range: 0x0009-OxFFFF

AttributelDList:

Size: Varies

Value

Parameter Description

Data Element
Sequence

The AttributelDList is a data element sequence where each element in
the list is either an attribute ID or a range of attribute IDs. Each attribute
ID is encoded as a 16-bit unsigned integer data element. Each attribute
ID range is encoded as a 32-bit unsigned integer data element, where
the high order 16 bits are interpreted as the beginning attribute ID of the
range and the low order 16 bits are interpreted as the ending attribute ID
of the range. The attribute IDs contained in the AttributelDList must be
listed in ascending order without duplication of any attribute ID values.
Note that all attributes may be requested by specifying a range of
0x0000-0xFFFF.

ContinuationState: Size: 1to 17 Bytes

Value

Parameter Description

Continuation
State

ContinuationState consists of an 8-bit count, N, of the number of bytes
of continuation state information, followed by the N bytes of continua-
tion state information that were returned in a previous response from
the server. N is required to be less than or equal to 16. If no continua-
tion state is to be provided in the request, N is set to 0.

Protocol Description

29 November 1999 355

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 356 of 1082

Service Discovery Protocol BluetOOth
4.7.2 SDP_ServiceSearchAttributeResponse PDU

PDU Type PDU ID Parameters
SDP_ServiceSearchAttributeResponse 0x07 AttributeListsByteCount,
AttributeLists,

ContinuationState

Description:

The SDP server generates an SDP_ServiceSearchAttributeResponse upon
receipt of a valid SDP_ServiceSearchAttributeRequest. The response contains
a list of attributes (both attribute ID and attribute value) from the service
records that match the requested service search pattern.

PDU Parameters:

AttributeListsByteCount: Size: 2 Bytes
Value Parameter Description
N The AttributeListsByteCount contains a count of the number of bytes in

the AttributeLists parameter. N must never be larger than the Maximu-
mAttributeByteCount value specified in the
SDP_ServiceSearchAttributeRequest.

Range: 0x0002-OxFFFF

AttributeLists: Size: Varies
Value Parameter Description
Data Element The AttributeLists is a data element sequence where each element in
Sequence turn is a data element sequence representing an attribute list. Each

attribute list contains attribute IDs and attribute values from one service
record. The first element in each attribute list contains the attribute 1D of
the first attribute to be returned for that service record. The second ele-
ment in each attribute list contains the corresponding attribute value.
Successive pairs of elements in each attribute list contain additional
attribute ID and value pairs. Only attributes that have non-null values
within the service record and whose attribute IDs were specified in the
SDP_ServiceSearchAttributeRequest are contained in the
AttributeLists. Neither an attribute 1D nor attribute value is placed in
AttributeLists for attributes in the service record that have no value.
Within each attribute list, the attributes are listed in ascending order of
attribute ID value.

356 29 November 1999 Protocol Description

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 357 of 1082

Service Discovery Protocol Bluetooth

ContinuationState: Size: 1to 17 Bytes

Value Parameter Description

Continuation ContinuationState consists of an 8-bit count, N, of the number of bytes
State of continuation state information, followed by the N bytes of continua-
tion information. If the current response is complete, this parameter
consists of a single byte with the value 0. If a partial response is given,
the ContinuationState parameter may be supplied in a subsequent
request to retrieve the remainder of the response.

Protocol Description 29 November 1999 357

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 358 of 1082

Service Discovery Protocol Bluetooth
5 SERVICE ATTRIBUTE DEFINITIONS

The service classes and attributes contained in this document are necessarily
a partial list of the service classes and attributes supported by SDP. Only ser-
vice classes that directly support the SDP server are included in this document.
Additional service classes will be defined in other documents and possibly in
future revisions of this document. Also, it is expected that additional attributes
will be discovered that are applicable to a broad set of services; these may be
added to the list of Universal attributes in future revisions of this document.

5.1 UNIVERSAL ATTRIBUTE DEFINITIONS

Universal attributes are those service attributes whose definitions are common
to all service records. Note that this does not mean that every service record
must contain values for all of these service attributes. However, if a service
record has a service attribute with an attribute ID allocated to a universal
attribute, the attribute value must conform to the universal attribute’s definition.

Only two attributes are required to exist in every service record instance. They
are the ServiceRecordHandle (attribute ID 0x0000) and the ServiceClassIDList
(attribute ID 0x0001). All other service attributes are optional within a service
record.

5.1.1 ServiceRecordHandle Attribute

Attribute Name Attribute ID Attribute Value Type
ServiceRecordHandle 0x0000 32-bit unsigned integer
Description:

A service record handle is a 32-bit number that uniquely identifies each service
record within an SDP server. It is important to note that, in general, each han-
dle is unique only within each SDP server. If SDP server S1 and SDP server
S2 both contain identical service records (representing the same service), the
service record handles used to reference these identical service records are
completely independent. The handle used to reference the service on S1 will,
in general, be meaningless if presented to S2.

358 29 November 1999 Service Attribute Definitions

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 359 of 1082

Service Discovery Protocol BIU eto Oth
5.1.2 ServiceClassIDList Attribute

Attribute Name Attribute ID Attribute Value Type
ServiceClassIDList 0x0001 Data Element Sequence
Description:

The ServiceClassIDList attribute consists of a data element sequence in which
each data element is a UUID representing the service classes that a given ser-
vice record conforms to. The UUIDs are listed in order from the most specific
class to the most general class. The ServiceClassIDList must contain at least
one service class UUID.

5.1.3 ServiceRecordState Attribute

Attribute Name Attribute ID Attribute Value Type
ServiceRecordState 0x0002 32-bit unsigned integer
Description:

The ServiceRecordState is a 32-bit integer that is used to facilitate caching of
ServiceAttributes. If this attribute is contained in a service record, its value is
guaranteed to change when any other attribute value is added to, deleted from
or changed within the service record. This permits a client to check the value of
this single attribute. If its value has not changed since it was last checked, the
client knows that no other attribute values within the service record have
changed.

5.1.4 ServicelD Attribute

Attribute Name Attribute ID Attribute Value Type
ServicelD 0x0003 UuUID
Description:

The ServicelD is a UUID that universally and uniquely identifies the service
instance described by the service record. This service attribute is particularly
useful if the same service is described by service records in more than one
SDP server.

Service Attribute Definitions 29 November 1999 359

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 360 of 1082

Service Discovery Protocol BluetOOth
5.1.5 ProtocolDescriptorList Attribute

Attribute Name Attribute ID Attribute Value Type

ProtocolDescriptorList 0x0004 Data Element Sequence or Data
Element Alternative

Description:

The ProtocolDescriptorList attribute describes one or more protocol stacks that
may be used to gain access to the service described by the service record.

If the ProtocolDescriptorList describes a single stack, it takes the form of a data
element sequence in which each element of the sequence is a protocol
descriptor. Each protocol descriptor is, in turn, a data element sequence whose
first element is a UUID identifying the protocol and whose successive elements
are protocol-specific parameters. Potential protocol-specific parameters are a
protocol version number and a connection-port number. The protocol descrip-
tors are listed in order from the lowest layer protocol to the highest layer proto-
col used to gain access to the service.

If it is possible for more than one kind of protocol stack to be used to gain
access to the service, the ProtocolDescriptorList takes the form of a data ele-
ment alternative where each member is a data element sequence as described
in the previous paragraph.

Protocol Descriptors

A protocol descriptor identifies a communications protocol and provides proto-
col-specific parameters. A protocol descriptor is represented as a data element
sequence. The first data element in the sequence must be the UUID that iden-
tifies the protocol. Additional data elements optionally provide protocol-specific
information, such as the L2CAP protocol/service multiplexer (PSM) and the
RFCOMM server channel number (CN) shown below.

ProtocolDescriptorList Examples

These examples are intended to be illustrative. The parameter formats for each
protocol are not defined within this specification.

In the first two examples, it is assumed that a single RFCOMM instance exists
on top of the L2CAP layer. In this case, the L2CAP protocol specific information
(PSM) points to the single instance of RFCOMM. In the last example, two dif-
ferent and independent RFCOMM instances are available on top of the L2ZCAP
layer. In this case, the L2CAP protocol specific information (PSM) points to a
distinct identifier that distinguishes each of the RFCOMM instances. According
to the L2CAP specification, this identifier takes values in the range
0x1000-0xFFFF.

360 29 November 1999 Service Attribute Definitions

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 361 of 1082

Service Discovery Protocol Bluetooth
IrDA-like printer

((L2CAP, PSM=RFCOMM), (RFCOMM, CN=1), (PostscriptStream))
IP Network Printing

((L2CAP, PSM=RFCOMM), (RFCOMM, CN=2), (PPP), (IP), (TCP),
(IPP))

Synchronization Protocol Descriptor Example
((L2CAP, PSM=0x1001), (RFCOMM, CN=1), (Obex), (vCal))

((L2CAP, PSM=0x1002), (RFCOMM, CN=1), (Obex),
(otherSynchronisationApplication))

5.1.6 BrowseGroupList Attribute

Attribute Name Attribute ID Attribute Value Type
BrowseGroupList 0x0005 Data Element Sequence
Description:

The BrowseGrouplList attribute consists of a data element sequence in which
each element is a UUID that represents a browse group to which the service
record belongs. The top-level browse group ID, called PublicBrowseRoot and
representing the root of the browsing hierarchy, has the value 00001002-0000-
1000-7007-00805F9B34FB (UUID16: 0x1002) from the Bluetooth Assigned
Numbers document.

5.1.7 LanguageBaseAttributelDList Attribute

Attribute Name Attribute ID Attribute Value Type
LanguageBaseAttributelDList 0x0006 Data Element Sequence
Description:

In order to support human-readable attributes for multiple natural languages in
a single service record, a base attribute ID is assigned for each of the natural
languages used in a service record. The human-readable universal attributes
are then defined with an attribute ID offset from each of these base values,
rather than with an absolute attribute ID.

The LanguageBaseAttributelDList attribute is a list in which each member con-
tains a language identifier, a character encoding identifier, and a base attribute

Service Attribute Definitions 29 November 1999 361

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 362 of 1082

Service Discovery Protocol Bluetooth

ID for each of the natural languages used in the service record. The Language-
BaseAttributelDList attribute consists of a data element sequence in which
each element is a 16-bit unsigned integer. The elements are grouped as triplets
(threes).

The first element of each triplet contains an identifier representing the natural
language. The language is encoded according to ISO 639:1988 (E/F): “Code
for the representation of names of languages”.

The second element of each triplet contains an identifier that specifies a char-
acter encoding used for the language. Values for character encoding can be

found in IANA's database?, and have the values that are referred to as MIBE-
num values. The recommended character encoding is UTF-8.

The third element of each triplet contains an attribute ID that serves as the
base attribute ID for the natural language in the service record. Different ser-
vice records within a server may use different base attribute ID values for the
same language.

To facilitate the retrieval of human-readable universal attributes in a principal
language, the base attribute ID value for the primary language supported by a
service record must be 0x0100. Also, if a LanguageBaseAttributelDList
attribute is contained in a service record, the base attribute ID value contained
in its first element must be 0x0100.

5.1.8 ServicelnfoTimeToLive Attribute

Attribute Name Attribute ID Attribute Value Type
ServicelnfoTimeToLive 0x0007 32-bit unsigned integer
Description:

The ServiceTimeToLive attribute is a 32-bit integer that contains the number of
seconds for which the information in a service record is expected to remain
valid and unchanged. This time interval is measured from the time that the
attribute value is retrieved from the SDP server. This value does not imply a
guarantee that the service record will remain available or unchanged. It is
simply a hint that a client may use to determine a suitable polling interval to re-
validate the service record contents.

2. See http://www.isi.edu/in-notes/iana/assignments/character-sets

362 29 November 1999 Service Attribute Definitions

ROKU EXH. 1002

http://www.isi.edu/in-notes/iana/assignments/character-sets

BLUETOOTH SPECIFICATION Version 1.0 B page 363 of 1082

Service Discovery Protocol BIU eto Oth
5.1.9 ServiceAvailability Attribute

Attribute Name Attribute ID Attribute Value Type
ServiceAvailability 0x0008 8-bit unsigned integer
Description:

The ServiceAvailability attribute is an 8-bit unsigned integer that represents the
relative ability of the service to accept additional clients. A value of OXFF indi-
cates that the service is not currently in use and is thus fully available, while a
value of 0x00 means that the service is not accepting new clients. For services
that support multiple simultaneous clients, intermediate values indicate the rel-
ative availability of the service on a linear scale.

For example, a service that can accept up to 3 clients should provide Service-
Availability values of OxFF, OxAA, 0x55, and 0x00 when 0, 1, 2, and 3 clients,
respectively, are utilising the service. The value OxAA is approximately (2/3) *
OxFF and represents 2/3 availability, while the value 0x55 is approximately (1/
3)*0xFF and represents 1/3 availability. Note that the availability value may be
approximated as

(1 - (current_number_of_clients / maximum_number_of clients)) * OXFF
When the maximum number of clients is large, this formula must be modified to

ensure that ServiceAvailability values of 0x00 and OxFF are reserved for their
defined meanings of unavailability and full availability, respectively.

Note that the maximum number of clients a service can support may vary
according to the resources utilised by the service’s current clients.

A non-zero value for ServiceAvailability does not guarantee that the service will
be available for use. It should be treated as a hint or an approximation of avail-
ability status.

5.1.10 BluetoothProfileDescriptorList Attribute

Attribute Name Attribute ID Attribute Value Type
BluetoothProfileDescriptorList 0x0009 Data Element Sequence
Description:

The BluetoothProfileDescriptorList attribute consists of a data element
sequence in which each element is a profile descriptor that contains informa-
tion about a Bluetooth profile to which the service represented by this service
record conforms. Each profile descriptor is a data element sequence whose

Service Attribute Definitions 29 November 1999 363

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 364 of 1082

Service Discovery Protocol Bluetooth

first element is the UUID assigned to the profile and whose second element is
a 16-bit profile version number.

Each version of a profile is assigned a 16-bit unsigned integer profile version
number, which consists of two 8-bit fields. The higher-order 8 bits contain the
major version number field and the lower-order 8 bits contain the minor version
number field. The initial version of each profile has a major version of 1 and a
minor version of 0. When upward compatible changes are made to the profile,
the minor version number will be incremented. If incompatible changes are
made to the profile, the major version number will be incremented.

5.1.11 DocumentationURL Attribute

Attribute Name Attribute ID Attribute Value Type
DocumentationURL O0x000A URL
Description:

This attribute is a URL which points to documentation on the service described
by a service record.

5.1.12 ClientExecutableURL Attribute

Attribute Name Attribute ID Attribute Value Type
ClientExecutableURL 0x000B URL
Description:

This attribute contains a URL that refers to the location of an application that
may be used to utilize the service described by the service record. Since differ-
ent operating environments require different executable formats, a mechanism
has been defined to allow this single attribute to be used to locate an execut-
able that is appropriate for the client device’s operating environment. In the
attribute value URL, the first byte with the value 0x2A (ASCII character **') is to
be replaced by the client application with a string representing the desired
operating environment before the URL is to be used.

The list of standardized strings representing operating environments is con-
tained in the Bluetooth Assigned Numbers document.

For example, assume that the value of the ClientExecutableURL attribute is
http://my.fake/public/*/client.exe. On a device capable of executing SH3 Win-
dowsCE files, this URL would be changed to http://my.fake/public/sh3-
microsoft-wince/client.exe. On a device capable of executing Windows 98
binaries, this URL would be changed to http://my.fake/public/i86-microsoft-
win98/client.exe.

364 29 November 1999 Service Attribute Definitions

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 365 of 1082

Service Discovery Protocol BIU eto Oth
5.1.13 IconURL Attribute

Attribute Name Attribute ID Attribute Value Type
IconURL 0x000C URL
Description:

This attribute contains a URL that refers to the location of an icon that may be
used to represent the service described by the service record. Since different
hardware devices require different icon formats, a mechanism has been
defined to allow this single attribute to be used to locate an icon that is appro-
priate for the client device. In the attribute value URL, the first byte with the
value 0x2A (ASCII character *") is to be replaced by the client application with
a string representing the desired icon format before the URL is to be used.

The list of standardized strings representing icon formats is contained in the
Bluetooth Assigned Numbers document.

For example, assume that the value of the IconURL attribute is http://my.fake/
public/icons/*. On a device that prefers 24 x 24 icons with 256 colors, this URL
would be changed to http://my.fake/public/icons/24x24x8.png. On a device that
prefers 10 x 10 monochrome icons, this URL would be changed to http://
my.fake/public/icons/10x10x1.png.

5.1.14 ServiceName Attribute

Attribute Name Attribute ID Offset Attribute Value Type
ServiceName 0x0000 String
Description:

The ServiceName attribute is a string containing the name of the service repre-
sented by a service record. It should be brief and suitable for display with an
Icon representing the service. The offset 0x0000 must be added to the attribute
ID base (contained in the LanguageBaseAttributelDList attribute) in order to
compute the attribute ID for this attribute.

Service Attribute Definitions 29 November 1999 365

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 366 of 1082

Service Discovery Protocol BluetOOth
5.1.15 ServiceDescription Attribute

Attribute Name Attribute ID Offset Attribute Value Type
ServiceDescription 0x0001 String
Description:

This attribute is a string containing a brief description of the service. It should
be less than 200 characters in length. The offset 00001 must be added to the
attribute ID base (contained in the LanguageBaseAttributelDList attribute) in
order to compute the attribute ID for this attribute.

5.1.16 ProviderName Attribute

Attribute Name Attribute ID Offset Attribute Value Type
ProviderName 0x0002 String
Description:

This attribute is a string containing the name of the person or organization pro-
viding the service. The offset 0x0002 must be added to the attribute ID base
(contained in the LanguageBaseAttributelDList attribute) in order to compute
the attribute 1D for this attribute.

5.1.17 Reserved Universal Attribute IDs

Attribute IDs in the range of 0xO00D-0x01FF are reserved.

366 29 November 1999 Service Attribute Definitions

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 367 of 1082

Service Discovery Protocol Bluetooth

5.2 SERVICEDISCOVERYSERVER SERVICE CLASS
ATTRIBUTE DEFINITIONS

This service class describes service records that contain attributes of service
discovery server itself. The attributes listed in this section are only valid if the
ServiceClassIDList attribute contains the
ServiceDiscoveryServerServiceClassID. Note that all of the universal attributes
may be included in service records of the ServiceDiscoveryServer class.

5.2.1 ServiceRecordHandle Attribute
Described in the universal attribute definition for ServiceRecordHandle.
Value

A 32-bit integer with the value 0x000000000.

5.2.2 ServiceClassIDList Attribute
Described in the universal attribute definition for ServiceClassIDList.
Value

A UUID representing the ServiceDiscoveryServerServiceClassID.

5.2.3 VersionNumberList Attribute

Attribute Name Attribute ID Attribute Value Type
VersionNumberList 0x0200 Data Element Sequence
Description:

The VersionNumberList is a data element sequence in which each element of
the sequence is a version number supported by the SDP server.

A version number is a 16-bit unsigned integer consisting of two fields. The
higher-order 8 bits contain the major version number field and the low-order 8
bits contain the minor version number field. The initial version of SDP has a
major version of 1 and a minor version of 0. When upward compatible changes
are made to the protocol, the minor version number will be incremented. If
incompatible changes are made to SDP, the major version number will be
incremented. This guarantees that if a client and a server support a common
major version number, they can communicate if each uses only features of the
specification with a minor version number that is supported by both client and
server.

Service Attribute Definitions 29 November 1999 367

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 368 of 1082

Service Discovery Protocol BluetOOth
5.2.4 ServiceDatabaseState Attribute

Attribute Name Attribute ID Attribute Value Type
ServiceDatabaseState 0x0201 32-bit unsigned integer
Description:

The ServiceDatabaseState is a 32-bit integer that is used to facilitate caching
of service records. If this attribute exists, its value is guaranteed to change
when any of the other service records are added to or deleted from the server’s
database. If this value has not changed since the last time a client queried its
value, the client knows that a) none of the other service records maintained by
the SDP server have been added or deleted; and b) any service record han-
dles acquired from the server are still valid. A client should query this
attribute’s value when a connection to the server is established, prior to using
any service record handles acquired during a previous connection.

Note that the ServiceDatabaseState attribute does not change when existing
service records are modified, including the addition, removal, or modification of
service attributes. A service record’s ServiceRecordState attribute indicates
when that service record is modified.

5.2.5 Reserved Attribute IDs

Attribute IDs in the range of 0x0202-0x02FF are reserved.

368 29 November 1999 Service Attribute Definitions

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 369 of 1082

Service Discovery Protocol Bluetooth

5.3 BROWSEGROUPDESCRIPTOR SERVICE CLASS
ATTRIBUTE DEFINITIONS

This service class describes the ServiceRecord provided for each Browse-
GroupDescriptor service offered on a Bluetooth device. The attributes listed in
this section are only valid if the ServiceClassIDList attribute contains the Brow-
seGroupDescriptorServiceClassID. Note that all of the universal attributes may
be included in service records of the BrowseGroupDescriptor class.

5.3.1 ServiceClassIDList Attribute
Described in the universal attribute definition for ServiceClassIDList.
Value

A UUID representing the BrowseGroupDescriptorServiceClassID.

5.3.2 GrouplD Attribute

Attribute Name Attribute ID Attribute Value Type
GroupID 0x0200 UuID
Description:

This attribute contains a UUID that can be used to locate services that are
members of the browse group that this service record describes.

5.3.3 Reserved Attribute IDs

Attribute IDs in the range of 0x0201-0x02FF are reserved.

Appendix 29 November 1999 369

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 370 of 1082

Service Discovery Protocol Bluetooth
APPENDIX A — BACKGROUND INFORMATION

A.l. Service Discovery

As computing continues to move to a network-centric model, finding and mak-
ing use of services that may be available in the network becomes increasingly
important. Services can include common ones such as printing, paging, FAX-
ing, and so on, as well as various kinds of information access such as telecon-
ferencing, network bridges and access points, eCommerce facilities, and so on
— most any kind of service that a server or service provider might offer. In
addition to the need for a standard way of discovering available services, there
are other considerations: getting access to the services (finding and obtaining
the protocols, access methods, “drivers” and other code necessary to utilize
the service), controlling access to the services, advertising the services, choos-
ing among competing services, billing for services, and so on. This problem is
widely recognized; many companies, standards bodies and consortia are
addressing it at various levels in various ways. Service Location Protocol

(SLP), Jini™ and Salutation™, to name just a few, all address some aspect of
service discovery.

A.2. Bluetooth Service Discovery

Bluetooth Service Discovery Protocol (SDP) addresses service discovery spe-
cifically for the Bluetooth environment. It is optimized for the highly dynamic
nature of Bluetooth communications. SDP focuses primarily on discovering
services available from or through Bluetooth devices. SDP does not define
methods for accessing services; once services are discovered with SDP, they
can be accessed in various ways, depending upon the service. This might
include the use of other service discovery and access mechanisms such as
those mentioned above; SDP provides a means for other protocols to be used
along with SDP in those environments where this can be beneficial. While SDP
can coexist with other service discovery protocols, it does not require them. In
Bluetooth environments, services can be discovered using SDP and can be
accessed using other protocols defined by Bluetooth.

370 29 November 1999 Appendix

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 371 of 1082

Service Discovery Protocol Bluetooth
APPENDIX B — EXAMPLE SDP TRANSACTIONS

The following are simple examples of typical SDP transactions. These are
meant to be illustrative of SDP flows. The examples do not consider:

» Caching (in a caching system, the SDP client would make use of the
ServiceRecordState and ServiceDatabaseState attributes);

» Service availability (if this is of interest, the SDP client should use the
ServiceAvailability and/or ServiceTimeToLive attributes);

» SDP versions (the VersionNumberList attribute could be used to determine
compatible SDP versions);

» SDP Error Responses (an SDP error response is possible for any SDP
request that is in error); and

» Communication connection (the examples assume that an L2CAP
connection is established).

The examples are meant to be illustrative of the protocol. The format used is
Obj ect Narre[Qbj ect Si zel nByt es] {SubObj ect Defi nitions}, but this is not
meant to illustrate an interface. The oj ect Si zel nByt es is the size of the object
in decimal. The SubObj ect Def i ni ti ons (inside of {} characters) are compo-
nents of the immediately enclosing object. Hexadecimal values shown as
lower-case letters, such as for transaction IDs and service handles, are vari-
ables (the particular value is not important for the illustration, but each such
symbol always represents the same value). Comments are included in this
manner: /* coment text */.

B.1. SDP Example 1 — ServiceSearchRequest

The first example is that of an SDP client searching for a generic printing ser-
vice. The client does not specify a particular type of printing service. In the
example, the SDP server has two available printing services. The transaction
illustrates:

1. SDP client to SDP server: SDP_ServiceSearchRequest, specifying the
PrinterServiceClassID (represented as a DataElement with a 32-bit UUID
value of ppp. . . ppp) as the only element of the ServiceSearchPattern. The
PrinterServiceClassID is assumed to be a 32-bit UUID and the data element
type for it is illustrated. The TransactionID is illustrated astttt.

2. SDP server to SDP client: SDP_ServiceSearchResponse, returning handles
to two printing services, represented as qqqqqqqgq for the first printing ser-
viceandrrrrrrrr forthe second printing service. The Transaction ID is
the same value as supplied by the SDP client in the corresponding request
(ttTT).

/* Sent fromSDP Client to SDP server */
SDP_Servi ceSear chRequest [15] {
PDU D[1] {

Appendix 29 November 1999 371

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B

page 372 of 1082

Service Discovery Protocol

}

/*

0x02
}
Transactionl D[2] {
Oxtttt
}
Par anet er Lengt h[2] {
0x000A
}
Servi ceSearchPattern[7] {
Dat aEl enment Sequence[7] {
0b00110 Ob101 0x05
uu O 5] {
/* PrinterServiceC asslD */
0b00011 0b010 OxpppppppPpP

}
}
}
Maxi munSer vi ceRecor dCount [2] {

0x0003

}
ContinuationState[1] {

/* no continuation state */
0x00

}

Sent from SDP server to SDP client */

SDP_Ser vi ceSear chResponse[16] {

}

PDU D] 1] {
0x03

}

Transactionl D[2] {

Oxtttt

}

Par amet er Lengt h[2] {
0x000D

}

Tot al Servi ceRecordCount [2] {
0x0002

}

Current Servi ceRecordCount [2] {
0x0002

}

Servi ceRecor dHandl eLi st[8] {
/* print service 1 handle */
Oxqqqaqaaq
/* print service 2 handle */
oxrrrrrrrr

}

ContinuationState[1] {

/* no continuation state */
0x00

}

Bluetooth.

372 29 November 1999

Appendix

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 373 of 1082

Service Discovery Protocol Bluetooth
B.2. SDP Example 2 — ServiceAttributeTransaction

The second example continues the first example. In Example 1, the SDP client
obtained handles to two printing services. In Example 2, the client uses one of
those service handles to obtain the ProtocolDescriptorList attribute for that
printing service. The transaction illustrates:

1. SDP client to SDP server: SDP_ServiceAttributeRequest, presenting the
previously obtained service handle (the one denoted as qqgqgqqq) and
specifying the ProtocolDescriptorList attribute ID (AttributelD 0x0004) as the
only attribute requested (other attributes could be retrieved in the same
transaction if desired). The TransactionID is illustrated as uuuu to distin-
guish it from the TransactionID of Example 1.

2. SDP server to SDP client: SDP_ServiceAttributeResponse, returning the
ProtocolDescriptorList for the specified printing service. This protocol stack
is assumed to be ((L2CAP), (RFCOMM, 2), (PostscriptStream)). The Proto-
colDescriptorList is a data element sequence in which each element is, in
turn, a data element sequence whose first element is a UUID representing
the protocol, and whose subsequent elements are protocol-specific parame-
ters. In this example, one such parameter is included for the RFCOMM pro-
tocol, an 8-bit value indicating RFCOMM server channel 2. The Transaction
ID is the same value as supplied by the SDP client in the corresponding
request (uuuu). The Attributes returned are illustrated as a data element
sequence where the protocol descriptors are 32-bit UUIDs and the
RFCOMM server channel is a data element with an 8-bit value of 2.

/* Sent fromSDP Cient to SDP server */
SDP_Servi ceAttri buteRequest[17] {
PDUI O 1] {
0x04
}
Transactionl D[2] {
Oxuuuu
}
Par amet er Lengt h[2] {
0x000C

}
Servi ceRecor dHandl e[4] {

0xqgqqqaqq

Maxi mumAt t ri but eByt eCount [2] {
0x0080

}

Attributel DList[5] {

Dat aEl ement Sequence[5] {
0b00110 0b101 0x03
Attributel D[3] {

0b00001 0b001 0x0004
}
}
}

Appendix 29 November 1999 373

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B

page 374 of 1082

Service Discovery Protocol

ContinuationState[1] {
/* no continuation state */
0x00

}
}

/* Sent from SDP server to SDP client */
SDP_Servi ceAttri but eResponse[36] {
PDUI D 1] {
0x05
}
Transactionl D[2] {
Oxuuuu
}
Par anet er Lengt h[2] {
0x0021
}
AttributelListByteCount[2] {
0x001E
}
AttributelList[30] {
Dat aEl ement Sequence[30] {
0b00110 Ob101 O0Ox1C
Attribute[28] {
Attributel D[3] {
0b00001 0b0O01 0x0004
}
AttributeVal ue[25] {
/* Protocol DescriptorList */
Dat aEl ement Sequence[25] {
0b00110 0b101 0x17
/* L2CAP protocol descriptor */
Dat aEl ement Sequence[7] {
0b00110 Ob101 0x05
uJl DO 5] {
/* L2CAP Protocol UU D */
0b00011 0b010 <32-bit L2CAP UU D>

}

}
/* RFCOWM protocol descriptor */

Dat aEl ement Sequence[9] {
0b00110 Ob101 0x07
uu O 5] {
/* RFCOWM Prot ocol UUI D */
0b00011 Ob010 <32-bit RFCOWM UU D>
}
/* parameter for server 2 */
U nt8[2] {
0b00001 Ob0OOO 0x02
}
}

/* PostscriptStream protocol descriptor */

Dat aEl ement Sequence[7] {
0b00110 0b101 0x05
uu O 5] {
/* PostscriptStream Protocol UUI D */

Bluetooth.

0b00011 0b0O10 <32-bit PostscriptStream UUI D>

374 29 November 1999

Appendix

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B

page 375 of 1082

Service Discovery Protocol

ContinuationState[1] {
/* no continuation state */
0x00

Bluetooth.

Appendix 29 November 1999

375

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 376 of 1082

Service Discovery Protocol Bluetooth
B.3. SDP Example 3 — ServiceSearchAttributeTransaction

The third example is a form of service browsing, although it is not generic
browsing in that it does not make use of SDP browse groups. Instead, an SDP
client is searching for available Synchronization services that can be presented
to the user for selection. The SDP client does not specify a particular type of
synchronization service. In the example, the SDP server has three available
synchronization services: an address book synchronization service and a cal-
endar synchronization service (both from the same provider), and a second
calendar synchronization service from a different provider. The SDP client is
retrieving the same attributes for each of these services; namely, the data for-
mats supported for the synchronization service (vCard, vCal, ICal, etc.) and
those attributes that are relevant for presenting information to the user about
the services. Also assume that the maximum size of a response is 400 bytes.
Since the result is larger than this, the SDP client will repeat the request sup-
plying a continuation state parameter to retrieve the remainder of the response.
The transaction illustrates:

1. SDP client to SDP server: SDP_ServiceSearchAttributeRequest, specifying
the generic SynchronisationServiceClassID (represented as a data element
whose 32-bit UUID value is sss. . . ssS) as the only element of the Service-
SearchPattern. The SynchronisationServiceClassID is assumed to be a 32-
bit UUID. The requested attributes are the ServiceRecordHandle (attribute
ID 0x0000), ServiceClassIDList (attribute ID 0x0001), IconURL (attribute ID
0x000C), ServiceName (attribute ID 0x0100), ServiceDescription (attribute
ID 0x0101), and ProviderName (attributelD 0x0102) attributes; as well as
the service-specific SupportedDataStores (AttributelD 0x0301). Since the
first two attribute IDs (0x0000 and 0x0001) and three other attribute
IDs(0x0100, 0x0101, and 0x0102 are consecutive, they are specified as
attribute ranges. The TransactionID is illustrated as vvvv to distinguish it
from the TransactionIDs of the other Examples.

Note that values in the service record’s primary language are requested for
the text attributes (ServiceName, ServiceDescription and ProviderName) so
that absolute attribute IDs may be used, rather than adding offsets to a base
obtained from the LanguageBaseAttributelDList attribute.

2. SDP server to SDP client: SDP_ServiceSearchAttributeResponse, returning
the specified attributes for each of the three synchronization services. In the
example, each ServiceClassIDList is assumed to contain a single element,
the generic SynchronisationServiceClassID (a 32-bit UUID represented as
sss...sss). Each of the other attributes contain illustrative data in the exam-
ple (the strings have illustrative text; the icon URLs are illustrative, for each
of the respective three synchronization services; and the SupportedDataS-
tore attribute is represented as an unsigned 8-bit integer where 0x01 =
vCard2.1, 0x02 = vCard3.0, 0x03 = vCall1.0 and 0x04 = iCal). Note that one
of the service records (the third for which data is returned) has no Service-
Description attribute. The attributes are returned as a data element
sequence, where each element is in turn a data element sequence repre-

376 29 November 1999 Appendix

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 377 of 1082

Service Discovery Protocol Bluetooth

senting a list of attributes. Within each attribute list, the ServiceClassIDList is
a data element sequence while the remaining attributes are single data ele-
ments. The Transaction ID is the same value as supplied by the SDP client
in the corresponding request (www). Since the entire result cannot be
returned in a single response, a non-null continuation state is returned in this
first response.

Note that the total length of the initial data element sequence (487 in the
example) is indicated in the first response, even though only a portion of this
data element sequence (368 bytes in the example, as indicated in the
AttributeLists byte count) is returned in the first response. The remainder of
this data element sequence is returned in the second response (without an
additional data element header).

3. SDP client to SDP server: SDP_ServiceSearchAttributeRequest, with the
same parameters as in step 1, except that the continuation state received
from the server in step 2 is included as a request parameter. The Transac-
tionID is changed to wwwwto distinguish it from previous request.

4. SDP server to SDP client: SDP_ServiceSearchAttributeResponse, with the
remainder of the result computed in step 2 above. Since all of the remaining
result fits in this second response, a null continuation state is included.

/* Part 1 -- Sent from SDP Client to SDP server */
SdpSDP_Ser vi ceSear chAt tri but eRequest [33] {
PDU D[1] {
0x06
}
Transactionl D[2] {
Oxvvvv
}
Par amet er Lengt h[2] {
0x001B
}
Servi ceSearchPattern[7] {
Dat aEl ement Sequence[7] {
0b00110 Ob101 0x05
uul D[5] {
/* Synchroni sati onServi ceC asslI D */
0b00011 0Ob010 Oxssssssss

}
}

}
Maxi mumAt t ri but eByt eCount [2] {

0x0190
}
Attributel DList[18] {

Dat aEl ement Sequence[18] {
0b00110 Ob101 0x10
Attribut el DRange[5] {

0b00001 0b010 0x00000001
}
Attributel D3] {

0b00001 0Ob0O0O1 0x000C

Appendix 29 November 1999 377

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 378 of 1082

Service Discovery Protocol BluetOOth

}
Attribut el DRange[5] {

0b00001 0b010 0x01000102
}
Attributel D3] {

0b00001 0b001 0x0301

} } }
ContinuationState[1] {

/* no continuation state */
0x00

}
}

/* Part 2 -- Sent from SDP server to SDP client */
SdpSDP_Ser vi ceSear chAttri but eResponse[384] {
PDUI D[1] {
0x07
}
Transactionl D[2] {
Oxvvvv
}
Par amet er Lengt h[2] {
0x017B
}
AttributeListByteCount[2] {
0x0170
}
AttributelLists[368] {
Dat aEl ement Sequence[487] {
0b00110 Ob110 Ox01E4
Dat aEl erent Sequence[178] {
0b00110 0b101 0xBO
Attribute[8] {
Attributel D 3] {
0b00001 0b001 0x0000
}
AttributeVval ue[5] {
/* service record handle */
0b00001 0b010 0Oxhhhhhhhh

}

}
Attribute[10] {

Attributel D[3] {
0b00001 0b001 0x0001
}
AttributeValue[7] {
Dat aEl enment Sequence[7] {
0b00110 0b101 0x05
uJ DO 5] {
/* Synchroni sati onServiceC assID */
0b00011 0b010 0xSSSSSSSS

}
}
}

}
Attribute[35] {

378 29 November 1999 Appendix

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 379 of 1082

Service Discovery Protocol Bluetooth

Attributel D3] {
0b00001 0Ob0O0O1 0x000C

}
AttributeVval ue[32] {

/* lconURL; "*' replaced by client application */
0b01000 0Ob101 Ox1E
"http://Synchronisation/icons/*"

}

}
Attribute[22] {

Attributel D3] {
0b00001 0b001 0x0100

}

AttributeVal ue[19] {
/* service name */
0b00100 0b101 Ox11
" Address Book Sync"

}

}
Attribute[59] {

Attributel D[3] {
0b00001 0b001 0x0101
}

Attribut eVal ue[56] ({
/* service description */
0b00100 Ob101 0x36
"Synchroni sation Service for"
" vCard Address Book Entries”
}

}
Attribute[37] {

Attributel D3] {
0b00001 0b001 0x0102
}
Attributeval ue[34] {
/* service provider */
0b00100 0b101 0x20
"Synchroni sati on Specialists Inc.”
}

}
Attribute[5] {

Attributel D3] {
0b00001 0b001 0x0301

}

AttributeVal ue[2] {
/* Supported Data Store 'phonebook’ */
0b00001 0b0O0OO 0x01

}

}

}
Dat aEl ement Sequence[175] {

0b00110 0Ob101 OxAD
Attribute[8] {
Attributel D3] {
0b00001 0Ob00O1 0x0000

}
AttributeVal ue[5] {

Appendix 29 November 1999 379

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 380 of 1082

Service Discovery Protocol BluetOOth

/* service record handle */
0b00001 0b010 OXnMMMMMMM
}
}
Attribute[10] {
Attributel O 3] {
0b00001 0b0O01 0x0001
}

AttributeVal ue[7] {
Dat aEl ement Sequence[7] {
0b00110 Ob101 0x05
uul D 5] {
/* Synchroni sati onServiceCl assID */
0b00011 0Ob010 Oxssssssss
}
}
}
}
Attribute[35] {
Attributel D3] {
0b00001 0b0O01 0x000C
}
AttributeVal ue[32] {
/* lconURL; '*' replaced by client application */
0b01000 0b101 Ox1E
"http://Synchronisation/icons/*"
}
}
Attribute[21] {
Attributel D[3] {
0b00001 0b001 0x0100
}
AttributeVal ue[18] {
/* service nanme */
0b00100 0b101 0x10
" Appoi nt ment Sync"
}
}
Attribute[57] {
Attributel D[3] {
0b00001 0b001 0x0101
}
Attribut eVal ue[54] {
/* service description */
0b00100 0b101 0x34
"Synchroni sation Service for"
" vCal Appointment Entries"
}
}
Attribute[37] {
Attributel D[3] {
0b00001 0b001 0x0102
}
AttributeVal ue[34] {
/* service provider */
0b00100 0b101 0x20
"Synchroni sation Specialists Inc."

380 29 November 1999 Appendix

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B

page 381 of 1082

Service Discovery Protocol

}

}
Attribute[5] {

Attributel D3] {
0b00001 0b001 0x0301

}

AttributeVal ue[2] {
/* Supported Data Store ’'cal endar’ */
0b00001 0b0O0OO 0x03

}

}
}

/* } Data el ement sequence of attribute [ists */
/* is not conpleted in this PDU. */
}
ContinuationState[9] {
/* 8 bytes of continuation state */
O0x08 Oxzzzzzzz77727727777

}
}

/* Part 3 -- Sent fromSDP Client to SDP server */
SdpSDP_Ser vi ceSear chAt tri but eRequest [41] {
PDU D] 1] {
0x06
}
Transactionl D} 2] {
OX WY
}
Par amet er Lengt h[2] {
0x0024
}
Servi ceSearchPattern[7] {

Dat aEl ement Sequence[7] {
0b00110 Ob101 0x05
uul O 5] {

/* Synchroni sati onServi ceC assl D */
0b00011 Ob010 OxsSssssSSs
}
}
}
Maxi mumAt t ri but eByt eCount [2] {
0x0180
}

Attributel DList[18] {

Dat aEl enent Sequence[18] {
0b00110 0Ob101 0x10
Attribut el DRange[5] {

0b00001 0b010 0x00000001
}
Attributel O 3] {
0b00001 0Ob0O0O1 0x000C
}
Attribut el DRange[5] {
0b00001 0b010 0x01000102
}
Attributel O 3] {

Bluetooth.

Appendix 29 November 1999

381

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 382 of 1082

Service Discovery Protocol BluetOOth

0b00001 0b001 0x0301
}
}
}
ContinuationState[9] {
/* same 8 bytes of continuation state */

/* received in part 2 */
0x08 0xzzzzzzzzz2727222227

}
}

Part 4 -- Sent from SDP server to SDP client

SdpSDP_Ser vi ceSear chAttri but eResponse[115] {
PDUI D[1] {
0x07
}
Transactionl D[2] {
Ox W
}
Par amet er Lengt h[2] {
0x006E
}
AttributeListByteCount[2] {
0x006B
}
Attributelists[107] {
/* Continuing the data el ement sequence of */
/* attribute lists begun in Part 2. */
Dat aEl erent Sequence[107] {
0b00110 0b101 0x69
Attribute[8] {
Attributel D 3] {
0b00001 0b001 0x0000
}
AttributeVal ue[5] {
/* service record handle */
0b00001 0b010 Oxffffffff

}

}
Attribute[10] {

Attributel D[3] {
0b00001 0b001 0x0001
}
AttributeVval ue[7] {
Dat aEl enent Sequence[7] {
0b00110 0b101 0x05
uJ DO 5] {
/* Synchroni sati onServiceC assID */
0b00011 0b010 0OxSSSSSSSS

}
}
}

}
Attribute[35] {

Attributel D 3] {
0b00001 0b001 0x000C

382 29 November 1999 Appendix

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 383 of 1082

Service Discovery Protocol Bluetooth

}
AttributeVval ue[32] {

/* lconURL; "*' replaced by client application */
0b01000 0b101 Ox1E
"http://DevManuf acturer/icons/*"

}

}
Attribute[18] {

Attributel D3] {
0b00001 0b001 0x0100

}

Attribut eval ue[15] {
/* service name */
0b00100 0b101 0xOD
"Cal endar Sync"

}

}
Attribute[29] {

Attributel D3] {
0b00001 0b001 0x0102
}
Attribut evVal ue[26] ({
/* service provider */
0b00100 0b101 0x18
"Devi ce Manufacturer Inc.

}

}
Attribute[5] {

Attributel D3] {
0b00001 0b001 0x0301

}

AttributeVal ue[2] {
/* Supported Data Store ’'cal endar’ */
0b00001 0b000 0x03

}
}
}

/* This completes the data el enent sequence */
/* of attribute lists begun in Part 2.
}
Continuati onState[1] {
/* no continuation state */
0x00

Appendix 29 November 1999 383

ROKU EXH. 1002

BLUETOOTH SPECIFICATION Version 1.0 B page 384 of 1082

Service Discovery Protocol BluetOOth

384 29 November 1999 Appendix

ROKU EXH. 1002

APPENDIX Q

ROKU EXH. 1002

Internet Engineering Task Force Yaron Y. Goland
INTERNET DRAFT Ting Cai
Paul Leach
Ye Gu
Microsoft Corporation
Shivaun Albright
Hewlett-Packard Company
October 28, 1999
Expires April 2000

Simple Service Discovery Protocol/1.0
Operating without an Arbiter
< draft-cai-ssdp-v1-03.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet- Drafts as

reference material or to cite them other than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Please send comments to the SSDP mailing list. Subscription
information for the SSDP mailing list is available at
http://lwww.upnp.org/resources/ssdpmail.htm.

Abstract
The Simple Service Discovery Protocol (SSDP) provides a mechanism
where by network clients, with little or no static configuration,
can discover network services. SSDP accomplishes this by providing
for multicast discovery support as well as server based notification
and discovery routing.

Table of Contents

Status of thiS MemO.........ccoovvvveiiiiiee e
PN 0151 = (o1 ST 1

Goland et al. [Page 1]

ROKU EXH. 1002

https://tools.ietf.org/pdf/draft-cai-ssdp-v1-03.txt
https://tools.ietf.org/pdf/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://www.upnp.org/resources/ssdpmail.htm

INTERNET-DRAFT SSDP/V1 October 28, 1999

Table of Contents..........ccuveeiiiiiiii e, 1
1. Changes Since 02.......ccccoceeumrmrmrinininininininnenenns 3
2. INtroducCtion..........ooocevieiieiiiiiee e 3
2.1. Problem Statement...........ccccceveeiiiiiiiieneennnns 3
2.2. Proposed SOolution.........ccceeeeieriiiiiiieiieee s 4
2.2.1. Message Flow on the SSDP Multicast Channel........... 4
2.2.2. SSDP Discovery Information Caching Model............. 4
2.3. Design Rationale.............ccoeeeiiiiccininiinnnnnnns 5
2.3.1. Message Flow on the SSDP Multicast Channel........... 5
2.3.2. SSDP Discovery Information Caching Model............. 7
3. Terminology...cccccouiuuieeieieiiiiieee e 8
4. SSDP Discovery ReqUeStS........cccceeeeeeeeeeeeeeieeeeeen, 8
4.1. Problem Statement............cccoeeieiiiiiiiiieenenn. 8
4.2. Proposed SOolution..........ccceeeeeeeeeieee e 8
4.3. Design Rationale............ccccceeeieiiniiiiinenenn. 10
4.3.1. Why is the ST header so limited? Why doesn’t it support
at least and/or/not? Why not name/value pair searching?..... 10
4.3.2. If we are using the SEARCH method why aren’t you using
the DASL search syntax?.........ccccceeviiiieeeeeennnnns 10
4.3.3. Why can we only specify one search type in the ST
header of a ssdp:discover request?.........cccccceeernnes 10
4.3.4. Why do we only provide support for multicast UDP, not
TCP, ssdp:discover reqUeSstS?.......cceeevriiiiieeenaennnns 10
4.3.5. Why do we require that responses without caching
information not be cached at all?........................... 11
5. SSDP Presence ANNOUNCEMENLS...........cevvvrmrmmmmnrennnnnns 11
5.1. Problem Statement............cccoiieiiiiiiiiiinenn. 11
5.2. Proposed Solution.........ccccceeeeeeeeeeeieeee, 11
5.2.1. ssdp:alive......cceeeeeeeiiiiiiiiiieee, 11
5.2.2. ssdp:byebye......cccoovviviiiii 12
5.3. Design Rationale.............cccceeeieiiniiiiinennnn. 13
5.3.1. Why are we using GENA NOTIFY requests?.............. 13
5.3.2. Why is there no response to the ssdp:alive/ssdp:byebye
requests sent to the SSDP multicast channel/port?........... 13
5.3.3. Could NTS values other than ssdp:alive/ssdp:byebye be
sent to the SSDP multicast channel/port?.................... 13
5.3.4. Why do we include the NT header on ssdp:byebye
FEQUESTS?. i 13
5.3.5. Shouldn’t the NT and NTS values be switched?........ 13
6. SSDP Auto-Shut-Off Algorithm............ceevvevevevveennenn. 13
6.1. Problem Statement............ccccceeiiiiiiiiinenennns 13
6.2. Proposed Solution............cccoeeeviecciinninnnnnnns 13
6.3. Design Rationale.............ccooeeeieiiniiiienneenn. 14
6.3.1. Why do we need an auto-shut-off algorithm?.......... 14
6.3.2. Why not just require everyone to support directories
and thus get around the scaling issue?...........ccccoe..... 15
7. ssdp:all....oooeeieii s 15
7.1. Problem Statement...........ccccceveeiiniiiiineienns 15
7.2. Proposed Solution..........ccceeeeveeiiiiiiiiiieeennne 15
7.3. Design Rationale...........ccccceeevuvnrnrenninnninnnns 16
7.3.1. Why would anyone want to enumerate all services?....16
8. SSDP Reserved Multicast Channel...............cccveeeeen. 16
Goland et al. [Page 2]

ROKU EXH. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

8.1. Problem Statement.............cccooveiiiiiiiiiinnnnn. 16
8.2. Proposed Solution.........cccceeeeeeeeeieieieeee, 16
8.3. Design Rationale.............cccueeeieiiniiiiiienenn. 16
8.3.1. Why didn’t SSDP just get a static local administrative
scope address rather than a relative address?............... 16
8.3.2. Why does SSDP need to use a port other than 807.....16
9. HTTP Headers.....cccceiiiiiiiiieaiiiieee e 17
9.1. USN Header.........ccccoviimiiiiieeiiiiiiieee e 17
9.2. STHeader.......cccouveeeieiiiiieee e 17
10. Security Considerations............eeeveveeeeeeeeeeeeeeeenn. 17
11. IANA Considerations..........ccccceeeiivieeeeneeeininenen. 17
12. Appendix - Constants..........cccvvvveeeeeeeeeeeeeeeeenenn 17
13. Acknowledgements.........cccuueeeieeiiiiiiiieeee e 17
14. ReferencCes........cccccoeiiiiiiiiiiieeiiiiiieeeee e 17
15. Author's AddresSSes........oooviuvieeieeeiiiiiiiieeeeeeaes 18

1. Changes Since 02

The entire specification has been extensively re-written. As such
the reader is advised to re-read the entire specification rather
than to just look for particular changes.

Removed the arbiter and related functionality.

Spec used to contain both ssdp:discover and ssdp:discovery, settled
on ssdp:discover.

Changed SSDP multicast message examples to use the reserved relative
multicast address "5" provided by IANA. In the local administrative

scope, the only scope currently used by SSDP, this address

translates to 239.255.255.250.

An application has been made for a reserved port for SSDP but no
response from IANA has been received.

2. Introduction

[Ed. Note: In my experience, one of the best ways to enable a
specification to be quickly and successfully developed is to provide

a problem statement, a proposed solution and a design rationale. |
came across this three-part design structure when Larry Masinter
proposed it to the WebDAV WG. To that end, | have divided this spec
in a similar manner. Once the specification is sufficiently mature,

the problem statement and design rationale sections will be placed

in a separate document and the proposed solutions will be presented
for standardization.]

This document assumes the reader is very familiar with [RFC2616],
[HTTPUDP], [GENA], [MAN] and [RFC2365].

2.1. Problem Statement

Goland et al. [Page 3]

ROKU EXH. 1002

https://tools.ietf.org/pdf/rfc2616
https://tools.ietf.org/pdf/rfc2365

INTERNET-DRAFT SSDP/V1 October 28, 1999

A mechanism is needed to allow HTTP clients and HTTP resources to
discover each other in local area networks. That is, a HTTP client

may need a particular service that may be provided by one or more
HTTP resources. The client needs a mechanism to find out which HTTP
resources provide the service the client desires.

For the purposes of this specification the previously mentioned HTTP
client will be referred to as a SSDP client. The previous mentioned
HTTP resource will be referred to as a SSDP service.

In the simplest case this discovery mechanism needs to work without
any configuration, management or administration. For example, if a
user sets up a home network or a small company sets up a local area
network they must not be required to configure SSDP before SSDP can
be used to help them discover SSDP services in the form of Printers,
Scanners, Fax Machines, etc.

It is a non-goal for SSDP to provide for multicast scope bridging or
for advanced query facilities.

2.2. Proposed Solution
2.2.1. Message Flow on the SSDP Multicast Channel
The following is an overview of the messages used to implement SSDP.

SSDP clients discover SSDP services using the reserved local
administrative scope multicast address 239.255.255.250 over the SSDP
port [NOT YET ALLOCATED BY IANA].

For brevity’'s sake the SSDP reserved local administrative scope
multicast address and port will be referred to as the SSDP multicast
channel/Port.

Discovery occurs when a SSDP client multicasts a HTTP UDP discovery
request to the SSDP multicast channel/Port. SSDP services listen to

the SSDP multicast channel/Port in order to hear such discovery
requests. If a SSDP service hears a HTTP UDP discovery request that
matches the service it offers then it will respond using a unicast

HTTP UDP response.

SSDP services may send HTTP UDP notification announcements to the
SSDP multicast channel/port to announce their presence.

Hence two types of SSDP requests will be sent across the SSDP
multicast channel/port. The first are discovery requests, a SSDP
client looking for SSDP services. The second are presence
announcements, a SSDP service announcing its presence.

2.2.2. SSDP Discovery Information Caching Model

Goland et al. [Page 4]

ROKU EXH. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

The following provides an overview of the data provided in a SSDP
system.

Services are identified by a unique pairing of a service type URI
and a Unigue Service Name (USN) URI.

Service types identify a type of service, such as a refrigerator,
clock/radio, what have you. The exact meaning of a service type is
outside the scope of this specification. For the purposes of this
specification, a service type is an opaque identifier that

identifies a particular type of service.

A USN is a URI that uniquely identifies a particular instance of a
service. USNs are used to differentiate between two services with
the same service type.

In addition to providing both a service type and a USN, discovery
results and presence announcements also provide expiration and
location information.

Location information identifies how one should contact a particular
service. One or more location URIs may be included in a discovery
response or a presence announcement.

Expiration information identifies how long a SSDP client should keep
information about the service in its cache. Once the entry has
expired it is to be removed from the SSDP client’s cache.

Thus a SSDP client service cache might look like:

USN URI | Service Type URI | Expiration | Location
I I I

upnp:uuid:k91... | upnp:clockradio | 3 days | http://foo.com/cr
I I I

uuid:x7z... | ms:wince | 1 week | http://msce/win

In the previous example both USN URIs are actually UUIDs such as
upnp:uuid:k91d4fae-7dec-11d0-a765-00a0c91c6bf6.

If an announcement or discovery response is received that has a USN
that matches an entry already in the cache then the information in
the cache is to be completely replaced with the information in the
announcement or discovery response.

2.3. Design Rationale
[Ed. Note: In my own experience one of the most powerful ways to
explain design rationale is in a question/answer form. Therefore |

have used that format here.]

2.3.1. Message Flow on the SSDP Multicast Channel

Goland et al. [Page 5]

ROKU EXH

. 1002

http://foo.com/cr
http://msce/win

INTERNET-DRAFT SSDP/V1 October 28, 1999

Please see section 8.3 for more design rationale behind our use of
multicasting.

2.3.1.1. Why use multicast for communication?

We needed a solution for communication that would work even if there
was no one around to configure things. The easiest solution would
have been to build a discovery server, but who would set the server
up? Who would maintain it? We needed a solution that could work even
if no one had any idea what discovery was. By using multicasting we
have the equivalent of a "party channel.” Everyone can just grab the
channel and scream out what they need and everyone else will hear.
This means no configuration worries. Of course it brings up other
problems which are addressed throughout this specification.

2.3.1.2. Why use a local administrative scope multicast address?

Multicasting comes in many scopes, from link local all the way to

"the entire Internet.” Our goal is to provide for discovery for

local area networks not for the entire Internet. LANs often are
bridged/routed so a link local multicast scope was too restrictive.

The next level up was a local administrative scope. The idea being

that your administrator decides how many machines should be grouped
together and considered a "unit". This seemed the ideal scope to use
for a local discovery protocol.

2.3.1.3. Why does SSDP support both service discovery requests as well
as service presence announcements?

Some discovery protocols only support discovery requests, that is,
the client must send out a request in order to find out who is

around. The downside to such solutions is that they tend to be very
expensive on the wire. For example, we want to display to our user
all the VCRs in her house. So we send out a discovery request.
However our user has just purchased a new VCR and, after starting
our program, plugged it in. The only way we would find out about the
new VCR and be able to display it on our user’s screen is by
constantly sending out discovery requests. Now imagine every client
in the network having to send out a torrent of discovery requests

for service they care about in order to make sure they don’t miss a
new service coming on-line.

Other systems use the opposite extreme, they only support
announcements. Therefore, when our user opens the VCR display window
we would just sit and listen for announcements. In such systems all

the services have to send out a constant stream of announcements in
order to make sure that no one misses them. Users aren’t the most
patient people in the world so each service will probably need to
announce itself at least every few seconds. This constant stream of

traffic does horrible things to network efficient, especially for

shared connections like Ethernets.

Goland et al. [Page 6]

ROKU EXH

. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

SSDP decided to adopt a hybrid approach and do both discovery and
announcements. This can be incredibly efficient. When a service

first comes on-line it will send out an announcement so that
everyone knows it is there. At that point it shouldn’t ever need to
send out another announcement unless it is going off-line, has
changed state or its cache entry is about to expire. Any clients who
come on-line after the service came on-line will discover the

desired service by sending out a discovery request. The client

should never need to repeat the discovery request because any
services that subsequently come on-line will announce themselves.
The end result is that no one needs to send out steady streams of
messages. The entire system is event driven, only when things change
will messages need to be sent out. The cost, however, is that the
protocol is more complex. We felt this was a price worth paying as

it meant that SSDP could be used successfully in fairly large
networks.

2.3.1.4. Doesn't the caching information turn SSDP back into a
"announcement driven" protocol?

Discovery protocols that only support announcements generally have
to require services to send announcements every few seconds.
Otherwise users screens will take too long to update with

information about which services are available.

SSDP, on the other hand, allows the service to inform clients how
long they should assume the service is around. Thus a service can
set a service interval to seconds, minutes, days, weeks, months or
even years.

Clients do not have to wait around for cache update messages because
they can perform discovery.

2.3.2. SSDP Discovery Information Caching Model
2.3.2.1. Why do we need USNs, isn't the location good enough?

When a service announces itself it usually includes a location
identifying where it may be found. However that location can and

will change over time. For example, a user may decide to change the
DNS name assigned to that device. Were we to depend on locations,
not USNs, when the service’s location was changed we would think we
were seeing a brand new service. This would be very disruptive to

the user’s experience. Imagine, for example, that the user has set

up a PC program that programs their VCR based on schedules pulled
off the Internet. If the user decides to change the VCR’s nhame from
the factory default to something friendly then a location based

system would loose track of the VCR it is supposed to be programming
because the name has changed. By using unique Ids instead we are
able to track the VCR regardless of the name change. So the user can

Goland et al. [Page 7]

ROKU EXH

. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

change the VCR’s name at will and the VCR programming application
will still be able to program the correct VCR.

2.3.2.2. Why are USNs URIs and why are they required to be unique
across the entire URI namespace for all time?

In general making a name universally unique turns out to usually be

a very good idea. Mechanisms such as UUIDs allow universally unique
names to be cheaply created in a decentralized manner. In this case
making USNs globally unique is very useful because services may be
constantly moved around, if they are to be successfully tracked they
need an identifier that isn’t going to change and isn’t going to get
confused with any other service.

URIs were chosen because they have become the de facto managed
namespace for use on the Internet. Anytime someone wants to name
something it is easy to just use a URI.

3. Terminology

SSDP Client - A HTTP client that makes use of a service.

SSDP Service - A HTTP resource that provides a service used by SSDP
clients.

Service Type - A URI that identifies the type or function of a
particular service.

Unigue Service Name (USN) - A URI that is guaranteed to be unique
across the entire URI namespace for all time. It is used to uniquely
identify a particular service in order to allow services with
identical service type URIs to to be differentiated.
In addition, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC2119].
4. SSDP Discovery Requests
4.1. Problem Statement

A mechanism is needed for SSDP clients to find desired SSDP
services.

4.2. Proposed Solution

The SEARCH method, introduced by [DASL], is extended using the [MAN]
mechanism to provide for SSDP discovery.

The SSDP SEARCH extension is identified by the URI ssdp:discover.

Goland et al. [Page 8]

ROKU EXH. 1002

https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2119

INTERNET-DRAFT SSDP/V1 October 28, 1999

For brevity’s sake a HTTP SEARCH method enhanced with the
ssdp:discover functionality will be referred to as a ssdp:discover
request.

ssdp:discover requests MUST contain a ST header. ssdp:discover
requests MAY contain a body but the body MAY be ignored if not
understood by the HTTP service.

The ST header contains a single URI. SSDP clients may use the ST
header to specify the service type they want to discover.

This specification only specifies the use of ssdp:discover requests
over HTTP Multicast UDP although it is expected that future
specifications will expand the definition to handle ssdp:discover
requests sent over HTTP TCP.

ssdp:discover requests sent to the SSDP multicast channel/port MUST
have a request-URI of "*". Note that future specifications may allow

for other request-URIs to be used so implementations based on this
specification MUST be ready to ignore ssdp:discover requests on the
SSDP multicast channel/port with a request-URI other than "*",

Only SSDP services that have a service type that matches the value
in the ST header MAY respond to a ssdp:discover request on the SSDP
multicast channel/port.

Responses to ssdp:discover requests sent over the SSDP multicast
channel/port are to be sent to the IP address/port the ssdp:discover
request came from.

A response to a ssdp:discover request SHOULD include the service’s
location expressed through the Location and/or AL header. A
successful response to a ssdp:discover request MUST also include the
ST and USN headers.

Response to ssdp:discover requests SHOULD contain a cache-control:
max-age or Expires header. If both are present then they are to be
processed in the order specified by HTTP/1.1, that is, the cache-
control header takes precedence of the Expires header. If neither

the cache-control nor the Expires header is provided on the response
to a ssdp:discover request then the information contained in that
response MUST NOT be cached by SSDP clients.

4.2.1.1. Example

M-SEARCH * HTTP/1.1

S: uuid:ijkimnop-7dec-11d0-a765-00a0c91e6bf6
Host: 239.255.255.250:reservedSSDPport

Man: "ssdp:discover"

ST: ge:fridge

MX: 3

Goland et al. [Page 9]

ROKU EXH

. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

HTTP/1.1 200 OK
S: uuid:ijkimnop-7dec-11d0-a765-00a0c91e6bf6

Ext:

Cache-Control: no-cache="Ext", max-age = 5000
ST: ge:fridge

USN: uuid:abcdefgh-7dec-11d0-a765-00a0c91e6bf6
AL: <blender:ixl>< http://foo/bar>

4.3. Design Rationale

4.3.1. Why is the ST header so limited? Why doesn’t it support at
least and/or/not? Why not name/value pair searching?

Deciding the "appropriate" level of search capability is a hopeless
task. So we decided to pare things back to the absolute minimum, a
single opaqgue token, and see what happens. The result so far has
been a very nice, simple, easy to implement, easy to use discovery
system. There are lots of great features it doesn’t provide but most

of them, such as advanced queries and scoping, require a search
engine and a directory. This level of capability is beyond many
simple devices, exactly the sort of folks we are targeting with

SSDP. Besides, search functionality seems to be an all or nothing
type of situation. Either you need a brain dead simple search
mechanism or you need a full fledged near SQL class search system.
Instead of making SSDP the worst of both worlds we decided to just
focus on the dirt simple search problem and leave the more advanced
stuff to the directory folk.

4.3.2. If we are using the SEARCH method why aren’t you using the
DASL search syntax?

We couldn’t come up with a good reason to force our toaster ovens to
learn XML. The features the full-fledged DASL search syntax provides
are truly awesome and thus way beyond our simple scenarios. We fully
expect that DASL will be the preferred solution for advanced search
scenarios, but that isn’t what this draft is about.

4.3.3. Why can we only specify one search type in the ST header of a
ssdp:discover request?

We wanted to start as simple as possible and be forced, kicking and
screaming, into adding additional complexity. The simplest solution
was to only allow a single value in the ST header. We were also
concerned that if we allowed multiple values into the ST headers
somebody would try to throw in and/or/not functionality. Given the
minimal byte savings of allowing multiple values into the ST header
it seems better to just leave the protocol simpler.

4.3.4. Why do we only provide support for multicast UDP, not TCP,
ssdp:discover requests?

Goland et al. [Page 10]

ROKU EXH. 1002

http://foo/bar

INTERNET-DRAFT SSDP/V1 October 28, 1999

We only define what we need to make the discovery protocol work and

we don’t need TCP to make the discovery protocol work. Besides to

make TCP discovery really work you need to be able to handle

compound responses which means you need a compound response format
which is probably XML and that is more than we wanted to handle.
Eventually we expect that you will be able to go up to the SSDP port

on a server using a HTTP TCP request and discover what service, if

any, lives there. But that will be described in a future

specification.

4.3.5. Why do we require that responses without caching information
not be cached at all?

Because that was a lot easier thing to do then trying to explain the
various heuristics one could use to deal with services who don’t
provide caching information.

5. SSDP Presence Announcements

5.1. Problem Statement

A mechanism is needed for SSDP services to be able to let interested
SSDP clients know of their presence.

A mechanism is needed to allow SSDP services to update expiration
information in cache entries regarding them.

A mechanism is needed to allow SSDP services to notify interested
SSDP clients when their location changes.

A mechanism is needed to allow SSDP services to inform interested
SSDP clients that they are going to de-activate themselves.

5.2. Proposed Solution
5.2.1. ssdp:alive

SSDP services may declare their presence on the network by sending a
[GENA] NOTIFY method using the NTS value ssdp:alive to the SSDP
multicast channel/port.

For brevity’s sake HTTP NOTIFY methods with the NTS value ssdp:alive
will be referred to as ssdp:alive requests.

When a ssdp:alive request is received whose USN matches the USN of
an entry already in the SSDP client’s cache then all information
regarding that USN is to be replaced with the information on the
ssdp:alive request. Hence ssdp:alive requests can be used to update
location information and prevent cache entries from expiring.

Goland et al. [Page 11]

ROKU EXH

. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

The value of NT on a ssdp:alive request MUST be set to the service’s
service type. ssdp:alive requests MUST contain a USN header set to
the SSDP service’'s USN.

ssdp:alive requests SHOULD contain a Location and/or AL header. If
there is no DNS support available on the local network then at least
one location SHOULD be provided using an IP address of the SSDP
service.

ssdp:alive requests SHOULD contain a cache-control: max-age or
Expires header. If both are present then they are to be processed in
the order specified by HTTP/1.1, that is, the cache-control header
takes precedence of the Expires header. If neither the cache-control
nor the Expires header is provided the information in the ssdp:alive
request MUST NOT be cached by SSDP clients.

There is no response to a ssdp:alive sent to the SSDP multicast
channel/port.

5.2.1.1. Example

NOTIFY * HTTP/1.1

Host: 239.255.255.250:reservedSSDPport
NT: blenderassociation:blender

NTS: ssdp:alive

USN: someunique:idscheme3

AL: <blender:ixI>< http://foo/bar>
Cache-Control: max-age = 7393

5.2.2. ssdp:byebye
SSDP services may declare their intention to cease operating by
sending a [GENA] NOTIFY method using the NTS value ssdp:byebye to
the SSDP multicast channel/port.

For brevity’s sake HTTP NOTIFY methods with the NTS value
ssdp:byebye will be referred to as ssdp:byebye requests.

The value of NT on a ssdp:byebye request MUST be set to the
service’s service type. ssdp:byebye requests MUST contain a USN
header set to the SSDP service’'s USN.

There is no response to a ssdp:byebye sent to the SSDP multicast
channel/port.

When a ssdp:byebye request is received all cached information
regarding that USN SHOULD be removed.

5.2.2.1. Example
NOTIFY * HTTP/1.1
Host: 239.255.255.250:reservedSSDPport

Goland et al. [Page 12]

ROKU EXH

. 1002

http://foo/bar

INTERNET-DRAFT SSDP/V1 October 28, 1999

NT: someunique:idscheme3
NTS: ssdp:byebye
USN: someunique:idscheme3

5.3. Design Rationale
5.3.1. Why are we using GENA NOTIFY requests?

We needed to use some notification format and GENA seemed as good as
any. Moving forward, GENA gives us a framework to do notification
subscriptions which will be necessary if SSDP services are to be

able to provide status updates across the wilds of the Internet

without depending on the largely non-existent Internet multicast
infrastructure.

5.3.2. Why is there no response to the ssdp:alive/ssdp:byebye
requests sent to the SSDP multicast channel/port?

What response would be sent? There isn't much of a point of having
the SSDP clients send response saying "we received your
notification” since there may be a lot of them.

5.3.3. Could NTS values other than ssdp:alive/ssdp:byebye be sent to
the SSDP multicast channel/port?

Yes.

5.3.4. Why do we include the NT header on ssdp:byebye requests?
Technically it isn't necessary since the only useful information is
the USN. But we want to stick with the GENA format that requires a
NT header. In truth the requirement of including the NT header is a
consequence of the next issue.

5.3.5. Shouldn’t the NT and NTS values be switched?
Yes, they should. Commands such as ssdp:alive and ssdp:byebye should
be NT values and the service type, where necessary, should be the
NTS. The current mix-up is a consequence of a previous design where
the NT header was used in a manner much like we use the USN today.
This really needs to change.

6. SSDP Auto-Shut-Off Algorithm

6.1. Problem Statement

A mechanism is needed to ensure that SSDP does not cause such a high
level of traffic that it overwhelms the network it is running on.

6.2. Proposed Solution

Goland et al. [Page 13]

ROKU EXH

. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

[Ed. Note: We have a proposed solution but it is still a bit rough,
so we will be publishing to the SSDP mailing list for further
discussion before including it in the draft.]

6.3. Design Rationale
6.3.1. Why do we need an auto-shut-off algorithm?

The general algorithm for figuring out how much bandwidth SSDP uses
over a fixed period of time based on the number of ssdp:discover
requests is :

DR = Total number of SSDP clients making ssdp:discover requests over
the time period in question.

RS = Total number of services that will respond to the ssdp:discover
requests over the time period in question.

AM = Average size of the ssdp:discover requests/responses.

TP = Time period in question.

((DR*3 + DR*9*RS)*AM)/TP

The 3 is the number of times the ssdp:discover request will be
repeated.

The 9 is the number of times the unicast responses to the
ssdp:discover requests will be sent out assuming the worst case in
which all 3 original requests are received.

So let's look at a real world worst-case scenario. Some companies,
in order to enable multicast based services such as voice or video
streaming to be easily configured set their local administrative
multicast scope to encompass their entire company. This means one
gets networks with 100,000 machines in a single administrative
multicast scope. Now imagine that there is a power outage and all
the machines are coming back up at the same time. Further imagine
that they all want to refresh their printer location caches so they

all send out ssdp:discover requests. Let us finally imagine that

there are roughly 5000 printers in this network. To simplify the

math we will assume that the ssdp:discover requests are evenly
distributed over the 30 seconds.

DR = 100,000 requesting clients
RS = 5000 services

AM =512 bytes

TP = 30 seconds

((200000*3+100000*9*5000)*512)/30 = 76805120000 bytes/s =
585976.5625 Megabits per second

This is what one would call an awful number.

Goland et al. [Page 14]

ROKU EXH

. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

In a more reasonably sized network SSDP is able to handle this worst
case scenario much better. For example, let’s look at a network with
1000 clients and 50 printers.

DR = 1000 requesting clients
RS = 50 services

AM =512 bytes

TP = 30 seconds

((1000*3+1000*9*50)*512)/30 = 7731200 bytes/s = 59 Mbps

Now this looks like an awful amount but remember that that this is

the total data rate needed for 30 seconds. This means that the total
amount of information SSDP needs to send out to survive a reboot is
59*30 = 1770 Mb. Therefore a 10 Mbps network, assuming an effective
data rate 5 Mbps under constant load that means it will take 1770/5

= 354 seconds = 6 minutes for the network to settle down.

That isn’t bad considering that this is an absolute worst case in a
network with 1000 clients and 50 services all of whom want to talk
to each other at the exact same instant.

In either case, there are obvious worst-case scenarios and we need
to avoid network storms, therefore we need a way for SSDP to de-
activate before it causes a network storms.

6.3.2. Why not just require everyone to support directories and thus
get around the scaling issue?

Many manufacturers stick every protocol they can think of in their
clients and services. So if your network administrator happened to
buy some clients and servers that supported SSDP but didn’t know
they supported SSDP then you can imagine the problems. Therefore
even if we required directory support there are still many cases
where SSDP clients and services may inadvertently end up in a
network without anyone knowing it and cause problems.

7. ssdp:all
7.1. Problem Statement

A mechanism is needed to enable a client to enumerate all the
services available on a particular SSDP multicast channel/port.

7.2. Proposed Solution
All SSDP services MUST respond to SEARCH requests over the SSDP
multicast channel/port with the ST value of ssdp:all by responding
as if the ST value had been their service type.
For brevity's sake a SEARCH request with a ST of ssdp:all will be

referred to as a ssdp:all request.

Goland et al. [Page 15]

ROKU EXH. 1002

INTERNET-DRAFT SSDP/V1 October 28, 1999

7.3. Design Rationale
7.3.1. Why would anyone want to enumerate all services?

This feature is mostly for network analysis tools. It also will

prove very useful in the feature when directories become SSDP aware.
They will be able to discover all services, record information about
them and make that information available outside the local
administrative multicast scope.

8. SSDP Reserved Multicast Channel
8.1. Problem Statement

SSDP needs a local administrative multicast channel that will be
guaranteed to only be used by SSDP compliant clients and services.

8.2. Proposed Solution

IANA has reserved the relative multicast address "5" for the
exclusive use of SSDP. In the local administrative scope used by
this version of SSDP the relative address translates to
239.255.255.250.

An application has been put in for a SSDP reserved port but IANA has
not yet responded.

8.3. Design Rationale

8.3.1. Why didn’'t SSDP just get a static local administrative scope
address rather than a relative address?

We got a relative address because we expect that SSDP may be used to
discover basic system services such as directories. In that case if

you can'’t find a directory in your local scope you may want to try a

wider multicast scope. This is exactly the sort of functionality

enabled by MALLOC (http://lwww.ietf.org/html.charters/malloc-
charter.html). MALLOC allows one to enumerate all the multicast

scopes that are supported on the network. The SSDP client can then

try progressively larger scopes to find the service they are seeing.
However this progressively wider discovery only works if SSDP uses a
relative address.

8.3.2. Why does SSDP need to use a port other than 807
There is a bug in the Berkley Sockets design that was inherited by
WinSock as well. The bug is as follows: One can not grab a

particular port on a particular multicast address without owning the
same port on the local unicast address.

Goland et al. [Page 16]

ROKU EXH

. 1002

http://www.ietf.org/html.charters/malloc-charter.html
http://www.ietf.org/html.charters/malloc-charter.html

INTERNET-DRAFT SSDP/V1 October 28, 1999

The result is that if we used port 80 on the SSDP multicast scope
then we would require that the SSDP software also grab port 80 for
the local machine. This would mean that SSDP could only be
implemented on machines which either didn’t have HTTP servers or
whose HTTP servers had been enhanced to support SSDP.

We felt this was a unnecessary restriction. Therefore we are
choosing to use a port other than 80 on the SSDP multicast channel.

9. HTTP Headers
9.1. USN Header
USN = "USN" ":" AbsoluteURI; defined in section 3.2.1 of [RFC2616]
9.2 . ST Header
ST ="ST" ":" AbsoluteURI
10. Security Considerations
TBD.
11. IANA Considerations
To ensure correct interoperation based on this specification, IANA
must reserve the URI namespace starting with "ssdp:" for use by this

specification, its revisions, and related SSDP specifications.

IANA has reserved the relative multicast address "5" for exclusive
use by SSDP. An application has been made for a registered port.

12. Appendix - Constants

MAX_UNIQUE - 50 - Maximum number of unique IP address/port pairs
that may be sent over UDP before tripping the auto-shut-off
algorithm.

MAX_COUNT - 30 seconds - When the "go quiet" process is begun a
message is sent out that is delayed a random interval between 0 to
MAX_COUNT seconds.

13. Acknowledgements
This document is the result of enormous effort by a large number of
people including but not limited to:
Alan Boshier, Babak Jahromi, Brandon Watson, Craig White, Dave
Thaler, Holly Knight, Michel Guittet, Mike Zintel, Munil Shah, Paul
Moore, Peter Ford, Pradeep Bahl, and Todd Fisher.

14. References

Goland et al. [Page 17]

ROKU EXH

. 1002

https://tools.ietf.org/pdf/rfc2616#section-3.2.1

INTERNET-DRAFT SSDP/V1 October 28, 1999

[HTTPUDP] Y. Y. Goland. Multicast and Unicast UDP HTTP Requests.
Internet Draft - a work in progress, draft-goland-http-udp-00.txt.

[GENA] J. Cohen, S. Aggarwal, Y. Y. Goland. General Event
Notification Architecture Base: Client to Arbiter. Internet Draft -
a work in progress, draft-cohen-gena-client-00.txt.

[MAN] H. Nielsen, P. Leach, S. Lawrence. Mandatory Extensions in
HTTP. Internet Draft - a work in progress, draft-frystyk-http-
extensions-03.txt.

[RFC2119] S. Bradner. Key words for use in RFCs to Indicate
Requirement Levels. RFC 2119, March 1997.

[RFC2365] D. Meyer. Administratively Scoped IP Multicast. RFC
2365, July 1998.

[RFC2396] T. Berners-Lee, R. Fielding and L. Masinter. Uniform
Resource Identifiers (URI): Generic Syntax. RFC 2396, August 1998.

[RFC2518] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D.
Jensen. HTTP Extensions for Distributed Authoring A» WEBDAV. RFC
2518, February 1999.
[RFC2616] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L.
Masinter, P. Leach and T. Berners-Lee. Hypertext Transfer Protocol -
HTTP/1.1. RFC 2616, November 1998.
[DASL] S. Reddy, D. Lowry, S. Reddy, R. Henderson, J. Davis, A.
Babich. DAV Searching & Locating. a work in progress - draft-ietf-
dasl-protocol-00.txt.
15. Author’s Addresses
Yaron Y. Goland, Ting Cai, Paul Leach, Ye Gu
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Email: {yarong, tingcai, paulle, yegu}@microsoft.com

Shivaun Albright

Hewlett-Packard Company

Roseville, CA

Email: SHIVAUN_ALBRIGHT@HP-Roseville-om2.om.hp.com

This document will expire in April 2000.

Goland et al. [Page 18]

ROKU EXH. 1002

https://tools.ietf.org/pdf/draft-goland-http-udp-00.txt
https://tools.ietf.org/pdf/draft-cohen-gena-client-00.txt
https://tools.ietf.org/pdf/draft-frystyk-http-extensions-03.txt
https://tools.ietf.org/pdf/draft-frystyk-http-extensions-03.txt
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2365
https://tools.ietf.org/pdf/rfc2365
https://tools.ietf.org/pdf/rfc2396
https://tools.ietf.org/pdf/rfc2518
https://tools.ietf.org/pdf/rfc2518
https://tools.ietf.org/pdf/rfc2616
https://tools.ietf.org/pdf/draft-ietf-dasl-protocol-00.txt
https://tools.ietf.org/pdf/draft-ietf-dasl-protocol-00.txt

APPENDIX R

ROKU EXH. 1002

Network Working Group E. Guttman

Request for Comments: 2608 C. Perkins
Updates: 2165 Sun Microsystems
Category: Standards Track J. Veizades
@Home Network
M. Day
Vinca Corporation
June 1999

Service Location Protocol, Version 2
Status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract

The Service Location Protocol provides a scalable framework for the
discovery and selection of network services. Using this protocol,
computers using the Internet need little or no static configuration

of network services for network based applications. This is
especially important as computers become more portable, and users
less tolerant or able to fulfill the demands of network system
administration.

Table of Contents

1. Introduction 3
1.1. Applicability Statement 3

2. Terminology 4
2.1. Notation Conventions 4

3. Protocol Overview 5

4. URLs used with Service Location 8
41.Service: URLS 9
4.2. Naming Authorities 10
43.URLEnNtries 10

5. Service Attributes 10

6. Required Features 12
6.1. Use of Ports, UDP, and Multicast 13

Guttman, et al. Standards Track [Page 1]

ROKU EXH

. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

6.2.Useof TCP 14
6.3. Retransmission of SLP messages 15
6.4. Strings in SLP messages 16
6.4.1. Scope ListsinSLP 16
7. Errors 17
8. Required SLP Messages 17
8.1. Service Request 19
8.2. ServiceReply 21
8.3. Service Registration 22
8.4. Service Acknowledgment 23
8.5. Directory Agent Advertisement. 24
8.6. Service Agent Advertisement. 25
9. Optional Features 26
9.1. Service Location Protocol Extensions 27
9.2. Authentication Blocks 28
9.2.1. SLP Message Authentication Rules 29
9.2.2. DSA with SHA-1 in Authentication Blocks ... 30
9.3. Incremental Service Registration 30
94.TaglLists 31
10. Optional SLP Messages 32
10.1. Service Type Request 32
10.2. Service Type Reply 32
10.3. Attribute Request 33
10.4. Attribute Reply 34
10.5. Attribute Request/Reply Examples 34
10.6. Service Deregistration 36
11. Scopes 37
11.1. Scope Rules 37
11.2. Administrative and User Selectable Scopes. 38
12. Directory Agents 38
12.1. Directory AgentRules 39
12.2. Directory Agent Discovery 39
12.2.1. Active DA Discovery 40
12.2.2. Passive DA Advertising 40
12.3. Reliable Unicastto DAsand SAs. 41
12.4. DA Scope Configuration 41
12.5. DAs and Authentication Blocks. 41
13. Protocol Timing Defaults 42
14. Optional Configuration 43
15. IANA Considerations 44
16. Internationalization Considerations 45
17. Security Considerations 46
A. Appendix: Changes to the Service Location Protocol from
vl to v2 48
B. Appendix: Service Discovery by Type: Minimal SLPv2 Features 48
C. Appendix: DAAdverts with arbitrary URLs 49
D. Appendix: SLP Protocol Extensions 50
D.1. Required Attribute Missing Option 50

Guttman, et al. Standards Track [Page 2]

ROKU EXH. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

E. Acknowledgments 50
F. References 51

G. Authors’ Addresses 53
H. Full Copyright Statement 54

1. Introduction

The Service Location Protocol (SLP) provides a flexible and scalable
framework for providing hosts with access to information about the
existence, location, and configuration of networked services.
Traditionally, users have had to find services by knowing the name of

a network host (a human readable text string) which is an alias for a
network address. SLP eliminates the need for a user to know the name
of a network host supporting a service. Rather, the user supplies

the desired type of service and a set of attributes which describe

the service. Based on that description, the Service Location

Protocol resolves the network address of the service for the user.

SLP provides a dynamic configuration mechanism for applications in
local area networks. Applications are modeled as clients that need
to find servers attached to any of the available networks within an
enterprise. For cases where there are many different clients and/or
services available, the protocol is adapted to make use of nearby
Directory Agents that offer a centralized repository for advertised
services.

This document updates SLPv1 [RFC 2165], correcting protocol errors,
adding some enhancements and removing some requirements. This

specification has two parts. The first describes the required

features of the protocol. The second describes the extended features
of the protocol which are optional, and allow greater scalability.

1.1. Applicability Statement

SLP is intended to function within networks under cooperative
administrative control. Such networks permit a policy to be
implemented regarding security, multicast routing and organization of
services and clients into groups which are not be feasible on the
scale of the Internet as a whole.

SLP has been designed to serve enterprise networks with shared
services, and it may not necessarily scale for wide-area service
discovery throughout the global Internet, or in networks where there
are hundreds of thousands of clients or tens of thousands of
services.

Guttman, et al. Standards Track [Page 3]

ROKU EXH. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

2. Terminology

User Agent (UA)
A process working on the user’s behalf to establish
contact with some service. The UA retrieves service
information from the Service Agents or Directory Agents.

Service Agent (SA) A process working on the behalf of one or more
services to advertise the services.

Directory Agent (DA) A process which collects service
advertisements. There can only be one DA present per
given host.

Service Type Each type of service has a unique Service Type
string.

Naming Authority The agency or group which catalogues given
Service Types and Attributes. The default Naming
Authority is IANA.

Scope A set of services, typically making up a logical
administrative group.

URL A Universal Resource Locator [8].
2.1. Notation Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [9].

Syntax Syntax for string based protocols follow the
conventions defined for ABNF [11].

Strings All strings are encoded using the UTF-8 [23]
transformation of the Unicode [6] character set and
are NOT null terminated when transmitted. Strings
are preceded by a two byte length field.

<string-list> A comma delimited list of strings with the
following syntax:

string-list = string / string *,” string-list

In format diagrams, any field ending with a \ indicates a variable
length field, given by a prior length field in the protocol.

Guttman, et al. Standards Track [Page 4]

ROKU EXH

. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

3. Protocol Overview

The Service Location Protocol supports a framework by which client
applications are modeled as 'User Agents’ and services are advertised
by 'Service Agents.” A third entity, called a 'Directory Agent’

provides scalability to the protocol.

The User Agent issues a 'Service Request’ (SrvRqst) on behalf of the
client application, specifying the characteristics of the service

which the client requires. The User Agent will receive a Service
Reply (SrvRply) specifying the location of all services in the

network which satisfy the request.

The Service Location Protocol framework allows the User Agent to
directly issue requests to Service Agents. In this case the request
is multicast. Service Agents receiving a request for a service which
they advertise unicast a reply containing the service’s location.

Fomommeee- + ----Multicast SrvRqst----> +--------------- +
| User Agent | | Service Agent |
e + <----Unicast SrvRply + +

In larger networks, one or more Directory Agents are used. The
Directory Agent functions as a cache. Service Agents send register
messages (SrvReg) containing all the services they advertise to
Directory Agents and receive acknowledgements in reply (SrvAck).
These advertisements must be refreshed with the Directory Agent or
they expire. User Agents unicast requests to Directory Agents
instead of Service Agents if any Directory Agents are known.

+ommeem + -Unicast SrvRqst-> +----------- + <-Unicast SrvReg- +-------- +
| User | | Directory | [Service |
| Agent | | Agent | | Agent |
oo + <-Unicast SrvRply- +----------- + -Unicast SrvAck-> +-------- +

User and Service Agents discover Directory Agents two ways. First,
they issue a multicast Service Request for the 'Directory Agent’
service when they start up. Second, the Directory Agent sends an
unsolicited advertisement infrequently, which the User and Service
Agents listen for. In either case the Agents receive a DA
Advertisement (DAAdvert).

Fommmm e + --Multicast SrvRqgst-> +----------- +

| Useror |<--Unicast DAAdvert-- | Directory |

| Service Agent | | Agent |

oo + <-Multicast DAAdvert- +----------- +
Guttman, et al. Standards Track [Page 5]

ROKU EXH. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

Services are grouped together using 'scopes’. These are strings
which identify services which are administratively identified. A
scope could indicate a location, administrative grouping, proximity
in a network topology or some other category. Service Agents and
Directory Agents are always assigned a scope string.

A User Agent is normally assigned a scope string (in which case the
User Agent will only be able to discover that particular grouping of
services). This allows a network administrator to 'provision’
services to users. Alternatively, the User Agent may be configured
with no scope at all. In that case, it will discover all available
scopes and allow the client application to issue requests for any
service available on the network.

Fommmee- + Multicast +----------- + Unicast +----------- +

| Service | <--SrvRqst--| User | --SrvRgst-> | Directory |

| Agent | | Agent | | Agent |

| Scope=X| Unicast | Scope=X,Y | Unicast | Scope=Y |
Fommmen + --SrvRply--> +----------- + <-SrvRply-- +----------- +

In the above illustration, the User Agent is configured with scopes X
and Y. If a service is sought in scope X, the request is multicast.

If it is sought in scope Y, the request is unicast to the DA.

Finally, if the request is to be made in both scopes, the request
must be both unicast and multicast.

Service Agents and User Agents may verify digital signatures provided
with DAAdverts. User Agents and Directory Agents may verify service
information registered by Service Agents. The keying material to use
to verify digital signatures is identified using a SLP Security

Parameter Index, or SLP SPI.

Every host configured to generate a digital signature includes the

SLP SPI used to verify it in the Authentication Block it transmits.

Every host which can verify a digital signature must be configured

with keying material and other parameters corresponding with the SLP
SPI such that it can perform verifying calculations.

SAs MUST accept multicast service requests and unicast service
requests. SAs MAY accept other requests (Attribute and Service Type
Requests). SAs MUST listen for multicast DA Advertisements.

The features described up to this point are required to implement. A
minimum implementation consists of a User Agent, Service Agent or
both.

There are several optional features in the protocol. Note that DAs
MUST support all these message types, but DA support is itself

Guttman, et al. Standards Track [Page 6]

ROKU EXH. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

optional to deploy on networks using SLP. UAs and SAs MAY support
these message types. These operations are primarily for interactive
use (browsing or selectively updating service registrations.) UAs

and SAs either support them or not depending on the requirements and
constraints of the environment where they will be used.

Service Type Request A request for all types of service on the
network. This allows generic service browsers
to be built.

Service Type Reply A reply to a Service Type Request.

Attribute Request A request for attributes of a given type of
service or attributes of a given service.

Attribute Reply A reply to an Attribute Request.

Service Deregister A request to deregister a service or some
attributes of a service.

Service Update A subsequent SrvRgst to an advertisement.
This allows individual dynamic attributes to
be updated.

SA Advertisement In the absence of Directory Agents, a User
agent may request Service Agents in order
to discover their scope configuration. The
User Agent may use these scopes in requests.

In the absence of Multicast support, Broadcast MAY be used. The
location of DAs may be staticly configured, discovered using SLP as
described above, or configured using DHCP. If a message is too large,
it may be unicast using TCP.

A SLPv2 implementation SHOULD support SLPv1 [22]. This support
includes:

1. SLPv2 DAs are deployed, phasing out SLPv1 DAs.

2. Unscoped SLPv1 requests are considered to be of DEFAULT scope.
SLPv1 UAs MUST be reconfigured to have a scope if possible.

3. There is no way for an SLPv2 DA to behave as an unscoped SLPv1
DA. SLPv1 SAs MUST be reconfigured to have a scope if possible.

4. SLPv2 DAs answer SLPv1 requests with SLPv1 replies and SLPv2
requests with SLPv2 replies.

Guttman, et al. Standards Track [Page 7]

ROKU EXH

. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

5. SLPv2 DAs use registrations from SLPv1 and SLPv2 in the same
way. That is, incoming requests from agents using either version
of the protocol will be matched against this common set of
registered services.

6. SLPV2 registrations which use Language Tags which are greater
than 2 characters long will be inaccessible to SLPv1 UAs.

7. SLPv2 DAs MUST return only service type strings in SrvTypeRply
messages which conform to SLPv1 service type string syntax, ie.
they MUST NOT return Service Type strings for abstract service

types.

8. SLPv1 SrvRgsts and AttrRqgsts by Service Type do not match Service
URLs with abstract service types. They only match Service URLs
with concrete service types.

SLPv1 UAs will not receive replies from SLPv2 SAs and SLPv2 UAs will
not receive replies from SLPv1 SAs. In order to interoperate UAs and
SAs of different versions require a SLPv2 DA to be present on the
network which supports both protocols.

The use of abstract service types in SLPv2 presents a backward
compatibility issue for SLPv1. Itis possible that a SLPv1 UA will
request a service type which is actually an abstract service type.
Based on the rules above, the SLPv1 UA will never receive an abstract
Service URL reply. For example, the service type 'service:x’ in a
SLPv1 AttrRgst will not return the attributes of 'service:x:y://orb’.

If the request was made with SLPv2, it would return the attributes of
this service.

4. URLs used with Service Location
A Service URL indicates the location of a service. This URL may be
of the service: scheme [13] (reviewed in section 4.1), or any other
URL scheme conforming to the URI standard [8], except that URLs
without address specifications SHOULD NOT be advertised by SLP. The
service type for an 'generic’ URL is its scheme name. For example,
the service type string for "http://www.srvloc.org" would be "http".

Reserved characters in URLs follow the rules in RFC 2396 [8].

Guttman, et al. Standards Track [Page 8]

ROKU EXH. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

4.1. Service: URLs

Service URL syntax and semantics are defined in [13]. Any network
service may be encoded in a Service URL.

This section provides an introduction to Service URLs and an example
showing a simple application of them, representing standard network
services.

A Service URL may be of the form:
"service:"<srvtype>":/["<addrspec>

The Service Type of this service: URL is defined to be the string up
to (but not including) the final ' before <addrspec>, the address
specification.

<addrspec> is a hostname (which should be used if possible) or dotted
decimal notation for a hostname, followed by an optional .’ and
port number.

A service: scheme URL may be formed with any standard protocol name
by concatenating "service:" and the reserved port [1] name. For
example, "service:tftp://myhost" would indicate a tftp service. A

tftp service on a nonstandard port could be
"service:tftp://bad.glad.org:8080".

Service Types SHOULD be defined by a "Service Template" [13], which
provides expected attributes, values and protocol behavior. An
abstract service type (also described in [13]) has the form

"service:<abstract-type>:<concrete-type>".

The service type string "service:<abstract-type>" matches all

services of that abstract type. If the concrete type is included

also, only these services match the request. For example: a SrvRqst
or AttrRgst which specifies "service:printer" as the Service Type

will match the URL service:printer:lpr://hostname and
service:printer:http://hostname. If the requests specified
"service:printer:http" they would match only the latter URL.

An optional substring MAY follow the last *." character in the
<srvtype> (or <abstract-type> in the case of an abstract service type
URL). This substring is the Naming Authority, as described in Section
9.6. Service types with different Naming Authorities are quite
distinct. In other words, service:x.one and service:x.two are

different service types, as are service:abstract.one:y and
service:abstract.two:y.

Guttman, et al. Standards Track [Page 9]

ROKU EXH. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

4.2. Naming Authorities

A Naming Authority MAY optionally be included as part of the Service
Type string. The Naming Authority of a service defines the meaning

of the Service Types and attributes registered with and provided by
Service Location. The Naming Authority itself is typically a string

which uniquely identifies an organization. IANA is the implied

Naming Authority when no string is appended. "IANA" itself MUST NOT
be included explicitly.

Naming Authorities may define Service Types which are experimental,
proprietary or for private use. Using a Naming Authority, one may
either simply ignore attributes upon registration or create a local-

use only set of attributes for one’s site. The procedure to use is

to create a 'unique’ Naming Authority string and then specify the
Standard Attribute Definitions as described above. This Naming
Authority will accompany registration and queries, as described in
Sections 8.1 and 8.3. Service Types SHOULD be registered with IANA
to allow for Internet-wide interoperability.

4.3. URL Entries

0 1 2 3
01234567890123456789012345678901
s e e L e s N I
| Reserved | Lifetime | URL Length |

e e s e e L T e e S R SR S
|[URL len, contd.| URL (variable length) \

B e R n ot S S S S S S
|# of URL auths | Auth. blocks (if any) \
s e L o e S

SLP stores URLs in protocol elements called URL Entries, which
associate a length, a lifetime, and possibly authentication

information along with the URL. URL Entries, defined as shown above,
are used in Service Replies and Service Registrations.

5. Service Attributes

A service advertisement is often accompanied by Service Attributes.
These attributes are used by UAs in Service Requests to select
appropriate services.

The allowable attributes which may be used are typically specified by
a Service Template [13] for a particular service type. Services

which are advertised according to a standard template MUST register
all service attributes which the standard template requires. URLs
with schemes other than "service:" MAY be registered with attributes.

Guttman, et al. Standards Track [Page 10]

ROKU EXH. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

Non-standard attribute names SHOULD begin with "x-", because no
standard attribute name will ever have those initial characters.

An attribute list is a string encoding of the attributes of a
service. The following ABNF [11] grammar defines attribute lists:

attr-list = attribute / attribute *,” attr-list

attribute = ‘(" attr-tag ‘=" attr-val-list ‘)’ / attr-tag
attr-val-list = attr-val / attr-val *,” attr-val-list

attr-tag = 1*safe-tag

attr-val = intval / strval / boolval / opaque

intval = [-]1*DIGIT

strval = 1*safe-val

boolval = "true" / “false”

opaque = "\FF" 1*escape-val

safe-val = ; Any character except reserved.
safe-tag = ; Any character except reserved, star and bad-tag.
reserved ='(C /) /1IN < =S CTL
escape-val = \' HEXDIG HEXDIG

bad-tag = CR/LF / HTAB /*_’

star = ¥

The <attr-list>, if present, MUST be scanned prior to evaluation for

all occurrences of the escape character '\'. Reserved characters

MUST be escaped (other characters MUST NOT be escaped). All escaped
characters must be restored to their value before attempting string
matching. For Opaque values, escaped characters are not converted -
they are interpreted as bytes.

Boolean Strings which have the form "true" or "false" can
only take one value and may only be compared with
'=", Booleans are case insensitive when compared.

Integer Strings which take the form [-] 1*<digit> and fall
in the range "-2147483648" to "2147483647" are
considered to be Integers. These are compared using
integer comparison.

String All other Strings are matched using strict lexical
ordering (see Section 6.4).

Opaque Opagque values are sequences of bytes. These are
distinguished from Strings since they begin with
the sequence "\FF". This, unescaped, is an illegal
UTF-8 encoding, indicating that what follows is a
sequence of bytes expressed in escape notation which
constitute the binary value. For example, a0’ byte
is encoded "\FF\00".

Guttman, et al. Standards Track [Page 11]

ROKU EXH. 1002

RFC 2608 Service Location Protocol, Version 2 June 1999

A string which contains escaped values other than from the reserved
set of characters is illegal. If such a string is included in an
<attr-list>, <tag-list> or search filter, the SA or DA which receives

it MUST return a PARSE_ERROR to the message.

A keyword has only an <attr-tag>, and no values. Attributes can have
one or multiple values. All values are expressed as strings.

When values have been advertised by a SA or are registered in a DA,
they can take on implicit typing rules for matching incoming
requests.

Stored values must be consistent, i.e., x=4,true,sue \f\00\0O0 is
disallowed. A DA or SA receiving such an <attr-list> MUST return an
INVALID_REGISTRATION error.

6. Required Features

This section defines the minimal implementation requirements for SAs
and UAs as well as their interaction with DAs. A DA is not required
for SLP to function, but if it is present, the UA and SA MUST

interact with it as defined below.

A minimal implementation may consist of either a UA or SA or both.

The only required features of a UA are that it can issue SrvRqsts
according to the rules below and interpret DAAdverts, SAAdverts and
SrvRply messages. The UA MUST issue requests to DAs as they are
discovered. An SA MUST reply to appropriate SrvRqgsts with SrvRply or
SAAdvert messages. The SA MUST also register with DAs as they are
discovered.

UAs perform discovery by issuing Service Request messages. SrvRqst
messages are issued, using UDP, following these prioritized rules:

1. A UA issues a request to a DA which it has been configured with
by DHCP.

2. A UA issues requests to DAs which it has been statically
configured with.

3. UA uses multicast/convergence SrvRgsts to discover DAs, then uses
that set of DAs. A UA that does not know of any DAs SHOULD retry
DA discovery, increasing the waiting interval between subsequent
attempts exponentially (doubling the wait interval each time.)

The recommended minimum waiting interval is CONFIG_DA_FIND
seconds.

Guttman, et al. Standards Track [Page 12]

ROKU EXH. 1002

APPENDIX S

ROKU EXH. 1002

The Most
Complete

Reference

" Special Edition Using Windows 95
will help you unlock the potential
of Windows 95."

Jeffrey Sloman
Contributing Editor

Windows Magazine
&)

Special Edition

USING
Windows 95

Written by

Ron Person Glenn Fincher

R. Michael O’Mara Francis Moss

Gerald Paul Honeycutt Jr. Paul E. Robichaux
Roger Jennings Doug Kilarski
Rob Tidrow ~ Jim Boyce

Ian Stokell ‘ Sue Plumley

Dick Cravens Alex Leavens
William S. Holderby Lisa A. Bucki
Michael Marchuk | Dave Plotkin

Gordon Meltzer Peter Kent

aue

ROKU EXH. 1002

Special Edition Using Windows 95
Copyright© 1995 by Que” Corporation.

All rights reserved. Printed in the United States of America. No part of this
book may be used or reproduced in any form or by any means, or stored in
a database or retrieval system, without prior written permission of the pub-
lisher except in the case of brief quotations embodied in critical articles and
reviews. Making copies of any part of this book for any purpose other than
your own personal use is a violation of United States copyright laws. For in-
formation, address Que Corporation, 201 W. 103rd Street, Indianapolis, IN,
46290. You may reach Que’s direct sales line by calling 1-800-428-5331.

Library of Congress Catalog No.: 95-70648
ISBN: 1-56529-921-3

This book is sold as is, without warranty of any kind, either express or
implied, respecting the contents of this book, including but not limited to
implied warranties for the book’s quality, performance, merchantability, or
fitness for any particular purpose. Neither Que Corporation nor its dealers or
distributors shall be liable to the purchaser or any other person or entity with
respect to any liability, loss, or damage caused or alleged to have been caused
directly or indirectly by this book.

97 96 95 6 5 4 3

Interpretation of the printing code: the rightmost double-digit number is the

year of the book’s printing; the rightmost single-digit number, the number of
the book's printing. For example, a printing code of 95-1 shows that the first

printing of the book occurred in 1995.

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Que cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Screen reproductions in this book were created using Collage Plus from Inner
Media, Inc., Hollis, NH.

Composed in Stone Serif and MCPdigital by Que Corporation.

ROKU EXH. 1002

Chapter 25

Working with Network
Printers

by William S. Holderby

In Chapter 6, “Controlling Printers,” you learned the basics of installing and
working with printers—or at least those attached directly to your computer.
Of course, not all printers are connected exclusively to your PC. In many
workplaces, a local area network has multiple printer connections. Although
Windows 95 makes network printers appear to operate as local printers, net-
work printing may seem more complex. Local printers usually remain at-
tached to the same port and are under your control. Network printers can

change location and are controlled by other users or a network administrator.

If problems arise when you are using a network printer, troubleshooting is
much easier if you understand some of the differences between local and
network printing.

This chapter takes printing a step further and discusses printing issues from a
network perspective. Specifically, you learn how to:

B Print to network printers

B Optimize print resources

Manage print files

B Solve common network printing problems

B Use custom Printer Drivers and utilities

ROKU EXH. 1002

z

772

Chapter 25—Working with Network Printers

Examining Windows 95's New
Network Printing Features

Windows 95 incorporates several new features and enhancements that mark-
edly improve network printing. These new features include the following:

@ Network Point and Print enables users to copy printer drivers automati-

cally from network print servers to their Jocal PC. This reduces the time
it takes to set up a new printer and eliminates the need to find and
copy vendor driver software. This feature also eliminates the chance of
configuring the wrong printer. You can access Network Point and Print
from network servers running Windows 95, Windows NT Advanced
Server, Windows NT Workstation, Windows for Workgroups 3.11, or
Novell NetWare.

Windows 95’s Network Neighborhood provides tools to configure print
resources quickly on Windows 95, Windows NT, and Novell servers.
You can use this feature to find, use, and manage print jobs on printers
interfacing any of these devices. Formerly, the user had to memorize
locations and complex network commands. Network Neighborhood
virtually eliminates this need through its new network user interface.

Compatibility with NetWare’s PSERVER enables you to access print jobs
from NetWare's print spooler.

Deferred printing provides you with the ability to save printouts until
you reattach your printer. Deferred printing automatically stores print
jobs after you detach your PC from the network, and automatically
restarts them after you reestablish the connection.

Printer Driver provides command resources to remotely stop, hold, can-
cel, or restart print jobs located on shared printers.

Understanding Network Printing

Before delving too deeply into the nuts and bolts of network printing, you
first must become familiar with the terminology you will see frequently in
this discussion:

m LAN Administrators provide a management function to the local area

network by assisting users and directing what resources are available on
the network.

ROKU EXH. 1002

Understanding Network Printing 773

W Systems policies are software controls that are created by LAN Adminis-
trators to define what users can and cannot do on their desktops and
the network. For example, you might use a system policy to restrict
access to certain network programs.

W A client is a workstation that uses the services of any network server that
can include server-based software systems, printers, and mass storage
devices.

B Print queues contain print jobs that are not immediately printed. A
queue holds the job until the printer is ready to print.

B Windows Redirector is the software module contained in the Windows
network architecture that identifies software references to network
devices and connects those devices to the workstation through the
network.

B Network resources are software and hardware features that are available \4
from servers and other workstations on the LAN. Resources such as
shared drivers and server-based programs are available for network
users.

W Printing resources are LAN resources that are dedicated to serving net-
work users for the purpose of printing. These include shared printers,
network printers, and print queues.

W Print servers service the printing needs of network clients.

b
(1]
=
=)
L=

Three network printer types are found on most networks:

® Printers attached to the network through a Microsoft Network compat-
ible server.

B Printers connected to a server running a compatible network operating
system other than Windows, such as Novell NetWare and Banyan
VINES.

m-Printers directly attached to a network through a special printer net-
work interface card (NIC).

Printing from Applications

Printing to network printers from within applications requires the same com-
mands and menu items that you use to print locally. Windows handles the
network communications and creates a Printer Driver for each attached

ROKU EXH. 1002

774 Chapter 25—Working with Network Printers

<« See “Options
for Your
Printer,” p. 187

<4 See “Drag-and-
Drop Printing
from the Desk-
top,” p. 178

network printer. As with local printers, you can access network printer con-
figuration information in the Printer Properties sheet. In this sheet, you can
change the network printer’s properties for default or specific printing tasks.

Caution

Remember that other users can change a network printer configuration. Before
printing, check all important print settings for this printer on your PC, including
paper orientation and resolution. Don’t assume that they are already set the way that
you want them. Printing mistakes on network printers take extra time to recover.

When applications create a print file, they send a print stream to the network
server through the Windows 95 Network Redirector. A print file contains
spooled printer data and commands that are being temporarily stored prior to
printing. The Network Redirector, which is part of Windows 95 network ar-
chitecture, determines whether the print stream destination is a local printer.
A print stream is the data that is being sent to a printer containing both
printable and unprintable characters. Unprintable characters are used to con-
trol the printer. It also uses Windows network drivers to locate the designated
printer.

Drag-and-Drop Printing

To perform drag-and-drop printing, you use the same procedute as you do for
local printing. Remember, however, that drag-and-drop printing sends the
print job to the system’s default printer. If the selected printer is not the de-
fault printer, Windows will ask you to make it the default printer prior to
printing the file. When initially connecting your PC to a network, this printer
might not be available. Be sure to log in to the network and verify the
printer’s network connection before setting it as the default printer (unless
you plan to use deferred printing with your default printer in which case
anything you print is saved by Windows until the printer becomes available).

Installing a Network Printer
Network printers are usually installed in one of two ways:

W The Add Printer Wizard from the Printers folder can be used for any
printer connected to the network. The installation of a network printer
doesn’t change the printer, it simply loads an appropriate printer driver
on your PC. Windows 95 uses that driver during printing.

ROKU EXH. 1002

Understanding Network Printing 775

W Point and Print installation from the desktop can be used for printers
attached to servers that are Microsoft Client compatible.

Using the Add Printer Wizard

Installing a network printer involves the same Add Printer Wizard as the local
printer installation described in Chapter 6, “Controlling Printers.” However,
there are some differences.

When you configure a local printer, the location of yodr cable to a specific < See “Connect-
printer port determines the port’s selection. The network printer, on the ing Windows
other hand, requires a network resource name. In the example shown in ;i:g:rffven
figure 25.1, an HP 1200 CPS print named HP1200CPS is located on the p. 673 *

AlphaNT server.

_ Fig. 25.1
Type the natwork path or the queue name of your printer, The Add Printer V

I you dorit know its name, click Browss to view evailable : ;
m”ﬁ‘mmm**“’“ e Wizard requires a

i B o A s network address
[\NalphaNTHF12000P5 for printer
T installation.
Da you prrt from MS-DDS-based programs? %
Yot =3
- =
cgock [Net> | caxel -
8 -
If you’re not sure of the correct address for the network printer, you can <« See “Setting Up
choose to browse the network. Browsing enables you to check which network a Windows 95
printers are currently available. Some servers require passwords to view what ;eir-to-iier
: ; etwork,
network resources they have available. If you desire access to a server, but do p. 617

not know the password, contact your LAN Administrator,

To configure a network printer, you need to know its make and model. You
canr get this information from your network administrator. Microsoft network
servers enable you to install printer drivers quickly.

ROKU EXH. 1002

776 Chapter 25—Working with Network Printers

To set up a network printer with the Add Printer Wizard, follow these steps:

1. Choose Start, Settings, Printers, then double-click on the Add Printer
folder.

3. From the first Add Printer Wizard screen, click the Next button. Win-
dows 95 then displays the next Wizard screen, which asks you to decide
if you are adding a Network or a Local Printer.

3. Choose the Network Printer option to connect your PC to a network
printer. Choose the Next button located at the bottom of the window.

4. Next, you must identify the network path to the printer (refer to fig.
25.1). Select the Browse button to view the Network Neighborhood.

5, The Network Neighborhood displays a list of all servers and worksta-
tions connected to your network. Find the appropriate printer and se-
lect it. Then choose the Next button.

The Wizard accesses the selected printer and determines whether its
server can download an appropriate printer driver. If a driver is avail-
able, the Wizard automatically loads the driver and sets a default con-
figuration for the printer. If a driver is not available, the Wizard asks
you to specify the printer’s make and model.

Tip 6. Select the manufacturer and printer model by scrolling the Wizard

Use the Add screen lists; then click Next. The screen now offers a default name for
Printer Wizard your printer. The name should adequately describe the printer for later
again if you have identification.

difficulty connect- .

ing to a printer 7. The Wizard asks whether you want this printer to be your default
using the Point printer; select Yes or No. Follow this decision by selecting the Next

and Print control.

procedure.

8. The final wizard screen provides the controls to print a test page on the
printer you just installed. You can print the test page by selecting Yes;
or select No to not print the test page. As a general rule, you should
always print a test page to verify the successful completion of the Add
a Printer Wizard.

g Click Finish.

Using Point and Print
Point and Print enables a workstation user to quickly connect to and use
a printer shared on another Windows 95 workstation, a Windows NT

ROKU EXH. 1002

Understanding Network Printing 777

Advanced Server, or a Novell NetWare server. When first connecting to the
shared printer, Windows 95 automatically copies and installs the correct
driver for the shared printer from the server.

1. Choose the Network Neighborhood icon on the Windows desktop.

2. Choose the Entire Network icon. Windows displays all of the servers
attached to your network.

3. Choose the Server that supports the printer you want to attach to your
workstation. If you don’t know which Server that is, ask the LAN Ad-
ministrator or select each server in sequence until you find the name of
the appropriate printer or print queue. Windows displays the server’s
screen showing its shared resources.

4, Drag a network printer icon from a server’s window and drop it on the
desktop. You receive a diagnostic message that says You cannot move or
copy this item to this location. Do you want to create a shortcut
to the item instead? Answer Yes. Windows creates a shortcut icon and
drops it on the desktop.

5. Drag a document from a local folder and drop it on the New Printer
folder icon. Windows displays an information screen such as that
shown in figure 25.2. If you select Yes, Windows automatically con-
nects to the printer and downloads the appropriate printer driver from
the network printer’s server. After loading and configuring the driver,
Windows 95 begins printing to the network printer.

Printere x| Fig. 25.2
= Belore you can use the prinier S\ALPHA_SERVER\Alpha_Co', If the printer
2 ruast be 38t up on your computer. Do you want Windows to sat up i :
the printer and then pAnt your documarnt? driver is not

loaded when you
use Point and
Print, Windows
lets you install the

Printing on a NetWare Network RIS A
To.use a NetWare print queue, you must be logged onto a NetWare server.

Windows 95 utilizes a PSERVER that can redirect print jobs from NetWare

print queues to printers connected to Windows 95 workstations. In addition

to the PSERVER capability, your PC must also use the Microsoft Client for

NetWare Networks. Windows 95 automatically adapts to NetWare's security

for printer and print queue access.

ROKU EXH. 1002

778

Chapter 25—Working with Network Printers

1N

The network administrator can control how NetWare shares printers. If the adminis-
trator uses a policy file to disable print sharing, the network cannot access the

printers. A policy file contains a set of commands that are used by your network
administrator to set rules for the operation and configuration of Windows on a net-
work. When entering a new network, check with your network administrator fora
sharing policy before attempting to configure shared printing. .

NetWare Print Servers

Windows 95 provides printer services for NetWare networks, including a 32-
bit PSERVER capability. PSERVER connects NetWare queues to printers shared
by Windows 95 PCs. A NetWare print queue contains all the jobs waiting
(queued) for a specific printer.

To connect your workstation to a Novell NetWare print server, follow these
steps:

1. Choose the Network Neighborhood icon on the desktop. Notice that all
servers (Microsoft and NetWare) appear in the Network Neighborhood
screen. This screen displays an icon for each network drive currently
attached to your system.

2. If you want to attach your workstation to a NetWare printer, choose the
appropriate server by double-clicking its icon. The server dialog box
opens and displays the shared directories, files, and print queues that
are attached to the selected server.

3. Select the appropriate print queue. Choose File, Print and then select
the Capture Printer Port control button.

4. The Capture Printer Port dialog box contains the names of currently
unattached LPT ports. Select the Reconnect at Logon check box if you
want to maintain this connection and have it attached when you re-
start Windows. Then click OK to attach this print queue to your PC.

Capturing the printer port attaches the NetWare print queue to the
specified port. It does not, however, attach the associated printer to the
desktop.

5. To attach the printer associated with that print queue, choose File,
Create Shortcut. Windows displays a message warning that you cannot

ROKU EXH. 1002

Understanding Network Printing 779

configure a shortcut printer icon in the Create Shortcut dialog box, but
that you can create the icon on the desktop. Click Yes to create the
icon.

6. Double-click the printer icon. Windows asks whether you want to set
up a printer. Choose Yes.

7. Windows then displays the Add Printer Wizard. Follow the Wizard to
finish installing an appropriate printer for the desktop.

You must know the type of printer attached to this print queue. This procedure is
different than installing a printer attached to a Microsoft print server.

After configuring the printer, you can print by using the Point and Print V
procedure on the desktop.

Microsoft Client for NetWare

Windows 95 Microsoft Client for NetWare Networks enables you to connect
to new or existing NetWare servers to send files and interact with server-
based software. With Microsoft Client for NetWare Networks, you can browse
and queue your print jobs using either the Windows 95 network user inter-
face or existing Novell NetWare utilities. The Microsoft Client for NetWare
interfaces work equally well with both NetWare 3.x and 4.x servers.

:
:
=
=
Q

To use Microsoft Client for NetWare Networks, follow these steps:

1. Choose File, Print.

2. Your application might ask you to choose a destination printer. Most
applications display a list of attached printers from which you can
choose. If so, choose an appropriate network printer. Then choose OK.

The Windows Redirector accepts the print stream and sends it to the
selected printer over the network. Information concerning the status of
the printing process automatically returns to you.

3. To monitor the status of your print job on a network printer, open the
printer’s folder and double-click the appropriate icon. The printer’s
local Printer Driver opens a status dialog box listing all print jobs in the
printer’s queue.

ROKU EXH. 1002

780 Chapter 25—Working with Network Printers

Point and Print for NetWare Print Queues

You can enable a Point and Print procedure to use a NetWare-compatible

client as a destination. To do so, use the Point and Print procedure discussed

earlier.
To print from the desktop to a network printer, follow these steps:

1. Open the folder that contains the document you want to print.

2. Select a document. Hold down the left mouse button and drag the se-

lected document to the network printer’s icon on your desktop. The
document now appears as an outline. '

. Release the outlined document icon over the printer’s icon. Windows

95 interprets the file type, starts the application associated with the file,
commands the application to print the document, redirects the print
job to the selected printer, and shuts down the application when the

print job finishes.

Before Windows can perform the desktop printing operation, you must associate the
document with an installed application. If the document is not associated with such
an application, Windows displays a message box informing you that it cannot per-
form the printing task.

Printing on a Microsoft Network

To share files and printers on Microsoft networks, you also can set user rights

remotely through the User Manager in a Windows NT Advanced Server.

To connect to a Microsoft print server, follow these steps:

1. Click the Network Neighborhood icon on the desktop. Notice that all

servers (Microsoft and NetWare) appear on the Network Neighborhood
window. This screen displays an icon for each network drive currently
attached to your system.

. To attach a printer through a Microsoft server, choose the appropriate

Microsoft server by double-clicking that server’s icon. The server dialog
box, named after the appropriate server, appears and displays the
shared directories, files, and printers attached to the Microsoft server.

ROKU EXH. 1002

Understanding Network Printing 781

3. Select the appropriate printer queue. Choose File, Print and then select
the capture printer port. The Capture Printer Port dialog box is dis-
played containing the name of a currently unattached LPT port.

4. In the Capture Printer Port dialog box, select the Reconnect at Logon
check box if you want to maintain this connection and have it attached
when you restart Windows. Then click the OK button to attach this
print queue to your PC.

Capturing the printer port attaches the printer to a specified port, but does
not attach the associated printer to the desktop.

5, To attach the printer associated with the selected print queue, you must
choose File, Create shortcut. Windows displays a diagnostics message VvV
warning that you cannot configure a shortcut printer icon in the Create
Shortcut dialog box, although Windows creates the shortcut on the
desktop. Click Yes to create the icon.

6. Double-click the printer’s shortcut icon. Windows asks whether you
want to set up a printer. Choose Yes. Windows then displays the Add
Printer Wizard.

7. Follow the Wizard to finish installing an appropriate printer for the
desktop. The Add Printer Wizard identifies which printer make and
model you are installing and completes the printer connection quickly.

After configuring the printer, you can print by using the Point and Print
procedure on the desktop.

Troubleshooting

| can see a network printer using Network Neighborhood, but | can't print to it.

Try the following:
B Check with your network administrator about your access rights to the printer.
m Verify that the printer is properly configured on your PC.
B Check with other users to determine whether they can access the printer.

m Try to print to another printer on the network to check your network
connectivity.

(continues)

ROKU EXH. 1002

782 Chapter 25—Working with Network Printers

< See “Options
for Your
Printer,” p. 187

(continued) %,
I can’t stop, cancel, or delete a print job in a network queue.
Try the following:

B Check whether you have proper authorization from the network administrator
to change the print settings. You might be authorized to change only your -
own print jobs, not others.

B [f the print queue is on a shared printer, reload the printer driver or reset the
printer properties. The system might not recognize that this printer is attached
to your PC.

The network printer doesn’t tell me that it is out of paper or toner.

Have the network administrator configure Winpopup to broadcast printer-problem
announcements. Winpopup is a utility that comes with Windows. This utility allows
the network and network users to send “popup” messages that identify events and
get the attention of other network users.

Optimizing Print Resources

Network printing involves many of the same facilities as local printing. Appli-
cations create print files that the Network Redirector streams to the destina-
tion network printer. When working with network resources, however, you
must consider several other issues to ensure that you're getting the most from
your system.

Network Printer Configuration and Management

The Printer Properties sheet contains information on each local and network
printer attached to your PC. Each printer’s properties are specific to its make,
model, and hardware configuration. '

You can make several changes to the properties to enhance your printing.
The print quality can be enhanced by specific printers, setting device options,
graphics, and the procedures for handling TrueType fonts. The following
general procedure explores some of these changes:

1. After attaching a network printer, open its Printer Properties sheet by
right-clicking the appropriate printer. From the pull-down menu that
appears, choose Properties and then click the General tab. The pages in
the Properties sheet are specific to your printer and display the options

ROKU EXH. 1002

Optimizing Print Resources 783

and selections that match the printet’s current hardware and print
driver configuration.

A Click the Device Options tab. Notice the options that the network
printer offers.

3. Change the Device Options settings to match your printer’s specifica-
tions. These options include such pertinent information as printer
memory size and page protection. (If you don't see these options, check
with your local area network [LAN] administrator.)

4, Click the Details tab. Check the spool settings to determine whether the
printer is set to print after the first or last page spools. Usually, waiting
until after the last page spools yields better results. Experiment with this
setting to gain a better understanding of your configuration.

5. Click the Graphics tab. Change the dithering settings to identify which Y
setting yields the best results for both speed and printout quality.

Troubleshooting

When | print to a printer on the network, my printout quality and settings are not
consistent.

Try the following:

B Before printing, check with the printer’s Properties sheet. Change the settings
if required.

"'z
i
=
Q

B Check with the system administrator for the printer settings, features, and
hardware configuration. The printer might not be capable of handling your
print job.

m Relate printout quality to changes in the property settings. Change your
printer’s properties and make test printouts to see how these changes affect
the printouts.

Network Printer Drivers

Windows uses printer drivers to deliver your print files through the network
to your printer. How well Windows performs this printing depends on how

well the drivers perform. If you use drivers that are several revisions old, you
might experience a slowdown. It is a good policy to check your printer driv-
ers and update as revisions become available.

ROKU EXH. 1002

784

Chapter 25—Working with Network Printers

1. In the Control Panel, choose the System icon. Then click the Device
Manager tab.

2. Verify that the network interface card driver is a virtual mode driver
with a VXD extension. The driver will be listed including its extension.
If a real-mode driver with a DRV extension is installed, then contact
your LAN administrator or printer manufacturer for an updated
revision.

3. Verify that the configured printer driver is a virtual mode driver. The
driver should also have a VxD extension. If a real-mode driver with a
DRV extension is installed, then contact your LAN administrator or
printer manufacturer for an updated revision.

4, Ask your LAN administrator whether your system is configured with the
latest driver version for your network printers. If the drivers are not the
most current revision, request the latest update from either your LAN
manager or the printer’'s manufacturer.

Managing Print Files and Sharing

After creating print files and sending them to a network printer, vou must
verify that the print jobs are finished, on hold, or need to be purged. You can
check the print job status on both local and remote printers by using the
Windows Printer Driver. Print job control is a complex task that involves user
security rights on remote printers.

Viewing a Network Print Queue
Although you can view queue information, you cannot change any print job

characteristics unless the LAN administrator has authorized you to do so. For
some systems, the network administrator is the only user who can control
all print jobs, while another user can control only his or her local shared-
printing resources. LAN administrator policies determine which users can
delete, pause, or purge documents from the queue. Usually, users can change
the status of their individual print jobs, but not those of other users.

To view the queue, simply double-click on the printer’s icon in the Printers
folder or on the desktop. Windows displays the Printer Driver and print
queue.

ROKU EXH. 1002

Managing Print Files and Sharing 7835

Shared Printing

Shared printing or peer-to-peer sharing provides other network workstations
access to your local printer. Shared printing access is useful for transferring
documents between workstations and for sharing expensive resources with

other users. It is also an excellent way to maximize the use of often expensive

printing hardware.
To share a printer, follow these steps:

1. Choose Start, Settings, Control Panel. In the Control Panel folder,

double-click the Network icon. The Network tabs will appear. These tabs

include Configuration, Identification, and Access Control.

2. On the Configuration page, select the Add button. The Select Network
Component Type dialog box appears.

3. Choose Service and then click the Add button.

4. Choose Microsoft from the Manufacturers list box.

5. If your primary network logon client is Microsoft Networks, choose File

and Printer Sharing for Microsoft Networks. If your primary network
logon client is NetWare, choose File and Printer Sharing for NetWare
Networks.

6. Choose OK to close the Select Network Service dialog box. For these
changes to take effect, you must restart the computer.

Enabling Shared Printing
After configuring the network setup by following the preceding steps, you
must enable the sharing feature as follows:

1. From the taskbar, choose Start, Settings, Control Panel. In the Control
Panel folder, double-click the Network icon.

2. In the Network dialog box, choose the File and Print Sharing button.

3. In the File and Print Sharing dialog box, select the I Want to Be Able to
Allow Others to Print to My Printer(s) check box (see fig. 25.3).

File and Print Shanng

™ 1 want to ba abie to give oihers access to my files.

¥ | wart to be able to allow othets to piinl to my printes)

T Ok]| Concel

Fig. 25.3

The File and Print
Sharing dialog box
contains check boxes
that enable you to
share files and
printers with other
network users.

ROKU EXH. 1002

786 Chapter 25—Working with Network Printers

4. Choose OK to close the dialog box, and again to close the Network
Control Panel. You must restart the computer for these changes to take
effect.

If the | Want to Be Able to Allow Others to Print to My Printer(s) check box is grayed .-
(disabled), your system does not support print sharing.

Troubleshooting

My shared printer is unavailable to other workstations on my network.
Try the following:

B In the Control Panel, double-click the Network icon. Choose the File and Print
Sharing button. In the File and Print Sharing dialog box, verify that the | Want
to Be Able to Allow Others to Print to My Printer(s) check box is selected.

Verify that all users are running a compatible protocol.
Verify that your PC shows up in the network browser on other connected PCs.

Verify that you can print successfully to your attached printer.

Use the Extended Printer Troubleshooting (EPTS) application available in your
Help file.

Disabling Shared Printing
After your workstation printer is shared, you might find that too many users
are creating an overload. To disable the share, follow this procedure:

1. From the taskbar, choose Start, Settings, Control Panel. In the Control
Panel folder, double-click the Network icon.

2. In the Network dialog box, choose the File and Print Sharing button.

3. Deselect the I Want to Be Able to Allow Others to Print to My Printer(s)
check box.

4. Choose OK to close the dialog box, and again to close the Network
Control Panel.

ROKU EXH. 1002

Managing Print Files and Sharing 787

Creating Shared-Printer Security

In Windows 95, creating shared-resource security is a multistep procedure. In
order to effectively share a resource, you must be able to control who accesses
that resource and, to some extent, what they do with it. If you share your

printer, you can impose some level of security. Securing your printer requires
several steps.

1. Choose the Passwords icon in the Control Panel folder. The Password &
Properties sheet appears. This Properties sheet has three tabs: Passwords, i k
Remote Administration, and User Profiles. (The Remote Administration
tab is not present if file and printer sharing are not installed.)

2. Choose the Enable Remote Administration check box on the Remote
Administration page.

3. Type a user-access password in the Passwords text box.

4. In the Confirm Passwords text box, retype the password. Record the v
password in your system workbook or manual.

5. Select OK.

Network users can now gain access to your system by using the password that
you have just created. To access your shared printer, however, users must
have the appropriate password information.

Deleting Connections to a Shared Printer

When you delete a shared connection between your workstation and a work-
station sharing its local printer, disabling sharing keeps your local printer
from being shared by the network.

&
i

1. From the taskbar, choose Start, Settings, Printer’s Folder. Windows
displays a list of all printers, local or network, attached to your
workstation.

2. Select the shared printer you want to delete.
37 Choose File, Delete.

4. Windows displays a dialog box warning that it will delete the selected
printer. Click Yes.

5. Windows next displays a dialog box asking whether you want to delete
this printer’s drivers. Click Yes to delete the drivers.

ROKU EXH. 1002

ndﬂfl {/(’//z“’”

USING
INDOWS 95

“ The secrets to mastering Windows 95!

' Que’s Special Edition Using Windows 95 is your
comprehensive reference to maximizing Windows
performance. From learning Windows nav1gat10n
skills to advanced data-sharing techniques and tips
on remote access, multimedia, OLE 2.0, and

networking, this book is your complete guide to
Windows 95.

Expert authors show you everything you need to
know to rule Windows 95. You'll learn everything
about the new user interface, file management,
built-in utilities, and networking. You'll find out
how to get online with The Microsoft Network
and ger connected to the Internet. And you'll learn
how to put Windows 95 multimedia and
numerous accessories to work for you.

Master the revolutionary new 32-bit

operating system with Special Edition
Using Windows 95 from Que!

User Level

1

New Casual Accomplished Expert
Category: Operating Systems M“ ““
Covers: Version Windows 95
®
aaue ;

29236

i) |

Exploring - Microsoft Exchange
flo Ecn Yew Tooh Hep

Master the new Windows 95 interface

Use Windows new tools including
Explorer and Network Neighborhood

Customize Windows 95 to fit your
needs

Quickly set up and use old and new
applications

Efficiently configure Windows 95 with
Wizards

Use Plug and Play to easily install new
hardware

Get the most from your laptop or
notebook PC

Build compound documents with
OLE 2.0

Connect to NetWare' and Microsoft’
networks

Get online with The Microsoft
Network and the Internet

Direct e-mail with Exchange

Maximize the power of Windows 95
multumedia

S39:99 USA S 533,99 CAN (157,

I

APPENDIX T

ROKU EXH. 1002

POGUE PRESS"

ROKU EXH.CPO,(ESEILLY(D

David Pogue

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

MAC OS 9: THE MISSING MANUAL ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

ROKU EXH. 1002

APPENDIX U

ROKU EXH. 1002

8/19/2021 Universal Plug and Play Device Architecture
The Wayback Machine - https://web.archive.org/web/20000816073450/http://upnp.org:80/UPnPDevice Archi...

Universal Plug and Play Device Architecture

Version 1.0, 08 Jun 2000 10:41 AM .

© 1999-2000 Microsoft Corporation. All rights reserved.

Table of contents

Introduction

0. Addressing
1. Discovery
2. Description
3. Control

4. Eventing

5. Presentation
Glossary

Introduction

What is Universal Plug and Play?

Universal Plug and Play (UPnP) is an architecture for pervasive peer-to-peer network connectivity of intelligent
appliances, wireless devices, and PCs of all form factors. It is designed to bring easy-to-use, flexible, standards-
based connectivity to ad-hoc or unmanaged networks whether in the home, in a small business, public spaces, or
attached to the Internet. Universal Plug and Play is a distributed, open networking architecture that leverages
TCP/IP and the Web technologies to enable seamless proximity networking in addition to control and data
transfer among networked devices in the home, office, and public spaces.

UPnP is more than just a simple extension of the plug and play peripheral model. It is designed to support zero-
configuration, "invisible" networking, and automatic discovery for a breadth of device categories from a wide
range of vendors. This means a device can dynamically join a network, obtain an IP address, convey its
capabilities, and learn about the presence and capabilities of other devices. DHCP and DNS servers are optional
and are used only if available on the network. Finally, a device can leave a network smoothly and automatically
without leaving any unwanted state behind.

UPnP leverages Internet components, including IP, TCP, UDP, HTTP, and XML. Like the Internet, contracts are
based on wire protocols that are declarative, expressed in XML, and communicated via HTTP. IP
internetworking is a strong choice for UPnP because of its proven ability to span different physical media, to
enable real world multiple-vendor interoperation, and to achieve synergy with the Internet and many home and
office intranets. UPnP has been explicitly designed to accommodate these environments. Further, via bridging,
UPnP accommodates media running non-IP protocols when cost, technology, or legacy prevents the media or
devices attached to it from running IP.

What is "universal" about UPnP? No device drivers; common protocols are used instead. UPnP networking is
media independent. UPnP devices can be implemented using any programming language, and on any operating
system. UPnP does not specify or constrain the design of an API for applications running on control points; OS
vendors may create APIs that suit their customer's needs. UPnP enables vendor control over device UI and
interaction using the browser as well as conventional application programmatic control.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 1/65

8/19/2021 Universal Plug and Play Device Architecture

UPnP Forum

The UPnP Forum is an industry initiative designed to enable easy and robust connectivity among stand-alone
devices and PCs from many different vendors. The UPnP Forum seeks to develop standards for describing
device protocols and XML-based device schemas for the purpose of enabling device-to-device interoperability
in a scalable networked environment. The UPnP Forum oversees a logo program for compliant devices.

The UPnP Forum has set up working committees in specific areas of domain expertise. These working
committees are charged with creating proposed device standards, building sample implementations, and building
appropriate test suites. This document indicates specific technical decisions that are the purview of UPnP Forum
working committees.

UPnP vendors can build compliant devices with confidence of interoperability and benefits of shared intellectual
property and the logo program. Separate from the logo program, vendors may also build devices that adhere to
the UPnP Device Architecture defined herein without a formal standards procedure. If vendors build non-
standard devices, they determine technical decisions that would otherwise be determined by a UPnP Forum
working committee.

In this document

The Universal Plug and Play (UPnP) Device Architecture (formerly known as the DCP Framework) contained
herein defines the protocols for communication between controllers, or control points, and devices. For
discovery, description, control, eventing, and presentation, UPnP uses the following protocol stack.

UPnP vendor [purple]
UPnP Forum [red]
UPnP Device Architecture [green]

SOAP
HTTPMU (multicast) |GENA ||SSDP HTTPU (unicast) |SSDP ||[blue] HTTP GENA
[black] [navy] [blue] [black] [blue] HTTP [black] [navy]
[black]
UDP [black] TCP [black]

IP [black]

At the highest layer, messages logically contain only UPnP vendor-specific information about their devices.
Moving down the stack, vendor content is supplemented by information defined by UPnP Forum working
committees. Messages from the layers above are hosted in UPnP-specific protocols, defined in this document. In
turn, the above messages are formatted using the Simple Service Discovery Protocol (SSDP), General Event
Notification Architecture (GENA), and Simple Object Access Protocol (SOAP). The above messages are
delivered via HTTP, either a multicast or unicast variety running over UDP, or the standard HTTP running over
TCP. Ultimately, all messages above are delivered over IP. The remaining sections of this document describe the
content and format for each of these protocol layers in detail. For reference, colors in [square brackets] above
indicate which protocol defines specific message components throughout this document.

The foundation for UPnP networking is IP addressing. Each device must have a Dynamic Host Configuration
Protocol (DHCP) client and search for a DHCP server when the device is first connected to the network. If a
DHCEP server is available, i.e., the network is managed, the device must use the IP addressed assigned to it. If no
DHCEP server is available, i.e., the network is unmanaged, the device must use Auto IP to get an address. In
brief, Auto IP defines how a device intelligently chooses an IP address from a set of reserved addresses and is
able to move easily between managed and unmanaged networks. If during the DHCP transaction, the device

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 2/65

8/19/2021 Universal Plug and Play Device Architecture

obtains a domain name, e.g., through a DNS server or via DNS forwarding, the device should use that name in
subsequent network operations; otherwise, the device should use its IP address.

Given an IP address, Step 1 in UPnP networking is discovery. When a device is added to the network, the UPnP
discovery protocol allows that device to advertise its services to control points on the network. Similarly, when a
control point is added to the network, the UPnP discovery protocol allows that control point to search for devices
of interest on the network. The fundamental exchange in both cases is a discovery message containing a few,
essential specifics about the device or one of its services, e.g., its type, identifier, and a pointer to more detailed
information. The UPnP discovery protocol is based on the Simple Service Discovery Protocol (SSDP). The
section on Discovery below explains how devices advertise, how control points search, and details of the format
of discovery messages.

Step 2 in UPnP networking is description. After a control point has discovered a device, the control point still
knows very little about the device. For the control point to learn more about the device and its capabilities, or to
interact with the device, the control point must retrieve the device's description from the URL provided by the
device in the discovery message. Devices may contain other, logical devices, as well as functional units, or
services. The UPnP description for a device is expressed in XML and includes vendor-specific, manufacturer
information like the model name and number, serial number, manufacturer name, URLs to vendor-specific Web
sites, etc. The description also includes a list of any embedded devices or services, as well as URLs for control,
eventing, and presentation. For each service, the description includes a list of the commands, or actions, the
service responds to, and parameters, or arguments, for each action; the description for a service also includes a
list of variables; these variables model the state of the service at run time, and are described in terms of their data
type, range, and event characteristics. The section on Description below explains how devices are described and
how those descriptions are retrieved by control points.

Step 3 in UPnP networking is control. After a control point has retrieved a description of the device, the control
point can send actions to a device's service. To do this, a control point sends a suitable control message to the
control URL for the service (provided in the device description). Control messages are also expressed in XML
using the Simple Object Access Protocol (SOAP). Like function calls, in response to the control message, the
service returns any action-specific values. The effects of the action, if any, are modeled by changes in the
variables that describe the run-time state of the service. The section on Control below explains the description of
actions, state variables, and the format of control messages.

Step 4 in UPnP networking is eventing. A UPnP description for a service includes a list of actions the service
responds to and a list of variables that model the state of the service at run time. The service publishes updates
when these variables change, and a control point may subscribe to receive this information. The service
publishes updates by sending event messages. Event messages contain the names of one of more state variables
and the current value of those variables. These messages are also expressed in XML and formatted using the
General Event Notification Architecture (GENA). A special initial event message is sent when a control point
first subscribes; this event message contains the names and values for all evented variables and allows the
subscriber to initialize its model of the state of the service. To support scenarios with multiple control points,
eventing is designed to keep all control points equally informed about the effects of any action. Therefore, all
subscribers are sent all event messages, subscribers receive event messages for all evented variables that have
changed, and event messages are sent no matter why the state variable changed (either in response to a requested
action or because the state the service is modeling changed). The section on Eventing below explains
subscription and the format of event messages.

Step 5 in UPnP networking is presentation. If a device has a URL for presentation, then the control point can
retrieve a page from this URL, load the page into a browser, and depending on the capabilities of the page, allow
a user to control the device and/or view device status. The degree to which each of these can be accomplished
depends on the specific capabilities of the presentation page and device. The section on Presentation below
explains the protocol for retrieving a presentation page.

Audience
ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 3/65

8/19/2021 Universal Plug and Play Device Architecture

The audience for this document includes UPnP device vendors, members of UPnP Forum working committees,
and anyone else who has a need to understanding the technical details of UPnP protocols.

This document assumes the reader is familiar with the HTTP, TCP, UDP, IP family of protocols; this document
makes no attempt to explain them. This document also assumes most readers will be new to XML, and while it
is not an XML tutorial, XML-related issues are addressed in detail given the centrality of XML to UPnP. This
document makes no assumptions about the reader's understanding of various programming or scripting
languages.

Required vs. recommended

In this document, features are described as Required, Recommended, or Optional as follows:

Required (or Must).
These basic features must be implemented to comply with UPnP.

Recommended (or Should).
These features add functionality supported by UPnP and should be implemented. Recommended features
take advantage of the capabilities UPnP, usually without imposing major cost increases. Notice that for
compliance testing, if a recommended feature is implemented, it must meet the specified requirements to
be in compliance with these guidelines. Some recommended features could become requirements in the
future.

Optional (or May).
These features are neither required nor recommended by UPnP, but if the feature is implemented, it must
meet the specified requirements to be in compliance with these guidelines. These features are not likely to
become requirements in the future.

Acronyms
Acronym Meaning Acronym Meaning
ARP Address Resolution Protocol SSDP Simple Service Discovery Protocol
DHCP Dynamic Host Configuration Protocol UPC Universal Product Code
DNS Domain Name System UPnP Universal Plug and Play
FXPP Flexible XML Processing Profile URI Uniform Resource Identifier
GENA General Event Notification Architecture URL Uniform Resource Locator
HTML HyperText Markup Language URN Uniform Resource Name
HTTPMU HTTP Multicast over UDP UUID Universally Unique Identifier
HTTPU HTTP (unicast) over UDP XML Extensible Markup Language

ICANN Internet Corporation for Assigned Names
and Numbers

SOAP Simple Object Access Protocol

References and resources

RFC 2616
HTTP: Hypertext Transfer Protocol 1.1. IETF request for comments.
<http://search.ietf.org/rfc/rfc2616.txt?number=2616>.

RFC 2279

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 4/65

https://web.archive.org/web/20000816073450/http://search.ietf.org/rfc/rfc2616.txt?number=2616

8/19/2021 Universal Plug and Play Device Architecture

UTF-8, a transformation format of ISO 10646 (character encoding). IETF request for comments.
<http://search.ietf.org/rfc/rfc2279.txt?number=2279>.

XML
Extensible Markup Language. W3C recommendation. <http:// www.w3.org/XML/>.

Each section in this document contains additional information about resources for specific topics.

Acknowledgments

The UPnP team at Microsoft gratefully acknowledges the help we received from the many technical reviewers
representing the UPnP Forum Steering Committee and the UPnP vendor community. These reviewers
contributed technical information, insights, and wisdom in developing this document.

We are also grateful to the software engineers, testers, and program managers at Microsoft who contributed
feedback and technical content to ensure that the information in this document is accurate and timely.

0. Addressing

Addressing is Step 0 of UPnP networking. Through addressing, devices get a network address. Addressing
enables discovery (Step 1) where control points find interesting device(s), description (Step 2) where where
control points learn about device capabilities, control (Step 3) where a control point sends commands to
device(s), eventing (Step 4) where control points listen to state changes in device(s), and presentation (Step 5)
where control points display a user interface for device(s).

The foundation for UPnP networking is IP addressing. Each device must have a Dynamic Host Configuration
Protocol (DHCP) client and search for a DHCP server when the device is first connected to the network. If a
DHCP server is available, i.e., the network is managed, the device must use the IP addressed assigned to it. If no
DHCEP server is available, i.e., the network is unmanaged; the device must use automatic IP addressing (Auto-
IP) to obtain an address.

Auto-IP defines how a device: (a) determines if DHCP is unavailable, and (b) intelligently chooses an IP address
from a set of link-local IP addresses. This method of address assignment enables a device to easily move
between managed and unmanaged networks.

The operations described in this section are further clarified in the reference documents listed below. Where
conflicts between this document and the reference documents exist, the reference document always takes
precedence.

0.1 Addressing: Determining whether to use Auto-IP

A device that supports AUTO-IP and is configured for dynamic address assignment begins by requesting an IP
address via DHCP by sending out a DHCPDISCOVER message. The amount of time this DHCP Client should
listen for DHCPOFFERS is implementation dependent. If a DHCPOFFER is received during this time, the
device must continue the process of dynamic address assignment. If no valid DHCPOFFERS are received, the
device may then auto-configure an IP address.

0.2 Addressing: Choosing an address

To auto-configure an IP address using Auto-IP, the device uses an implementation dependent algorithm for
choosing an address in the 169.254/16 range. The first and last 256 addresses in this range are reserved and must

not be used.
ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 5/65

https://web.archive.org/web/20000816073450/http://search.ietf.org/rfc/rfc2279.txt?number=2279
https://web.archive.org/web/20000816073450/http://www.w3.org/XML/

8/19/2021 Universal Plug and Play Device Architecture

The selected address must then be tested to determine if the address is already in use. If the address is in use by
another device, another address must be chosen and tested, up to an implementation dependent number of
retries. The address selection should be randomized to avoid collision when multiple devices are attempting to
allocate addresses.

0.3 Addressing: Testing the address

To test the chosen address, the device must use an Address Resolution Protocol (ARP) probe. An ARP probe is
an ARP request with the device hardware address used as the sender's hardware address and the sender's IP
address set to 0s. The device will then listen for responses to the ARP probe, or other ARP probes for the same
IP address. If either of these ARP packets is seen, the device must consider the address in use and try a new
address.

0.4 Addressing: Periodic checking for dynamic address availability

A device that has auto-configured an IP address must periodically check for the existence of a DHCP server.
This is accomplished by sending DHCPDISCOVER messages. How often this check is made is implementation
dependent, but checking every 5 minutes would maintain a balance between network bandwidth required and
connectivity maintenance. If a DHCP offer is received, the device must proceed with dynamic address
allocation. Once a DHCP assigned address is in place, the device may release the auto-configured address, but
may also choose to maintain this address for a period of time to maintain connectivity.

To switch over from one IP address to a new one, the device must cancel any outstanding advertisements and
reissue new ones. The section on Discovery explains advertisements and their cancellations.

0.5 Addressing: Device naming and DNS interaction

Once a device has a valid IP address for the network, it can be located and referenced on that network through
that address. There may be situations where the end user needs to locate and identify a device. In these
situations, a friendly name for the device is much easier for a human to use than an IP address.

Moreover, names are much more static than IP addresses. Clients referring a device by name don't require any
modification when IP address of a device changes. Mapping of the device's DNS name to its IP address could be
entered into DNS database manually or dynamically according to RFC 2136. While computers and devices
supporting dynamic DNS updates can register their DNS records directly in DNS, it is also possible to configure
a DHCP server to register DNS records on behalf of these DHCP clients.

0.6 Addressing: Name to IP address resolution

A computer that needs to contact a device identified by a DNS name needs to discover its IP address. The
computer submits a DNS query according to RFC1034 and 1035 to the pre-configured DNS server(s) and
receives a response from a DNS server containing the IP address of the target device. A computer can be
statically pre-configured with the list of DNS servers. Alternatively a computer could be configured with the list
of DNS server through DHCP, or after the address assignment through a DHCPINFORM message.

0.7 Addressing references

Auto-IP
Automatically Choosing an IP Address in an Ad-Hoc IPv4 Network. IETF draft.
<http://search.ietf.org/internet-drafts/draft-ietf-dhc-ipv4-autoconfig-05.txt>.
RFC1034
ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 6/65

https://web.archive.org/web/20000816073450/http://search.ietf.org/internet-drafts/draft-ietf-dhc-ipv4-autoconfig-05.txt

8/19/2021 Universal Plug and Play Device Architecture

Domain Names - Concepts and Facilities. IETF request for comments.
<http://search.ietf.org/rfc/rfc1034.txt?number=1034>.

RFC1035
Domain Names - Implementation and Specification. IETF request for comments.
<http://search.ietf.org/rfc/rfc1035.txt?number=1035>.

RFC 2131
Dynamic Host Configuration Protocol. IETF request for comments. <http://search.ietf.org/rfc/rfc2131.txt?
number=2131>.

RFC 2136
Dynamic Updates in the Domain Name System. IETF request for comments.
<http://search.ietf.org/rfc/rfc2136.txt?number=2136>.

Dynamic DNS Updates by DHCP Clients and Servers
Interaction between DHCP and DNS. IETF Draft. <http://search.ietf.org/internet-drafts/draft-ietf-dhc-
dhep-dns-12.txt>.

1. Discovery

Discovery is Step 1 in UPnP networking. Discovery comes after addressing (Step () where devices get a network
address. Through discovery, control points find interesting device(s). Discovery enables description (Step 2)
where control points learn about device capabilities, control (Step 3) where a control point sends commands to
device(s), eventing (Step 4) where control points listen to state changes in device(s), and presentation (Step 5)
where control points display a user interface for device(s).

Discovery is the first step in UPnP networking. When a device is added to the network, the UPnP discovery
protocol allows that device to advertise its services to control points on the network. Similarly, when a control
point is added to the network, the UPnP discovery protocol allows that control point to search for devices of
interest on the network. The fundamental exchange in both cases is a discovery message containing a few,
essential specifics about the device or one of its services, e.g., its type, identifier, and a pointer to more detailed
information.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 7/65

https://web.archive.org/web/20000816073450/http://search.ietf.org/rfc/rfc1034.txt?number=1034
https://web.archive.org/web/20000816073450/http://search.ietf.org/rfc/rfc1035.txt?number=1035
https://web.archive.org/web/20000816073450/http://search.ietf.org/rfc/rfc2131.txt?number=2131
https://web.archive.org/web/20000816073450/http://search.ietf.org/rfc/rfc2136.txt?number=2136
https://web.archive.org/web/20000816073450/http://search.ietf.org/internet-drafts/draft-ietf-dhc-dhcp-dns-12.txt

8/19/2021 Universal Plug and Play Device Architecture

L

When a new device is added to the network, it multicasts a number of discovery messages advertising its
embedded devices and services. Any interested control point can listen to the standard multicast address for
notifications that new capabilities are available.

Similarly, when a new control point is added to the network, it multicasts a discovery message searching for
interesting devices, services, or both. All devices must listen to the standard multicast address for these messages
and must respond if any of their embedded devices or services match the search criteria in the discovery
message.

To reiterate, a control point may learn of a device of interest because that device sent discovery messages
advertising itself or because the device responded to a discovery message searching for devices. In either case, if
a control point is interested in a device and wants to learn more about it, the control point must use the
information in the discovery message to send a description query message. The section on Description explains
description messages in detail.

When a device is removed from the network, it should multicast a number of discovery messages revoking it's
earlier announcements, effectively declaring that it's embedded devices and services will not be available.

To limit network congestion, the time-to-live (TTL) of each IP packet for each multicast message must default to
4 and should be configurable.

Discovery plays an important role in the interoperability of devices and control points using different versions of
UPnP networking. The UPnP Device Architecture (defined herein) is versioned with both a major and a minor
version, usually written as major.minor, where both major and minor are integers. Advances in minor versions
must be a compatible superset of earlier minor versions of the same major VersionRAdvances in ma’l'or version

OKU EXH.

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 8/65

8/19/2021 Universal Plug and Play Device Architecture

are not required to be supersets of earlier versions and are not guaranteed to be backward compatible. Version
information is communicated in discovery and description messages. In the former, each discovery message
includes the version of UPnP networking that the device supports. As a backup, the latter also includes the same
information. This section explains the format of version information in discovery messages and specific
requirements on discovery messages to maintain compatibility with advances in minor versions.

The standard multicast address, as well as the mechanisms for advertising, searching, and revoking, are defined
by the Simple Service Discovery Protocol (SSDP). The remainder of this section explains SSDP in detail,
enumerating how devices advertise and revoke their advertisements as well as how control points search and
devices respond.

1.1 Discovery: Advertisement

When a device is added to the network, the UPnP discovery protocol allows that device to advertise its services
to control points. It does this by multicasting discovery messages to a standard address and port. Control points
listen to this port to detect when new capabilities are available on the network. To advertise the full extent of its
capabilities, a device multicasts a number of discovery messages corresponding to each of its embedded devices
and services. Each message contains information specific to the embedded device (or service) as well as
information about its enclosing device. Messages should include duration until the advertisements expire; if the
device remains available, the advertisements should be re-sent with (with new duration). If the device becomes
unavailable, the device should explicitly cancel its advertisements, but if the device is unable to do this, the
advertisements will expire on their own.

1.1.1 Discovery: Advertisement protocols and standards

To send (and receive) advertisements, devices (and control points) use the following subset of the overall UPnP
protocol stack. (The overall UPnP protocol stack is listed at the beginning of this document.)

UPnP vendor [purple]
UPnP Forum [red]
UPnP Device Architecture [green]

HTTPMU (multicast) [black] |GENA [navy]||SSDP [blue]

HTTPMU (multicast) [black]
UDP [black]
IP [black]

At the highest layer, discovery messages contain vendor-specific information, e.g., URL for the device
description and device identifier. Moving down the stack, vendor content is supplemented by information from a
UPnP Forum working committee, e.g., device type. Messages from the layers above are hosted in UPnP-specific
protocols, defined in this document. In turn, the above messages are delivered via a multicast variant of HTTP
that has been extended using General Event Notification Architecture (GENA) methods and headers and Simple
Service Discovery Protocol (SSDP) headers. The HTTP messages are delivered via UDP over IP. For reference,
colors in [square brackets] above indicate which protocol defines specific headers and values in discovery
messages listed below.

1.1.2 Discovery: Advertisement: Device available -- NOTIFY with ssdp:alive

When a device is added to the network, it multicasts discovery messages to advertise its root device, to advertise
any embedded devices, and to advertise its services. Each discovery message contains four major components:

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 9/65

8/19/2021 Universal Plug and Play Device Architecture

1. a potential search target (e.g., device type), sent in an NT header,

2. a composite identifier for the advertisement, sent in a USN header,

3. a URL for more information about the device (or enclosing device in the case of a service), sent in a
LOCATION header, and

4. a duration for which the advertisement is valid, sent in a CACHE-CONTROL header.

To advertise its capabilities, a device multicasts a number of discovery messages. Specifically, a root device
must multicast:

e Three discovery messages for the root device.
NT USN *

root device UUID ** root device UUID

1
2|device type : device version |root device UUID and :: and device type : device version
3

upnp:rootdevice root device UUID and :: and upnp:rootdevice

e Two discovery messages for each embedded device.
NT USN "
embedded device UUID ** |embedded device UUID

—_

2|device type : device version |embedded device UUID and :: and device type : device version

e Once for each service.
NT USN *

service type : service version |enclosing device UUID and :: and service type : service version

—

* Note that the prefix of the USN header (before the double colon) must match the value of the UDN element in
the device description. (The section on Description explains the UDN element.)

** Note that the value of this NT header must match the value of the UDN element in the device description.

If a root device has d embedded devices and s embedded services but only & distinct service types, this works out
to 3+2d+k requests. This advertises the full extend of the device's capabilities to interested control points. These
messages must be sent out as a series with roughly comparable expiration times; order is unimportant, but
refreshing or canceling individual messages is prohibited.

Choosing an appropriate duration for advertisements is a balance between minimizing network traffic and
maximizing freshness of device status. Relatively short durations close to the minimum of 1800 seconds will
ensure that control points have current device status at the expense of additional network traffic; longer
durations, say on the order of a day, compromise freshness of device status but can significantly reduce network
traffic. Generally, device vendors should choose a value that corresponds to expected device usage: short
durations for devices that are expected to be part of the network for short periods of time, and significantly
longer durations for devices expected to be long-term members of the network.

Due to the unreliable nature of UDP, devices should send each of the above discovery messages more than once.
As a fallback, to guard against the possibility that a control point might not receive an advertisement for a device
or service, the device should re-send its advertisements periodically (cf. CACHE-CONTROL below). Note that
UDP packets are also bounded in length (perhaps as small as 512 Bytes in some implementations) and that there
is no guarantee that the above 3+2d+k messages will arrive in a particular order.

When a device is added to the network, it must send a multicast request with method NOTIFY and ssdp:alive in
the NTS header in the following format. Values in ifalics are placeholders for actual values.

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 10/65

8/19/2021 Universal Plug and Play Device Architecture

CACHE-CONTROL: max-age = seconds until advertisement expires
LOCATION: URL for UPnP description for root device

NT: search target

NTS: ssdp:alive

SERVER: 0S/version UPnP/1.0 product/version

USN: advertisement UUID

(No body for request with method NOTIFY, but note that the message must have a blank line following the last
HTTP header.)

The TTL for the IP packet must default to 4 and should be configurable.

Listed below are details for the request line and headers appearing in the listing above. All header values are
case sensitive except where noted.

Request line

NOTIFY

Method defined by GENA for sending notifications and events.
*

Request applies generally and not to a specific resource. Must be *.
HTTP/1.1

HTTP version.

Headers

HOST
Required. Multicast channel and port reserved for SSDP by Internet Assigned Numbers Authority
(IANA). Must be 239.255.255.250:1900.

CACHE-CONTROL
Required. Must have max-age directive that specifies number of seconds the advertisement is valid. After
this duration, control points should assume the device (or service) is no longer available. Should be > 1800
seconds (30 minutes). Specified by UPnP vendor. Integer.

LOCATION
Required. Contains a URL to the UPnP description of the root device. In some unmanaged networks, host
of this URL may contain an IP address (versus a domain name). Specified by UPnP vendor. Single URL.

NT
Required header defined by GENA. Notification Type. Must be one of the following. (cf. table above.)
Single URI.

upnp:rootdevice
Sent once for root device.
uuid:device-UUID
Sent once for each device, root or embedded. Device UUID specified by UPnP vendor.
urn:schemas-upnp-org:device:deviceType:v
Sent once for each device, root or embedded. Device type and version defined by UPnP Forum
working committee.
urn:schemas-upnp-org:service:service Type:v
Sent once for each service. Service type and version defined by UPnP Forum working committee.

NTS
Required header defined by GENA. Notification Sub Type. Must be ssdp:alive. Single URI.
SERVER

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 11/65

8/19/2021 Universal Plug and Play Device Architecture

Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version.
Specified by UPnP vendor. String.

USN
Required header defined by SSDP. Unique Service Name. Must be one of the following. (cf. table above.)
The prefix (before the double colon) must match the value of the UDN element in the device description.
(The section on Description explains the UDN element.) Single URI.

uuid:device-UUID::upnp:rootdevice
Sent once for root device. Device UUID specified by UPnP vendor.
uuid:device-UUID
Sent once for every device, root or embedded. Device UUID specified by UPnP vendor.
uuid:device-UUID::urn:schemas-upnp-org:device:deviceType:v
Sent once for every device, root or embedded. Device UUID specified by UPnP vendor. Device
type and version defined by UPnP Forum working committee.
uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:v
Sent once for every service. Device UUID specified by UPnP vendor. Service type and version
defined by UPnP Forum working committee.

(No response for a request with method NOTIFY.)

1.1.3 Discovery: Advertisement: Device unavailable -- NOTIFY with ssdp:byebye

When a device and its services are going to be removed from the network, the device should multicast a
ssdp:byebye message corresponding to each of the ssdp:alive messages it multicasted that have not already
expired. If the device is removed abruptly from the network, it might not be possible to multicast a message. As
a fallback, discovery messages must include an expiration value in a CACHE-CONTROL header (as explained
above); if not re-advertised, the discovery message eventually expires on its own and must be removed from any
control point cache.

(Note: when a control point is about to be removed from the network, no discovery-related action is required.)

When a device is about to be removed from the network, it should explicitly revoke its discovery messages by
sending one multicast request for each ssdp:alive message it sent. Each multicast request must have method
NOTIFY and ssdp:byebye in the NTS header in the following format. Values in italics are placeholders for
actual values.

NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900
NT: search target

NTS: ssdp:byebye

USN: advertisement UUID

(No body for request with method NOTIFY, but note that the message must have a blank line following the last
HTTP header.)

The TTL for the IP packet must default to 4 and should be configurable.

Listed below are details for the request line and headers appearing in the listing above. All header values are
case sensitive except where noted.

Request line

NOTIFY
Method defined by GENA for sending notifications and events.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 12/65

8/19/2021 Universal Plug and Play Device Architecture
*

Request applies generally and not to a specific resource. Must be *.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Multicast channel and port reserved for SSDP by Internet Assigned Numbers Authority
(IANA). Must be 239.255.255.250:1900.
NT
Required header defined by GENA. Notification Type. (See list of required values for NT header in
NOTIFY with ssdp:alive above.) Single URI.
NTS
Required header defined by GENA. Notification Sub Type. Must be ssdp:byebye. Single URI.
USN
Required header defined by SSDP. Unique Service Name. (See list of required values for USN header in
NOTIFY with ssdp:alive above.) Single URI.

(No response for a request with method NOTIFY.)

Due to the unreliable nature of UDP, devices should send each of the above messages more than once. As a
fallback, if a control point fails to receive notification that a device or services is unavailable, the original
discovery message will eventually expire yielding the same effect.

1.2 Discovery: Search

When a control point is added to the network, the UPnP discovery protocol allows that control point to search
for devices of interest on the network. It does this by multicasting a search message with a pattern, or target,
equal to a type or identifier for a device or service. Responses from devices contain discovery messages
essentially identical to those advertised by newly connected devices; the former are unicast while the latter are
multicast.

1.2.1 Discovery: Search protocols and standards

To search for devices (and be discovered by control points), control points (and devices) use the following subset
of the overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning of this
document.)

UPnP vendor [purple]
UPnP Forum [red]
UPnP Device Architecture [green]

HTTPU (unicast) [black] [SSDP [blue]|| HTTPMU (multicast) [black] |[SSDP [blue]

UDP [black]
IP [black]

At the highest layer, search messages contain vendor-specific information, e.g., the control point, device, and
service identifiers. Moving down the stack, vendor content is supplemented by information from a UPnP Forum
working committee, e.g., device or service types. Messages from the layers above are hosted in UPnP-specific
protocols, defined in this document. In turn, search requests are delivered via a multicast variant of HTTP that

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 13/65

8/19/2021 Universal Plug and Play Device Architecture

has been extended using Simple Service Discovery Protocol (SSDP) methods headers. Search responses are
delivered via a unicast variant of HTTP that has also been extended with SSDP. (GENA is not involved when
control points search for devices.) Both kinds of HTTP messages are delivered via UDP over IP. For reference,
colors in [square brackets] above indicate which protocol defines specific headers and values in discovery
messages listed below.

1.2.2 Discovery: Search: Request with M-SEARCH

When a control point is added to the network, it should send a multicast request with method M-SEARCH in the
following format. Values in italics are placeholders for actual values.

M-SEARCH * HTTP/1.1

HOST: 239.255.255.250:1900
MAN: "ssdp:discover"

MX: seconds to delay response
ST: search target

(No body for request with method M-SEARCH, but note that the message must have a blank line following the
last HTTP header.)

The TTL for the IP packet must default to 4 and should be configurable.

Listed below are details for the request line and headers appearing in the listing above. All header values are
case sensitive except where noted.

Request line

M-SEARCH
Method defined by SSDP for search requests.

%

Request applies generally and not to a specific resource. Must be *.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Multicast channel and port reserved for SSDP by Internet Assigned Numbers Authority
(IANA). Must be 239.255.255.250:1900.

MAN
Required. Unlike the NTS and ST headers, the value of the MAN header is enclosed in double quotes.
Must be "ssdp:discover".

MX
Required. Maximum wait. Device responses should be delayed a random duration between 0 and this
many seconds to balance load for the control point when it processes responses. This value should be
increased if a large number of devices are expected to respond or if network latencies are expected to be
significant. Specified by UPnP vendor. Integer.

ST

Required header defined by SSDP. Search Target. Must be one of the following. (cf. NT header in
NOTIFY with ssdp:alive above.) Single URI.

ssdp:all
Search for all devices and services.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 14/65

8/19/2021 Universal Plug and Play Device Architecture

upnp:rootdevice
Search for root devices only.
uuid:device-UUID
Search for a particular device. Device UUID specified by UPnP vendor.
urn:schemas-upnp-org:device:deviceType:v
Search for any device of this type. Device type and version defined by UPnP Forum working
committee.
urn:schemas-upnp-org:service:service Type:v
Search for any service of this type. Service type and version defined by UPnP Forum working
committee.

Due to the unreliable nature of UDP, control points should send each M-SEARCH message more than once. As
a fallback, to guard against the possibility that a device might not receive the M-SEARCH message from a
control point, a device should re-send its advertisements periodically (cf. CACHE-CONTROL header in
NOTIFY with ssdp:alive above).

1.2.3 Discovery: Search: Response

To be found, a device must send a response to the source IP address and port that sent the request to the
multicast channel.

Responses to M-SEARCH are intentionally parallel to advertisements, and as such, follow the same pattern as
listed for NOTIFY with ssdp:alive (above) except that the NT header there is an ST header here. The response
must be sent in the following format. Values in italics are placeholders for actual values.

HTTP/1.1 200 OK

CACHE-CONTROL: max-age = seconds until advertisement expires
DATE: when response was generated

EXT:

LOCATION: URL for UPnP description for root device

SERVER: 0S/version UPnP/1.0 product/version

ST: search target

USN: advertisement UUID

(No body for a response to a request with method M-SEARCH, but note that the message must have a blank line
following the last HTTP header.)

(No need to limit TTL to 4 for the IP packet in response to a search request.)

Listed below are details for the headers appearing in the listing above. All header values are case sensitive
except where noted.

Headers

CACHE-CONTROL
Required. Must have max-age directive that specifies number of seconds the advertisement is valid. After
this duration, control points should assume the device (or service) is no longer available. Should be > 1800
seconds (30 minutes). Specified by UPnP vendor. Integer.

DATE
Recommended. When response was generated. RFC 1123 date.

EXT
Required. Confirms that the MAN header was understood. (Header only; no value.)

LOCATION

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 15/65

8/19/2021 Universal Plug and Play Device Architecture

Required. Contains a URL to the UPnP description of the root device. In some unmanaged networks, host

of this URL may contain an IP address (versus a domain name). Specified by UPnP vendor. Single URL.
SERVER

Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version.

Specified by UPnP vendor. String.

ST
Required header defined by SSDP. Search Target. Single URL. If ST header in request was,
ssdp:all
Respond 3+2d+k times for a root device with d embedded devices and s embedded services but only
k distinct service types. Value for ST header must be the same as for the NT header in NOTIFY
messages with ssdp:alive. (See above.) Single URI.
upnp:rootdevice
Respond once for root device. Must be upnp:rootdevice. Single URI.
uuid:device-UUID
Respond once for each device, root or embedded. Must be uuid:device-UUID. Device UUID
specified by UPnP vendor. Single URI.
urn:schemas-upnp-org:device:deviceType:v
Respond once for each device, root or embedded. Must be urn:schemas-upnp-
org:device:deviceType:v. Device type and version defined by UPnP Forum working committee.
urn:schemas-upnp-org:service:service Type:v
Respond once for each service. Must be urn:schemas-upnp-org:service:serviceType:v. Service type
and version defined by UPnP Forum working committee.
USN

Required header defined by SSDP. Unique Service Name. (See list of required values for USN header in
NOTIFY with ssdp:alive above.) Single URI.

Due to the unreliable nature of UDP, devices should send each response more than once. As a fallback, to guard
against the possibility that a control point not receive a response, a device should re-send its advertisements
periodically (cf. CACHE-CONTROL header in NOTIFY with ssdp:alive above).

If there is an error with the search request, the device must send a response with one of the following errors.

Errors

MAN header != ssdp:discover
412 Precondition Failed. If the value of the MAN header is not equal to ssdp:discover, the device must
respond with HTTP error 412 Precondition Failed.

Other errors may be returned by layers in the protocol stack below UPnP. Consult documentation on those
protocols for details.

1.3 Discovery references

GENA
General Event Notification Architecture. IETF Draft.
HTTPMU
HTTPU
HTTP Multicast over UDP, HTTP Unicast over UDP. IETF Draft.
SSDP
Simple Service Discovery Protocol. IETF Draft.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 16/65

8/19/2021 Universal Plug and Play Device Architecture

2. Description

Description is Step 2 in UPnP networking. Description comes after addressing (Step () where devices get a
network address, and after discovery (Step 1) where control points find interesting device(s). Description
enables control (Step 3) where a control points send commands to device(s), eventing (Step 4) where control

points listen to state changes in device(s), and presentation (Step 5) where control points display a user interface
for device(s).

After a control point has discovered a device, the control point still knows very little about the device -- only the
information that was in the discovery message, i.¢., the device's (or service's) UPnP type, the device's
universally-unique identifier, and a URL to the device's UPnP description. For the control point to learn more
about the device and its capabilities, or to interact with the device, the control point must retrieve a description
of the device and its capabilities from the URL provided by the device in the discovery message.

The UPnP description for a device is partitioned into two, logical parts: a device description describing the
physical and logical containers, and one or more service descriptions describing the capabilities exposed by the
device. A UPnP device description includes vendor-specific, manufacturer information like the model name and
number, serial number, manufacturer name, URLSs to vendor-specific Web sites, etc. (details below). For each
service included in the device, the device description lists the service type, name, a URL for a service
description, a URL for control, and a URL for eventing. A device description also includes a description of all
embedded devices and a URL for presentation of the aggregate. This section explains UPnP device descriptions,
and the sections on Control, Eventing, and Presentation explain how URLs for control, eventing, and
presentation are used, respectively.

Note that a single physical device may include multiple logical devices. Multiple logical devices can be modeled
as a single root device with embedded devices (and services) or as multiple root devices (perhaps with no
embedded devices). In the former case, there is one UPnP device description for the root device, and that device
description contains a description for all embedded devices. In the latter case, there are multiple UPnP device
descriptions, one for each root device.

A UPnP device description is written by a UPnP vendor. The description is in XML syntax and is usually based
on a standard UPnP Device Template. A UPnP Device Template is produced by a UPnP Forum working
committee; they derive the template from the UPnP Template Language, which was derived from standard
constructions in XML. This section explains the format for a UPnP device description, UPnP Device Templates,
and the part of the UPnP Template Language that covers devices.

A UPnP service description includes a list of commands, or actions, the service responds to, and parameters, or
arguments, for each action. A service description also includes a list of variables. These variables model the state
of the service at run time, and are described in terms of their data type, range, and Ie?vent characteristics. This

OKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 17/65

8/19/2021 Universal Plug and Play Device Architecture

section explains the description of actions, arguments, state variables, and the properties of those variables. The
section on Eventing explains event characteristics.

Like a UPnP device description, a UPnP service description is written by a UPnP vendor. The description is in
XML syntax and is usually based on a standard UPnP Service Template. A UPnP Service Template is produced
by a UPnP Forum working committee; they derived the template from the UPnP Template Language,
augmenting it with human language where necessary. The UPnP Template Language is derived from standard
constructions in XML. This section explains the format for a UPnP service description, UPnP Service
Templates, typical augmentations in human language, and the part of the UPnP Template Language that covers
services.

UPnP vendors can differentiate their devices by extending services, including additional UPnP services, or
embedding additional devices. When a control point retrieves a particular device's description, these added
features are exposed to the control point for control and eventing. The device and service descriptions
authoritatively document the implementation of the device.

Retrieving a UPnP device description is simple: the control point issues an HTTP GET request on the URL in
the discovery message, and the device returns the device description. Retrieving a UPnP service description is a
similar process that uses a URL within the device description. The protocol stack, method, headers, and body for
the response and request are explained in detail below.

As long as the discovery advertisements from a device have not expired, a control point may assume that the
device and its services are available. The device and service descriptions may be retrieved at any point since the
device and service descriptions are static as long as the device and its services are available. If a device cancels
its advertisements, a control point must assume the device and its services are no longer available. If a device
needs to change one of these descriptions, it must cancel its outstanding advertisements and re-

advertise. Consequently, control points should not assume that device and service descriptions are unchanged if
a device re-appears on the network.

Like discovery, description plays an important role in the interoperability of devices and control points using
different versions of UPnP networking. As explained in the section on Discovery, The UPnP Device
Architecture (defined herein) is versioned with both a major and a minor version. Advances in minor versions
must be a compatible superset of earlier minor versions of the same major version. Advances in major version
are not required to be supersets of earlier versions and are not guaranteed to be backward compatible. Version
information is communicated in description messages as a backup to the information communicated in discovery
messages. This section explains the format of version information in description messages.

The remainder of this section first explains how devices are described, explaining details of vendor-specific
information, embedded devices, and URLs for control, eventing, and presentation. Second, it explains UPnP
Device Templates. Third, it explains how services are described, explaining details of actions, arguments, state
variables, and properties of those variables. Then it explains UPnP Service Templates, and the UPnP Template
Language. Finally, this section explains in detail how a control point retrieves device and service descriptions
from a device.

2.1 Description: Device description

The UPnP description for a device contains several pieces of vendor-specific information, definitions of all
embedded devices, URL for presentation of the device, and listings for all services, including URLSs for control
and eventing. In addition to defining non-standard devices, UPnP vendors may add embedded devices and
services to standard devices. To illustrate these, below is a listing with placeholders (in italics) for actual
elements and values. Some of these placeholders would be specified by a UPnP Forum working committee
(colored red) or by a UPnP vendor (purple). For a non-standard device, all of these placeholders would be
specified by a UPnP vendor. (Elements defined by the UPnP Device Architecture are colored green for later
reference.) Immediately following the listing is a detailed explanation of the elements, attributes, and values.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 18/65

8/19/2021 Universal Plug and Play Device Architecture

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1l</major>
<minor>@</minor>
</specVersion>
<URLBase>base URL for all relative URLs</URLBase>
<device>
<deviceType>urn:schemas-upnp-org:device:deviceType:v</deviceType>
<friendlyName>short user-friendly title</friendlyName>
<manufacturer>manufacturer name</manufacturer>
<manufacturerURL>URL to manufacturer site</manufacturerURL>
<modelDescription>long user-friendly title</modelDescription>
<modelName>model name</modelName>
<modelNumber>model number</modelNumber>
<modelURL>URL to model site</modelURL>
<serialNumber>manufacturer's serial number</serialNumber>
<UDN>uuid:UUID</UDN>
<UPC>Universal Product Code</UPC>
<iconlList>
<icon>
<mimetype>image/format</mimetype>
<width>horizontal pixels</width>
<height>vertical pixels</height>
<depth>color depth</depth>
<url>URL to icon</url>
</icon>
XML to declare other icons, if any, go here
</iconList>
<servicelist>
<service>
<serviceType>urn:schemas-upnp-org:service:serviceType:v</serviceType>
<serviceId>urn:upnp-org:serviceld:serviceID</serviceld>
<SCPDURL>URL to service description</SCPDURL>
<controlURL>URL for control</controlURL>
<eventSubURL>URL for eventing</eventSubURL>
</service>
Declarations for other services defined by a UPnP Forum working committee (if any)
go here
Declarations for other services added by UPnP vendor (if any) go here
</servicelist>
<devicelist>
Description of embedded devices defined by a UPnP Forum working committee (if any)
go here
Description of embedded devices added by UPnP vendor (if any) go here
</devicelist>
<presentationURL>URL for presentation</presentationURL>
</device>
</root>

Listed below are details for each of the elements, attributes, and values appearing in the listing above. All
elements and attributes are case sensitive; HTTP specifies case sensitivity for URLs; other values are not case
sensitive except where noted. The order of elements is insignificant. Except where noted: required elements
must occur exactly once (no duplicates), and recommended or optional elements may occur at most once.

xml
Required for all XML documents. Case sensitive.

root
Required. Must have urn:schemas-upnp-org:device-1-0 as the value for the xmlns attribute; this references
the UPnP Template Language (described below). Case sensitive. Contains all other elements describing
the root device, i.e., contains the following sub elements:

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 19/65

8/19/2021 Universal Plug and Play Device Architecture

specVersion
Required. Contains the following sub elements:

major

Required. Major version of the UPnP Device Architecture. Must be 1.
minor

Required. Minor version of the UPnP Device Architecture. Must be 0.

URLBase
Optional. Defines the base URL. Used to construct fully-qualified URLs. All relative URLSs that
appear elsewhere in the description are appended to this base URL. If URLBase is empty or not
given, the base URL is the URL from which the device description was retrieved. Specified by
UPnP vendor. Single URL.

device
Required. Contains the following sub elements:

deviceType
Required. UPnP device type.

e For standard devices defined by a UPnP Forum working committee, must begin with
urn:schemas-upnp-org:device: followed by a device type suffix, colon, and an integer
device version (as shown in the listing above).

e For non-standard devices specified by UPnP vendors, must begin with urn:, followed
by an ICANN domain name owned by the vendor, followed by :device:, followed by a
device type suffix, colon, and an integer version, i.e., urn:domain-
name:device:deviceType:v.

The device type suffix defined by a UPnP Forum working committee or specified by a UPnP
vendor must be <= 64 chars, not counting the version suffix and separating colon. Single URI.
friendlyName
Required. Short description for end user. Should be localized (cf. ACCEPT-/CONTENT-
LANGUAGE headers). Specified by UPnP vendor. String. Should be < 64 characters.
manufacturer
Required. Manufacturer's name. May be localized (cf. ACCEPT-/CONTENT-LANGUAGE
headers). Specified by UPnP vendor. String. Should be < 64 characters.
manufacturerURL
Optional. Web site for Manufacturer. May be localized (cf. ACCEPT-/CONTENT-
LANGUAGE headers). May be relative to base URL. Specified by UPnP vendor. Single
URL.
modelDescription
Recommended. Long description for end user. Should be localized (cf.
ACCEPT-/CONTENT-LANGUAGE headers). Specified by UPnP vendor. String. Should be
< 128 characters.
modelName
Required. Model name. May be localized (cf. ACCEPT-/CONTENT-LANGUAGE headers).
Specified by UPnP vendor. String. Should be < 32 characters.
modelNumber
Recommended. Model number. May be localized (cf. ACCEPT-/CONTENT-LANGUAGE
headers). Specified by UPnP vendor. String. Should be < 32 characters.
modelURL
Optional. Web site for model. May be localized (cf. ACCEPT-/CONTENT-LANGUAGE
headers). May be relative to base URL. Specified by UPnP vendor. Single URL.
serialNumber
Recommended. Serial number. May be localized (cf. ACCEPT-/CONTENT-LANGUAGE
headers). Specified by UPnP vendor. String. Should be < 64 ch
https://web.archive.org/web/20000816073450/http://upnp.org/UPnPDevice_Architecture_1.0.htm ﬁ%‘[ﬁrﬂ EXH 1002 20/65

8/19/2021 Universal Plug and Play Device Architecture

UDN
Required. Unique Device Name. Universally-unique identifier for the device, whether root or
embedded. Must be the same over time for a specific device instance (i.e., must survive
reboots). Must match the value of the NT header in device discovery messages. Must match
the prefix of the USN header in all discovery messages. (The section on Discovery explains
the NT and USN headers.) Must begin with uuid: followed by a UUID suffix specified by a
UPnP vendor. Single URL.

UPC
Optional. Universal Product Code. 12-digit, all-numeric code that identifies the consumer
package. Managed by the Uniform Code Council. Specified by UPnP vendor. Single UPC.

iconList
Required if and only if device has one or more icons. Specified by UPnP vendor. Contains the
following sub elements:

icon
Recommended. Icon to depict device in a control point UL. May be localized (cf.
ACCEPT-/CONTENT-LANGUAGE headers). Recommend one icon in each of the
following sizes (width x height x depth): 16x16x1, 16x16x8, 32x32x1, 32x32x8,
48x48x1, 48x48x8. Contains the following sub elements:
mimetype
Required. Icon's MIME type (cf. RFC 2387). Single MIME image type.
width
Required. Horizontal dimension of icon in pixels. Integer.
height
Required. Vertical dimension of icon in pixels. Integer.
depth
Required. Number of color bits per pixel. Integer.
url
Required. Pointer to icon image. (XML does not support direct embedding of
binary data. See note below.) Retrieved via HTTP. May be relative to base URL.
Specified by UPnP vendor. Single URL.
serviceList

Required. Contains the following sub elements:

service
Required. Repeated once for each service defined by a UPnP Forum working
committee. If UPnP vendor differentiates device by adding additional, standard UPnP
services, repeated once for additional service. Contains the following sub elements:

serviceType
Required. UPnP service type. Must not contain a hash character (#, 23 Hex in

UTF-8).

e For standard service types defined by a UPnP Forum working committee,
must begin with urn:schemas-upnp-org:service: followed by a service type
suffix, colon, and an integer service version (as shown in the listing above).

e For non-standard service types specified by UPnP vendors, must begin
with urn:, followed by an ICANN domain name owned by the vendor,
followed by :service:, followed by a service type suffix, colon, and an
integer service version, i.e., urn:domain-name:service:serviceType:v.

The service type suffix defined by a UPnP Forum working committee or
specified by a UPnP vendor must be <= 64 characters, not counting the version

ROKU EXH.”1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 21/65

8/19/2021 Universal Plug and Play Device Architecture

suffix and separating colon. Single URI.
serviceld
Required. Service identifier. Must be unique within this device description.

¢ For standard services defined by a UPnP Forum working committee, must
begin with urn:upnp-org:serviceld: followed by a service ID suffix (as
shown in the listing above). (Note that upnp-org is used instead of
schemas-upnp-org in this case because an XML schema is not defined for
each service ID.)

¢ For non-standard services specified by UPnP vendors, must begin with
urn:, followed by an ICANN domain name owned by the vendor, followed
by :serviceld:, followed by a service ID suffix, i.e., urn:domain-
name:serviceld:servicelD.

The service ID suffix defined by a UPnP Forum working committee or specified
by a UPnP vendor must be <= 64 characters. Single URI.

SCPDURL
Required. URL for service description (nee Service Control Protocol Definition
URL). (cf. section below on service description.) May be relative to base URL.
Specified by UPnP vendor. Single URL.

controlURL
Required. URL for control (cf. section on Control). May be relative to base URL.
Specified by UPnP vendor. Single URL.

eventSubURL
Required. URL for eventing (cf. section on Eventing). May be relative to base
URL. Must be unique within the device; no two services may have the same URL
for eventing. If the service has no evented variables, it should not have eventing
(cf. section on Eventing); if the service does not have eventing, this element must
be present but should be empty, i.e., <eventSubURL></eventSubURL>.
Specified by UPnP vendor. Single URL.

deviceList
Required if and only if root device has embedded devices. Contains the following sub
elements:

device
Required. Repeat once for each embedded device defined by a UPnP Forum working
committee. If UPnP vendor differentiates device by embedding additional UPnP
devices, repeat once for each embedded device. Contains sub elements as defined
above for root sub element device.

presentationURL
Recommended. URL to presentation for device (cf. section on Presentation). May be relative
to base URL. Specified by UPnP vendor. Single URL.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

Note that ampersand character (&, 0x26 in UTF-8) is not allowed in XML. If required as part of the value of an
XML element (e.g., a URL), the ampersand character must be converted into & (HTML) or %26 (URL
escape code).

XML does not support directly embedding binary data, e.g., icons in UPnP device descriptions. Binary data may
be converted into text (and thereby embedded into XML) using an XML data type of either bin.base64 (a
ROKU EXH. 100

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 22/65

8/19/2021 Universal Plug and Play Device Architecture

MIME-style base 64 encoding for binary data) or bin.hex (hexadecimal digits represent octets). Alternatively,
the data can be passed indirectly, as it were, by embedding a URL in the XML and transferring the data in
response to a separate HTTP request; the icon(s) in UPnP device descriptions are transferred in this latter
manner.

Devices standardized by UPnP Forum working committees have an integer version. Every later version of a
device must be a superset of the previous version, i.e., compared to earlier versions of the device, it must include
all embedded devices and services of the same or later version. The UPnP device type remains the same across
all versions of a device whereas the device version must be larger for later versions.

2.2 Description: UPnP Device Template

The listing above also illustrates the relationship between a UPnP device description and a UPnP Device
Template. As explained above, the UPnP device description is written by a UPnP vendor, in XML, following a
UPnP Device Template. A UPnP Device Template is produced by a UPnP Forum working committee as a
means to standardize devices.

By appropriate specification of placeholders, the listing above can be either a UPnP Device Template or a UPnP
device description. Recall that some placeholders would be defined by a UPnP Forum working committee
(colored red), i.e., the UPnP device type identifier, required UPnP services, and required UPnP embedded
devices (if any). If these were defined, the listing would be a UPnP Device Template, codifying the standard for
this type of device. UPnP Device Templates are one of the key deliverables from UPnP Forum working
committees.

Taking this another step further, the remaining placeholders in the listing above would be specified by a UPnP
vendor (colored purple), i.e., vendor-specific information. If these placeholders were specified (as well as the
others), the listing would be a UPnP device description, suitable to be delivered to a control point to enable
control, eventing, and presentation.

Put another way, the UPnP Device Template defines the overall type of device, and each UPnP device
description instantiates that template with vendor-specific information. The first is created by a UPnP Forum
working committee; the latter, by a UPnP vendor.

2.3 Description: Service description

The UPnP description for a service defines actions and their arguments, and state variables and their data type,
range, and event characteristics.

Each service may have zero or more actions. Each action may have zero or more arguments. Any combination of
these arguments may be input or output parameters. If an action has one or more output arguments, one these
arguments may be marked as a return value. Each argument should correspond to a state variable. This direct-
manipulation programming model reinforces simplicity.

Each service must have one or more state variables.
In addition to defining non-standard services, UPnP vendors may add actions and services to standard devices.

To illustrate these points, below is a listing with placeholders (in italics) for actual elements and values. For a
standard UPnP service, some of these placeholders would be defined by a UPnP Forum working committee
(colored red) or specified by a UPnP vendor (purple). For a non-standard service, all of these placeholders would
be specified by a UPnP vendor. (Elements defined by the UPnP Device Architecture are colored green for later
reference.) Immediately following the listing is a detailed explanation of the elements, attributes, and values.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 23/65

8/19/2021 Universal Plug and Play Device Architecture

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
<specVersion>
<major>1l</major>
<minor>@</minor>
</specVersion>
<actionList>
<action>
<name>actionName</name>
<argumentList>
<argument>
<name>formalParameterName</name>
<direction>in xor out</direction>
<retval />
<relatedStateVariable>stateVariableName</relatedStateVariable>
</argument>
Declarations for other arguments defined by UPnP Forum working committee (if any)
go here
</argumentList>
</action>
Declarations for other actions defined by UPnP Forum working committee (if any)
go here
Declarations for other actions added by UPnP vendor (if any) go here
</actionList>
<serviceStateTable>
<stateVariable sendEvents="yes">
<name>variableName</name>
<dataType>variable data type</dataType>
<defaultValue>default value</defaultValue>
<allowedValuelist>
<allowedValue>enumerated value</allowedValue>
Other allowed values defined by UPnP Forum working committee (if any) go here
</allowedValuelList>
</stateVariable>
<stateVariable sendEvents="yes">
<name>variableName</name>
<dataType>variable data type</dataType>
<defaultValue>default value</defaultValue>
<allowedValueRange>
<minimum>minimum value</minimum>
<maximum>maximum value</maximum>
<step>increment value</step>
</allowedValueRange>
</stateVariable>
Declarations for other state variables defined by UPnP Forum working committee
(if any) go here
Declarations for other state variables added by UPnP vendor (if any) go here
</serviceStateTable>
</scpd>

Listed below are details for each of the elements, attributes, and values appearing in the listing above. All
elements and attributes are case sensitive; values are not case sensitive except where noted. Except where noted,
the order of elements is insignificant. Except where noted, required elements must occur exactly once (no
duplicates), and recommended or optional elements may occur at most once.

xml
Required for all XML documents. Case sensitive.

scpd
Required. Must have urn:schemas-upnp-org:service-1-0 as the value for the xmlns attribute; this
references the UPnP Template Language (explained below). Case sensitive. Contains all other elements
describing the service, i.e., contains the following sub elements:

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 24/65

8/19/2021 Universal Plug and Play Device Architecture

specVersion
Required. Contains the following sub elements:

major

Required. Major version of the UPnP Device Architecture. Must be 1.
minor

Required. Minor version of the UPnP Device Architecture. Must be 0.

actionList
Required if and only if the service has actions. (Each service may have >= 0 actions.) Contains the
following sub element(s):

action
Required. Repeat once for each action defined by a UPnP Forum working committee. If
UPnP vendor differentiates service by adding additional actions, repeat once for each
additional action. Contains the following sub elements:

name
Required. Name of action. Must not contain a hyphen character (-, 2D Hex in UTF-8)
nor a hash character (#, 23 Hex in UTF-8).

e For standard actions defined by a UPnP Forum working committee, must not
begin with X nor A .

e For non-standard actions specified by a UPnP vendor and added to a standard
service, must begin with X .

String. Should be < 32 characters.

argumentList
Required if and only if parameters are defined for action. (Each action may have >= 0
parameters.) Contains the following sub element(s):

argument
Required. Repeat once for each parameter. Contains the following sub elements:

name
Required. Name of formal parameter. Should be name of a state variable
that models an effect the action causes. Must not contain a hyphen
character (-, 2D Hex in UTF-8). String. Should be < 32 characters.
direction
Required. Whether argument is an input or output parameter. Must be in
xor out. Any in arguments must be listed before any out arguments.
retval
Optional. Identifies at most one out argument as the return value. If
included, must be the first out argument. (Element only; no value.)
relatedState Variable
Required. Must be the name of a state variable.

serviceStateTable
Required. (Each service must have > 0 state variables.) Contains the following sub element(s):

stateVariable
Required. Repeat once for each state variable defined by a UPnP Forum working committee.
If UPnP vendor differentiates service by adding additional state variables, repeat once for
each additional variable. sendEvents attribute defines whether event messages will be

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 25/65

8/19/2021 Universal Plug and Play Device Architecture

generated when the value of this state variable changes; non-evented state variables have
sendEvents="no"; default is sendEvents="yes". Contains the following sub elements:

name
Required. Name of state variable. Must not contain a hyphen character (-, 2D Hex in
UTF-8).

e For standard variables defined by a UPnP Forum working committee, must not
begin with X nor A .

e For non-standard variables specified by a UPnP vendor and added to a standard
service, must begin with X .

String. Should be < 32 characters.

dataType
Required. Same as data types defined by XML Schema, Part 2: Datatypes. Defined by a
UPnP Forum working committee for standard state variables; specified by UPnP
vendor for extensions. Must be one of the following values:

uil
Unsigned 1 Byte int. Same format as int without leading sign.
ui2
Unsigned 2 Byte int. Same format as int without leading sign.
ui4
Unsigned 4 Byte int. Same format as int without leading sign.
il
1 Byte int. Same format as int.
i2
2 Byte int. Same format as int.
4
4 Byte int. Same format as int. Must be between -2147483648 and 2147483647.
int
Fixed point, integer number. May have leading sign. May have leading zeros.
(No currency symbol.) (No grouping of digits to the left of the decimal, e.g., no
commas.)
4
4 Byte float. Same format as float. Must be between 3.40282347E+38 to
1.17549435E-38.
r8
8 Byte float. Same format as float. Must be between -1.79769313486232E308
and -4.94065645841247E-324 for negative values, and between
4.94065645841247E-324 and 1.79769313486232E308 for positive values, i.e.,
IEEE 64-bit (8-Byte) double.
number
Same as 18.
fixed.14.4

Same as r8 but no more than 14 digits to the left of the decimal point and no
more than 4 to the right.

float
Floating point number. Mantissa (left of the decimal) and/or exponent may have a
leading sign. Mantissa and/or exponent may have leading zeros. Decimal
character in mantissa is a period, i.e., whole digits in mantissa separated from
fractional digits by period. Mantissa separated from exponent by E. (No currency
symbol.) (No grouping of digits in the mantissa, €.g., no commas.)

char

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 26/65

8/19/2021

Universal Plug and Play Device Architecture

Unicode string. One character long.
string
Unicode string. No limit on length.
date
Date in a subset of ISO 8601 format without time data.
dateTime
Date in ISO 8601 format with optional time but no time zone.
dateTime.tz
Date in ISO 8601 format with optional time and optional time zone.
time
Time in a subset of ISO 8601 format with no date and no time zone.
time.tz
Time in a subset of ISO 8601 format with optional time zone but no date.
boolean
0, false, or no for false; 1, true, or yes for true.
bin.base64
MIME-style Base64 encoded binary BLOB. Takes 3 Bytes, splits them into 4
parts, and maps each 6 bit piece to an octet. (3 octets are encoded as 4.) No limit
on size.
bin.hex
Hexadecimal digits representing octets. Treats each nibble as a hex digit and
encodes as a separate Byte. (1 octet is encoded as 2.) No limit on size.
uri
Universal Resource Identifier.
uuid
Universally Unique ID. Hexadecimal digits representing octets. Optional
embedded hyphens are ignored.

defaultValue

Recommended. Expected, initial value. Defined by a UPnP Forum working committee
or delegated to UPnP vendor. Must match data type. Must satisfy allowedValueList or
allowedValueRange constraints.

allowedValueList

Recommended. Enumerates legal string values. Prohibited for data types other than
string. At most one of allowedValueRange and allowedValueList may be specified. Sub
elements are ordered (e.g., see NEXT STRING BOUNDED). Contains the following
sub elements:

allowedValue
Required. A legal value for a string variable. Defined by a UPnP Forum working
committee for standard state variables; specified by UPnP vendor for extensions.
string. Should be < 32 characters.

allowedValueRange

Recommended. Defines bounds for legal numeric values; defines resolution for
numeric values. Defined only for numeric data types. At most one of
allowedValueRange and allowedValueList may be specified. Contains the following
sub elements:

minimum
Required. Inclusive lower bound. Defined by a UPnP Forum working committee
or delegated to UPnP vendor. Single numeric value.

maximum

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 27/65

8/19/2021 Universal Plug and Play Device Architecture

Required. Inclusive upper bound. Defined by a UPnP Forum working committee
or delegated to UPnP vendor. Single numeric value.

step
Recommended. Size of an increment operation, i.e., value of s in the operation v
= v+ 5. Defined by a UPnP Forum working committee or delegated to UPnP
vendor. Single numeric value.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

Note that ampersand character (&, 26 Hex in UTF-8) is not allowed in XML. If required as part of the value of
an XML element (e.g., a URL), the ampersand character must be converted into & (HTML) or %26 (URL
escape code).

Note that it is logically possible for a service to have no actions but have state variables and eventing; though
unlikely, such a service would be an autonomous information source. However, a service with no state variables
is prohibited.

Unlike device descriptions, service descriptions and associated values should not use locale-specific values; this
includes service descriptions, values of action arguments, and values of state variables. Instead, most action
arguments and state variables should use values that are expressed in a locale-independent manner; applications
should convert and/or format the information from a standard form into the correct language and/or format for
the locale. For example, dates are represented in a locale-independent format (ISO 8601), and integers are
represented without locale-specific formatting (e.g., no currency symbol, no grouping of digits). String values
should be represented in either a standard 'locale’ or in a locale-independent manner. Variables with an
allowedValueList should use token values in the language of UPnP standards and not reflect strings intended to
be displayed in a localized user interface.

However, there may be some cases where an action's behavior is locale-dependent. In this case, an argument
should be defined to indicate the locale, perhaps using the same encoding as the ACCEPT-/CONTENT-
LANGUAGE headers (RFC 1766). If there are multiple locale-dependent actions, the service may include an
action to set a state variable to indicate the locale and eliminate the need to pass a locale identifier separately to
each action.

Services standardized by UPnP Forum working committees have an integer version. Every later version of a
service must be a superset of the previous version, i.e., it must include all actions and state variables exactly as
they are defined by earlier versions of the service. The UPnP service type remains the same across all versions
of a service whereas the service version must be larger for later versions.

2.4 Description: UPnP Service Template

The listing above also illustrates the relationship between a UPnP service description and a UPnP Service
Template. As explained above, the UPnP description for a service is written by a UPnP vendor, in XML,
following a UPnP Service Template. A UPnP Service Template is produced by a UPnP Forum working
committee as a means to standardize devices.

By appropriate specification of placeholders, the listing above can be either a UPnP Service Template or a UPnP
service description. Recall that some placeholders would be defined by a UPnP Forum working committee
(colored red), i.e., actions and their parameters, and states and their data type, range, and event characteristics. If
these were specified, the listing above would be a UPnP Service Template, codifying the standard for this type of
service. Along with UPnP Device Templates (cf. section on Description), UPnP Service Templates are one of the
key deliverables from UPnP Forum working committees.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 28/65

8/19/2021 Universal Plug and Play Device Architecture

Taking this another step further, the remaining placeholders in the listing above would be specified by a UPnP
vendor (colored purple), i.e., additional, vendor-specified actions and state variables. If these placeholders were
specified (as well as the others), the listing would be a UPnP service description, suitable for effective control of
the service within a device.

Put another way, the UPnP Service Template defines the overall type of service, and each UPnP service
description instantiates that template with vendor-specific additions. The first is created by a UPnP Forum
working committee; the latter, by a UPnP vendor.

2.5 Description: Non-standard vendor extensions

As explained above, UPnP vendors may differentiate their devices and extend a standard device by including
additional services, embedded devices. Similarly, UPnP vendors may extend a standard service by including
additional actions or state variables. UPnP vendors must not extend a standard service by modifying a
standardized allowedValueList. Naming conventions for each of these are listed in the table below and explained
in detail above.

Type of extension Standard Non-Standard

urn:schemas-upnp-

device type org:device:deviceType:v

urn:domain-name:device:deviceType:v

urn:schemas-upnp-

service type . .
org:service:serviceType:v

urn:domain-name:service:service Type:v

urn:upnp-

.) urn:domain-name:serviceld:servicelD
org:serviceld:servicelD

service ID

Does not begin with X

action name or A . Begins with X .

state variable name Erozs not begin with X_ Begins with X .

XML elements in device |Defined by the UPnP Arbitrary XML scoped by an XML namespace and
or service description Template Language. nested within an element that begins with X .

XML attributes in device |Defined by the UPnP Arbitrary attributes scoped by an XML namespace and
or service description Template Language. begin with X .

As the last two rows of the table above indicate, UPnP vendors may also add non-standard XML to a device or
service description. Each addition must be scoped by a vendor-supplied XML namespace. Arbitrary XML must
be enclosed in an element that begins with X , and this element must be a sub element of standard element that
contains sub elements. Non-standard attributes may be added to standard elements provided these attributes are
scoped by an XML namespace and begin with X .

To illustrate this, below are listings with placeholders (in italics) for actual elements and values. Some of these
placeholders would be specified by a UPnP vendor (purple) and some are defined by the UPnP Device
Architecture (green).

<RootStandardElement xmlns="urn:schemas-upnp-org:device-1-0"
xmlns:n="domain-name:schema-name">
other XML
<AnyStandardElement n:X_VendorAttribute="arbitrary string value">
other XML
</AnyStandardElement>
other XML
</RootStandardElement>

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 29/65

8/19/2021 Universal Plug and Play Device Architecture

RootStandardElement
Required. A standard root element. xmlns attribute defines namespaces, in this case, a standard UPnP
namespace and a non-standard namespace with the prefix n.

e For device descriptions, must be root.
e For service descriptions, must be scpd.

AnyStandardElement
Required. Any standard element, root or otherwise, content of text or element only. Must already be
included as part of the standard device or service description. X VendorAttribute must begin with
X . (Prefix A_is reserved.) May have an arbitrary string value.

<ELtOnlyStandardElement n:X_VendorAttribute="vendor value">
<n:X_VendorElement xmlns:n="domain-name:schema-name">
arbitrary XML
</n:X_VendorElement>
</EltOnlyStandardElement>

EltOnlyStandardElement
Required. Element with content of element only. Must already be included as part of the standard device
or service description.

e For device descriptions, must be one of: root, specVersion, device, iconList, icon, serviceList,
service, and/or deviceList.

e For service descriptions, must be one of: scpd, actionList, action, argumentList, argument,
serviceStateTable, stateVariable, allowedValueList, and/or allowedValueRange.

X VendorElement
Required. Must begin with X . (Prefix A_ is reserved.) Must have a value for the xmlns attribute.
May contain arbitrary XML.

As specified by the Flexible XML Processing Profile (FXPP), control points that do not understand these XML
additions must ignore them.

2.6 Description: UPnP Template Language for devices

The paragraphs above explain UPnP device descriptions and illustrate how one would be instantiated from a
UPnP Device Template. As explained, UPnP Device Templates are produced by UPnP Forum working
committees, and these templates are derived from the UPnP Template Language. This template language defines
valid templates for devices and services. Below is a listing and explanation of this language as it pertains to
devices.

The UPnP Template Language is written in XML syntax and is derived from XML Schema (Part 1: Structures,
Part 2: Datatypes). XML Schema provides a set of XML constructions that express language concepts like
required vs. optional elements, element nesting, and data types for values (as well as other properties not of
interest here). The UPnP Template Language uses these XML Schema constructions to define elements like
specVersion, URLBase, deviceType, et al listed in detail above. Because the UPnP Template Language is
constructed using another, precise language, it is unambiguous. And because the UPnP Template Language,
UPnP Device Templates, and UPnP device descriptions are all machine-readable, automated tools can
automatically check to ensure the latter two have all required elements, are correctly nested, and have values of
the correct data types.

Below is the UPnP Template Language for devices as defined by the UPnP Device Architecture herein. The
elements it defines are used in UPnP Device Templates; they are colored green here, and they are colored green
in the listing above. Below is where these elements are defined; above is where they are used.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 30/65

8/19/2021 Universal Plug and Play Device Architecture

Immediately following this is a brief explanation of the XML Schema elements, attributes, and values used. The

reference to XML Schema at the end of the section has further details.

UPnP Template Language for devices

<?xml version="1.0"?>
<Schema name="device-1-0"

xmlns="urn:

schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType

name="root" content="eltOnly">

<element type="specVersion" />
<element type="URLBase" minOccurs="0" maxOccurs="1" />
<element type="device" />

</ElementType>

<ElementType

name="specVersion" content="eltOnly">

<element type="major" />
<element type="minor" />

</ElementType>

<ElementType name="major" dt:type="int" content="textOnly" />
<ElementType name="minor" dt:type="int" content="textOnly" />
<ElementType name="URLBase" dt:type="uri" content="textOnly" />
<ElementType name="device" content="eltOnly">

<element type="deviceType" />

<element type="friendlyName" />

<element type="manufacturer" />

<element type="manufacturerURL" minOccurs="0" maxOccurs="1" />
<element type="modelDescription"” minOccurs="0" maxOccurs="1" />
<element type="modelName" />

<element type="modelNumber" minOccurs="0" maxOccurs="1" />
<element type="modelURL" minOccurs="0" maxOccurs="1" />
<element type="serialNumber" minOccurs="@" maxOccurs="1" />
<element type="UDN" />

<element type="UPC" minOccurs="0" maxOccurs="1" />

<element type="iconList" minOccurs="0" maxOccurs="1" />
<element type="servicelList" />

<element type="devicelist" minOccurs="0" maxOccurs="1" />
<element type="presentationURL" minOccurs="0" maxOccurs="1" />

</ElementType>
<ElementType name="deviceType" dt:type="uri" content="textOnly" />
<ElementType name="friendlyName" dt:type="string" content="textOnly" />
<ElementType name="manufacturer" dt:type="string" content="textOnly" />
<ElementType name="manufacturerURL" dt:type="uri" content="textOnly" />
<ElementType name="modelDescription” dt:type="string" content="textOnly" />
<ElementType name="modelName" dt:type="string" content="textOnly" />
<ElementType name="modelNumber" dt:type="string" content="textOnly" />
<ElementType name="modelURL" dt:type="uri" content="textOnly" />
<ElementType name="serialNumber" dt:type="string" content="textOnly" />
<ElementType name="UDN" dt:type="uri" content="textOnly" />
<ElementType name="UPC" dt:type="string" content="textOnly" />
<ElementType name="iconList" content="eltOnly">

<element type="icon" minOccurs="1" maxOccurs="*" />
</ElementType>
<ElementType name="icon" content="eltOnly">

<element type="mimetype" />
<element type="width" />
<element type="height" />
<element type="depth" />
<element type="url" />

</ElementType>

<ElementType name="mimetype" dt:type="string" content="textOnly" />
<ElementType name="width" dt:type="int" content="textOnly" />
<ElementType name="height" dt:type="int" content="textOnly" />
<ElementType name="depth" dt:type="int" content="textOnly" />

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/UPnPDevice_Architecture_1.0.htm

31/65

8/19/2021 Universal Plug and Play Device Architecture

<ElementType name="url" dt:type="uri" content="textOnly" />
<ElementType name="servicelList" content="eltOnly">

<element type="service" minOccurs="1" maxOccurs="*" />
</ElementType>
<ElementType name="service" content="eltOnly">

<element type="serviceType" />

<element type="serviceld" />

<element type="SCPDURL" />

<element type="controlURL" />

<element type="eventSubURL" />
</ElementType>
<ElementType name="serviceType" dt:type="uri" content="textOnly" />
<ElementType name="serviceId" dt:type="uri" content="textOnly" />
<ElementType name="SCPDURL" dt:type="uri" content="textOnly" />
<ElementType name="controlURL" dt:type="uri" content="textOnly" />
<ElementType name="eventSubURL" dt:type="uri" content="textOnly" />
<ElementType name="devicelist" content="eltOnly">

<element type="device" minOccurs="1" maxOccurs="*" />
</ElementType>
<ElementType name="presentationURL" dt:type="uri" content="textOnly" />

</Schema>

ElementType
Defines an element in the new, derived language. name attribute defines element name. dt:type attribute
defines the data type for the value of element in the new, derived language.

element
References an element for the purposes of declaring nesting. minOccurs attribute defines minimum
number of times the element must occur; default is minOccurs = 1; optional elements have minOccurs = 0.
maxQOccurs attribute defines maximum number of times the element must occur; default is maxOccurs =
1; elements that can appear one or more times have maxOccurs = *.

2.7 Description: UPnP Template Language for services

The paragraphs above explain UPnP service descriptions and illustrate how one would be instantiated from a
UPnP Service Template. Like UPnP Device Templates, UPnP Service Templates are produced by UPnP Forum
working committees, and these templates are derived from the UPnP Template Language. This template
language defines valid templates for devices and services. As explained above, the UPnP Template Language is
written in XML syntax and is derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Below is a
listing of this language as it pertains to services. The elements it defines are used in UPnP Service Templates;
they are colored green here, and they are colored green in the listing above. Below is where these elements are
defined; above is where they are used.

Immediately following this is a brief explanation of the XML Schema elements, attributes, and values used. The
reference to XML Schema at the end of the section has further details.

UPnP Template Language for services

<?xml version="1.0"?>
<Schema name="service-1-0"
xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes"”>
<ElementType name="scpd" content="eltOnly">
<element type="specVersion" />
<element type="actionList" minOccurs="0" maxOccurs="1" />
<element type="serviceStateTable" />
</ElementType>
<ElementType name="specVersion" content="eltOnly">
<element type="major" />
<element type="minor" />

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 32/65

8/19/2021 Universal Plug and Play Device Architecture

</ElementType>
<ElementType name="major" dt:type="int" content="textOnly" />
<ElementType name="minor" dt:type="int" content="textOnly" />
<ElementType name="actionlList" content="eltOnly">

<element type="action" minOccurs="1" maxOccurs="*" />
</ElementType>
<ElementType name="action" content="eltOnly">

<element type="name" />

<element type="argumentList" minOccurs="0" maxOccurs="1" />
</ElementType>
<ElementType name="name" dt:type="string" content="textOnly" />
<ElementType name="argumentList" content="eltOnly">

<element type="argument” minOccurs="1" maxOccurs="*" />
</ElementType>
<ElementType name="argument" content="eltOnly">

<element type="name" />

<element type="direction" />

<element type="retval” minOccurs="0" maxOccurs="1" />

<element type="relatedStateVariable" />
</ElementType>
<ElementType name="direction" dt:type="string" content="textOnly" />
<ElementType name="retval" content="empty" />
<ElementType name="relatedStateVariable" dt:type="string" content="textOnly" />
<ElementType name="serviceStateTable" content="eltOnly">

<element type="stateVariable" minOccurs="1" maxOccurs="*" />
</ElementType>
<ElementType name="stateVariable" content="eltOnly">

<element type="name" />

<element type="dataType" />

<element type="defaultValue" minOccurs="0" maxOccurs="1" />

<group minOccurs="0" maxOccurs="1" order="one">

<element type="allowedValuelList" />
<element type="allowedValueRange" />

</group>

<AttributeType name="sendEvents" />

<attribute default="yes" type="sendEvents" required="no" />
</ElementType>
<ElementType name="dataType" dt:type="string" content="textOnly" />
<ElementType name="defaultValue" dt:type="string" content="textOnly" />
<ElementType name="allowedValuelList" content="eltOnly">

<element type="allowedValue" minOccurs="1" maxOccurs="*" />
</ElementType>
<ElementType name="allowedValue" content="textOnly" />
<ElementType name="allowedValueRange" content="eltOnly">

<element type="minimum" />

<element type="maximum" />

<element type="step" minOccurs="0" maxOccurs="1" />
</ElementType>
<ElementType name="minimum" dt:type="number" content="textOnly" />
<ElementType name="maximum" dt:type="number" content="textOnly" />
<ElementType name="step" dt:type="number" content="textOnly" />

</Schema>

attribute
References an attribute in the new, derived language for the purposes of declaring in which elements it
may appear. Like any XML element, the AttributeType element may have attributes of its own. Using the
required attribute within this element indicates whether the attribute must be present; optional attributes
have required = no.

AttributeType
Defines an attribute in the new, derived language. Like any XML element, the AttributeType element may
have attributes of its own. Using the name attribute within this element defines the name of the attribute as
it will be used in the derived language.

element

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 33/65

8/19/2021 Universal Plug and Play Device Architecture

References an element for the purposes of declaring nesting. minOccurs attribute defines minimum
number of times the element must occur; default is minOccurs = 1; optional elements have minOccurs = 0.
maxQOccurs attribute defines maximum number of times the element must occur; default is maxOccurs =
1; elements that can appear one or more times have maxOccurs = *.

ElementType
Defines an element in the new, derived language. name attribute defines element name. dt:type attribute
defines the data type for the value of element in the new, derived language. model attribute indicates
whether elements in the new, derived language can contain elements not explicitly specified here; when
only previously specific elements may be used, model = closed. content attribute indicates what content
may contain; elements that contain only other elements have content = eltOnly; elements that contain only
strings have content = textOnly.

group
Organizes content into a group to specify a sequence. minOccurs attribute defines minimum number

of times the group must occur. maxOccurs attribute defines maximum number of times the group
must occur. order attribute constrains the sequence of elements; when at most one element is
allowed, order = one.

2.8 Description: Augmenting the UPnP Template Language

Some properties of services are difficult to capture in the XML Schema formalism. In particular, it is useful to
describe the effect actions have on state variables. This procedural information is awkward to describe in a
declarative language like XML, so below is a recommended vocabulary for UPnP Forum working committees to
use when defining service actions or for UPnP vendors to use when they wish to document the effects of extra
actions.

ASSIGN (v, a)
Variable v becomes the value of argument a, i.e., v=a. v and @ must be the same data type.
DECREMENT (v)
Equivalent to INCREMENT (v) with allowedValueRange step treated as -step.
DECREMENT BOUNDED (v)
Equivalent to INCREMENT BOUNDED (v) with allowedValueRange step treated as -step.
DECREMENT_ WRAP (v)
Equivalent to INCREMENT WRAP (v) with allowedValueRange step treated as -step.
INCREMENT (v)
Variable v becomes the value of v plus allowedValueRange step, i.e., v =v + step. Equivalent to
DECREMENT (v) with allowedValueRange step treated as -step. v must have a numeric data type and
must have an allowedValueRange definition.
INCREMENT BOUNDED (v)
Variable v becomes the value of v plus allowedValueRange step, i.e., v =v + step.
If step is greater than 0 and if v plus step would be greater than allowedValueRange maximum, then v
becomes maximum.
If step is less than 0 and if v plus step would be less than allowedValueRange minimum, then v becomes
minimum.
Equivalent to DECREMENT BOUNDED (v) with allowedValueRange step treated as -step. v must have
a numeric data type and must have an allowedValueRange definition.
INCREMENT_ WRAP (v, ¢)
Variable v becomes the value of v plus allowedValueRange step, i.e., v =v + step.
If step is greater than 0, and if v plus step would be greater than allowedValueRange maximum, then v
becomes minimum plus step minus 1, i.e., v = minimum + step - 1; if step is 1, this simplifies to v =
minimum.
If step is less than 0 and if v plus step would be less than allowedValueRange minimum, then v becomes
maximum plus step plus 1, i.e., v =maximum + step + 1; if step is -1, this simplifies to v = maximum.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 34/65

8/19/2021 Universal Plug and Play Device Architecture

Equivalent to DECREMENT WRAP (v) with allowedValueRange step treated as -step. v must have a
numeric data type and must have an allowedValueRange definition.

NEXT STRING BOUNDED (v)
Variable v becomes the next allowedValue after the current value of v. If v was already the last
allowedValue, then v does not change. v must be a string data type and must have an allowedValueList
definition.

NEXT STRING WRAP (v)
Variable v becomes the next allowedValue after the current value of v. If v was already the last
allowedValue, then v becomes the first allowedValue. v must be a string data type and must have an
allowedValueList definition.

PREV_STRING BOUNDED (v)
Variable v becomes the previous allowedValue before the current value of v. If v was already the first
allowedValue, then v does not change. v must be a string data type and must have an allowedValueList
definition.

PREV_STRING WRAP (v)
Variable v becomes the previous allowedValue before the current value of v. If v was already the first
allowedValue, then v becomes the last allowedValue. v must be a string data type and must have an
allowedValueList definition.

SET (v, ¢)
Variable v becomes the value of constant ¢, i.e., v=c. v and ¢ must be the same data type.

TOGGLE (v)
Variable v becomes the boolean negation of the value of v, i.e., v=NOT v. v must be boolean.

2.9 Description: Retrieving a description

As explained above, after a control point has discovered a device, it still knows very little about the device. To
learn more about the device and its capabilities, the control point must retrieve the UPnP description for the
device using the URL provided by the device in the discovery message. Then, the control point must retrieve
one or more service descriptions using the URL(s) provided in the device description. This is a simple HTTP-
based process and uses the following subset of the overall UPnP protocol stack. (The overall UPnP protocol
stack is listed at the beginning of this document.)

UPnP vendor [purple]

UPnP Forum [red]

UPnP Device Architecture [green]
HTTP [black]

TCP [black]

IP [black]

At the highest layer, description messages contain vendor-specific information, e.g., device type, service type,
and required services. Moving down the stack, vendor content is supplemented by information from a UPnP
Forum working committee, e.g., model name, model number, and specific URLs. Messages from the layers
above are hosted in UPnP-specific protocols, defined in this document. In turn, the above messages are delivered
via HTTP over TCP over IP. For reference, colors in [square brackets] above indicate which protocol defines
specific header and body elements in the description messages listed below.

Using this protocol stack, retrieving the UPnP device description is simple: the control point issues an HTTP
GET request to the URL in the discovery message, and the device returns its description in the body of an HTTP
response. Similarly, to retrieve a UPnP service description, the control point issues an HTTP GET request to the
URL in the device description, and the device returns the description in the body of an HTTP response. The
headers and body for the response and request are explained in detail below.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 35/65

8/19/2021 Universal Plug and Play Device Architecture

First, a control point must send a request with method GET in the following format. Values in italics are
placeholders for actual values.

GET path to description HTTP/1.1
HOST: host for description:port for description
ACCEPT-LANGUAGE: language preferred by control point

(No body for request to retrieve a description, but note that the message must have a blank line following the last
HTTP header.)

Listed below are details for the request line and headers appearing in the listing above. All header values are
case sensitive except where noted.

Request line

GET
Method defined by HTTP.
path to description
Path component of device description URL (LOCATION header in discovery message) or of service
description URL (SCPDURL element in device description). Single, relative URL.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of device description URL
(LOCATION header in discovery message) or of service description URL (SCPDURL element of device
description). If the port is empty or not given, port 80 is assumed.

ACCEPT-LANGUAGE
Recommended for retrieving device descriptions. Preferred language(s) for description. If no description
is available in this language, device may return a description in a default language. RFC 1766 language

tag(s).

After a control point sends a request, the device takes the second step and responds with a copy of its
description. Including expected transmission time, a device must respond within 30 seconds. If it fails to respond
within this time, the control point should re-send the request. A device must send a response in the following
format. Values in italics are placeholders for actual values.

HTTP/1.1 200 OK

CONTENT-LANGUAGE: language used in description

CONTENT-LENGTH: Bytes in body

CONTENT-TYPE: text/xml
DATE: when responded

The body of this response is a UPnP device or service description as explained in detail above.

Listed below are details for the headers appearing in the listing above. All header values are case sensitive
except where noted.

Headers
CONTENT-LANGUAGE

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 36/65

8/19/2021 Universal Plug and Play Device Architecture

Required if and only if request included an ACCEPT-LANGUAGE header. Language of description. RFC
1766 language tag(s).
CONTENT-LENGTH
Required. Length of body in Bytes. Integer.
CONTENT-TYPE
Required. Must be text/xml.
DATE
Recommended. When response was generated. RFC 1123 date.
SERVER
(No SERVER header is required for description messages.)

2.10 Description references

FXPP
Flexible XML Processing Profile. Specifies that unknown XML elements and their sub elements must be
ignored. IETF draft.
ISO 8601
ISO (International Organization for Standardization). Representations of dates and times, 1988-06-15.
Available at: <http://www.iso.ch/markete/8601.pdf>.
RFC 1123
Includes format for dates, for, e.g., HTTP DATE header. IETF request for comments.
RFC 1766
Format for language tag for, e.g., HTTP ACCEPT-LANGUAGE header. IETF request for comments.
RFC 2387
Format for representing content type, e.g., mimetype element for an icon. IETF request for comments.
UPC
Universal Product Code. 12-digit, all-numeric code that identifies the consumer package. Managed by the
Uniform Code Council. <http://www.uc-council.org/main/ID_Numbers and Bar Codes.html>.
XML
Extensible Markup Language. W3C recommendation.
XML Schema (Part 1: Structures, Part 2: Datatypes)
Grammar defining UPnP Template Language. Defined using XML. W3C working draft. Part 1:
Structures. Part 2: Datatypes.

3. Control

Control is Step 3 in UPnP networking. Control comes after addressing (Step 0) where devices get a network
addpress, after discovery (Step 1) where control points find interesting device(s), and after description (Step 2)
where control points learn about device capabilities. Control is independent of eventing (Step 4) where control
points listen to state changes in device(s). Through control, control points invoke actions on devices and poll for
values. Control and eventing are complementary to presentation (Step 5) where control points display a user
interface provided by device(s).

Control is the third step in UPnP networking. Given knowledge of a device and its services, a control point can
ask those services to invoke actions and the control point can poll those services for the values of their state
variables. Invoking actions is a kind of remote procedure call; a control point sends the action to the device's
service, and when the action has completed (or failed), the service returns any results or errors. Polling for the
value of state variables is a special case of this scenario where the action and its results are predefined.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 37165

https://web.archive.org/web/20000816073450/http://www.iso.ch/markete/8601.pdf
https://web.archive.org/web/20000816073450/http://www.uc-council.org/main/ID_Numbers_and_Bar_Codes.html

8/19/2021 Universal Plug and Play Device Architecture

L

To control a device, a control point invokes an action on the device's service. To do this, a control point sends a
suitable control message to the control URL for the service (provided in the controlURL sub element of service
element of device description). In response, the service returns any results or errors from the action. The effects
of the action, if any, may also be modeled by changes in the variables that describe the run-time state of the
service. When these state variables change, events are published to all interested control points. This section
explains the protocol stack for, and format of, control messages. The section on Eventing explains event
publication.

To determine the current value of a state variable, a control point may poll the service. Similar to invoking an
action, a control point sends a suitable query message to the control URL for the service. In response, the service
provides the value of the variable; each service is responsible for keeping its state table consistent so control
points can poll and receive meaningful values. This section also explains the format of these query messages.
The section on eventing explains automatic notification of variable values.

As long as the discovery advertisements from a device have not expired, a control point may assume that the
device and its services are available. If a device cancels its advertisements, a control point must assume the
device and its services are no longer available.

While UPnP does define a means to invoke actions and poll for values, UPnP does not specify or constrain the
design of an API for applications running on control points; OS vendors may create APIs that suit their

customer's needs.

The remainder of this section explains in detail how control and query messages are formatted and sent to
devices.

3.1 Control: Protocols

To invoke actions and poll for values, control points (and devices) use the following subset of the overall UPnP
protocol stack. (The overall UPnP protocol stack is listed at the beginning of this document.)

UPnP vendor [purple]
UPnP Forum |red] ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 38/65

8/19/2021 Universal Plug and Play Device Architecture
UPnP Device Architecture [green]
SOAP [blue]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, control messages contain vendor-specific information, e.g., argument values. Moving down
the stack, vendor content is supplemented by information from a UPnP Forum working committee, e.g., action
names, argument names, variable names. Messages from the layers above are hosted in UPnP-specific protocols,
defined in this document. In turn, the above messages are formatted using a Simple Object Access Protocol
(SOAP) header and body elements, and the messages are delivered via HTTP over TCP over IP. For reference,
colors in [square brackets] above indicate which protocol defines specific header elements in the subscription
messages listed below.

3.2 Control: Action

Control points may invoke actions on a device's services and receive results or errors back. The action, results,
and errors are encapsulated in SOAP, sent via HTTP requests, and received via HTTP responses.

3.2.1 Control: Action: Invoke

The Simple Object Access Protocol (SOAP) defines the use of XML and HTTP for remote procedure calls.
UPnP uses SOAP to deliver control messages to devices and return results or errors back to control points.

SOAP defines additional HTTP headers, and to ensure that these are not confused with other HTTP extensions,
SOAP follows the HTTP Extension Framework and specifies a SOAP-unique URI in the MAN header and
prefixes the HTTP method with M-. In this case, the method is M-POST. Using M-POST requires the HTTP
server to find and understand the SOAP-unique URI and SOAP-specific headers.

To provide firewalls and proxies greater administrative flexibility, SOAP specifies that requests must first be
attempted without the MAN header or M- prefix. If the request is rejected with a response of "405 Method Not
Allowed", then a second request must be sent using the MAN header and M-prefix. If that request is rejected
with a response of "501 Not Implemented" or "510 Not Extended", the request fails. (Other HTTP responses
should be processed according to the HTTP specification.)

Below is a listing of a control message sent using the POST method (without the MAN header) followed by an
explanation of the headers and body. This is immediately followed by a listing of a control message sent using
the M-POST method and MAN header.

To invoke an action on a device's service, a control point must send a request with method POST in the
following format. Values in ifalics are placeholders for actual values.

POST path of control URL HTTP/1.1

HOST: host of control URL:port of control URL

CONTENT-LENGTH: bytes in body

CONTENT-TYPE: text/xml; charset="utf-8"

SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName"

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
<argumentName>in arg value</argumentName>

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 39/65

8/19/2021 Universal Plug and Play Device Architecture

other in args and their values go here, if any
</u:actionName>
</s:Body>
</s:Envelope>

Listed below are details for the request line, headers, and body elements appearing in the listing above. All
header values and element names are case sensitive; values are not case sensitive except where noted. Except
where noted, the order of elements is insignificant. Except where noted, required elements must occur exactly
once (no duplicates), and recommended or optional elements may occur at most once.

Request line

POST
Method defined by HTTP.
path control URL
Path component of URL for control for this service (controlURL sub element of service element of device
description). Single, relative URL.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of URL for control for this service
(controlURL sub element of service element of device description). If the port is empty or not given, port
80 is assumed.

ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xIm. Should include character coding used, e.g., utf-8.

MAN
(No MAN header in request with method POST.)

SOAPACTION
Required header defined by SOAP. Must be the service type, hash mark, and name of action to be
invoked, all enclosed in double quotes. If used in a request with method M-POST, header name must be
qualified with HTTP name space defined in MAN header. Single URI.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be
"http://schemas.xmlsoap.org/soap/envelope/". Must include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the
following sub element:

actionName
Required. Name of element is name of action to invoke. xmlns namespace attribute must be
the service type enclosed in double quotes. Must be the first sub element of Body. Contains
the following, ordered sub element(s):
ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 40/65

8/19/2021 Universal Plug and Play Device Architecture

argumentName
Required if and only if action has in arguments. Value to be passed to action. Repeat
once for each in argument. (Element name not qualified by a namespace; element
nesting context is sufficient.) Single data type as defined by UPnP service description.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

If a request with POST is rejected with a response of "405 Method Not Allowed", then a control point must send
a second request with method M-POST and MAN in the following format. Values in italics are placeholders for
actual values.

M-POST path of control URL HTTP/1.1

HOST: host of control URL:port of control URL

CONTENT-LENGTH: bytes in body

CONTENT-TYPE: text/xml; charset="utf-8"

MAN: "http://schemas.xmlsoap.org/soap/envelope/"; ns=01

01-SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName"

(Message body for request with method M-POST is the same as body for request with method POST. See
above.)

Request line

M-POST
Method defined by HTTP Extension Framework.
path of control URL
Path component of URL for control for this service (controlURL sub element of service element of device
description). Single, relative URL.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of URL for control for this service
(controlURL sub element of service element of device description). If the port is empty or not given, port
80 is assumed.

ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xIm. Should include character coding used, e.g., utf-8.

MAN
Required. Must be "http://schemas.xmlsoap.org/soap/envelope/". ns directive defines namespace (e.g., 01)
for other SOAP headers (e.g., SOAPACTION).

SOAPACTION
Required header defined by SOAP. Must be the service type, hash mark, and name of action to be
invoked, all enclosed in double quotes. If used in a request with method M-POST, header name must be
qualified with HTTP name space defined in MAN header. Single URI.

3.2.2 Control: Action: Response
ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 41/65

8/19/2021 Universal Plug and Play Device Architecture

The service must complete invoking the action and respond within 30 seconds, including expected transmission
time. Actions that take longer than this should be defined to return early and send an event when complete. If the
service fails to respond within this time, what the control point should do is application-specific. The service
must send a response in the following format. Values in italics are placeholders for actual values.

HTTP/1.1 200 OK

CONTENT-LENGTH: bytes in body

CONTENT-TYPE: text/xml; charset="utf-8"
DATE: when response was generated

EXT:

SERVER: 0S/version UPnP/1.0 product/version

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:actionNameResponse xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
<argumentName>out arg value</argumentName>
other out args and their values go here, if any
</u:actionNameResponse>
</s:Body>
</s:Envelope>

Listed below are details for the response line, headers, and body elements appearing in the listing above. All
header values and element names are case sensitive; values are not case sensitive except where noted. Except
where noted, the order of elements is insignificant. Except where noted, required elements must occur exactly
once (no duplicates), and recommended or optional elements may occur at most once.

Response line

HTTP/1.1
HTTP version.
200 OK
HTTP success code.

Headers

CONTENT-LANGUAGE

(No CONTENT-LANGUAGE header is used in control messages.)
CONTENT-LENGTH

Required. Length of body in bytes. Integer.
CONTENT-TYPE

Required. Must be text/xIm. Should include character coding used, e.g., utf-8.
DATE

Recommended. When response was generated. RFC 1123 date.
EXT

Required. Confirms that the MAN header was understood. (Header only; no value.)
SERVER

Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be
"http://schemas.xmlsoap.org/soap/envelope/". Must include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub elements:

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 42/65

8/19/2021 Universal Plug and Play Device Architecture

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the
following sub element:

actionNameResponse
Required. Name of element is action name prepended to Response. xmlns namespace
attribute must be service type enclosed in double quotes. Must be the first sub element of
Body. Contains the following sub element:

argumentName
Required if and only if action has out arguments. Value returned from action. Repeat
once for each out argument. If action has an argument marked as retval, this argument
must be the first element. (Element name not qualified by a namespace; element nesting
context is sufficient.) Single data type as defined by UPnP service description.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

If the service encounters an error while invoking the action sent by a control point, the service must send a
response within 30 seconds, including expected transmission time. Out arguments must not be used to convey
error information; out arguments must only be used to return data; error responses must be sent in the following
format. Values in italics are placeholders for actual values.

HTTP/1.1 500 Internal Server Error
CONTENT-LENGTH: bytes in body

CONTENT-TYPE: text/xml; charset="utf-8"
DATE: when response was generated

EXT:

SERVER: 0S/version UPnP/1.0 product/version

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<s:Fault>
<faultcode>s:Client</faultcode>
<faultstring>UPnPError</faultstring>
<detail>
<UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
<errorCode>error code</errorCode>
<errorDescription>error string</errorDescription>
</UPnPError>
</detail>
</s:Fault>
</s:Body>
</s:Envelope>

Listed below are details for the response line, headers, and body elements appearing in the listing above. All
header values and element names are case sensitive; values are not case sensitive except where noted. Except
where noted, the order of elements is insignificant. Except where noted, required elements must occur exactly
once (no duplicates), and recommended or optional elements may occur at most once.

Response line

HTTP/1.1
HTTP version.
500 Internal Server Error

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 43/65

8/19/2021 Universal Plug and Play Device Architecture
HTTP error code.

Headers

CONTENT-LANGUAGE

(No CONTENT-LANGUAGE header is used in control messages.)
CONTENT-LENGTH

Required. Length of body in bytes. Integer.
CONTENT-TYPE

Required. Must be text/xIm. Should include character coding used, e.g., utf-8.
DATE

Recommended. When response was generated. RFC 1123 date.
EXT

Required. Confirms that the MAN header was understood. (Header only; no value.)
SERVER

Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be
"http://schemas.xmlsoap.org/soap/envelope/". Must include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the
following sub element:

Fault
Required element defined by SOAP. Error encountered while invoking action. Should be
qualified with SOAP namespace. Contains the following sub elements:

faultcode
Required element defined by SOAP. Value must be qualified with the SOAP
namespace. Must be Client.
faultstring
Required element defined by SOAP. Must be UPnPError.
detail
Required element defined by SOAP.

UPnPError
Required element defined by UPnP.

errorCode
Required element defined by UPnP. Code identifying what error was
encountered. See table immediately below for values. Integer.
errorDescription
Recommended element defined by UPnP. Short description. See table
immediately below for values. String. Recommend < 256 characters.

The following table summarizes defined error types and the corresponding value for the errorCode and
errorDescription elements.

errorCode|errorDescription Description

DAOLZLLINZL] 4000
, , _ ROKOTATTTOU0Z
https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 44/65

8/19/2021 Universal Plug and Play Device Architecture

401 Invalid Action |No action by that name at this service.

402 Tnvalid Args Could be any of the followmg: not enough in args, too many in args, no in arg
by that name, one or more in args are of the wrong data type.

403 Out of Sync Out of synchronization.

501 Action Failed May be returned in current state of service prevents invoking that action.

600-699 |TBD Common action errors. Defined by UPnP Forum Technical Committee.

700-799 |TBD Actloq-sp601ﬁc errors for standard actions. Defined by UPnP Forum working
committee.

800-899 |TBD Action-specific errors for non-standard actions. Defined by UPnP vendor.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

3.3 Control: Query for variable

In addition to invoking actions on a device's service, control points may also poll the service for the value of a
state variable by sending a query message. A query message may query only one state variable; multiple query
messages must be sent to query multiple state variables.

This query message is decoupled from the service's eventing (if any). If a variable is moderated, then querying
for the value of the variable will generally yield more up-to-date values than those received via eventing. The
section on Eventing describes event moderation.

3.3.1 Control: Query: Invoke

To query for the value of a state variable, a control point must send a request in the following format. Values in
italics are placeholders for actual values.

POST path of control URL HTTP/1.1

HOST: host of control URL:port of control URL

CONTENT-LENGTH: bytes in body

CONTENT-TYPE: text/xml; charset="utf-8"

SOAPACTION: "urn:schemas-upnp-org:control-1-0#QueryStateVariable”

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:QueryStateVariable xmlns:u="urn:schemas-upnp-org:control-1-0">
<u:varName>variableName</u:varName>
</u:QueryStateVariable>
</s:Body>
</s:Envelope>

Listed below are details for the request line, headers, and body elements appearing in the listing above. All
header values and element names are case sensitive; values are not case sensitive except where noted. Except
where noted, the order of elements is insignificant. Except where noted, required elements must occur exactly
once (no duplicates), and recommended or optional elements may occur at most once.

Request line

POST
ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 45/65

8/19/2021 Universal Plug and Play Device Architecture

Method defined by HTTP.
path of control URL
Path component of URL for control for this service (controlURL sub element of service element of device
description). Single, relative URL.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of URL for control for this service
(controlURL sub element of service element of device description). If the port is empty or not given, port
80 is assumed.

ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header is used in control messages.)

CONTENT-LENGTH
Required. Length of body in bytes. Integer.

CONTENT-TYPE
Required. Must be text/xIlm. Should include character coding used, e.g., utf-8.

MAN
(No MAN header in request with method POST.)

SOAPACTION
Required header defined by SOAP. Must be "urn:schemas-upnp-org:control-1-0#QueryState Variable". If
used in a request with method M-POST, header name must be qualified with HTTP name space defined in
MAN header. Single URI.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be
"http://schemas.xmlsoap.org/soap/envelope/". Must include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub elements:

Body

Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the
following sub element:

QueryState Variable
Required element defined by UPnP. Action name. xmlns namespace attribute must be
"urn:schemas-upnp-org:control-1-0". Must be the first sub element of Body. Contains the
following, ordered sub element:

varName
Required element defined by UPnP. Variable name. Must be qualified by
QueryState Variable namespace. Values is name of state variable to be queried. String.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

If a request with POST is rejected with a response of "405 Method Not Allowed", then a control point must send
a second request with method M-POST and MAN as explained above.

3.3.2 Control: Query: Response ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 46/65

8/19/2021 Universal Plug and Play Device Architecture

To answer a query for the value of a state variable, the service must respond within 30 seconds, including
expected transmission time. If the service fails to respond within this time, what the control point should do is
application-specific. The service must send a response in the following format. Values in italics are placeholders
for actual values.

HTTP/1.1 200 OK

CONTENT-LENGTH: bytes in body

CONTENT-TYPE: text/xml; charset="utf-8"
DATE: when response was generated

EXT:

SERVER: 0S/version UPnP/1.0 product/version

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<u:QueryStateVariableResponse xmlns:u="urn:schemas-upnp-org:control-1-0">
<return>variable value</return>
</u:QueryStateVariableResponse>
</s:Body>
</s:Envelope>

Listed below are details for the response line, headers, and body elements appearing in the listing above. All
header values and element names are case sensitive; values are not case sensitive except where noted. Except
where noted, the order of elements is insignificant. Except where noted, required elements must occur exactly
once (no duplicates), and recommended or optional elements may occur at most once.

Response line

HTTP/1.1
HTTP version.
200 OK
HTTP success code.

Headers

CONTENT-LANGUAGE

(No CONTENT-LANGUAGE header is used in control messages.)
CONTENT-LENGTH

Required. Length of body in bytes. Integer.
CONTENT-TYPE

Required. Must be text/xIlm. Should include character coding used, e.g., utf-8.
DATE

Recommended. When response was generated. RFC 1123 date.
EXT

Required. Confirms that the MAN header was understood. (Header only; no value.)
SERVER

Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be
"http://schemas.xmlsoap.org/soap/envelope/". Must include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub elements:

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 47/65

8/19/2021 Universal Plug and Play Device Architecture

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the
following sub element:

QueryState VariableResponse
Required element defined by UPnP and SOAP. xmlns namespace attribute must be
"urn:schemas-upnp-org:control-1-0". Must be the first sub element of Body. Contains the
following sub element:

return
Required element defined by UPnP. (Element name not qualified by a namespace;
element nesting context is sufficient.) Value is current value of the state variable
specified in varName element in request.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

If the service cannot provide a value for the variable, then the service must send a response within 30 seconds,
including expected transmission time. The response must be sent in the following format. Values in italics are
placeholders for actual values.

HTTP/1.1 500 Internal Server Error
CONTENT-LENGTH: bytes in body

CONTENT-TYPE: text/xml; charset="utf-8"
DATE: when response was generated

EXT:

SERVER: 0S/version UPnP/1.0 product/version

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>
<s:Fault>
<faultcode>s:Client</faultcode>
<faultstring>UPnPError</faultstring>
<detail>
<UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
<errorCode>error code</errorCode>
<errorDescription>error string</errorDescription>
</UPnPError>
</detail>
</s:Fault>
</s:Body>
</s:Envelope>

Listed below are details for the response line, headers, and body elements appearing in the listing above. All
header values and element names are case sensitive; values are not case sensitive except where noted. Except
where noted, the order of elements is insignificant. Except where noted, required elements must occur exactly
once (no duplicates), and recommended or optional elements may occur at most once.

Response line

HTTP/1.1
HTTP version.
500 Internal Server Error
HTTP error code.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 48/65

8/19/2021 Universal Plug and Play Device Architecture
Headers

CONTENT-LANGUAGE

(No CONTENT-LANGUAGE header is used in control messages.)
CONTENT-LENGTH

Required. Length of body in bytes. Integer.
CONTENT-TYPE

Required. Must be text/xIm. Should include character coding used, e.g., utf-8.
DATE

Recommended. When response was generated. RFC 1123 date.
EXT

Required. Confirms that the MAN header was understood. (Header only; no value.)
SERVER

Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String.

Body

Envelope
Required element defined by SOAP. xmlns namespace attribute must be
"http://schemas.xmlsoap.org/soap/envelope/". Must include encodingStyle attribute with value
"http://schemas.xmlsoap.org/soap/encoding/". Contains the following sub elements:

Body
Required element defined by SOAP. Should be qualified with SOAP namespace. Contains the
following sub element:

Fault
Required element defined by SOAP. Why the service did not return a value for the variable.
Should be qualified with SOAP namespace. Contains the following sub elements:

faultcode
Required element defined by SOAP. Value should be qualified with SOAP namespace.
Must be Client.

faultstring
Required element defined by SOAP. Generic UPnP string describing errorCode. See
table immediately below for values.

detail
Required element defined by SOAP. Contains the following sub elements:

UPnPError
Required element defined by UPnP. Contains the following sub elements:

errorCode
Required element defined by UPnP. Code identifying what error was
encountered. See table immediately below for values. Integer.
errorDescription
Recommended element defined by UPnP. Short description. See table
immediately below for values. String. Recommend < 256 characters.

The following table summarizes defined error types and the corresponding value for the errorCode and
errorDescription elements.

errorCode|errorDescription Description

404 Invalid Var No state variable by that name at this service.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 49/65

8/19/2021 Universal Plug and Play Device Architecture

600-624 |TBD Common action errors. Defined by UPnP Forum Technical Committee.

625-649 |TBD Reserved for future use.

650-674 |TBD Actloq-spec1ﬁc errors for standard actions. Defined by UPnP Forum working
committee.

675-699 |TBD Action-specific errors for non-standard actions. Defined by UPnP vendor.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

3.4 Control references

FXPP
Flexible XML Processing Profile. Specifies that unknown XML elements and their sub elements must be
ignored. IETF draft.
HTTP Extension Framework
Describes a generic extension mechanism for HTTP. W3C request for comments.
RFC 1123
Includes format for dates, for, e.g., HTTP DATE header. IETF request for comments.
SOAP
Simple Object Access Protocol. Defines a protocol in XML, over HTTP, for remote procedure calls. IETF
draft and W3C Technical Report.
XML
Extensible Markup Language. W3C recommendation.

4. Eventing

Eventing is Step 4 in UPnP networking. Eventing comes after addressing (Step 0) where devices get a network
address, after discovery (Step 1) where control points find interesting device(s), and after description (Step 2)
where control points learn about device capabilities. Eventing is intimately linked with control (Step 3) where
control points send actions to devices. Through eventing, control points listen to state changes in device(s).
Control and eventing are complementary to presentation (Step 5) where control points display a user interface
provided by device(s).

After a control point has (1) discovered a device and (2) retrieved a description of the device and its services, the
control point has the essentials for eventing. As the section on Description explains, a UPnP service description
includes a list of actions the service responds to and a list of variables that model the state of the service at run
time. If one or more of these state variables are evented, then the service publishes updates when these variables
change, and a control point may subscribe to receive this information. Throughout this section, publisher refers
to the source of the events (typically a device's service), and subscriber refers to the destination of events
(typically a control point).

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 50/65

8/19/2021 Universal Plug and Play Device Architecture

L

To subscribe to eventing, a subscriber sends a subscription message. If the subscription is accepted, the publisher
responds with a duration for the subscription. To keep the subscription active, a subscriber must renew its
subscription before the subscription expires. When a subscriber no longer needs eventing from a publisher, the
subscriber should cancel its subscription. This section explains subscription, renewal, and cancellation messages
in detail below.

The publisher notes changes to state variables by sending event messages. Event messages contain the names of
one of more state variables and the current value of those variables, expressed in XML. A special initial event
message is sent when a subscriber first subscribes; this event message contains the names and values for all
evented variables and allows the subscriber to initialize its model of the state of the service. To support scenarios
with multiple control points, eventing is designed to keep all subscribers equally informed about the effects of
any action. Therefore, all subscribers are sent all event messages, subscribers receive event messages for all
evented variables (not just some), and event messages are sent no matter why the state variable changed (either
in response to a requested action or because the state the service is modeling changed). This section explains the
format of event messages in detail below.

Some state variables may change value too rapidly for eventing to be useful. One alternative is to filter, or
moderate, the number of event messages sent due to changes in a variable's value. Some state variables may
contain values too large for eventing to be useful; for this, or other reasons, a service may designate one or more
state variables as non evented and never send event messages to subscribers. To determine the current value for
such non-evented variables, control points must poll the service explicitly. This section explains how variable
eventing is described within a service description. The section on Control explains how to poll a service for a
variable value.

To send and receive subscription and event messages, control points and services use the following subset of the
overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning of this document.)

UPnP vendor [purple]
UPnP Forum [red] ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 51/65

8/19/2021 Universal Plug and Play Device Architecture

UPnP Device Architecture [green]

HTTP [black] |GENA [navy]

TCP [black]
IP [black]

At the highest layer, subscription and event messages contain vendor-specific information like URLs for
subscription and duration of subscriptions or specific variable values. Moving down the stack, vendor content is
supplemented by information from a UPnP Forum working committee, like service identifiers or variable names.
Messages from the layers above are hosted in UPnP-specific protocols, defined in this document. In turn, the
above messages are delivered via HTTP that has been extended using General Event Notification Architecture
(GENA) methods and headers. The HTTP messages are delivered via TCP over IP. For reference, colors in
[square brackets] above indicate which protocol defines specific header elements in the subscription messages
listed below.

The remainder of this section first explains subscription, including details of subscription messages, renewal
messages, and cancellation messages. Second, it explains in detail how event messages are formatted and sent to
control points, and the initial event message. Finally, it explains the UPnP Template Language as it pertains to
eventing.

4.1 Eventing: Subscription

A service has eventing if and only if one or more of the state variables are evented.

If a service has eventing, it publishes event messages to interested subscribers. The publisher maintains a list of
subscribers, keeping for each subscriber the following information.

unique subscription identifier
Required. Must be unique over the lifetime of the subscription, however long or short that may be.
Generated by publisher in response to subscription message. Recommend universally-unique identifiers to
ensure uniqueness. Single URI.
delivery URL for event messages
Required. Provided by subscriber in subscription message. Single URL.
event key
Required. Key is 0 for initial event message. Key must be sequentially numbered for each subsequent
event message; subscribers can verify that no event messages have been lost if the subscriber has received
sequentially numbered event keys. Must wrap to 1. Should be 4 Bytes (32 bits). Single integer.
subscription duration
Required. Amount of time, or duration until subscription expires. Single integer or keyword infinite.

The publisher should accept as many subscriptions as it can reasonably maintain and deliver.

The publisher may wish to persist subscriptions across power failures. While control points can recover from
complete network failure, if the problem is brief and localized to the device, reusing stored subscriptions may
speed recovery.

The list of subscribers is updated via subscription, renewal, and cancellation messages explained immediately
below and event messages explained later in this section.

To subscribe to eventing for a service, a subscriber sends a subscription message containing a URL for the
publisher, a service identifier for the publisher, and a delivery URL for event messages. The subscription

message may also include a requested duration for the subscription. The URL and service identifier for the
publisher come from a description message. As the section on Description explains, a description message

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 52/65

8/19/2021 Universal Plug and Play Device Architecture

contains a device description. A device description contains (among other things), for each service, an eventing
URL (in the eventSubURL element) and a service identifier (in the serviceld element); these correspond to the
URL and service identifier for the publisher, respectively. The URL for the publisher must be unique to a
particular service within this device.

The subscription message is a request to receive all event messages. No mechanism is provided to subscribe to
event messages on a variable-by-variable basis. A subscriber is sent all event messages from the service. This is
one factor to be considered when designing a service.

If the subscription is accepted, the publisher responds with unique identifier for this subscription and a duration
for this subscription. A duration should be chosen that matches assumptions about how frequently control points
are removed from the network; if control points are removed every few minutes, then the duration should be
similarly short, allowing a publisher to rapidly deprecate any expired subscribers; if control points are expected
to be semi-permanent, then the duration should be very long, minimizing the processing and traffic associated
with renewing subscriptions.

As soon as possible after the subscription is accepted, the publisher also sends the first, or initial event message
to the subscriber. This message includes the names and current values for all evented variables. (The data type
and range for each variable is described in a service description. The section on Description explains this in
more detail.)

To keep the subscription active, a subscriber must renew its subscription before the subscription expires by
sending a renewal message. The renewal message is send to the same URL as the subscription message, but the
renewal message does not include a delivery URL for event messages; instead the renewal message includes the
subscription identifier. The response for a renewal message is the same as one for a subscription message.

If a subscription expires, the subscription identifier becomes invalid, and the publisher stops sending event
messages to the subscriber and can clean up its list of subscribers. If the subscriber tries to send any message
other than a subscription message, the publisher will reject the message because the subscription identifier is
invalid.

When a subscriber no longer needs eventing from a particular service, the subscriber should cancel its
subscription. Canceling a subscription generally reduces service, control point, and network load. If a subscriber
1s removed abruptly from the network, it might be impossible to send a cancellation message. As a fallback, the
subscription will eventually expire on its own unless renewed.

Subscribers should monitor discovery messages from the publisher. If the publisher cancels its advertisements,
subscribers should assume that their subscriptions have been effectively cancelled.

Below is an explanation of the specific format of requests, responses, and errors for subscription, renewal, and
cancellation messages.

4.1.1 Eventing: Subscribing: SUBSCRIBE with NT and CALLBACK

For each service in a device, a description message contains an eventing URL (eventSubURL sub element of
service element in the device description) and the UPnP service identifier (serviceld sub element in service
element in device description). To subscribe to eventing for a particular service, a subscription message is sent to
that service's eventing URL. (Note that the eventing URL may be relative to the base URL.) The message
contains that service's identifier as well as a delivery URL for event messages. A subscription message may also
include a requested subscription duration.

To subscribe to eventing for a service, a subscriber must send a request with method SUBSCRIBE and NT and
CALLBACK headers in the following format. Values in italics are placeholders for actual values.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 53/65

8/19/2021 Universal Plug and Play Device Architecture

SUBSCRIBE publisher path HTTP/1.1

HOST: publisher host:publisher port

CALLBACK: <delivery URL>

NT: upnp:event

TIMEOUT: Second-requested subscription duration

(No body for request with method SUBSCRIBE, but note that the message must have a blank line following the
last HTTP header.)

Listed below are details for the request line and headers appearing in the listing above. All header values are
case sensitive except where noted.

Request line

SUBSCRIBE
Method defined by GENA. Initiate or renew a subscription.
publisher path
Path component of eventing URL (eventSubURL sub element in service element in device description).
Single, relative URL.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of eventing URL (eventSubURL sub
element in service element in device description). If the port is missing or empty, port 80 is assumed.
CALLBACK
Required header defined by GENA. Location to send event messages to. Defined by UPnP vendor. If there
is more than 1 URL, when the service sends events, it will try these URLs in order until one succeeds. One
or more URLs separated by angle brackets.
NT
Required header defined by GENA. Notification Type. Must be upnp:event.
SID
(No SID header is used to subscribe.)
TIMEOUT
Recommended. Requested duration until subscription expires, either number of seconds or infinite.
Recommendation by a UPnP Forum working committee. Defined by UPnP vendor. Keyword Second-
followed by an integer (no space) or keyword infinite.

If there are enough resources to maintain the subscription, the publisher should accept it. To accept the
subscription, the publisher assigns a unique identifier for the subscription, assigns a duration for the
subscription, and sends an initial event message (explained in detail later in this section). To accept a
subscription request, a publisher must send a response in the following format within 30 seconds, including
expected transmission time. Values in italics are placeholders for actual values.

HTTP/1.1 200 OK

DATE: when response was generated

SERVER: 0S/version UPnP/1.0 product/version
SID: uuid:subscription-UUID

TIMEOUT: Second-actual subscription duration

(No body for response to a request with method SUBSCRIBE, but note that the message must have a blank line
following the last HTTP header.)
, , . ROKU EXH. 1002
https://web.archive.org/web/20000816073450/http://upnp.org/UPnPDevice_Architecture_1.0.htm 54/65

8/19/2021 Universal Plug and Play Device Architecture

Listed below are details for headers appearing in the listing above. All header values are case sensitive except
where noted.

Headers

DATE
Recommended. When response was generated. RFC 1123 date.
SERVER
Required. Concatenation of OS name, OS version, UPnP/1.0, product name, and product version. String.
SID
Required header defined by GENA. Subscription identifier. Must be universally unique. Must begin with
uuid:. Defined by UPnP vendor. Single URI.
TIMEOUT
Required. Actual duration until subscription expires, either number of seconds or infinite.
Recommendation by a UPnP Forum working committee. Defined by UPnP vendor. Should be > 1800
seconds (30 minutes). Keyword Second- followed by an integer (no space) or keyword infinite.

If a publisher cannot accept another subscriber, or if there is an error with the subscription request, the publisher
must send a response with one of the following errors. The response must be sent within 30 seconds, including
expected transmission time.

Errors

Incompatible headers
400 Bad Request. If SID header and one of NT or CALLBACK headers are present, the publisher must
respond with HTTP error 400 Bad Request.

Missing or invalid CALLBACK
412 Precondition Failed. If CALLBACK header is missing or does not contain a valid HTTP URL, the
publisher must respond with HTTP error 412 Precondition Failed.

Invalid NT
412 Precondition Failed. If NT header does not equal upnp:event, the publisher must respond with HTTP
error 412 Precondition Failed.

Unable to accept subscription
5xx. If a publisher is not able to accept a subscription, it must respond with a HTTP 500-series error code.

Other errors may be returned by layers in the protocol stack below UPnP. Consult documentation on those
protocols for details.

4.1.2 Eventing: Renewing a subscription: SUBSCRIBE with SID

To renew a subscription to eventing for a particular service, a renewal message is sent to that service's eventing
URL. (Note that the eventing URL may be relative to the base URL.) However, unlike an initial subscription
message, a renewal message does not contain either the service's identifier nor a delivery URL for event
messages. Instead, the message contains the subscription identifier assigned by the publisher, providing an
unambiguous reference to the subscription to be renewed. Like a subscription message, a renewal message may
also include a requested subscription duration.

The renewal message uses the same method as the subscription message, but the two messages use a disjoint set
of headers; renewal uses SID and subscription uses NT and CALLBACK. A message that includes SID and
either of NT or CALLBACK headers is an error.

To renew a subscription to eventing for a service, a subscriber must send a request with method SUBSCRIBE
and SID header in the following format. Values in italics are placeholders for actual values.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 55/65

8/19/2021 Universal Plug and Play Device Architecture

SUBSCRIBE publisher path HTTP/1.1

HOST: publisher host:publisher port

SID: uuid:subscription UUID

TIMEOUT: Second-requested subscription duration

(No body for method with request SUBSCRIBE, but note that the message must have a blank line following the
last HTTP header.)

Listed below are details for the request line and headers appearing in the listing above. All header values are
case sensitive except where noted.

Request line

SUBSCRIBE
Method defined by GENA. Initiate or renew a subscription.
publisher path
Path component of eventing URL (eventSubURL sub element in service element in device description).
Single, relative URL.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of eventing URL (eventSubURL sub
element in service element in device description). If the port is missing or empty, port 80 is assumed.
CALLBACK
(No CALLBACK header is used to renew an event subscription.)
NT
(No NT header is used to renew an event subscription.)
SID
Required header defined by GENA. Subscription identifier. Must be the subscription identifier assigned by
publisher in response to subscription request. Must be universally unique. Must begin with uuid:. Defined
by UPnP vendor. Single URI.
TIMEOUT
Recommended. Requested duration until subscription expires, either number of seconds or infinite.
Recommendation by a UPnP Forum working committee. Defined by UPnP vendor. Keyword Second-
followed by an integer (no space) or keyword infinite.

To accept a renewal, the publisher reassigns a duration for the subscription and must send a response in the same
format as a response to a request for a new subscription. (No initial event message.)

If a publisher cannot accept the renewal, or if there is an error with the renewal request, the publisher must send
a response with one of the following errors. The response must be sent within 30 seconds, including expected
transmission time.

Errors

Incompatible headers
400 Bad Request. If SID header and one of NT or CALLBACK headers are present, the publisher must
respond with HTTP error 400 Bad Request.

Invalid SID

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 56/65

8/19/2021 Universal Plug and Play Device Architecture

412 Precondition Failed. If a SID does not correspond to a known, un-expired subscription, the publisher
must respond with HTTP error 412 Precondition Failed.

Missing SID
412 Precondition Failed. If the SID header is missing or empty, the publisher must respond with HTTP
error 412 Precondition Failed.

Unable to accept renewal
5xx. If the publisher is not able to accept a renewal, it must respond with a HTTP 500-series error code.

Other errors may be returned by layers in the protocol stack below UPnP. Consult documentation on those
protocols for details.

4.1.3 Eventing: Canceling a subscription: UNSUBSCRIBE

When eventing is no longer needed from a particular service, a cancellation message should be sent to that
service's eventing URL. (Note that the eventing URL may be relative to the base URL.) The message contains
the subscription identifier. Canceling a subscription generally reduces service, control point, and network load. If
a control point is removed abruptly from the network, it might be impossible to send a cancellation message. As
a fallback, the subscription will eventually expire on its own unless renewed.

To cancel a subscription to eventing for a service, a subscriber should send a request with method
UNSUBSCRIBE in the following format. Values in ifalics are placeholders for actual values.

UNSUBSCRIBE publisher path HTTP/1.1
HOST: publisher host:publisher port
SID: uuid:subscription UUID

(No body for request with method UNSUBSCRIBE, but note that the message must have a blank line following
the last HTTP header.)

Listed below are details for the request line and headers appearing in the listing above. All header values are
case sensitive except where noted.

Request line

UNSUBSCRIBE
Method defined by GENA. Cancel a subscription.
publisher path
Path component of eventing URL (eventSubURL sub element in service element in device description).
Single, relative URL.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of eventing URL (eventSubURL sub
element in service element in device description). If the port is missing or empty, port 80 is assumed.
CALLBACK
(No CALLBACK header is used to cancel an event subscription.)
NT
(No NT header is used to cancel an event subscription.)
SID

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 57165

8/19/2021 Universal Plug and Play Device Architecture

Required header defined by GENA. Subscription identifier. Must be the subscription identifier assigned by
publisher in response to subscription request. Must be universally unique. Must begin with uuid:. Defined
by UPnP vendor. Single URI.

TIMEOUT
(No TIMEOUT header is used to cancel an event subscription.)

To cancel a subscription, a publisher must send a response in the following format within 30 seconds, including
expected transmission time.

HTTP/1.1 200 OK

If there is an error with the cancellation request, the publisher must send a response with one of the following
errors. The response must be sent within 30 seconds, including expected transmission time.

Errors

Incompatible headers
400 Bad Request. If SID header and one of NT or CALLBACK headers are present, the publisher must
respond with HTTP error 400 Bad Request.

Invalid SID
412 Precondition Failed. If a SID does not correspond to a known, un-expired subscription, the publisher
must respond with HTTP error 412 Precondition Failed.

Missing SID
412 Precondition Failed. If the SID header is missing or empty, the publisher must respond with HTTP
error 412 Precondition Failed.

Other errors may be returned by layers in the protocol stack below UPnP. Consult documentation on those
protocols for details.

4.2 Eventing: Event messages

A service publishes changes to its state variables by sending event messages. These messages contain the names
of one or more state variables and the current value of those variables. Event messages should be sent as soon as
possible to get accurate information about the service to subscribers and allow subscribers to display a
responsive user interface. If the value of more than one variable is changing at the same time, the publisher
should bundle these changes into a single event message to reduce processing and network traffic.

As explained above, an initial event message is sent when a subscriber first subscribes; this event message
contains the names and values for all evented variables and allows the subscriber to initialize its model of the
state of the service. This message should be sent as soon as possible after the publisher accepts a subscription.

Event messages are tagged with an event key. A separate event key must be maintained by the publisher for each
subscription to facilitate error detection (as explained below). The event key for a subscription is initialized to 0
when the publisher sends the initial event message. For each subsequent event message, the publisher increments
the event key for a subscription, and includes that updated key in the event message. Any implementation of
event keys should handle overflow and wrap the event key back to 1 (not 0). Subscribers must also handle this
special case when the next event key is not an increment of the previous key. Should be implemented as a 4 Byte
(32 bit) integer.

If there is no response from a subscriber to the event message, the publisher should continue to send event
messages to the subscriber until the subscription expires.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 58/65

8/19/2021 Universal Plug and Play Device Architecture

To repair an event subscription, e.g., if a subscriber has missed one or more event messages, a subscriber must
unsubscribe and re-subscribe. By doing so, the subscriber will get a new subscription identifier, a new initial
event message, and a new event key.

4.2.1 Eventing: Event messages: NOTIFY

To send an event message, a publisher must send a request with method NOTIFY in the following format.
Values in italics below are placeholders for actual values.

NOTIFY delivery path HTTP/1.1
HOST: delivery host:delivery port
CONTENT-TYPE: text/xml
CONTENT-LENGTH: Bytes in body

NT: upnp:event

NTS: upnp:propchange

SID: uuid:subscription-UUID

SEQ: event key

<e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
<e:property>
<variableName>new value</variableName>
</e:property>
Other variable names and values (if any) go here.
</e:propertyset>

Listed below are details for the request line, headers, and body elements appearing in the listing above. All
header values are case sensitive except where noted. All body elements and attributes are case sensitive; body
values are not case sensitive except where noted. Except where noted, the order of elements is insignificant.
Except where noted, required elements must occur exactly once (no duplicates), and recommended or optional
elements may occur at most once.

Request line

NOTIFY
Method defined by GENA. Notify client about event.
delivery path
Path component of delivery URL (CALLBACK header in subscription message). Destination for event
message. Single, relative URL.
HTTP/1.1
HTTP version.

Headers

HOST
Required. Domain name or IP address and optional port components of delivery URL (CALLBACK
header in subscription message). If the port is missing or empty, port 80 is assumed.
ACCEPT-LANGUAGE
(No ACCEPT-LANGUAGE header is used in event messages.)
CONTENT-LENGTH
Required. Length of body in Bytes. Integer.
CONTENT-TYPE
Required. Must be text/xml.
NT
Required header defined by GENA. Notification Type. Must be upnp:event.
NTS
Required header defined by GENA. Notification Sub Type. Must be upnp:pﬁgkﬁﬂgEXH 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 59/65

8/19/2021 Universal Plug and Play Device Architecture

SID
Required header defined by GENA. Subscription identifier. Must be universally unique. Must begin with
uuid:. Defined by UPnP vendor. Single URL

SEQ
Required header defined by UPnP. Event key. Must be 0 for initial event message. Must be incremented
by 1 for each event message sent to a particular subscriber. Should be 8 Bytes long. To prevent overflow,
must be wrapped to 1. Single integer.

Body

propertyset
Required. xmlns namespace attribute must be urn:schemas-upnp-org:event-1-0. All sub elements must be
qualified with this namespace. Contains the following sub element.

property
Required. Repeat once for each variable name and value in the event message. Must be qualified by
propertyset namespace. Contains the following sub element.

variableName
Required. Element is name of a state variable that changed (name sub element of
stateVariable element in service description). Must be qualified by propertyset namespace.
Values is the new value for this state variable. Single data type as specified by UPnP service
description.

For future extensibility, when processing XML like the listing above, as specified by the Flexible XML
Processing Profile (FXPP), devices and control points must ignore: (a) any unknown elements and their sub
elements or content, and (b) any unknown attributes and their values.

To acknowledge receipt of this event message, a subscriber must respond within 30 seconds, including expected
transmission time. If a subscriber does not respond within 30 seconds, the publisher should abandon sending this
message to the subscriber but should keep the subscription active and send future event messages the subscriber
until the subscription expires or is cancelled. The subscriber must send a response in the following format.

HTTP/1.1 200 OK

(No body for a request with method NOTIFY, but note that the message must have a blank line following the last
HTTP header.)

If there is an error with the event message, the subscriber must respond with one of the following errors. The
response must be sent within 30 seconds, including expected transmission time.

Errors

Missing SID
412 Precondition Failed. If the SID header is missing or empty, the subscriber must respond with HTTP
error 412 Precondition Failed.

Invalid SID
412 Precondition Failed. If a SID does not correspond to a known subscription, the subscriber must
respond with HTTP error 412 Precondition Failed. (Service must terminate this SID when it receives this
error response.)

Missing NT or NTS header
400 Bad Request. If the NT or NTS header is missing, the subscriber must respond with HTTP error 400
Bad Request.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 60/65

8/19/2021 Universal Plug and Play Device Architecture

Invalid NT header
412 Precondition Failed. If NT header does not equal upnp:event, the subscriber must respond with HTTP
error 412 Precondition Failed.

Invalid NTS header
412 Precondition Failed. If NTS header does not equal upnp:propchange, the subscriber must respond
with HTTP error 412 Precondition Failed.

Other errors may be returned by layers in the protocol stack below UPnP. Consult documentation on those
protocols for details.

4.3 Eventing: UPnP Template Language for eventing

The UPnP Template Language defines well-formed templates for devices and services. To a lesser extent, it also
provides a template for the body of event messages. The section on Description explains the UPnP Template
Language as it pertains to devices and services. As explained in that section, the UPnP Template Language is
written in XML syntax and is derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Below is a
listing of this language as it pertains to eventing. The elements it defines are used in event messages; they are
colored green here, and they are colored green in the listing above. Below is where these elements are defined
(though it 1s a minimal definition); above is where they are used.

Immediately following this is a brief explanation of the XML Schema elements, attributes, and values used. The
reference to XML Schema at the end of this section has further details.

UPnP Template Language for eventing

<?xml version="1.0" ?>
<Schema name="urn:schemas-upnp-org:event-1-0"
xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType name="propertyset" content="eltOnly">
<element type="property"” minOccurs="1" maxOccurs="*" />
</ElementType>
<ElementType name="property" content="eltOnly" />
</Schema>

element
References an element for the purposes of declaring nesting. maxOccurs attribute defines maximum
number of times the element must occur; default is maxOccurs = 1; elements that can appear one or more
times have maxOccurs = *.

ElementType
Defines an element in the new, derived language. name attribute defines element name. model attribute
indicates whether elements in the new, derived language can contain elements not explicitly specified
here; when only unspecified sub elements may be included, model=open. content attribute indicates what
content may contain; elements that contain only other elements have content = eltOnly.

As explained in the section on Description, the UPnP Template Language for services also specifies a
sendEvents attribute for a state variable. The default value for this attribute is yes. To denote that a state variable
is evented, the value of this attribute is yes (or the attribute is omitted) in a service description; to denote that a
state variable is non-evented, the value is no. Note that if all of a service's state variables are non-evented, the
service has nothing to publish, and control points cannot subscribe and will not receive event messages from the
service.

4.4 Eventing: Augmenting the UPnP Template Language

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 61/65

8/19/2021 Universal Plug and Play Device Architecture

It is useful to augment the description of devices and services with annotations that are not captured in the UPnP
Template Language. To a lesser extent, there is value in these annotations to capture event filtering, or
moderation.

As explained above, some state variables may change value too rapidly for eventing to be useful. Below is a
recommended vocabulary for UPnP Forum working committees or UPnP vendors to document moderation in
the number of event messages sent due to changes in a variables value.

maximumRate = n
Optional. State variable v will not be part of an event message more often than n seconds. If v is the only
variable changing, then an event message will not be generated more often than every n seconds. If v
ceases to change after an event message has been sent but before n seconds have transpired, an event
message must be sent with the new value of v. Recommended for variables that model continuously
changing properties. Single integer.

minimumDelta = n
Optional. State variable v will not be part of an event message unless its value has changed by more than n
* allowedValueRange step since the last time an event message was sent that included v, e.g., unless v has
been incremented z times. (cf. INCREMENT, INCREMENT BOUNDED, and INCREMENT WRAP
explained in the section on Control.) Only defined variables with number and real data type.
Recommended for variables that model counters. Single integer.

The publisher can send out any changed moderated variable when an event goes out. The publisher should make
its best attempt to meet moderation rules described above, but the publisher can flush recent changes when it
sends out events.

Note that moderation affects events only and not state table updates. Specifically, QueryStateVariable may return
a more current value than published via eventing. Put another way, moderation means that not all state table
changes result in events.

Decisions about which variables to event and any possible moderation is up to the appropriate UPnP Forum
working committee (for standard services) or a UPnP vendor (for non-standard services).

4.5 Eventing references

FXPP
Flexible XML Processing Profile. Specifies that unknown XML elements and their sub elements must be
ignored. IETF draft.

GENA
General Event Notification Architecture. IETF draft.

XML Schema (Part 1: Structures, Part 2: Datatypes)
Grammar defining UPnP Template Language. Defined using XML. W3C working draft. Part 1:
Structures. Part 2: Datatypes.

5. Presentation

Presentation is Step 5 in UPnP networking. Presentation comes after addressing (Step 0) where devices get
network addresses, after discovery (Step 1) where control points find interesting device(s), and after description
(Step 2) where control points learn about device capabilities. Presentation exposes an HTML-based user
interface for controlling and/or viewing device status. Presentation is complementary to control (Step 3) where
control points send actions to devices, and eventing (Step 4) where control points listen to state changes in
device(s).

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 62/65

8/19/2021 Universal Plug and Play Device Architecture

After a control point has (1) discovered a device and (2) retrieved a description of the device, the control point is
ready to begin presentation. If a device has a URL for presentation, then the control point can retrieve a page
from this URL, load the page into a browser, and depending on the capabilities of the page, allow a user to
control the device and/or view device status. The degree to which each of these can be accomplished depends on
the specific capabilities of the presentation page and device.

The URL for presentation is contained within the presentationURL element in the device description. The device
description is delivered via a description message. The section on Description explains the device description
and description messages in detail.

Retrieving a presentation page is a simple HTTP-based process and uses the following subset of the overall
UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning of this document.)

UPnP vendor [purple]

UPnP Device Architecture [green]
HTTP [black]

TCP [black]

IP [black]

At the highest layer, the presentation page is specified by a UPnP vendor. Moving down the stack, the UPnP
Device Architecture specifies that this page be written in HTML. The page is delivered via HTTP over TCP over
IP. For reference, colors in [square brackets] are included for consistency with other sections in this document.

To retrieve a presentation page, the control point issues an HTTP GET request to the presentation URL, and the
device returns a presentation page.

Unlike the UPnP Device and Service Templates, and standard device and service types, the capabilities of the
presentation page are completely specified by the UPnP vendor. The presentation page is not under the auspices
of a UPnP Forum working committee. The page must be an HTML page; it should be version HTML 3.0 or
later. However, other design aspects are left to the vendor to specify. This includes, but is not limited to, all
capabilities of the control point's browser, scripting language or browser plug-ins used, and means of interacting
with the device. To implement a presentation page, a UPnP vendor may wish to use UPnP mechanisms for
control and/or eventing, leveraging the device's existing capabilities but is not constrained to do so.

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 63/65

8/19/2021 Universal Plug and Play Device Architecture

Presentation pages should use mechanisms provided by HTML for localization (e.g., META tag with charset
attribute). Control points should use the ACCEPT-/ CONTENT-LANGUAGE feature of HTTP to try to retrieve
a localized presentation page. Specifically, a control point may include a HTTP ACCEPT-LANGUAGE header
in the request for a presentation page; if an ACCEPT-LANGUAGE header is present in the request, the response
must include a CONTENT-LANGUAGE header to identify the page's language.

5.1 Presentation references

HTML
HyperText Markup Language. W3C recommendation. <http://www.w3.org/MarkUp/>.

Glossary

action
Command exposed by a service. Takes one or more input or output arguments. May have a return value.
For more information, see sections on Description and Control.

argument
Parameter for action exposed by a service. May be in xor out. For more information, see sections on
Description and Control.

control point
Retrieves device and service descriptions, sends actions to services, polls for service state variables, and
receives events from services.

device
Logical device. A container. May embed other logical devices. Embeds one or more services. For more
information, see section on Description.

device description
Formal definition of a logical device, expressed in the UPnP Template Language. Written in XML syntax.
Specified by a UPnP vendor by filling in the placeholders in a UPnP Device Template, including, e.g.,
manufacturer name, model name, model number, serial number, and URLSs for control, eventing, and
presentation. For more information, see section on Description.

device type
Standard device types are denoted by urn:schemas-upnp-org:device: followed by a unique name assigned
by a UPnP Forum working committee. One-to-one relationship with UPnP Device Templates. UPnP
vendors may specify additional device types; these are denoted by urn:domain-name:device: followed by a
unique name assigned by the vendor, where domain-name is a domain name registered to the vendor. For
more information, see section on Description.

event
Notification of one or more changes in state variables exposed by a service. For more information, see
section on Eventing.

publisher
Source of event messages. Typically a device's service. For more information, see section on Eventing.

root device
A logical device that is not embedded in any other logical device. For more information, see section on
Description.

service
Logical functional unit. Smallest units of control. Exposes actions and models the state of a physical
device with state variables. For more information, see section on Control.

service description
Formal definition of a logical service, expressed in the UPnP Template language. Written in XML syntax.
Specified by a UPnP vendor by filling in any placeholders in a UPnP Service Template. (Was SCPD.) For
more information, see section on Description.

service type

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 64/65

https://web.archive.org/web/20000816073450/http://www.w3.org/MarkUp/

8/19/2021 Universal Plug and Play Device Architecture

Standard service types are denoted by urn:schemas-upnp-org:service: followed by a unique name assigned
by a UPnP forum working committee, colon, and an integer version number. One-to-one relationship with
UPnP Service Templates. UPnP vendors may specify additional services; these are denoted by
urn:domain-name:service: followed by a unique name assigned by the vendor, colon, and a version
number, where domain-name is a domain name registered to the vendor. For more information, see section
on Description.

SOAP
Simple Object Access Protocol. A remote-procedure call mechanism based on XML that sends commands

and receives values over HTTP. For more information, see section on Control.
SSDP
Simple Service Discovery Protocol. A multicast discovery and search mechanism that uses a multicast
variant of HTTP over UDP. For more information, see section on Discovery.
state variable
Single facet of a model of a physical service. Exposed by a service. Has a name, data type, optional
default value, optional constraints values, and may trigger events when its value changes. For more
information, see sections on Description and Control.
subscriber
Recipient of event messages. Typically a control point. For more information, see section on Eventing.
UPnP Device Template
Template listing device type, required embedded devices (if any), and required services. Written in XML
syntax and derived from the UPnP Template Language. Defined by a UPnP Forum working committee.
One-to-one relationship with standard device types. For more information, see section on Description.
UPnP Service Template
Template listing action names, parameters for those actions, state variables, and properties of those state
variables. Written in XML syntax and derived from the UPnP Template Language. Defined by a UPnP
Forum working committee. One-to-one relationship with standard service types. For more information,
see section on Description.
UPnP Template Language
Defines the elements and attributes used in UPnP Device and Service Templates. Written in XML syntax
and derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Defined by the UPnP Device
Architecture herein. For more information, see section on Description.

EOF

ROKU EXH. 1002

https://web.archive.org/web/20000816073450/http://upnp.org/lUPnPDevice_Architecture_1.0.htm 65/65

APPENDIX V

ROKU EXH. 1002

SERVICE
LOCATION
PROTOCOL:

Automatic
Discovery of |
Network Services

ERIK GUTTMAN, Sun Microsystems

servers, peers, and infrastructure—is a key problem facing network
technology’s advance. As long as configuration remains difficult, net-
work administration will be expensive, tedious, and troublesome, and users
will be unable to take advantage of the full range of capabilities networked

T he complexity of configuring every element in the network—clients,

systems could provide. The Service Location Protocol! is an Internet Engi-
neering Task Force standard for enabling network-based applications to
automatically discover the location—including address or domain name
and other configuration information—of a required service. Clients can
connect to and make use of services using SLP. Currently, without SLP,
service locations must be manually configured or entered into a configu-
ration file. SLP provides for fully decentralized operation and scales from
small, unadministered networks to large enterprise networks with policies
dictating who can discover which resources.

This article describes SLP’s operation and how it adapts to conditions
where infrastructure is not available, where administration is minimal, or
where network administrators simply wish to reduce workload.

BACKGROUND

The Service Location Protocol (SVRLOC) working group has been active
in the IETF for several years. In 1997, the group published SLP Version 1
as a Proposed Standard RFC.! In June 1999, the Internet Engineering Steer-
ing Group announced that Version 2 and its related documents were pro-
moted to Proposed Standard RFCs as well.? SLPv2, which updates and
replaces SLPv1, is the subject of this article. It removes several of the orig-
inally imposed requirements, provides protocol extensibility (new options
can be added without modifying the base protocol), adheres to new IESG
protocol recommendations, improves security, and eliminates a number of
inconsistencies in the SLPv1 specification.

IEEE INTERNET COMPUTING 1089-7801/99/510.00 ©1999 IEEE

>
S
_
o
S
&
5
S
4

As computers become more

portable and networks larger
and more pervasive, the

need to automate the location
and client

configuration for

network services also
increases. The Service Location
Protocol is an IETF standard
that provides a scalable
framework for automatic
resource discovery on IP

networks.

hltp://compuler.org/interne!/ JULY « AUGUST 1999 n

ROKU EXH. 1002

72

A UTOCONTF.I

G URAT I ON

DA

DA)

Active DA discovery

Service request
UA
DA advertisement SA
Passive DA discovery
DA adverhsement UA
L 1| SA

Figure 1. Methods of DA discovery. In active discovery, User
Agents and Service Agents multicast requests to locate Directory
Agents on the network, whereas, in passive discovery, UAs and
SAs learn of DAs via periodic multicast advertisements.

JULY « AUGUST 1999

Backward compatibility with SLPv1 depends on
whether the Directory Agent (described in the next
section) supports both versions. For example, Sun
has successfully implemented a backwardly com-
patible SLP DA. Otherwise, backward compatibil-
ity requires a Service Agent (also described below)
to implement both versions of the protocol.

Problems with Earlier Protocols

Prior to SLE, service discovery protocols allowed
users to discover services only by type. For instance,
both Apple and Microsoft offered networking pro-
tocols that could discover instances of printers and
file servers, and users had to then select from the
list to meet their needs. From the beginning, the
SVRLOC working group sought a solution that
would allow network software to discover services
according to their characteristics as well as type.
Thus, clients would be able to explicitly discover
services that met their requirements, and software
could automatically obtain the service location
without bothering users.

On the other hand, since services are advertised
along with their characteristics, SLP also enables
rich user interaction. SLP enables browser opera-
tions since the protocol includes a set of directory-
like functions. Thus, clients using SLP can browse
all the available types of service. These clients may
also request the attributes of a class of service, which
aids in formulating interactive requests. Finally,
SLP makes it possible to look up the attributes of
a particular service once it has been discovered.

Another problem with the proprietary protocols
was their notorious lack of scalability. The

hitp://computer.org/internet/

SRVLOC working group sought to correct this
problem by minimizing the impact of service dis-
covery on the network. SLP uses multicast and
Dynamic Host Configuration Protocol® to initial-
ize its scalable service discovery framework without
the need for configuring individual SLP agents.
SLP can operate in networks ranging from a single
LAN to a network under a common administra-
tion, also known as an enterprise network. These
networks can be quite large (potentially tens of
thousands of networked devices). Neither multi-
cast discovery nor DHCP scales to the Internet,
since these protocols must be configured and
administered. Moreover, the Internet lacks a com-
mon centralized administration. To the extent that
SLP relies on either multicast discovery or DHCP
for its own configuration, SLP does not scale to the
Internet.

Current SLP Implementations

Sun Microsystems, Novell, IBM, Apple, Axis Com-
munications, Lexmark, Madison River Technolo-
gies, and Hewlett-Packard have adopted SLPv1,
and, increasingly, SLPv2 for products. There are also
two reference implementations of SLPv2 available
from http://www.srvloc.org/.

PROTOCOL OVERVIEW

SLP establishes a framework for resource discovery
that includes three “agents” that operate on behalf
of the nertwork-based software:

m User Agents (UA) perform service discovery on
behalf of client software.

m Service Agents (SA) advertise the location and
attributes on behalf of services.

m Directory Agents (DA) aggregate service infor-
mation into what is initially a stateless
repository.

Figure 1 illustrates the two different methods for
DA discovery: active and passive. In active discov-
ery, UAs and SAs multicast SLP requests to the net-
work. In passive discovery, DAs multicast adver-
tisements for their services and continue to do this
periodically in case any UAs or SAs have failed to
receive the initial advertisement.

UAs and SAs can also learn the locations of DAs
by using the DHCP options for Service Location,
SLP DA Option (78).f DHCP servers, configured
by network administrators, can use DHCP Option
78 to distribute the addresses of DAs to hosts that
request them. SLP agents configured in this man-

IEEE INTERNET COMPUTING

ROKU EXH. 1002

S E

R V

I C E L OCATI ON P R OTOCO

L

ner do not require the use of multicast discovery,
since this is only used to discover DAs and to dis-
cover services in the absence of DAs.

Operational Modes
SLP has two modes of operation:

m When a DA is present, it collects all service
information advertised by SAs, and UAs uni-
cast their requests to the DA.

m In the absence of a DA, UAs repeatedly multi-
cast the same request they would have unicast
to a DA. SAs listen for these multicast requests
and unicast responses to the UA if it has adver-
tised the requested service.

When a DA is present, UAs receive faster respons-
es, SLP uses less network bandwidth, and fewer (or
zero) multicast messages are issued.

Aside from unsolicited announcements sent by
DAEs, all messages in SLP are requests that elicit
responses. By default, SLP agents send all messages
in UDP datagrams; TCP is used only to send mes-
sages that don't fit in a single datagram.

Service Advertisements

Services are advertised using a Service URL, which
contains the service’s location: the IP address, port
number and, depending on the service type, path.
Client applications that obtain this URL have all
the information they need to connect to the adver-
tised service. The actual protocol the client uses to
communicate with the service is independent of
SLP.

Service Templates>—documents registered with
the Internet Assigned Numbers Authority
(IANA)—define the attributes associated with ser-
vice advertisements. Templates specify the attrib-
utes, and their default values and interpretation,
for a particular service type. SAs advertise services
according to attribute definitions in the Service
Templates, and UAs issue requests using these same
definitions. This ensures interoperablility between
vendors because every client will request services
using the same vocabulary, and every service will
advertise itself using well-known attributes.

OPERATIONS AND SCENARIOS

SLP operates in several different scenarios.
Initialization

At startup, UAs and SAs first determine whether
there are any DAs on the network. DA addresses

IEEE INTERNET COMPUTING

In SLP, User Agents and Service Agents can use the multicast con-
vergence algorithm to discover Directory Agents. UAs can also use
it fo issue requests when no DA is present. This algorithm allows
SLP agents to receive replies from more responders than they could
with standard multicast. Ordinarily in multicast, if there are many
responders, a requester is likely to be inundated by the implosion
of responses.

The SLP agent attempting to discover services {or DAs) issues
an SLP Service Request message using multicast. This may result
in one or more unicast response messages. After a wait period,
the request is reissued with an appended “previous responders
list,” including the address of each SLP agent that has already
responded. When SAs or DAs receive requests, they first examine
the previous responder list. If they discover themselves on the list,
they do not respond to the request.

The previous responder list can contain about 60-100 entries
before it, combined with the request, becomes too large to fit in
the request datagram. Reliable multicast is a notoriously difficult
problem, but SLP’s multicast convergence algorithm provides a
“semi-reliable” multicast transaction.

Figure A illustrates the algorithm’s operation as used in DA
discovery. When the request is first sent, DAs 1, 2, and 3 reply,
but the reply from DA 3 is lost. When the request is retransmitted
a second time, DAs 1 and 2 do not respond, but since DA 3 is
not yet on the list, it replies again. On the third retransmission
no DAs respond since they all finally appear on the previous
responders list.

Service request 1
—_—

) / DA2

/ oA

DA advertisement

UA

Service request
) (PR list includes DAs 1 and 2)
-

DA3

Service request
) (PR list includes DAs 1, 2, and 3)
—

\j

Figure A. The mulficast convergence algorithm in DA discovery.

http://computer.org/internet/

ROKU EXH. 1002

JULY » AUGUST 1999

73

74

A UT O CONF.I

G URATI1I ON

Presentation
client application

UA

Overhead
projechion server

Unicast
registration

Unicast
discovery

'
'
'
'
'
'
i
)
'
)

Figure 2. Normal operation of SLP. The SA registers the overhead
projection server’s location with the DA, and in response to the
UA's Service Request message, it obtains this location from the DA
via a Service Reply message.

JULY « AUGUST 1999

can be configured statically (either manually con-
figured, read from a configuration file, or hard-
coded). DA locations can also be obtained dynam-
ically using DHCP as discussed above. In these
cases, there is no need to perform DA discovery. In
all other cases, UAs and SAs use the SLP multicast
convergence algorithm to discover DAs (see the
sidebar, “SLP Multicast Convergence Algorithm”).
They multicast Service Request messages to obtain
DA advertisement messages, which include the Ser-
vice URL? as well as the DA’ scope, atrributes, and
digital signature. From this information UAs and
SAs can locate the correct DA for message exchange.

Standard Case

Figure 2 depicts SLP’s normal operation. In this
example, a client program seeks an overhead pro-
jection server to display a presentation to an assem-
bled audience. The SA registers the service’s loca-
tion with the DA, and the UA obtains this location
from the DA in a Service Reply message.

Note that the SLP agents depicted may or may not
reside on separate networked computers, but only
one DA or SA can be on any given machine, due to
the rules of the multicast convergence algorithm.

The networked service process advertises itself by
registering with a DA, using an internal Service Loca-
tion Protocol APL.® An SA on the same computer as
the network service registers service information by
sending a Service Registration message to the DA and
awaiting a Service Acknowledgment in reply.

Service registrations have lifetimes no greater
than 18 hours, so the SA must reregister the service
periodically, or the lifetime expires. In the event

http://computer.org/internet/

that the service terminates, the SA can optionally
send a Service Deregister message to the DA; but
even in the worst case, when the service fails, the
registration will age out. This ensures that stale
information will not persist with the DA.

Client software can use the standard Service Loca-
tion Protocol API to find the particular service it
requires. In this case, a UA sends the DA a Service
Request that includes a search filter that is syntacti-
cally identical to the request format used by version
3 of the Lightweight Directory Access Protocol.” SLP
thereby provides a directory-like lookup of all ser-
vices that match the client’s requirements. The DA
returns a Service Reply message containing Service
URLs and enough information for the client to con-
tact each service that matches the request.

Larger Network Environments

A DA may serve thousands of clients and servers,
so SLP gives administrators ways to improve over-
all performance and scalability of an SLP deploy-
ment as DAs become more loaded.

More DA:s. First of all, administrators can simply
activate more DAs to enhance SLP performance.
Because SAs register with each DA they detect, all
DAs will eventually contain the same service infor-
mation, provided that all SAs can find them all. (Of
course, sometimes this is neither possible nor desir-
able.) Adding more DAs creates roughly duplicate
repositories of service information without requir-
ing any formal database synchronization between
them. Moreover, since UAs can choose any avail-
able DA to issue requests to, the load will be shared
among DAs. Additional DAs also provide robust-

ness in cases where one fails or becomes overloaded.

Scope. The second mechanism for increasing SLP
scalability is scope. A scope is a string used to group
resources by location, network, or administrative cat-
egory. SAs and UAs are by default configured with
the scope string “default.” Figure 3, for example,
shows how a UA issuing requests in the legal depart-
ment of an organization might find services within
that scope, but not in accounts payable. (Note that
services may be available in multiple scopes.)

UAs can accumulate DA advertisements to form
lists of all available scopes. When no DAs are pre-
sent, UAs can multicast requests for SA advertise-
ments to create lists of scopes supported by the SAs.

DHCP. SLP agents (UAs, SAs, and DAs) can access

non-default scopes via static configuration or

IEEE INTERNET COMPUTING

ROKU EXH. 1002

S E

R V1 C E

L OCATI ON

PR OTOCOL

DHCP Option for Service Location, SLP Service
Scope Option (79).% Because it allows an adminis-
trator to easily control the set of services available
to a particular client, DHCP is actually the pre-
ferred method for configuring SLP. For example,
all services and clients in a hotel room could be
configured to the scope of that one room. A laptop
computer used in a particular room would discov-
er only those services in the room itself. Hotel
guests could then locate printers in their own
rooms, but not in others to which they have no
physical access.

Small Office or Home Networks
When there is no directory agent, a UA multicasts
the same requests to the SAs that it would have
unicast to the DA. Thus, SAs must be prepared to
answer Service Requests. A Service Request
includes a query that the SA processes against the
attributes of the services it advertises. If the multi-
cast request fails to match, or if the SA is unable to
process it (due to an error in the request, for
instance), the SA simply discards the request.

The multicast convergence algorithm used for DA
discovery is also used by UAs for service discovery.

It is important to note that services can be dis-
covered by clients using SLP in small networks
without any SLP-specific configuration or the
deployment of any additional services. SLP dis-
covery works even in the absence of DNS, DHCP,
SLP DAs, and routing. This makes SLP suitable for
the home or small office environment, where
impromptu and unadministered networks would
greatly benefit from automatic service discovery.

FITTING THE PIECES TOGETHER

SLB in itself, only provides a service discovery frame-
work. That is, SLP agents are idle undil service soft-
ware is advertised, populating the SAs, which in turn
propagate information to appropriate DAs. UAs are
inactive until a client issues a specific request.

The SLP API, however, allows applications and
services to access SLP’s functionality. It provides for
both synchronous and asynchronous operations,
and it features both C and Java bindings. (Table 1
summarizes the C language bindings, and Figure 4
summarizes the Java language bindings.) The API
contains separate interfaces for client software to
use for discovery and for server software to use for
advertising; peer-to-peer software can use both por-
tions. Figure 5 illustrates the interaction between a
client and a service, the SLP AP, and a UA and SA
performing a Service Request operation.

IEEE INTERNET COMPUYING

Accounts
payable

Figure 3. Scope in SLP. User Agents can only locate services within

the scopes to which they have access.

public interface Advertiser {

public abstract void register(ServiceURL url, Vector attributes);
public abstract void addAttributes(ServiceURL url, Vector attributes);
public abstract void deleteAttributes (ServiceURL url, Vector attributes);

.

public interface Locator {
public abstract Locale getlLocale();
public abstract ServicelocationEnumeration

findServiceTypes(String namingAuthority, Vector scopes)

public abstract ServicelocationEnumeration

findServices(ServiceType type, Vector scopes, String searchfFilter)

public abstract ServicelocationEnumeration

findAttributes(ServiceURL URL, Vector scopes, Vector attributelDs)

public abstract ServicelocationEnumeration

findAtiributes(ServiceType fype, Vector scopes, Vector attributelDs)

|3

public class ServiceLocationManager {
public int getRefreshinterval();
public static Vector findScopes();
public static Advertiser getAdvertiser();
public static Locator getlLocator();

’

Figure 4. SLP AP! Java bindings.

Details

SLP is a mostly string-based protocol that uses a
binary message header, as shown in Figure 6. Mes-
sages are largely composed of UTF-8 strings® pre-
ceded by length fields. (See Table 2 on page 79 for
a description of other fields.)

The SLP header concludes with a Language
Tag.” Attribute value strings in the SLP message are
translated into the language indicated by the tag,
and the Service Template’ associated with a partic-

hitp://computer.org/internet/

ROKU EXH. 1002

JULY « AUGUST 1999

75

76

A U T O C O N F I

G URATI ON

Client Server
Wants |
Client application | to find... Service
—
FindService SLP API RegisterService
SLP SLp
User Agent Service Agent

))) L

Multicast service request

-
-

Unicast service reply

Figure 5. Client server discovery using SLP without DAs. The client
application uses a UA o multicast a Service Request that the SA
responds to with a unicast Service Reply.

00 Version Function ID Length

04 | Length, continved Flags Next extension
08 Next extension offset, continued XID

oC Language tag length Language fag ...

Figure 6. The SLP Header. The SLP header precedes and character-
izes all transmitted SLP messages.

ular service provides additional information regard-
ing internationalization. Some strings have stan-
dardized translations, while others have fixed mean-
ings and are not intended to be translated.

The Function ID field indicates the SLP mes-
sage type, all of which are summarized in Table 3
(page 79).

SLP’s central function is the exchange of Service
Request and Service Reply messages. A UA, for

Table 1. SLP API C language bindings.

instance, only has to be able to send Service
Requests (though it also needs to handle Service
Replies and DA advertisements as a result of those
requests). An SA need not support any features
besides discovering DAs, responding to Service
Requests, and sending Service Registration mes-

sages to appropriate DAs.

Deployment
Currently, service location information is acquired by
prompting the user or reading it from a configura-
tion file. To use SLP, client software vendors must
modify the network configuration portions of the
client to employ the SLP API® to obtain the location
of the server. By modifying the failure notification
path as well, automatic service discovery can be reini-
tiated when a server fails. In this way, another server
can be located without interrupting the user’s service.
Alternatively, it is possible to utilize the benefits of
SLP without modifying the client software, as long
as the client already uses an existing service for con-
figuration. For instance, some clients use the
LDAPv3 protocol'® to access a directory for config-
uration information, so they can discover services that
SLP has automatically registered with the directory.
SLP attributes, Service Templates, and search fil-
ters are all compatible with a subset of LDAPv3. This
means that services registered with an SLP DA can
be automatically registered into an LDAPv3 direc-
tory. That is, an LDAPv3 directory can function as
the back end for an SLP DA. Thus, users of the
LDAPv3 directory can obtain current network ser-
vice information automatically. SLP’s interoperabil-
ity with LDAPv3 eases the integration of network
configuration information in IP networks, where
directories are increasingly used to centralize access.

Binding Description

SLPOpen Clients and services initialize the SLP library and obtain a handle to use with all subsequent calls.

SLPClose Clients and services release the SLP library.

SLPReg Services register their service URL and attributes. A service may also use this interface to update its
service attributes or refresh a registration before it expires.

SLPDereg Services can deregister their availability.

SLPDelAtirs Services can deregister a particular attribute.

SLPFindSrvs Clients can obtain service URLs based on their query by service type, SLP scope, and/or service attrib-
utes. These URLs will, by definition, be the locations of services the client can use.

SLPFindSrvTypes Clients can discover all types of service available on the network.

SLPFindAttrs

JULY » AUGUST 1999

Clients can discover affributes of a parficular service or the atiributes of all services of a given service type.

http:// computer.org/internet/

|EEE INTERNET COMPUTING

ROKU EXH. 1002

S E R V I

C

E L O CAT1!1 ON PR OTOCO

L

There is a great deal of work going on in the area of auto-
configuration. Comparison with other approaches shows
SLP’s generality and versatility.

DHCP Service Options

The location of several types of service can be configured
using DHCP. Administrators can configure certain clients
for a particular server. For example, DHCP option 42 con-
figures a host to use a particular Network Time Protocol
(NTP)! server or servers.

Using DHCP to configure services is significantly different
from using SLP. DHCP servers, for instance, have no intrinsic
way to determine whether an address actudlly refers to a cur-
rently available server. SLP, on the other hand, lets you dis-
cover servers with known availability. SLP also allows a client
to discover a server that meets its specific requirements. DHCP
provides no such mechanism.

DNS Resource Records for Specifying the
Location of Services

The Domain Name System (DNS) SRV Resource Record
(SRV RR)?3 dllows for lookups of domain names associated
with service names. Thus, a DNS resolver can request all
instances of a particular service type within a given domain.

For example, to find all instances of TCP-based line printer
(LPR) services in the domain “nonexistent.net,” o DNS resolver
would send a request fo the DNS SRV RR for the service named
“lpr.tcp.nonexistent.net.” This might return two domain names:
“big.nonexistent.net” and “small.nonexistent.net.”

Unlike operations in SLP, resolving a DNS SRV RR cur-
rently requires a DNS server to be present. Woodcock and
Manning currently have an effort underway to standardize
a new mechanism to allow multicasting of DNS requests.*

According to this proposal, individual systems could contain
“stub” DNS servers that would respond o multicast requests
in the absence of a true DNS server. This mechanism would
remove the requirement for a DNS server to be present,
making the DNS SRV RR’s approach suitable for small net-
works lacking in administration and infrastructure.

This service discovery method, however, allows the client
to discover services only by type, and not by service char-
acteristics.

There is currently no way to update DNS servers when ser-
vices become available or go down; as with DHCP, the client
system might easily obtain locations for services that are not
currently available.

Simple Multicast Discovery Protocols

A variety of simple multicast discovery protocols have been
proposed over the years.5” In all of them, a client multicasts
a request for a desired service type. All available services
that receive the multicast request send a response, includ-
ing the location of services matching the type requested.

Some of the proposals allow services to announce their
presence as they come up and periodically thereafter, so
clients can become immediately aware of new services.
However, none of them scales beyond a small network.
Unlike SLP, they provide no means for automatic service
information collection. Moreover, they cannot detect that
they are in a larger network and should stop multicasting
or limit their TTL to avoid disrupting operations.

Finally, these protocols fail fo include any features for reli-
able multicasting. If dozens of responders atiempt fo reply to
a mulficast request, the implosion of replies may inundate the
requester. SLP ameliorates this problem by using previous-

continued on p. 78

ADDITIONAL FEATURES

‘The essential function of SLP is service discovery.
SLP has also been designed to provide security,
extensibility, support for browsing operations, and
operation over IPv6. These features extend the util-
ity of SLP, and will be especially useful once a stan-
dardized security infrastructure has been widely
adopted on IP networks.

Security

SLP is designed to make service information avail-
able, and it contains no mechanisms to restrict
access to this information. Its only security prop-
erty is authentication of the source of information,

IEEE INTERNEY COMPUTING

which prevents SLP from being used to malicious-
ly propagate false information about the location
of services.

Digital signatures. An SA can include a digital sig-
nature produced with public key cryptography
along with its registration messages. A DA can
then verify the signature before registering or
deregistering any service information on the SA’s
behalf. These digital signatures are then forward-
ed in reply messages to UAs, so they can reject
unsigned or incorrectly signed service information.
Of course, DAs and UAs can only verify signa-
tures, not produce them.

hitp://computer.org/internet/

ROKU EXH. 1002

JULY » AUGUST 1999

77

78

A UTOCONF I

G U R ATI ON

continued from p. 77

responder lists in its mulficast convergence algorithm (as dis-
cussed in the sidebar). Of course, the replies could be stag-
gered by requiring responders o wait for a random interval,
but this would force the requester to wait much longer for
answers where there are few results.

Jini

Sun Microsystems’ Jini technology provides a Java-oriented
set of mechanisms and programmer interfaces for automat-
ic configuration. As an IETF standard, SLP is a general mech-
anism suited to heferogeneous systems. Jini, on the other
hand, leverages Java's uniformity across platforms, provid-
ing powerful semantics for service discovery operafions.

The Jini discovery architecture is similar fo that of SLP. Jini
agents discover the existence of a Jini Lookup Server, which
collects service advertisements in a manner analogous to
DAs in SLP. Jini agents then request services on behalf of
client software by communicating with the Lookup Server.
Unlike SLP, however, where DAs are optional, Jini requires
the presence of one or more Lookup Servers.

Jini’s discovery mechanism offers some advantages to
Java-based clients. The Lookup Server uses object-oriented
matching to determine which services support the client's
requested Java inferface. Both Jini and SLP use attributes to
find services that match the client's requirements, but where
SLP uses string-based attributes and weak typing, Jini
employs Java objects throughout.

Service discovery with SLP returns o URL denoting a ser-
vice's location. Jini, on the other hand, refurns an obiject that
offers direct access to the service, using an interface known
to the client.

For some embedded systems that offer network services,
running a Java Virtual Machine may require memory and

processing resources that are too costly, thus precluding the
use of Jini to advertise services. In those cases, SLP can
advertise the services as well as a “Java Driver Factory.” A
Java Driver Factory is a class that can be used to produce
(instantiate and initialize} Java objects based upon initial-
ization parameters. An SLP-Jini bridge can detect services
and obtain their attributes and Java Driver Factory. (For
more, see http://www.srvloc.org) The bridge uses the Java
Driver Factory to instantiate a Java driver object, initializing
it with the attributes advertised using SLP. The bridge then
registers the service with a Jini Lookup server.

When a Jini client discovers a service, it will be able to
use it equally well, regardless of whether it was directly reg-
istered with the Jini Lookup Server or registered by proxy
via an SLP-Jini bridge. The bridge allows clients to make
use of Jini’s powerful API to discover services on the net-
work that cannot support Jini natively themselves.

REFERENCES

1. D. Mills, “Network Time Protocol (Version 3). Specification, Implemen-
tation and Analysis,” RFC 1305, Mar. 1992; available at http://
www.rfc-editor.org/rfe/rfc1 305.1xt.

2. A. Gulbrandsen and P. Vixie, “A DNS RR for Specifying the Location
of Services (DNS SRV),” RFC 2052, Oct. 1996; available at hitp://
www.rfc-editor.org/rfc/rfe2052.1xt.

3. P. Mockapetris, “Domain Names—Implementation and Specification,”
RFC 1035, Nov. 1987; available at htip://www.rfc-editor.org/rfc/
rfc1035.1xt.

4. B. Woodcock and B. Manning, “Multicast Discovery of DNS Services,”
Dec. 1998, work in progress.

5. D. Brown, "lPLookup Service,” Personal Communication, 19 June 1997.

6. S. Honton, “Simple Server Discovery Protocol,” Jan. 1997, work in progress.

7. T.Cai, etal., “Simple Service Discovery Protocol/1.0,” Apr. 1999, work

in progress.

JULY » AUGUST 1999

As an additional level of authentication, DAs
can also include digjtal signatures with their adver-
tisements. UAs and SAs can thus avoid DAs that
have not been legitimately established by the site’s
administration because SLP agents that possess pri-
vate keys for generating verifiable digital signatures
are (by definition) trusted to legitimately advertise
themselves.

Security Configuration Requirements. SLP is
designed to automatically configure service loca-
tions with minimal static configuration require-
ments for SLP agents. SLP security, however, does

http://computer.org/internet/

require some additional configuration (for the cryp-
tographic keys or certificates used in generating and
verifying digital signatures).

When needed, vendors of SLP-enabled clients
and services can establish new cryptographic algo-
rithms and data formats within SLP’s existing pro-
tocol. It is also possible to deploy new keys gradu-
ally, without requiring flag days, which would
require simultaneous reconfiguration of all interop-
erating systems. Suppose, for example, that corpo-
rate policy requires that old private keys for authen-
ticating servers be replaced in all SAs in the
enterprise every three months. If flag days were

IEEE INTERNET COMPUTING

ROKU EXH. 1002

S ER YV

I € E L

O C A TI1 ON P R OTOCOL

required, all SAs, UAs, and DAs would have to be
rekeyed at once. SLP, on the other hand, allows
phasing in of new keys. SAs include digital signa-
tures generated by both the new and old keys with
their messages until all UAs and DAs replace the old
keys, at which point, they phase out the old gener-
ation of keys.

Extensibility

SLP extensions are additional protocol elements
appended to messages. For example, there is an
extension for reporting when a service request omits
an attribute that is defined as required by a Service
Templarte.’ Another extension currently under devel-
opment would allow UAs to request notification of
additional services as they appear on the network.

When an SLP agent recognizes a message exten-
sion, it will perform the appropriate processing. If
the extension is not recognized, it is either ignored
or the entire SLP message is discarded, depending
on how the message extension is labeled.

SLP’s extensibility allows for future enhance-
ments—such as additional error reporting, added
notification facility, and so on—without altering
the base protocol.

Browsing Features

In addition to its required features, the SLP speci-
fication describes several oprional features that
could be used to support sophisticated service
browsers.

Service Type Request. Using this type of message,
UAs can discover all service types available on the
network. The response supplies a top-level taxon-
omy of services, which supports the basic require-
ments for building a general “service browser” on

top of SLP.

Attribute Request. A UA can use the Artribute
Request to retrieve all the attributes of a given set-
vice in a manner similar to a directory lookup oper-

Table 2. SLP header fields.

Header Field Description
Version SLP protfocol version: 1 and 2 are defined.
Length Length of the entire SLP message.
Function D Message type that follows the SLP Header.
Flags Indicate special freatment of the message.
Next Extension

Offset Offset, in bytes, to the first SLP Extension.
Xip Unique number for each unique request.
Language Tag

Length Length of the Language Tag that follows.
Language Tag Indicates the language of all human-readable

strings included in the SLP message.

Table 3. SLP message types and descriptions.

SLP Message Type ID Description
Service Request 1 UAs find service by type, scope, and
search filter.

Service Reply

Service Register

Service Deregister 4

Service Acknowledgment5

2 DA (or SA) returns Service URLs and
their lifetimes.

3 SAs register Service URLs and attri-

butes.

SAs deregister Service URLs and

attributes.

DAs acknowledge a successful reg-

istration or deregistration.

Attribute Request 6 UAs find attributes by service type or
by Service URL.

Attribute Reply 7 DA (or SA) returns attribute infor-
mation.

DAAdvert 8 DA sends its Service URL, scope, and
attributes.

Service Type Request 9

UAs find service types by scope.

Service Type Reply 10 DA (or SA) returns a list of service
types.

SAAdvert 11 SA sends its Service URL, scope, and
attributes.

ation. The UA can also issue the request without
naming a specific service instance. The response
from the DA (or SAs if there is no DA) returns all
attributes and values for the requested service type
within the network. For example, an Attribute
Request for all available video servers on the net-
work might return the following properties:

m locations include my building and a remote

office;
m video streams include programs A and B.

IEEE INTERNET COMPUTING

With this information, a browser interface could
help me determine the location of a video server in
my building or a video server that serves video
stream A. If, however, I request a server that is in
my building and serves video stream A, I might not
succeed because the attributes are independent:
video stream A might only be available from the
server in the remote office.

Attribute Request messages are also useful for
determining the ateributes of a particular service.
The UA locates the corresponding Service URL,

http://computer.org/internet/

ROKU EXH. 1002

JULY » AUGUST 1999

79

80

A UT O CONF.I

G URATI ON

JULY « AUGUST 1999

and the Attribute Request uses it to look up the
service’s atcributes. Network software could also
discover a particular service’s features by request-
ing the attributes directly, which would require
subsequent protocol feature negotiation between
client and server.

SLP Operation over IPv6

The formal specification has not yet been stan-
dardized, but SLP is designed to provide service dis-
covery facilities that will work for networks using
IPv6."" Once the debate is settled regarding which
string representation to use in URLs for numerical
IPv6 addresses, some minor changes will be needed.
Service URLS® containing numerical addresses will
require a different formart from what IPv4 uses, and
link-local addresses will require some special han-
dling in IPv6. For example, DAs that obtain service
registrations with link-local numerical addresses
must not forward them using the link on which
they were registered. Also, the address to use for
site-local scoped multicast operations differs in
IPv4 from what it is in IPv6.1?

SUMMARY

SLP is an IETF standard for service discovery and
automatic configuration of clients. It provides for
fully decentralized operation and scales from a
small, unadministered network to an enterprise
network where policy may dictate who should dis-
cover which resources. This paper describes how
SLP operates and how it adapts to conditions where
infrastructure is not available, where administra-
tion is minimized, and where network administra-
tors in large enterprises wish to reduce tedium and
workload. While alternative mechanisms exist, SLP
remains the most general and versatile solution for
service discovery on TCP/IP networks.]

REFERENCES
1.]. Veizades, E. Guttman, and C. Perkins, “Service Location
Protocol,” IETE RFC 2165, June 1997; available at
hrep://www.rfc-editor.org/rfc/rfc2165. txt.
2. E.Guttman, C. Perkins, J. Veizades, and M. Day, “Service
Location Protocol, Version 2,” IETF, REC 2608, June
1999; available at htep://www.rfc-editor.org/rfc/rfc2608.txt.

Coming in November 1999

3. R. Droms, “Dynamic Host Configuration Protocol,” IETE,
RFC 2131, Mar. 1997; available at http://www.tfc-editor.
org/rfc/rfc2131.txt.

4. C. Perkins and E. Guttman, “DHCP Options for Service
Location Protocol,” IETE RFC 2610, June 1999; available
at hup://www.rfc-editor.org/rfe/rfc2610.ext.

5. E. Guttman, C. Perkins, and J. Kempf, “Service Templates
and Service: Schemes,” [ETE, RFC 2609, June 1999; avail-
able at htep://www.rfc-editor.org/rfc/rfc2609.txt.

6. J. Kempfand E. Guttman, “An API for Service Location,”
IETE RFC 2614, June 1999; available at http://www.rfc-
editor.org/rfc/rfc2614.1xt.

7. T. Howes, “The String Representation of LDAP Search Fil-

IETE RFEC 2254, Dec. 1997; available at
htep:/ fwww.tfc-editor.org/rfc/rfc2254. ext.

8. E Yergeau, “UTF-8, a Transformation Format of ISO
10646,” TIETF, RFC 2279, Jan. 1998; available at
htep://www.rfc-editor.org/rfc/rfc2279.txt.

ters.”

9. H. Alvestrand, “Tags for the Identification of Languages,”
IETE, RFC 1766, Mar. 1995; available at http://www.rfc-
editor.org/rfc/rfc1766.mxt.

10. M. Wahl, T. Howes, and S. Kille, “Lightweight Directory
Access Protocol, version 3,” IETF, RFC 2251, Dec. 1997;
available at htep://www.rfc-editor.org/rfc/rfc2251 . ext.

11. E. Guttman and J. Veizades, “Service Location Protocol Mod-
ifications for IPv6,” Oct 1998, work in progress.

12. R. Hinden and S. Deering, “IP Version 6 Multicast Address

Assignments,” [ETF, RFC 2375, July 1998; available at
http://www.rfc-editor.org/rfc/rfc2375. ext.

FURTHER READING ON SLP
J. Kempf and P. St.Pierre, Service Location Protocol for Enterprise
Networks, John Wiley & Sons, 1999.

Service Location Protocol Home Page * htep://www.sviloc.org/.

Erik Guttman is a staff engineer at Sun Microsystems. He is a
member of the Advanced Network Development team in
Sun Labs. His technical interests include automatic con-
figuration, network security, and network software testing.
He is an active member of the Internet Engineering Task
Force where he is the chairman of the Service Location Pro-
tocol (SVRLOC) Working Group. He received a BA in
Philosophy and Computer Science from UC Berkeley and

an MS in Computer Science from Stanford University.

Readers can contact Erik Guttman at erik.guttman@sun.com.

Survivable, High-Confidence Distributed Systems
Guest Editor: Mike Reiter, Bell Labs

hitp://computer.org/internet/

IEEE INTERNET COMPUTING

ROKU EXH. 1002

APPENDIX W

ROKU EXH. 1002

Net wor k Wor ki ng Group J. Veizades
Request for Comments: 2165 @donme Net wor k
Cat egory: Standards Track E. Guttman
C. Perkins

Sun M crosystens

S. Kapl an

June 1997

Servi ce Location Protoco
Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Abst ract

The Service Location Protocol provides a scalable franework for the
di scovery and sel ection of network services. Using this protocol
conputers using the Internet no | onger need so nuch static
configuration of network services for network based applications.
This is especially inmportant as conputers become nore portable, and
users less tolerant or able to fulfill the demands of network system
adm ni stration.

Tabl e of Contents

1. Introduction 3
2. Term nol ogy 3
2.1. Notation Conventions 5
2.2. Service Infornmation and Predlcate Representatlon 5
2.3. Specification Language 6

3. Protocol Overview 6
3.1. Protocol Transactions . 7
3.2. Schenes . e e e 8
3.2.1. The "serV|ce " URL schene . 9

3.3. Standard Attribute Definitions Ce e e e 9
3.4. Nanming Authority . . Ce e 10
3.5. Interpretation of SerV|ce Locatlon Replles e 10
3.6. Use of TCP, UDP and Multicast in Service Location 10
3.6.1. Multicast vs. Broadcast . e e e 11

3.6.2. Service-Specific Milticast Address - . 11

3.7. Service Location Scaling, and Miulticast Cperatlng Nbdes . 12

Vei zades, et. al. St andards Track [Page 1]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

4. Service Location General Message For nat 14
4.1. Use of Transaction |IDs (XIDs) C e e e 15

4.2. URL Entries . . . e e e 16

4.3. Authentication Blocks e e e e 17

4.4. URL Entry Lifetine L. 19

5. Service Request Message Fornat 19
5.1. Service Request Usage . . . e e e 22

5.2. Directory Agent Discovery Request S e e 23

5.3. Explanation of Terms of Predicate C}annar G 24

5.4. Service Request Predicate Gammar 26

5.5. String Matching for Requests 27

6. Service Reply Message Fornat 28
7. Service Type Request Message For nat 29
8. Service Type Reply Message Fornat 31
9. Service Registration Message For nat 32
10. Service Acknow edgenent Message For mat 35
11. Service Deregister Message Format 37
12. Attribute Request Message For mat 38
13. Attribute Reply Message Fornat 40
14. Directory Agent Advertisement Message For mat 42
15. Directory Agents 43
15.1. Introduction . . C e e e e 43
15.2. Finding Directory Agents C e e e 43

16. Scope Discovery and Use 45
16.1. Protected Scopeso 46

17. Language and Character Encoding |ssues 47
17.1. Character Encoding and String Issues . . e 48
17.1.1. Substitution of Character Escape Sequences S 49

17. 2. Language- | ndependent Strings 49

18. Service Location Transactions 50
18.1. Service Location Connections 50
18.2. No Synchronous Assunptlon C e e e 51

18. 3. ldenpotency e e 51

19. Security Considerations 51
20. String Formats used with Service Location Messages 52
20.1. Previous Responders’ Address Specification 53
20.2. Formal Definition of the "service:" Schene 53
20.2.1. Service Type String 54

20.3. Attribute Information . . . G 54
20.4. Address Specification in SerV|ce Locatlon G e 55
20.5. Attribute Value encoding rules 55

21. Protocol Requirenents 56
21.1. User Agent Requirenments 56
21.2. Service Agent Requirements 58
21.3. Directory Agent Requirenments . . C e e 59

22. Configurable Paraneters and Defaul t Values 61
22.1. Service Agent: Use Predefined Di rectory Agent(s) Coe 62
22.2. Time Qut Intervals Coe 63

Vei zades, et. al. St andards Track [Page 2]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

23. Non-configurabl e Paraneters
24. Acknowl edgnent s
A. Appendi x: Technical contents of |SO 639:1988 (E/F): "Code for
the representati on of nanes of |anguages”
B. SLP Certificates
C. Exanpl e of deploying SLP security using MD5 and RSA
D. Exampl e of use of SLP Certificates by nobile nodes

63
64

65
66
68
68

1

E. Appendi x: For Further Reading 69

I nt roducti on

Traditionally, users find services by using the nane of a network
host (a hunan readable text string) which is an alias for a network
address. The Service Location Protocol eliminates the need for a
user to know the nane of a network host supporting a service.

Rat her, the user names the service and supplies a set of attributes
whi ch describe the service. The Service Location Protocol allows the
user to bind this description to the network address of the service.

Service Location provides a dynami ¢ configurati on nmechanism for
applications in local area networks. It is not a global resolution
systemfor the entire Internet; rather it is intended to serve
enterprise networks with shared services. Applications are nodel ed
as clients that need to find servers attached to the enterprise
network at a possibly distant location. For cases where there are
many different clients and/or services available, the protocol is
adapted to make use of nearby Directory Agents that offer a
centralized repository for advertised services.

Ter m nol ogy

User Agent (UA)
A process working on the user’'s behalf to acquire
service attributes and configuration. The User Agent
retrieves service information fromthe Service Agents or
Directory Agents.

Servi ce Agent (SA)
A process working on the behalf of one or nore services
to advertise service attributes and configuration

Service Information
A collection of attributes and configuration infornation
associated with a single service. The Service Agents
advertise service information for a collection of
servi ce instances.

Vei zades, et. al. St andards Track [Page 3]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

Service The service is a process or systemproviding a facility
to the network. The service itself is accessed using a
communi cati on nechani smexternal to the the Service
Location Protocol

Directory Agent (DA
A process which collects information from Service Agents
to provide a single repository of service information in
order to centralize it for efficient access by User
Agents. There can only be one DA present per given
host .

Service Type
Each type of service has a unique Service Type string.
The Service Type defines a tenplate, called a "service
schene”, including expected attributes, values and
pr ot ocol behavi or.

Nam ng Authority
The agency or group which catal ogues given Service Types
and Attributes. The default Naming Authority is | ANA
the Internet Assigned Nunbers Authority.

Keywor d
A string describing a characteristic of a service.

Attribute
A (class, value-list) pair of strings describing a
characteristic of a service. The value string may be
interpreted as a bool ean, integer or opaque value if it
takes specific fornms (see section 20.5).

Predi cate
A bool ean expression of attributes, relations and
| ogi cal operators. The predicate is used to find
services which satisfy particular requirenents. See
section 5. 3.

Al phanuneri c
A character within the range 'a to

z’, "A to'Z, or

Scope A collection of services that make up a |l ogical group
See sections 3.7 and 16.

Vei zades, et. al. St andards Track [Page 4]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

Site Network
Al'l the hosts accessible within the Agent’s multicast
radi us, which defaults to a value appropriate for
reaching all hosts within a site (see section 22). |If
the site does not support multicast, the agent’'s site
network is restricted to a single subnet.

URL A Uni versal Resource Locator - see [6].

Addr ess Specification
This is the network | ayer protocol dependent nechani sm
for specifying an Agent. For Internet systens this is
part of a URL.

2.1. Notation Conventions

CAPS Strings which appear in all capital letters are protoco
literal. Al string conparison is case insensitive,
however, (see section 5.5). Sone strings are quoted in
this docunent to indicate they should be used literally.
Singl e characters inside apostrophes are included

literally.
<> Val ues set off in this manner are fully described in
section 20. In general, all definitions of itens in

nessages are described in section 20 or inmediately
following their first use

\ o\ Message | ayouts with this notation indicate a variable
| length field.

2.2. Service Information and Predicate Representation

Service information is represented in a text format. The goal is
that the format be hunman readable and transm ssible via email. The

| ocation of network services is encoded as a Universal Resource
Locator (URL) which is human readable. Only the datagram headers are
encoded in a formwhich is not human readable. Strings used in the
Service Location Protocol are NOT null-term nated.

Predi cates are expressed in a sinple bool ean notation using keywords,
attributes, and | ogical connectives, as described in Section 5.4.

The | ogi cal connectives and subexpressions are presented in prefix-
order, so that the connective conmes first and the expressions it
operates on foll ow afterwards.

Vei zades, et. al. St andards Track [Page 5]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

2.3. Specification Language

In this docunent, several words are used to signify the requirenents
of the specification [8]. These words are often capitalized.

MUST This word, or the adjective "required", neans that
the definition is an absol ute requirenent of the
speci fication.

MUST NOT' This phrase neans that the definition is an absolute
prohi bition of the specification

SHOULD This word, or the adjective "recommended", neans
that, in sone circunstances, valid reasons nay exist to
ignore this item but the full inplications nust be

under st ood and carefully wei ghed before choosing a
different course. Unexpected results may result
ot her wi se.

MAY This word, or the adjective "optional", neans that this
itemis one of an allowed set of alternatives. An
i mpl enent ati on whi ch does not include this option MJST
be prepared to interoperate with another inplenentation
whi ch does include the option

silently discard
The inplenentation di scards the datagram w thout
further processing, and without indicating an error to
the sender. The inplenmentati on SHOULD provi de the
capability of logging the error, including the contents
of the discarded datagram and SHOULD record the event
in a statistics counter.

3. Protocol Overview

The basic operation in Service Location is that a client attenpts to
di scover the location of a Service. |In smaller installations, each
service will be configured to respond individually to each client.
In larger installations, services will register their services with
one or nore Directory Agents, and clients will contact the Directory
Agent to fulfill requests for Service Location information. Cients
may di scover the whereabouts of a Directory Agent by
preconfiguration, DHCP [2, 11], or by issuing queries to the
Directory Agent Discovery multicast address.

Vei zades, et. al. St andards Track [Page 6]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

3.1. Protocol Transactions

The diagram below illustrates the relationshi ps descri bed bel ow
e R + we want this info: R +
| Application | - - - - - - - - - - - ->| Service
R + S +
an | |
| - + |
| | |
\ |/ \|/ \|/
S + S + S +
| User Agent |<-------- > Service | | Service
e + | Agent | | Agent which
| Fommeee e + | does not reply
| | | to UA requests
| \|/ R +
| S + |
R L R T > Directory |<---------- +
| Agent |
B +
/]\ / Many ot her\
S >| SA' s |
\ /

The follow ng describes the operations a User Agent would enploy to
find services on the site’s network. The User Agent needs no
configuration to begin network interaction. The User Agent can
acquire information to construct predicates which describe the
services that match the user’s needs. The User Agent nay build on
the information received in earlier network requests to find the
Service Agents advertising service information.

A User Agent will operate two ways: |If the User Agent has already
obt ained the location of a Directory Agent, the User Agent will
unicast a request to it in order to resolve a particular request.

The Directory Agent will unicast a reply to the User Agent. The User
Agent will retry a request to a Directory Agent until it gets a
reply, so if the Directory Agent cannot service the request (say it
has no information) it nust return an response with zero val ues,
possibly with an error code set.

If the User Agent does not have know edge of a Directory Agent or if
there are no Directory Agents available on the site network, a second
node of discovery may be used. The User Agent mnulticasts a request
to the service-specific nulticast address, to which the service it

wi shes to locate will respond. All the Service Agents which are
listening to this nulticast address will respond, provided they can

Vei zades, et. al. St andards Track [Page 7]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

satisfy the User Agent’s request. A sinilar nmechanismis used for
Directory Agent discovery; see section 5.2. Service Agents which
have no information for the User Agent MJST NOT respond.

When a User Agent wi shes to obtain an enuneration of ALL services
which satisfy the query, a retransni ssion/convergence algorithmis
used. The User Agent resends the request, together with a |ist of
previous responders. Only those Service Agents which are not on the
list respond. Once there are no new responses to the request the
accunul ati on of responses is deened conplete. Depending on the

| ength of the request, around 60 previous responders nmay be listed in
a single datagram |If there are nore responders than this, the
scal i ng nmechani snms described in section 3.7 should be used.

Whil e the multicast/convergence nodel may be inportant for

di scovering services (such as Directory Agents) it is the exception
rather than the rule. Once a User Agent knows of the |ocation of a
Directory Agent, it will use a unicast request/response transaction

The Service Agent SHOULD listen for multicast requests on the
service-specific multicast address, and MJST register with an
available Directory Agent. This Directory Agent will resolve
requests from User Agents which are unicasted using TCP or UDP. This
means that a Directory Agent nust first be discovered, using DHCP
the DA Discovery Milticast address, the nulticast nechani sm descri bed
above, or manual configuration. See section 5.2.

A Service Agent which does not respond to nulticast requests will not
be useful in the absence of Directory Agents. Sone Service Agents
may not include this functionality, if an especially Iightweight

i mpl enentation is required.

If the service is to becone unavailable, it should be deregistered
with the Directory Agent. The Directory Agent responds with an
acknow edgment to either a registration or deregistration. Service
Regi strations include a lifetine, and will eventually expire.
Service Registrations need to be refreshed by the Service Agent
before their Lifetinme runs out. |If need be, Service Agents can
advertise signed URLs to prove that they are authorized to provide
the service

3.2. Schenes
The Service Location Protocol, designed as a way for clients to
access resources on the network, is a natural application for
Uni versal Resource Locators (URLs). It is intended that by re-using

URL specification and technol ogy fromthe Wrld Wde Wb, clients and
servers will be nore flexible and able to be witten using already

Vei zades, et. al. St andards Track [Page 8]

ROKU EXH. 1002

RFC 2165

exi sting code. Mbreover, it

Servi ce Location Protoco

is hoped that browsers will
to take advantage of the sinilarity in |locator format,

June 1997

be witten
so that a

client can dynanmically fornul ate requests for services that are
resol ved differently dependi ng upon the circunstances.

3.2.1. The "service:" URL schene

The service URL schene is used by
specify a Service Location. Mny
i ncluding a scheme nane after the
Types are used by SAs to register
It is also used by SAs and DAs to
f or mal

definition of the "service
The format of the information which follows the "service:"

Service Location. It is used to
Service Types will be named by
"service:" schenme nane. Service

and deregi ster Services with DAs.

return Service Replies to UAs. The
" URL schene is in section 20.2.
schene

shoul d as closely as possible follow the URL structure and semantics
as formalized by the | ETF standardi zati on process.

el |
are avail abl e as RFCs.

3.3. Standard Attribute Definitions

Service Types used with the Service Location Protoco

the foll ow ng:

known Service Types are registered with the | ANA and tenpl ates
Private Service Types nay al so be support ed.

nmust descri be

Service Type string of the service

Attributes and Keywords

Attribute Descriptions and interpretations

Service Types not
Aut hority string.
defined in [13].

registered with

| ANA will use their own Nami ng

The registration process for new Service Types is

Services which advertise a particular Service Type nust support the

compl ete set of standardized attri butes.
beyond the standardi zed set.

attributes
MUST be ignored by User Agents.

Servi ce Type names which begin with "x-"
conflict with any officially registered Service Type nanes.
suggested that this prefix be used for experinenta

Service Type nanes. Simlarly,

They may support additiona
Unrecogni zed attributes

are guaranteed not to
It
or private

is

attribute nanes which begin with "x-"

are guaranteed not to be used for any officially registered attribute

nanes.

A service of a given Service Type should accept the networking

pr ot ocol
accept nultiple protocols,

Vei zades, et. al.

which is inplied inits definition

St andards Track

If a Service Type can

configuration informtion SHOULD be

[Page 9]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

included in the Service Type attribute information. This
configuration information will enable an application to use the
results of a Service Request and Attribute Request to directly
connect to a service.

See section 20.2.1 for the fornat of a Service Type String as used in
the Service Location Protocol

3.4. Nanming Authority

The Naming Authority of a service defines the nmeaning of the Service
Types and attributes registered with and provided by Service
Location. The Naming Authority itself is a string which uniquely
identifies an organization. |If no string is provided ANA is the
default. |1ANA stands for the Internet Assigned Nunmbers Authority.

Nam ng Authorities may define Service Types which are experinental
proprietary or for private use. The procedure to use is to create a
"uni que’ Naning Authority string and then specify the Standard
Attribute Definitions as described above. This Naming Authority will
acconpany registration and queries, as described in sections 5 and 9.

3.5. Interpretation of Service Location Replies

Replies should be considered to be valid at the tinme of delivery.

The service may, however, fail or change between the time of the
reply and the nmonment an application seeks to nmake use of the service.
The application nmaking use of Service Location MIST be prepared for
the possibility that the service information provided is either stale
or inconplete. In the case where the service information provided
does not allow a User Agent to connect to a service as desired, the
Servi ce Request and/or Attribute Request may be resubmtted.

Service specific configuration information (such as which protocol to
use) should be included as attribute information in Service

Regi strations. These configuration attributes will be used by
applications which interpret the Service Location Reply.

3.6. Use of TCP, UDP and Multicast in Service Location

The Service Location Protocol requires the inplenmentation of UDP
(connectionl ess) and TCP (connection oriented) transport protocols.
The latter is used for bulk transfer, only when necessary.
Connections are always initiated by an agent request or registration
not by a replying Directory Agent. Service Agents and User Agents
use epheneral ports for transmtting information to the service

| ocation port, which is 427.

Vei zades, et. al. St andards Track [Page 10]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

The Service Location discovery nechanisns typically multicast
messages to as nmany enterprise networks as needed to establish
service availability. The protocol will operate in a broadcast
environnment with limtations detailed in section 3.6.1.

3.6.1. Multicast vs. Broadcast

The Service Location Protocol was designed for use in networks where
DHCP is available, or nmulticast is supported at the network |ayer

To support this protocol when only network | ayer broadcast is
supported, the foll ow ng procedures may be foll owed.

3.6.1.1. Single Subnet

If a network is not connected to any other networks sinple network
| ayer broadcasts will work in place of nulticast.

Service Agents SHOULD and Directory Agents MJST |isten for broadcast
Service Location request nessages to the Service Location port. This
all ows UAs which lack nulticast capabilities to still nake use of
Service Location on a single subnet.

3.6.1.2. Multiple Subnets

The Directory Agent provides a central clearing house of information

for User Agents. |If the network is designed so that a Directory
Agent address is statically configured with each User Agent and
Service Agent, the Directory Agent will act as a bridge for

informati on that resides on different subnets. The Directory Agent
address can be dynamically configured with Agents usi ng DHCP. The
address can al so be deternined by static configuration

As dynami c discovery is not feasible in a broadcast environnment with
mul ti pl e subnets and manual configuration is difficult, deploying DAs
to serve enterprises with nultiple subnets will require use of

mul ticast discovery with nultiple hops (i.e., TTL > 1 in the IP
header).

3.6.2. Service-Specific Miulticast Address
This mechanismis used so that the nunber of datagrans any one
service agent receives is mninized. The Service Location Genera
Mul ti cast Address MAY be used to query for any service, though one
SHOULD use the service-specific nulticast address if it exists.
If the site network does not support nulticast then the query SHOULD

be broadcast to the Service Location port. |If, on the other hand,
the underlying hardware will not support the nunber of needed

Vei zades, et. al. St andards Track [Page 11]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

nmul ti cast addresses the Service Location General Milticast Address
MAY be used. Service Agents MUST listen on this nulticast address as
wel |l as the service-specific nulticast addresses for the service
types they adverti se.

Service-Specific Miulticast Addresses are conputed by calculating a
string hash on the Service Type string. The Service Type string MJST
first be converted to an ASCII string from whatever character set it
is represented in, so the hash will have well-defined results.

The string hash function is nodified froma code fragnent attributed
to Chris Torek

/*
* SlLPhash returns a hash value in the range 0-1023 for a
* string of single-byte characters, of specified |ength.
*/
unsi gned | ong SLPhash (const char *pc, unsigned int |ength)
unsi gned long h = 0;
while (length-- !'=0) {
h *= 33;
h += * pc++;

}
return (Ox3FF & h); /* round to a range of 0-1023 */
}

This value is added to the base range of Service Specific Discovery
Addresses, to be assigned by I ANA. These will be 1024 conti guous
mul ti cast addresses.

3.7. Service Location Scaling, and Milticast Operating Mdes

In a very small network, with few nodes, no DAis required. A user
agent can detect services by multicasting requests. Service Agents
will then reply to them Further, Service Agents which respond to
user requests nust be used to make service infornation avail abl e.
This does not scale to environnments with many hosts and services.

When scaling Service Location systens to internediate sized networks,
a central repository (Directory Agent) may be added to reduce the
nunber of Service Location nessages transmtted in the network
infrastructure. Since the central repository can respond to al
Service and Attribute Requests, fewer Service and Attribute Replies
will be needed; for the sane reason, there is no need to
differentiate between Directory Agents

A site may also grow to such a size that it is not feasible to
mai ntain only one central repository of service information. In this

Vei zades, et. al. St andards Track [Page 12]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

case nore Directory Agents are needed. The services (and service
agents) advertised by the several Directory Agents are collected
together into | ogical groupings called "Scopes"

Al'l Service Registrations that have a scope nust be registered with
all DAs (within the appropriate nulticast radius) of that scope which
have been or are subsequently discovered. Service Registrations

whi ch have no scope are only registered with unscoped DAs. User
Agents make requests of DAs whose scope they are configured to use.

Service Agents MJST register with unscoped DAs even if they are
configured to specifically register with DAs which have a specific
scope or set of scopes. User Agents MAY query DAs without scopes,
even if they are configured to use DAs with a certain scope. This is
because any DA with no scope will have all the avail able service

i nformati on.

Scoped user agents SHOULD al ways use a DA which supports their
configured scope when possible instead of an unscoped DA. This will
prevent the unscoped DAs from beconm ng overused and thus a scaling
pr obl em

It is possible to specially configure Service Agents to register only
with a specific set of DAs (see Section 22.1). In that case,
services nmay not be available to User Agents via all Directory
Agents, but sonme network admi nistrators may deemthis appropriate.

There are thus 3 distinct operating nodes. The first requires no
adm nistrative intervention. The second requires only that a DA be
run. The last requires that all DAs be configured to have scope and
that a coherent strategy of assigning scopes to services be foll owed.
Users must be instructed which scopes are appropriate for themto
use. This administrative effort will allow users and applications to
subsequently dynanically di scover services w thout assistance.

The first node (no DAs) is intended for a LAN. The second node (using
a DA or DAs, but not using scopes) scales well to a group of

i nterconnected LANs with a linited nunber of hosts. The third node
(with DAs and scopes) allows the SLP protocol to be used in an

i nt ernet wor ked canpus environment.

If scoped DAs are used, they will not accept unscoped regi strations
or requests. UAs which issue unscoped requests will discover only
unscoped services. They SHOULD use a scope in their requests if
possi bl e and SHOULD use a DA with their scope in preference to an
unscoped DA. In a large canpus environnent it would be a bad idea to
have ANY unscoped DAs: They attract ALL registrations and will thus
present a scaling problemeventually.

Vei zades, et. al. St andards Track [Page 13]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

A subsequent protocol docunent will describe nechanisns for
supporting a service discovery protocol for the global |nternet.

4. Service Location General Message For mat

The followi ng header is used in all of the nessage descriptions bel ow
and is abbreviated by using "Service Location header =" followed by
the function being used.

0 1 2 3
01234567890123456789012345678901
B T S S e s e i s S i S S S S S S T S SR S S S i S S S
| Ver si on | Functi on | Length |
B Lt r s i i i o o T s ks S R S
|AMU A Fl rsvd] Di al ect | Language Code |
B s T s s e T o e S T ks et s oot ST S S S o S S 3
| Char Encodi ng | XI'D |
B T S S e s e i s S i S S S S S S T S SR S S S i S S S

Version This protocol document defines version 1 of the Service
Locati on protocol.

Function Service Location datagrans can be identified as to their
operation by the function field. The following are the
defined operations:

Message Type Abbr evi ati on Function Val ue
Servi ce Request SrvReq 1
Service Reply SrvRply 2
Service Registration SrvReg 3
Servi ce Deregister SrvDer eg 4
Servi ce Acknow edge SrvAck 5
Attribute Request At t r Rgst 6
Attribute Reply AttrRply 7
DA Adverti senent DAAdvert 8
Service Type Request SrvTypeRgst 9
Service Type Reply SrvTypeRpl y 10

Length The nunber of bytes in the nmessage, including the Service
Locati on Header.

(0] The "Overflow bit. See Section 18 for the use of this
field.

Vei zades, et. al. St andards Track [Page 14]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

M The 'Monolingual’ bit. Requests with this bit set
i ndi cate the User Agent will only accept responses in the
| anguage (see section 17) that is indicated by the
Service or Attribute Request.

U The " URL Aut hentication Present’ bit. See sections 4.2,
4.3, 9, and 11 for the use of this field.

A The "Attribute Authentication Present’ bit. See
sections 4.2, 4.3, and 13 for the use of this field.

F If the "F bit is set in a Service Acknow edgenent, the
directory agent has registered the service as a new
entry, not as an updated entry.

rsvd MUST be zero.

Dialect Dialect tags will be used by future versions of the
Service Location Protocol to indicate a variant of
vocabul ary used. This field is reserved and MJST be set
to O for conpatibility with future versions of the
Service Location Protocol

Language Code
Strings within the renai nder of the nmessage which foll ows
are to be interpreted in the | anguage encoded (see
section 17 and appendix A) in this field.

Char acter Encodi ng
The characters nmaking up strings within the renai nder of
the message may be encoded in any standardi zed encodi ng
(see section 17.1).

Transaction ldentifier (X D)
The XID (transaction ID) field allows the requester to
match replies to individual requests (see section 4.1).

Note that, whenever there is an Attribute Authentication
bl ock, there will also be a URL Authentication bl ock
Thus, it is an error to have the 'A bit set without also
having the "U bit set.

4.1. Use of Transaction IDs (Xl Ds)
Retransmi ssion is used to ensure reliable transactions in the Service
Location Protocol. |If a User Agent or Service Agent sends a nmessage

and fails to receive an expected response, the nessage will be sent
again. Retransm ssion of the sane Service Location datagram shoul d

Vei zades, et. al. St andards Track [Page 15]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

not contain an updated XID. It is quite possible the original request
reached the DA or SA, but reply failed to reach the requester. Using
the same XID allows the DA or SA to cache its reply to the origina
request and then send it again, should a duplicate request arrive.
This cached information should only be held very briefly
(CONFI G INTERVAL _0.) Any registration or deregistration at a
Directory Agent, or change of service information at a SA should
flush this cache so that the information returned to the client is

al ways valid.

The requester creates the XID froman initial random seed and
increnents it by one for each request it nmakes. The XIDs wll
eventually wap back to zero and continue increnenting fromthere.

Directory Agents use XID values in their DA Advertisenments to
indicate their state (see section 15.2).

4.2. URL Entries

When URLs are registered, they have lifetines and | engths, and may be
aut henticated. These values are associated with the URL for the
duration of the registration. The association is known as a "URL-
entry”, and has the followi ng format:

0 1 2 3
01234567890123456789012345678901
i T o T e e e et o S s S R R SR
| Lifetime | Length of URL |
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S

|
URL \
I
+
(if present) URL Authentication Block

\
T S s T S S i S . SN SIS S SUp A
e i S S T i i S S S S R S S S

Lifetime The length of tine that the registration is valid, in
the absence of later registrations or deregistration

Length of URL
The I ength of the URL, neasured in bytes and < 32768.

URL Aut hentication Bl ock
(if present) A tinestanped authenticator (section 4.3)

Vei zades, et. al. St andards Track [Page 16]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

The URL conforns to RFC 1738 [6]. If the 'U bit is set in the
nessage header, the URL is followed by an URL Authentication Bl ock
If the scheme used in the URL does not have a standardized
representation, the mniml requirenent is:

service: <srvtype>://<addr-spec>

"service" is the URL scheme of all Service Location |Information
included in service registrations and service replies. Each URL
entry contains the service: <srvtype> schenme nane. It may al so

i ncl ude an <addr-spec> except in the case of a reply to a Service
Type request (see section 7).

4.3. Authentication Bl ocks

Aut henti cation bl ocks are used to authenticate service registrations
and deregistrations. URLs are registered along with an URL

Aut hentication block to retain the authentication information in the
URL entry for subsequent use by User Agents who receive a Service
Reply containing the URL entry. Service attributes are registered
along with an Attribute Authentication block. Both authentication
bl ocks have the format illustrated bel ow

If a service registration is acconpani ed by authentication which can
be validated by the DA, the DA MJST validate any subsequent service
deregi strations, so that unauthorized entities cannot invalidate such
regi stered services. Likewise, if a service registration is
acconpani ed by an Attribute Authentication bl ock which can be
val i dated by the DA, the DA MJST validate any subsequent attribute
regi strations, so that unauthorized entities cannot invalidate such
regi stered attributes.

To avoid replay attacks which use previously validated
deregistrations, the deregistration or attribute registration nmessage
must contain a tinmestanp for use by the DA. To avoid replay attacks
whi ch use previously validated registrations to nullify a valid
deregistration, registrations nust also contain a tinestanp.

Vei zades, et. al. St andards Track [Page 17]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

An aut hentication block has the foll owi ng fornat:

0 1 2 3
01234567890123456789012345678901
i S T o o S S S e S S S S S e T T

+

_ |
Ti mest anp +
|

+-

|

+

|

i T i i o e e e e e e et i S S S R R SR

| Block Structure Descriptor | Length |

B T e o i S I i i S S N iy St S I S S

| Structured Authenti cator

e e i i e S S e e e e e
Timestanp A 64-bit value formatted as specified by the Network

Time Protocol (NTP) [16].

Bl ock Structure Descriptor (BSD)
A val ue describing the structure of the Authenticator.
The only value currently defined is 1, for
hject-ldentifier.

Length The I ength of the Authenticator

Structured Authenti cator
An al gorithm specification, and the authentication data
produced by the algorithm

The Structured Authenticator contains a digital signature of the

i nformati on being authenticated. It contains sufficient infornation
to determine the algorithmto be used and the keys to be selected to
verify the digital signature.

The digital signature is conputed over the follow ng ordered stream
of data:

CHARACTER ENCODI NG OF URL (2 bytes in network byte order)

LI FETI ME (2 bytes in network byte order)
LENGTH OF URL (2 bytes in network byte order)
URL (n bytes)
TI MESTAMP (8 bytes in SNTP format [16])
Vei zades, et. al. St andards Track [Page 18]

ROKU EXH. 1002

RFC 2165 Servi ce Location Protocol June 1997

When producing a URL Authentication block, the authentication data
produced by the algorithmidentified within the Structured
Aut henti cator cal cul ated over the followi ng ordered stream of data:

ATTRI BUTE CHARACTER ENCODING (2 bytes in network byte order)

LENGTH OF ATTRI BUTES (2 bytes in network byte order)
ATTRI BUTES (n bytes)
TI MESTAMP (8 bytes in SNTP format [16])

Every Service Location Protocol entity (User Agent, Service Agent, or
Directory Agent) which is configured for use with protected scopes
SHOULD i npl enent "nd5W t hRSAEncryption" [4] and be able to associate
it with BSD val ue ==

In the case where BSD value == 1 and the O D "nd5W t hRSAEncr ypti on"
is selected, the Structured Authenticator will start with the ASN. 1
Di sti ngui shed Encoding (DER) [9] for "nmd5WthRSAEncryption”, which

has the as its value the bytes (MSB first in hex):

"30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00"

This is then inmediately followed by an ASN. 1 Di sti ngui shed Encodi ng
(as a "Bitstring”) of the RSA encryption (using the Scope’s private
key) of a bitstring consisting of the QD for "M»%" concatenated by
the MD5 [22] nessage digest conputed over the fields above. The
exact construction of the MD5 O D and di gest can be found in RFC 1423

[4].
4.4. URL Entry Lifetine

The Lifetinme field is set to the nunber of seconds the reply can be
cached by any agent. A value of 0 neans the information nust not be
cached. User Agents MAY cache service information, but if they do,
they must provide a way for applications to flush this cached
informati on and issue the request directly onto the network.

Services should be registered with DAs with a Lifetine, the suggested
val ue being CONFI G| NTERVAL_1. The service nust be reregistered
before this interval elapses, or the service advertisenent will no
| onger be available. Thus, services which vanish and fail to
deregi ster eventually becone automatically deregistered.

5. Service Request Message Fornat

The Service Request is used to obtain URLs froma Directory Agent or
Service Agents.

Vei zades, et. al. St andards Track [Page 19]

ROKU EXH. 1002

APPENDIX X

ROKU EXH. 1002

HP Jornada
600 Series Handheld PC

User’s Guide

HEWLETT"
[ﬁa PACKARD
Part number F1813-90001

Printed in Singapore
Edition1

iNaVaVal

D.AOLL LI L]
NUNU CATT. TUUZ

Copyright notice

This manual and any examples contained herein are provided “as is” and are
subject to change without notice. Hewlett-Packard Company makes no
warranty of any kind with regard to this manual, including, but not limited

to, the implied warranties of merchantability and fitness for a particular
purpose. Hewlett-Packard Co. shall not be liable for any errors or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the examples herein.

The above disclaimers and limitations shall not apply to consumer transac-
tions in Australia and the United Kingdom and shall not affect the statutory
rights of consumers.

© Hewlett-Packard Co. 1999. All rights reserved. Reproduction, adaptation,
or translation of this manual is prohibited without prior written permission
of Hewlett-Packard Company, except as allowed under the copyright laws.

The programs that control this product are copyrighted and all rights are
reserved. Reproduction, adaptation, or translation of those programs without
prior written permission of Hewlett-Packard Co. is also prohibited.

Microsoft, MS, MSN, PowerPoint, ActiveX, ActiveSync, Outlook, InkWriter,
Windows, Windows NT, Visual Basic, Visual C++, and the Windows logo
are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Microsoft products are licensed to
OEMs by Microsoft Licensing, Inc., a wholly owned subsidiary of Microsoft
Corporation. BSQUARE, bFax Professional, bFIND and bTASK are either
registered trademarks or trademarks of BSQUARE Corporation. OmniSolve
is copyright 1998-99 LandWare Inc. with all rights reserved. LandWare is a
trademark of LandWare, Inc.

Hewlett-Packard Singapore (Pte) Ltd.
Asia Pacific Personal Computer Division
452 Alexandra Road

Singapore 119961

LZL 1. . \2LbLl iNaVaVal

DO
NUNU AT TUUZ

Chapter1 | Welcome | 1

Welcome | 1

Congratulations on purchasing the Hewlett-Packard Jornada 600 Series
Handheld PC (H/PC), a mobile device powered by the Microsoft® Win-
dows® CE operating system. The HP Jornada 600 Series H/PC is available in
four models: the HP Jornada 680e, 680, 690e, and 690. This User’s Guide
includes instructions for all four models. The differences in specifications

are:

* Model 680e—no built-in modem, 16 MB RAM.
* Model 680—built-in modem, 16MB RAM.
* Model 690e—no built-in modem, 32MB RAM.

* Model 690—built-in modem, 32MB RAM.
(Note that on models 690 and 690e, a maximum of 16MB can be allocated
for storage memory.)

If you are familiar with Microsoft Windows products and notebook PCs,
you will notice that your HP Jornada has many of the same characteristics,
making it easy for you to be productive quickly.

In this chapter, you will find:

» An overview of this User’s Guide and other sources of help
and information

» Alist and brief descriptions of the built-in applications, including
Microsoft Windows CE, Handheld PC Professional Edition software and
special HP applications

» An introduction to HP Jornada features and a description of the
advantages of using the HP Jornada

2 | HP Jornada 600 Series User’s Guide

Using this guide

This User’s Guide will give you a quick and effective introduction to your

HP Jornada. Although great care has been taken to ensure the accuracy of
procedures and artwork, some of the screens displayed on your HP Jornada
may differ from the ones that appear in this User’s Guide.

Detailed, step-by-step instructions for using the programs on your

HP Jornada are also included in online Help, so you do not have to carry this
guide when you travel. (For more information on using online Help, see the
Using Help on your HP Jornadasection in chapter 2.)

Conventions

This User’s Guide includes certain visual cues that will help you find the
information you want easily.

@ A shortcut, another way to do something, or expanded

information about the topic.

important information that should be observed to prevent
loss of data or damage to your HP Jornada.

@ Helpful information related to the topic.

Finding information

@ Caution or warning information about the topic. This is

This guide describes what is included with your HP Jornada, provides an
overview of the installed programs, and describes how to set up communica-
tions between your device and desktop PC and between your device and the
Internet. The following table lists the different types of information available

to help you use your HP Jornada. Note that although this book introduces the
programs on your device, it does not describe them completely. For more
information, see the comprehensive online Help for each program.

Chapter 1 | Welcome | 3

Information Source

Programs This User’s Guide
Online Help on your device. On the
Start menu, tap Help.

Unfamiliar The glossary located at the end of

technical terms

this User’s Guide.

Synchronizing and
exchanging files with
a desktop PC
(including information
on connecting while
travelling

This User’s Guide

—or—

Online Help on your device. On the

Start menu, tap Help.

—or—

Windows CE Services online Help on your
desktop PC. In the Mobile Devices
window, click Help, and then click

Windows CE Services Help Topics.

ToolTips

Any toolbar button. Tap and hold the button
and the button name will appear. (To avoid
activating the toolbar button, drag off the
button before lifting the stylus.) For more
information, see the Using your HP Jornada
section in chapter 2.

Troubleshooting
information on
connections

This User’s Guide

—or—

The Communications Troubleshooter on your
desktop PC. In the Mobile Devices window,
click Help, and then click Communications
Troubleshooter.

Software updates,
device drivers,

and lists of com-
patible accessories

The Hewlett-Packard Jornada
Web site at www.hp.com/jornada.

Up-to-date
information on
Windows
CE-based devices

The Microsoft Windows CE Web site at
www.microsoft.com/windowsce.

Information on
this release of
Windows CE

Readme.doc file (located in the
Windows CE Services folder on your
desktop PC).

http://www.hp.com/jornada
http://www.microsoft.com/windowsce

4 | HP Jornada 600 Series User's Guide

The complete text of this User’s Guide is available on the HP Web site at www.hp.com/
jornada. You can download the User’s Guide to your desktop PC and view it using the
Adobe™ Acrobat Reader, available from the Adobe Web site at www.adobe.com.

Learning about HP Jornada

Hewlett-Packard has taken mobile computing to new levels of compatibility
and convenience. With HP Jornada, you’ll notice many benefits not found in
other, similar computers. For example you can:

Move the data you already have on an older palmtop or handheld PC to
your HP Jornada. You can transfer information from older Windows CE
devices and even some non-Windows CE devices. (S@&eath&ferring

PIM data from older palmtop PCssection in chapter 3.)

Use e-mail without a modem. Conveniently send e-mail automatically when
you synchronize with your desktop PC. (SeeSkechronizing data
section in chapter 3.)

Take more data with you. A desktop Microsoft Word file may take up to 85
percent less space on your HP Jornada. (Sekdhsferring files
section in chapter 3.)

Send voice messages to friends and colleagues—even those who do not
have Windows CE devices. You can save voice messages in the compat-
ible Wave audio format. (See tRecording voice memosection in

chapter 4.)

Keep Word, Access, and Excel files stored at work and at home synchro-
nized. Update any file in any location, and once you synchronize, the file
will be updated in every place it is stored. (Seesyrechronizing data
section in chapter 3.)

Read online news and information while offline, or download Web pages
for viewing later. (See thgrowsing the Websection in Chapter 6.)

Work any time, any place, with up to 7 hours of battery life. (See the
Managing battery powersection in chapter 3.)

Synchronize mail messages, contacts, appointments, and tasks with your
desktop or notebook PC in just a few steps. (Se8yhehronizing data
section in chapter 3.)

Carry your HP Jornada with you. The HP Jornada weighs only 510 g

(1.1 Ib), including batteries.

ROKUEXH1002—

http://www.hp.com/jornada
http://www.hp.com/jornada
http://www.adobe.com

Chapter 1 | Welcome | 5

» Expand your functionality with PC Card accessories. (Sed¢bessories
section in chapter 7.)

» Getitallin one package. Your HP Jornada comes complete with a built-in
modem (models 680 and 690 only).

HP Jornada is your mobile computing companion. Several valuable features
allow you to stay organized and in touch while you're on the road. For
instance:

» The HP Jornada viewer application displays PIM data (contacts, cale
and tasks) at a glance, allowing you to navigate to or view the data y r’
need immediately. You can even view notes attached to appointments.

» The HP Jornada dialup application leads you through the steps requszs
to configure a dial-up connection and to access your e-mail and the'
When you are ready to connect, just use the convenient dialup wmd
on your HP Jornada desktop.

e The HP Jornada quick pad provides a convenient place to jot down nnte<
names, telephone numbers, and other data for short-term storage. In@
mation can be saved in quick pad for fast retrieval or sent to the appr: ,
ate database for long-term storage.

» The HP Jornada backup application can back up and restore informa"g

to/from an optional CompactFlash Card or PC Card, safeguarding ag:
loss of data while you are on the road—even if power is lost.

HP Jornada programs

Your HP Jornada already includes the full suite of software that you need to
function as a mobile professional. Detailed information can be found in later
chapters.

The programs listed below are pre-installed in ROM, so you will never need to
reinstall them.

Microsoft Pocket Office

On theStart menu, point tdPrograms, point toOffice, and then tap one of
the following choices.

» Pocket Word—Take notes and compose documents, or transfer Mi- 4=
crosoft Word files from your desktop PC to read and review while you @
away from your office.

ROKUEXH1002—

6 | HP Jornada 600 Series User's Guide

5 &G &

Pocket Excel—View and edit price lists or financial forecasts on your
HP Jornada, or fill out your expense form before you even land at the
home office.

Pocket Access—Take database information with you on the road, and fill
in custom forms to update Access databases when you return to your
office.

Pocket PowerPoint—Create professional presentations on your desktop,
and then take them with you to show on your HP Jornada. Or, use a PC

Card VGA adapter (F1252A) to project them to an external monitor or VGA
projector.

Microsoft Pocket Outlook

On theStart menu, point td°rograms, point toPocket Outlook and then tap
one of the following choices.

Calendar—Never miss a meeting. Keep track of important dates and
events or manage your schedule.

Contacts—Take your address book with you so that you always have
access to names, addresses, and telephone numbers. If you update your
HP Jornada contacts list, just synchronize with your desktop PC and your
contacts will always be up to date.

Inbox—Send and receive e-mail messages and synchronize your

HP Jornada Inbox with Microsoft Outlook™ or Exchange™ on your
desktop PC partner in a matter of minutes.

Tasks—Keep track of to-do lists. Set an alarm or a reminder and
HP Jornada will make sure you do not forget a task!

Microsoft Explorers

On theStart menu, point td’rograms, and then tafnternet Explorer or
Windows Explorer. Or, double-tap thimternet Explorer orMy Handheld PC
icons on the desktop.

Pocket Internet Explorer—Browse the Web from your HP Jornada or
subscribe to channel content with this streamlined version of Microsoft
Internet Explorer 3.0.

Windows Explorer—Browse the files and folders on your HP Jornada.

Chapter1 | Welcome | 7

Communication

On theStart menu, point té°rograms, point toCommunication, and then tap
one of the following choices.

ActiveSync™—Synchronize your HP Jornada with your desktop or i
notebook PC over a network or dial-up connection from a remote location.™

PC Link—Establish the connection between your HP Jornada and E
desktop PC partner with a single tap. Pk
Remote Networking—Connect to a dial-up server, RAS account, or

Internet service provider.

Terminal—Connect to online services that require VT-100 or TTY @
terminal emulation.

bFAX Pro—Send Word documents or typed notes and receive faxes v IE
bFAX Pro from bSquare.

Special HP Applications

On theStart menu, point téd’rograms, point to HP Applications and then tap
one of the following choices.

HP viewer—Display Calendar, Task, and Contact information (Pocket E"ﬂ:’
Outlook) in as much detail as you need so that you are always in coni .
of your schedule. Month View, Week View, and Day View help you

manage your calendar even more efficiently. (HP viewer is also accessible
through a desktop icon and an HP hot key.)

HP dialup—Configure connections to the Internet and e-mail accounts g
corporate network, and then dial in from a convenient pop-up window &
your HP Jornada desktop. (HP dialup is also accessible through a deskiop
icon.)

HP quick pad—Write simple notes and reminders on this electronic
notepad, and then move the important information to Pocket Outlook (@
Word document.

HP backup—Protect your valuable data even when you are away from
your office by backing up your Pocket Outlook data or your entire dev@
to a CompactFlash or PC Card.

8 | HP Jornada 600 Series User’s Guide

On theStart menu, point td°rograms, point toHP Utilities, and then tap one
of the following choices.

HP settings—Adjust screen controls and sound volume to suit any work
environment. Or, choose from four preset profiles for different environ-
ments, and change all options with the touch of a button.

HP hot keys—Open programs, files, or folders with a single keystroke.
The HP Jornada hot keys and hard icons are fully customizable, so you
can configure them for one-touch access to your favorite programs or
frequently used documents.

HP macro—Automate common tasks using a powerful scripting lan-
guage. HP Macro allows you to create a set of recorded commands and
actions that you can repeat or play back by pressing a specific key
combination.

Accessories

On theStart menu, point tAccessoriesand then tap one of the following
choices.

Microsoft InkWriter ®—Jot quick notes or create sketches while in a
meeting.

Microsoft Voice Recorder—Record voice memos or vital information.
Calculator—Perform simple calculations in an on-screen calculator, and
then copy the results to any open document.

World Clock—Keep track of the time anywhere in the world and display
useful travel information for both your home city and the city you are
visiting.

bFIND ®—Search for a word or text string in any database, file, file name,
or e-mail message stored on your HP Jornada.

OmniSolve®—Perform complex mathematical and business calculations
with this full-featured calculator from Landware.

Games

» Solitaire—Pass the time at the airport, on the train, or during a not-so-

interesting meeting or lecture with this classic game.

1 101

Optimizing your |7
HP Jornada

This chapter details ways you can optimize your HP Jornada using Control
Panel and HP Utilities, and ways you can expand the features and functional-
ity of your HP Jornada by adding software and accessories. This chapter
also offers tips on traveling with your HP Jornada and keeping your

HP Jornada safe. These tips will help you become more efficient and make
working with your HP Jornada more comfortable and fun.

In the following pages, you will learn about:

Adding to your HP Jornada—Add programs, fonts, sounds, and desktop
wallpaper.

Using accessories—Use CompactFlash and PC Cards with the expansion
module.

Managing memory—Learn how to allocate storage and program memory
for optimal performance.

Managing battery power—Learn how to replace, and how to get the most
from your batteries.

Fine-tuning performance—Use control panel to set various options,
including customizing the HP hot keys and setting general system
settings.

Traveling with your HP Jornada—Follow simple guidelines for optimizing
your device for use while away from the office, including a check list of
everything you need to take with you.

Protecting your HP Jornada—Safeguard your HP Jornada from theft and
data loss.

Creating system macros—Automate common tasks with the HP macro
utility.

ROKUEXH 1002

102 | HP Jornada 600 Series User’s Guide

Adding programs, fonts, sounds, and images

This section describes how to add functionality to your HP Jornada by
installing software and how to customize the Windows CE desktop and
working environment.

Installing programs

You can add even more functionality to your HP Jornada by installing third-
party software. A wide variety of commercial software is available for the
Microsoft Windows CE operating system, ranging from custom business
applications and system utilities to games and entertainment. Some programs
are available on the HP Jornada Handheld PC compact disc and the Desktop
Software for Microsoft Windows CE compact disc included with your

HP Jornada. Other programs are available from software distributors and on
the Worldwide Web.

The only programs that will run on your HP Jornada are those designed specifically for
Windows CE. You cannot run programs designed for Windows 95 or Windows NT on your
HP Jornada.

The HP Jornada Handheld PC compact disc includes many productivity-
enhancing programs such as:

* Inso® Outisde In® file viewer software for viewing popular desktop file
formats

» Pocket Quicken™ from On The Go Software (for U.S. only)

» TrueSync® CE 2.0 from Starfish Software for synchronizing your
HP Jornada with the REX™ Classic and REX Pro Cards

» Trio Phone Manager for sending/receiving SMS with a GSM phone (for
Europe and Asia Pacific only)

* WestTek™ JetCet™ color printing utilities (30-day trial)
» Image Expert CE from Sierra Imaging

» Java for Windows CE from Microsoft Corporation

» HP PIM Translation Utility

The minimum system requirements for installing programs from the
HP Jornada Handheld PC compact disc are as follows:

* Microsoft Windows 95, Windows 98, or Windows NT 4.0

ROKUEXH1002—

Chapter 7 | Optimizing your HP Jornada | 103

» Desktop PC with a 486/66 or higher processor
o 2Xor faster CD-ROM drive
» VGA or higher resolution graphics card

» Web browser (Netscape Navigator 2.0 or higher or Microsoft Internet
Explorer 2.0 or higher)

Explore the HP Jornada Handheld PC compact disc to enjoy these free
software programs. For more information about a particular program, go to
the Web site of the manufacturer of that program.

Many other useful programs are available from the Hewlett-Packard Web site
atwww.hp.com/jornada. Hewlett-Packard does not support the use of
programs that have not been certified by Microsoft.

Typically, you install software to your H/PC by first loading the installation
files onto your desktop PC, as described in the following procedure.

the program from the Web to your HP Jornada. The Web site should provide instructions
for installing the program.

If a program is designed for direct installation, you may be able to download or install @

To install software

1. Download the software program or installer from the Web to your
desktop PC.
Insert the floppy disk or compact disc into the appropriate drive on
your desktop PC.

2. Connect your HP Jornada to your desktop PC using the docking
cradle or sync cable and establish a partnership. (For more informa-
tion, see chapter 4.).

3. Ifthe program includes an installer program (typically named
Setup.exe or Install.exe), double-click the installer program on the
desktop PC. The installer program will copy the necessary files to
your HP Jornada.

If the program does not have an associated installer or setup
program, drag the program file (typically an *.exe file type) to the
HP Jornada icon in the Mobile Devices window. Iflieeconverter
selecteddialog box appears, clicBK to copy the file without

conversion.

http://www.hp.com/jornada

104 | HP Jornada 600 Series User's Guide

4. If prompted by the installer, perform a soft reset of your H/PC. For
more information, see thResettingsection in chapter 8.

Install software by dragging the program file to the Mobile Devices window only if no
installer program is available. Software installed in this way may not appear on the
Remove Programs list, and you may have to manually delete the program if you wish
to remove it from your HP Jomada.

After you have installed a program on your HP Jornada, you can use Win-
dows CE Application Manager to remove the program or to reinstall the
program after it has been removed. If you do not have enough storage
memory on your HP Jornada, you may want to use Application Manager to
temporarily remove programs you no longer use or programs that you use
infrequently.

To add or remove programs with Application Manager

1. Connect your HP Jornada to your desktop PC, and then open the
Mobile Devices window.

2. OntheToolsmenu in the Mobile Devices window, cliglpplication
Manager.

3. Inthe list of programs, select the program you wish to install, and
then clickAdd.
—or—
Select the program you want to delete, and then Rakove

Removing programs

You can use either Application Manager (on your desktop PC) or the Remove
Programs control panel (on your HP Jornada) to remove programs.

To remove a program from your HP Jornada with the Remove
Programs control panel

1. Onthe Startmenu, point t&ettings and then tagontrol Panel
Double-tap the Remove Programs icon.
In theProgramslist, select the program you want to remove.

TapRemove

Programs stored in ROM cannot be removed. (For a list of these programs see the
HP Jornada programs section in chapter 1.)

ROKUEXH1002—

