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ABSTRACT

The variance of gametic diversity σgamete
2( ) can be 

used to find individuals that more likely produce prog-
eny with extreme breeding values. The aim of this 
study was to obtain this variance for individuals from 
routine genomic evaluations, and to apply gametic vari-
ance in a selection criterion in conjunction with breed-
ing values to improve genetic progress. An analytical 
approach was developed to estimate σgamete

2  by the sum 
of binomial variances of all individual quantitative trait 
loci across the genome. Simulation was used to verify 
the predictability of this variance in a range of scenari-
os. The accuracy of prediction ranged from 0.49 to 0.85, 
depending on the scenario and model used. Compared 
with sequence data, SNP data are sufficient for esti-
mating σgamete

2 . Results also suggested that markers 
with low minor allele frequency and the covariance be-
tween markers should be included in the estimation. To 
incorporate σgamete

2  into selective breeding programs, we 
proposed a new index, relative predicted transmitting 
ability, which better utilizes the genetic potential of 
individuals than traditional predicted transmitting 
ability. Simulation with a small genome showed an ad-
ditional genetic gain of up to 16% in 10 generations, 
depending on the number of quantitative trait loci and 
selection intensity. Finally, we applied σgamete

2  to the US 
genomic evaluations for Holstein and Jersey cattle. As 
expected, the DGAT1 gene had a strong effect on the 
estimation of σgamete

2  for several production traits. How-
ever, inbreeding had a small impact on gametic vari-
ability, with greater effect for more polygenic traits. In 
conclusion, gametic variance, a potentially important 
parameter for selection programs, can be easily com-

puted and is useful for improving genetic progress and 
controlling genetic diversity.
Key words: Mendelian sampling, gamete, 
heterozygosity, selective breeding, dairy cattle

INTRODUCTION

Since the introduction of marker-assisted selection 
and genomic selection, technological improvements 
have resulted in widespread incorporation of molecular 
information into genetic evaluations (Nejati-Javaremi 
et al., 1997; Meuwissen et al., 2001; Schaeffer, 2006). 
Increased prediction accuracy, along with reduced gen-
eration intervals, has made genomic selection an impor-
tant tool for achieving fast progress in dairy selection 
programs (García-Ruiz et al., 2016). Despite concerns 
about inbreeding in selection and mating designs, most 
selection programs only consider breeding values when 
making selection decisions. Even with genomic selec-
tion models, genomic breeding value or PTA and evalu-
ation of future progeny are mostly based on expected 
breeding values without consideration of the variability 
of those values due to Mendelian sampling.

In addition to breeding value or PTA, other selection 
strategies have been proposed to increase the rate of 
genetic progress. One idea was to select animals that 
will provide greater genetic gains in the future rather 
than choosing the best animals in the current popu-
lation. Goiffon et al. (2017) showed improved genetic 
gains when selecting for the best gametes from a subset 
of individuals in a population. Segelke et al. (2014) dis-
cussed the potential use of the variation within groups 
of offspring, which allows the assignment of probabilities 
to obtain progeny with a breeding value over a given 
threshold, as well as the number of matings required. 
In a follow-up study, Bonk et al. (2016) showed how 
exact within-family genetic variation can be calculated 
using data from phased genotypes. Recently, Müller et 
al. (2018) proposed a new selection criterion based on 
the expected maximum haploid breeding value. Col-
lectively, these studies suggest that the incorporation of 
variation of future gametic values into mating decisions 
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can improve genetic progress on top of the selection on 
breeding values.

However, a few questions need to be answered before 
the application of gametic variance to breeding pro-
grams, such as how to assess the variation of future ga-
metic values of an individual, how large is the gametic 
variance, how to use this information for selection, and 
how to estimate the variance of gametic diversity and 
use it in existing genomic evaluations. In this study, 
we aimed to address these questions from a statistical 
point of view, demonstrating the equivalence between 
gametic variance and Mendelian sampling variance in 
the classical BLUP (pedigree) model. We also sought 
to explore how this variance can be used as a selection 
criterion in conjunction with breeding values, with the 
goal of maximizing future genetic gains. We propose 
an approach for estimating this variance from routine 
genomic evaluations, verifying the adequacy of the es-
timates for individuals with and without progeny, and 
estimating the variance of breeding values of future 
progeny for a given mating. Finally, we evaluate the ap-
plication of gametic variance to improve the selection of 
dairy traits in the US Holstein and Jersey populations.

MATERIALS AND METHODS

Estimation of the Variance of Gametic Diversity

We refer to the variance of gametic diversity as 
σgamete

2 , which is equivalent to half of the Mendelian 
sampling variance (Appendix A1). σgamete

2  measures the 
deviation of progeny breeding values from parent aver-
age and can be calculated using the probabilities of 
transmission of alleles at all QTL from an individual to 
its gametes. Gametic variance represents the variability 
of all possible gametic values generated by the permu-
tation and recombination of each parental chromosome. 
In fact, only the heterozygous loci of an individual 
contribute to σgamete

2 , so we only consider heterozygous 
loci in the following text.

Let’s first consider one locus. For a biallelic locus j of 
an individual i with allele substitution effect αj, σgamete

2  
can be calculated from a binomial variance of 
σ α[ ] ,j jnp p2 21= −( )  where the probability of transmis-
sion of a reference allele to a gamete p = 0.5 and the 
number of alleles transmitted to a gamete n = 1. When 
2 loci, j and k, are considered for an individual i, the 
resulting variance can be obtained as

 σ σ σ σ[ ]j k jkj k+ [ ] [ ]= + +2 2 2 2  

 and σ α αjk jk j k j kp p p= −( ) , [1]

where pj = pk = 0.5, and pjk is the probability that the 
2 reference alleles of the 2 loci are transmitted together; 
pjk can be obtained from the linkage phase and recom-
bination rate between the 2 loci. For example, pjk = 
0.25 and σjk = 0 when the loci are in linkage equilibri-
um; pjk = 0.5 and σjk j k= 0 25. α α  when the 2 reference 
alleles are on the same chromosome and the loci are in 
complete linkage.

Extending this calculation from 2 loci to all QTL on 
the genome, the σgamete

2  of individual i can be obtained 
as the sum across all N heterozygous QTL:

 σ σ σgamete
2 2

1 11
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This can be represented in matrix format as follows:

 σ α α α αgamete
2

1 1= [ ] [ ]′… …N NM , [2]

where αj j N, ...,=( )1  are the allele substitution effects, 
and M is the (co)variance matrix of the Mendelian 
transmission probabilities for the N heterozygous loci:
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where aljk is a phase indicator for loci j and k, with 
value 1 when both loci have the reference allele on 
the same chromosome and −1 otherwise; cMjk is the 
genetic distance between the 2 loci (in centimorgans). 
Any 2 loci with genetic distance >50 cM on the same 
chromosome, or on different chromosomes, are assumed 
to be independent and thus have zero values for the 
corresponding elements of M. When all the loci are 
independent,

 M =



















0 25 0 0
0 0
0 0 0 25
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Instead of using genetic distances, M can be set up 
when direct recombination rates are available.
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To estimate gametic variance in real data where ge-
nomic evaluation is available, we proposed to use the 
estimated SNP effects to replace true QTL effects in 
Equation [2]. This approximation of QTL with SNP 
marker effects is similar to that described by Bonk et 
al. (2016). Note that using estimated SNP effects in [2] 
may bias the estimation due to the covariance between 
estimated effects of SNP in linkage disequilibrium (LD) 
and potential biases from shrunken estimators of SNP 
effects, which warrants further investigation.

Application of Gametic Variance  
in Selection Programs

A new selection strategy using σgamete
2  can be pro-

posed, focusing on the future genetic progress (Bijma et 
al., 2018). When a small proportion of animals are se-
lected for breeding, σgamete

2  can help identify those that 
are most likely to produce progeny with extreme breed-
ing values. Assuming selection intensity is maintained 
across generations, the average genetic value of the 
animals selected in the future will be related to the 
variance of gametes of the selected animals in the cur-
rent generation. The average breeding value transmit-
ted to future progeny can be calculated by summing 
the expected value and i times the standard deviation 
of gametic diversity i gameteσ( ). The selection intensity (i) 
represents the number of standard deviations between 
the population average and the average of selected in-
dividuals. The same intensity can be applied when us-
ing PTA as the expected value and σgamete as standard 
deviation, to obtain the mean breeding value transmit-
ted to the selected individuals in the next generation. 
Similar approaches have been proposed by Lehermeier 
et al. (2017) via a usefulness criterion (UC) with ge-
nomic EBV (GEBV) and the standard deviation of a 
given mating.

Here, we propose a new selection criterion relative to 
the intensity of selection applied in the next generation 
(if) for an individual i (unknowing mating),

 RPTA PTA ii i gamete i f= + ×σ _ , [3]

where RPTAi (relative PTA) is the average of the ge-
netic values relative to the group of progeny that will 
be selected in the future (see Appendix A2). In addi-
tion, we introduce a new concept of coefficient of rela-
tive variation (CRV) as a measure of the variability 
of the additive genetic values (u) transmitted from an 
individual to its progeny (Appendix A3). The CRV of 
an individual i is defined as follows (where E indicates 
expected value):

 CRV
E u

i
gamete

i

=
( )

σ

0 5 2.
. [4]

Simulation

To verify the estimation of σgamete
2  by genomic models 

and the use of this new parameter to aid selection, we 
simulated different scenarios with various QTL, geno-
type, and phenotype data using the QMSim version 
1.10 software (Sargolzaei and Schenkel, 2009). In brief, 
we simulated a historical population, a 10-generation 
recent population, and a 10-generation future popula-
tion (Table 1).

To mimic real populations, a historical population 
was simulated with the same proportion of males and 
females that were mated randomly. This population 
was generated in 3 phases: the first phase consisted 
of 500 generations with a constant population size of 
1,000 individuals; the second phase had 500 generations 
with a constant reduction of population size from 1,000 
to 200 to generate LD and establish drift-mutation bal-
ance; and the third phase included 10 generations of 
expansion, where the population size increased from 
200 to 3,000. From the last generation of this historical 
population, 200 males and 800 females were randomly 
selected as founders to generate the study population, 
which consisted of 10 generations with 5 progeny per 
dam and a ratio of 50% males in the offspring. We 
simulated a selection for breeding values estimated by 
the classical BLUP (Henderson, 1975). The replacement 
ratio was set at 20% for dams and 60% for sires (Brito 
et al., 2011), and mating was random among selected 
individuals. The replacement ratio is the proportion of 
animals to be culled and replaced in each generation.

From the study population (last 10 generations of the 
simulation), genotype and QTL data were obtained for 
the 9th generation (treated as a reference population) 
and the 10th generation (the validation population). 
The marker effects were first estimated in the reference 
generation. The σgamete

2  values for all individuals were 
estimated for both the reference and validation popula-
tions using the marker effects estimated in the reference 
generation. For comparison, true gametic variance was 
also calculated using the QTL effects and their geno-
type data from the simulation.

To reduce computational load, a small genome, with 
4 autosomal chromosomes of 50 cM each, was simu-
lated. The mutation rate was fixed at 2.5 × 10−5 in 
the historical population. The number of crossovers was 
sampled from a Poisson distribution. A total of 200,000 
markers and different sets of QTL were simulated to be 
randomly distributed along the genome. After the ge-
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nome was simulated, a panel with 10% of the polymor-
phic markers was sampled every 0.5 cM and another 
panel with 20% of the markers was sampled every 0.5 
cM. The first panel was chosen to mimic a high-density 
SNP panel and the second for sequence data. A detailed 
description of the parameters is reported in Table 1.

Six traits were simulated with heritabilities of 0.1, 
0.3, and 0.5 and 20 QTL (i.e., 0.1 QTL per cM) or 200 
QTL (i.e., 1 QTL per cM), respectively. We used 2 
QTL densities similar to those used by Meuwissen et al. 

(2001). The QTL effects were generated based on a 
gamma distribution with parameter β = 0.4 (Hayes and 
Goddard, 2001). The phenotypic variance was assumed 
to be 1 for all traits. Four replicates were used for each 
trait. In addition, 10 future generations were simulated 
where the individuals were selected either by the true 
breeding value (T_PTA) or by true RPTA (T_RPTA) 
to verify and compare the genetic gains obtained using 
these criteria. To assess the effect of these indices on 
selection in the future generations, the replacement ra-

Table 1. Summary of simulation parameters

Parameter  Value

Genome parameter
 Genome size 200 cM
 Number of chromosomes 4
 Number of QTL 20 and 200
 Number of markers 10,000 (high-density panel) and 20,000+ QTL (sequence data)
 Mutation rate, QTL 2.5 × 10−5

 Mutation rate, marker 2.5 × 10−3

 Marker positions in genome Evenly spaced
 QTL position in genome Random (uniform distribution)
 QTL allele effect Gamma distribution (β = 0.4)
Trait parameters
 Number of traits 6
 Heritability 0.10, 0.30, 0.50
 Phenotypic variance 1
 Sex-limited trait No
Population structure parameters
 Historical generation
  Phase 1
   Number of generations 500
   Number of animals Constant (500 males and 500 females)
   Mating Random
  Phase 2
   Number of generations 500
   Initial number of animals 1,000
   Final number of animals 200 (100 males and 100 females)
   Mating Random
  Phase 3
   Number of generations 10
   Initial number 200 (100 males and 100 females)
   Final number 3,000 (1,500 males and 1,500 females)
   Mating Random
 Recent generation
  Number of generations 10
  Reference population 9th
  Validation population 9th and 10th
  Number of offspring per dam 5
  Founders 1,000 (200 males 800 females)
  Mating Random
  Selection BLUP
  Cutting BLUP
  Replacement 20% females and 60% males
  Overlapping generation Yes
  Generation 9–10 (predictability) Correlation σ σgamete gamete estimated 2 2, _( )
 Future generation
  Number of generations 10
  Criterion of selection1 T_PTA = TRUE/2 or T_RPTA (TRUE/2) + σgamete

2

  Number of offspring per dam 5 or 10
  Replacement 100% females and 100% males
  Better criterion Genetic gain per generation
1T_PTA = true PTA; T_RPTA = true relative PTA; σgamete

2  = variance of gametic diversity.
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tio was maintained at 100% and the number of offspring 
per dam was 5 (corresponding to a selection intensity of 
0.996 for females and 1.76 for males) or 10 (correspond-
ing selection intensities of 1.4 for females and 2.06 for 
males). As the predicted σgamete

2  is a latent variance, its 
realized value depends on the number of progeny of an 
individual. Any inference using this variance should be 
regarded as a bet (probability of an event considering 
the number of attempts). Therefore, the selection in-
tensity applied to RPTA (if) may need to be adjusted 
accordingly, and 3 values of if (0.5, 0.8, and 1) were 
tested in this study.

Genomic Analysis

Because σgamete
2  depends on the marker effects in ge-

nomic models, we used a model that assumed homoge-
neity of variance of marker effects, GBLUP (SNP-
BLUP), and another model that allowed heterogeneity 
of marker effects with differential shrinkage through 
the improved Bayesian LASSO (BLASSO; Legarra et 
al., 2011). The analyses were performed using the GS3 
v.3 software (Legarra et al., 2015). The model included 
the population mean, marker effects, and residual. Only 
markers with minor allele frequency (MAF) >0.05 
were considered. For estimation of additive and residu-
al variances, the simulated true values were used as 
initial values to reduce computational complexity, fol-
lowed by 20,000 iterations with the burn-in of 2,000 
initial chains.

Application of Gametic Variance to Real Data

The data used were part of the 2017 US genomic 
evaluations from the Council on Dairy Cattle Breeding 
(CDCB, Bowie, MD), consisting of 1,364,278 Holstein 
and 164,278 Jersey cattle from the national dairy cattle 
database. Five dairy traits based on up to 5 lactations 
were analyzed: milk (MY), fat (FY) and protein (PY) 
yields, and fat (F%) and protein (P%) percentages. 
The genotype data were generated from different SNP 
arrays with the number of SNP ranging from 7K to 
50K. All individuals were imputed to a common panel 
of 60,671 SNP and their linkage phase were determined 
by FindHap version 3 (VanRaden et al., 2011). The 
σgamete

2  was calculated using Equation [2] with estimated 
SNP effects ˆ .α1( )  The marker effects were derived from 
the PTA obtained from the genomic evaluation. Sex-
specific recombination rates between SNP markers in 
Holstein and Jersey cattle were directly used in this 
study (Ma et al., 2015; Shen et al., 2018). Thus, a 
modification to the off-diagonal elements of the M ma-

trix in Equation [2] was applied to incorporate recom-
bination rate

 Mjk jk
jkal

rate
= − +









2

0 25. , 

when the recombination rate is <0.5; and Mjk = 0 when 
the rate ≥0.5.

RESULTS AND DISCUSSION

Estimation of Gametic Variance  
with Genomic Models

The variance of progeny breeding values has been 
investigated in previous studies (Cole and VanRaden, 
2011; Segelke et al., 2014; Bonk et al., 2016). Here, we 
sought to use simulation to evaluate the predictability 
of gametic variance as a parameter for selection. To 
evaluate the predictability, a comparison with classical 
simulation studies with genomic prediction was adopt-
ed. The variance of gametic diversity σgamete

2( ) was cal-
culated considering both dependence and independence 
between loci, using all QTL and QTL with MAF ≥5%, 
and utilizing high-density SNP and sequence data with 
marker effects obtained from genomic models. The 
Pearson correlation between the true and estimated 
σgamete

2  ranged from medium to high (Table 2), similar 
to those studies on breeding values (Meuwissen et al., 
2001; Daetwyler et al., 2010; Clark et al., 2011). In 
general, the correlation increased when the heritability 
(h2) of traits increased, whereas the same relation was 
not apparent when the number of QTL was large. Dif-
ferently, for the GEBV prediction, the increase in ac-
curacy has been reported with increased h2 and for 
scenarios with a small number of QTL, particularly 
when these were estimated by differential shrinkage 
models (Daetwyler et al., 2010; Clark et al., 2011).

We observed higher correlations between the true 
and predicted σgamete

2  using BLASSO compared with 
GBLUP in all scenarios (Table 2). These results were 
partly due to the small genome and large QTL effects 
simulated. Although GBLUP can have a similar or 
slightly better performance for prediction of GEBV 
than differential shrinkage models for scenarios with a 
large number of QTL (Daetwyler et al., 2010), the ac-
curacy of the estimated marker effects, mainly for QTL 
regions, is greater from differential shrinkage models 
(Meuwissen et al., 2001; Shepherd et al., 2010; Legarra 
et al., 2011). For estimating σgamete

2 , the marker effect 
has a greater impact than for GEBV prediction because 
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