

US011445727B2

(12) United States Patent

Fabri et al.

(54) FUNGICIDAL COMBINATIONS

- (71) Applicant: UPL LTD, Haldia (IN)
- Inventors: Carlos Eduardo Fabri, Sao Paulo -SP (BR); Rajju Devidas Shroff, Maharashtra (IN); Jaidev Rajnikant Shroff, Dubai (AE); Vikram Rajnikant Shroff, Dubai (AE)
- (73) Assignee: UPL LTD, West Bengal (IN)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 16/347,283
- (22) PCT Filed: Oct. 30, 2017
- (86) PCT No.: PCT/IB2017/056710
 § 371 (c)(1),
 (2) Date: May 3, 2019
- (87) PCT Pub. No.: WO2018/083577PCT Pub. Date: May 11, 2018

(65) **Prior Publication Data**

US 2019/0274307 A1 Sep. 12, 2019

(30) Foreign Application Priority Data

Nov. 4, 2016 (IN) 201631037704

(51) Int. Cl.

mu on	
A01N 47/14	(2006.01)
A01N 37/36	(2006.01)
A01N 43/16	(2006.01)
A01N 43/40	(2006.01)
A01N 43/54	(2006.01)
A01N 43/56	(2006.01)
A01N 43/60	(2006.01)
A01N 43/653	(2006.01)
A01N 45/02	(2006.01)

- (58) Field of Classification Search
 CPC A01N 47/14; A01N 37/36; A01N 43/16; A01N 43/40; A01N 43/54; A01N 43/56; A01N 43/60; A01N 43/653; A01N 45/02
 See application file for complete search history.

(10) Patent No.: US 11,445,727 B2 (45) Date of Patent: *Sep. 20, 2022

(56) References Cited

U.S. PATENT DOCUMENTS

10,362,782	B2 *	7/2019	Oliveira A01N 43/653
10,448,636	B2 *	10/2019	Oliveira A01N 43/40
10,537,101	B2 *	1/2020	Oliveira A01N 43/653
10,694,744	B2 *	6/2020	Oliveira A01N 25/00
10,694,745	B2 *	6/2020	Oliveira A01N 43/653
2008/0113979	A1	5/2008	Foor
2009/0131462	A1	5/2009	Gewehr et al.
2010/0216640	A1	8/2010	Tobler et al.
2015/0181870	A1*	7/2015	Kemmitt A01N 37/42
			514/229.2
2016/0360751	A1*	12/2016	Oliveira A01N 43/54
2020/0170251	A1*	6/2020	Hermenegildo de Oliveira
			A01N 25/00
2021/0007355	A1	1/2021	Gongora et al.
2021/0022343	A1	1/2021	Gongora et al.
2021/0106006	A1	4/2021	Fabri et al.
2021/0127679	A1	5/2021	Fabri et al.
2021/0137119	A1	5/2021	Fabri et al.
2022/0039388	A1	2/2022	Fabri et al.

FOREIGN PATENT DOCUMENTS

CA	2969545 A1	6/2016
CN	101222847 A	7/2008
CN	101677558 A	3/2010
CN	102258039 A	11/2011
CN	102835407 A	12/2012
CN	105744834 A	7/2016
EP	2783569 *	12/2014
WO	2006037632	4/2006
WO	2006037634 A1	4/2006
WO	2008095913 A2	8/2008
WO	2013127818 A1	9/2013
WO	2015079334 A1	6/2015

OTHER PUBLICATIONS

Brent K. J. et al.; "Fungicide Resistance in Crop Pathogens: How Can It Be Managed?"; 2nd Revised Edition, Fungicide Resistance Action Committee, 2007, ISBN 90-72398-07-6; 60 pages.

International Search Report and Written Opinion; International Application No. PCT/IB2017/056710; International Filing Date Oct. 30, 2017; dated Jan. 12, 2018; 10 pages.

Lalancette, Norman, "New Fungicide for Apple Disease Control" Plant & Pest Advisory, Rutgers Cooperative Extension, Mar. 17, 2016, 2 pages.

Rosenberger, David; "Apple Scab Models & Suggestions for Scab Control in 2015"; 70th North Jersey Commercial Fruit Growers Meeting, Flemington, NJ, Mar. 4, 2015, 31 pages.

Rosenberger Presentation "Fire Blight and NEWA—How to Control Blight in 2015"; 70th North Jersey Commercial Fruit Growers Meeting; Mar. 4, 2015, Flemington, NJ; 43 pages.

* cited by examiner

Primary Examiner - Mina Haghighatian

(74) Attorney, Agent, or Firm – Cantor Colburn LLP

(57) **ABSTRACT**

A combination comprising a dithiocarbamate fungicide, a succinate dehydrogenase fungicide and at least one of ergosterol biosynthesis inhibitor fungicide or a quinone outside inhibitor fungicide.

10 Claims, No Drawings

FUNGICIDAL COMBINATIONS

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a National Stage application of PCT/ IB2017/056710, filed on Oct. 30, 2017, which claims the benefit of Indian Application No. 201631037704, filed on Nov. 4, 2016, both of which are incorporated by reference in their entirety herein.

TECHNICAL FIELD

The present invention relates to a combination of fungicides. More specifically, the present invention relates to 15 fungicidal combinations comprising succinate dehydrogenase inhibitor fungicides for controlling a broad spectrum of fungal diseases.

BACKGROUND OF THE INVENTION

Fungicides are an integral and important tool yielded by farmers to control diseases, as well as to improve yields and quality of the crops. There are various fungicides that have been developed over the years with many desirable attri- 25 butes such as specificity, systemicity, curative and eradicant action and high activity at low use rates.

Succinate dehydrogenase inhibitor (SDHI) fungicides are known in the art to be broad spectrum and have a high potency. Pyrazolecarboxamides are a group of active com- 30 pounds within the SDHI family of fungicides that are known to be more potent than most other SDHI fungicides. These molecules specifically bind to the ubiquinone-binding site (Q-site) of the mitochondrial complex II, thereby inhibiting fungal respiration. These fungicides are known to control a 35 broad spectrum of fungal diseases.

Various other classes of fungicides are also known in the art, such as Quinone outside inhibitors (QoIs), ergosterolbiosynthesis inhibitors, fungicides that act on multiple sites, fungicides that affect mitosis etc. These fungicides have 40 been mixed with SDHI fungicides to achieve a broad spectrum of disease control.

WO2006037632 teaches combinations of SDHI fungicides with a second active compound. WO2013127818 teaches combinations of SDHI fungicides with various her- 45 bicides. WO2006037634 teaches methods of controlling fungi using a combination of SDHI fungicide with various fungicides. However, the prior art does not teach the use of ternary or higher combinations of SDHI fungicides.

gicides. These fungicides are used for broad-spectrum disease control in more than 70 crops. Mancozeb is especially important for controlling devastating and fast spreading diseases such as Phytophthora infestans, Venturia inaequalis etc. Dithiocarbamate fungicides, especially mancozeb, are 55 particularly useful for disease control because of their broad spectrum of activity, high tolerance by crop plants, and general usefulness for controlling fungal plant diseases not controlled by active compounds that act on only a single target site in the fungus. 60

Mancozeb has been combined with various SDHI fungicides for disease control. There is a need in the art to improve on the disease spectrum provided by these combinations.

imposed and resistance being increasingly observed, there is a need for a combination of actives that allows for broader disease control spectrum that combines curative and preventive actives and has a lower dosage.

Therefore, embodiments of the present invention may ameliorate one or more of the above mentioned problems:

Therefore, embodiments of the present invention may provide combinations of fungicides that possess an enhanced efficacy over the individual fungicides used in isolation.

Another object of the present invention is to provide a fungicidal combination that causes an enhanced greening of the crops to which it is administered.

Another object of the present invention is to provide a fungicidal combination that causes late senescence to the crop to which it is applied thereby resulting into an increasing yield of the crop.

Yet another object of the present invention is to provide a fungicidal combination that results into reduced fungal ²⁰ disease incidence in the crops to which it is applied.

Another object of the present invention is to provide a fungicidal combination that achieves increased yield in the crops to which it is applied.

Some or all these and other objects of the invention are can be achieved by way of the invention described hereinafter.

SUMMARY OF THE INVENTION

Thus, an aspect of the present invention can provide a fungicidal combination comprising at least one succinate dehydrogenase inhibitor fungicide, at least one dithiocarbamate fungicide, and at least another fungicide.

Another aspect of the present invention can provide a fungicidal combination comprising at least one succinate dehydrogenase inhibitor fungicide, at least one dithiocarbamate fungicide and at least two other fungicides.

Another aspect of the present invention can provide synergistic compositions comprising at least one succinate dehydrogenase inhibitor fungicide, at least one dithiocarbamate fungicide, and at least one other fungicide.

Another aspect of the present invention can provide synergistic compositions comprising at least one succinate dehydrogenase inhibitor fungicide, at least one dithiocarbamate fungicide and at least two other fungicides.

DETAILED DESCRIPTION

The term 'disease control' as used herein denotes control Dithiocarbamate are known in the art as multi-site fun- 50 and prevention of a disease. Controlling effects include all deviation from natural development, for example: killing, retardation, decrease of the fugal disease. The term 'plants' refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage and fruits. The term locus: of a plant as used herein is intended to embrace the place on which the plants are growing, where the plant propagation materials of the plants are sown or where the plant propagation materials of the plants will be placed into the soil. The term plant propagation material: is understood to denote generative parts of a plant, such as seeds, vegetative material such as cuttings or tubers, roots, fruits, tubers, bulbs, rhizomes and parts of plants, germinated plants and young plants which are to be transplanted after germination or after emergence from the soil. These There is therefore a need in the art for combinations of 65 young plants may be protected before transplantation by a

an active that kills or inhibits the plant disease for which control is desired, in an amount not significantly toxic to the plant being treated.

Succinate dehydrogenase inhibitor (SDHI) fungicides play an important role in plant protection against many ⁵ phytopathogenic fungi. These molecules specifically bind to the ubiquinone-binding site (Q-site) of the mitochondrial complex II, thereby inhibiting fungal respiration. Dithiocarbamate are multi-site contact fungicides. These molecules attack multiple sites within the fugal cells. 10

It has surprisingly been found that the addition of a dithiocarbamate fungicide to the combinations of succinate dehydrogenase inhibitors with at least another fungicide selected from an ergosterol biosynthesis inhibitors or Quinone outside inhibitors or a combination thereof, resulted in 15 surprising and unexpected advantages. It was surprising that the addition of a dithiocarbamate fungicide to the combination of a succinate dehydrogenase inhibitor with at least another fungicide selected from an ergosterol biosynthesis inhibitors and/or Quinone outside inhibitors or a combina-20 tion thereof resulted in an enhancement of the efficacy, and a surprising reduction in fungal disease incidence, seen only with the combination of succinate dehydrogenase inhibitors with at least another fungicide selected from an ergosterol biosynthesis inhibitors or Quinone outside inhibitors or a combination thereof. It has further been found that the 25 addition of a dithiocarbamate fungicide to these combinations and application of these combinations during the flowering stage of the crop delayed the senescence in the crop to which they were applied, which led to better greening in the crop thereby increasing the level of photosynthesis 30 occurring within the plant, thereby leading to a greater yield from the crop to which they were applied.

These surprising advantages of the combinations of the invention were not observed when the dithiocarbamate fungicide was not present in the combination. Therefore, these unexpected advantages of the combination of the ³⁵ present invention could be attributed to the inclusion of a dithiocarbamate fungicide to the combination of a succinate dehydrogenase inhibitor with at least another fungicide selected from an ergosterol biosynthesis inhibitors and/or Quinone outside inhibitors or a combination thereof. 40

Thus, in an aspect, the present invention provides a fungicidal combination comprising:

- (a) at least one dithiocarbamate fungicide;
- (b) at least one succinate dehydrogenase inhibitor fungicide; and
- (c) at least another fungicide selected from an ergosterol biosynthesis inhibitors and/or Quinone outside inhibitors.

In an embodiment, the dithiocarbamate fungicide is selected from the group consisting of amobam, asomate, azithiram, carbamorph, cufraneb, cuprobam, disulfiram, ferbam, metam, nabam, tecoram, thiram, urbacide, ziram, dazomet, etem, milneb, mancopper, mancozeb, maneb, metiram, polycarbamate, propineb and zineb.

In an embodiment, the preferred dithiocarbamate fungicide is mancozeb.

In an embodiment, the succinate dehydrogenase inhibitor is selected from pyrazole carboxamide class of succinate dehydrogenase inhibitor fungicides. However, it should be understood that the choice of succinate dehydrogenase inhibitors is not understood to be limited to these pyrazole carboxamide fungicides alone.

In an embodiment, the pyrazole carboxamide class of succinate dehydrogenase inhibitor fungicide may be selected from benzovindiflupyr, bixafen, fluxapyroxad, furametpyr, isopyrazam, penflufen, penthiopyrad, and sedaxane. 65

aphthalen-5-yl]-3-(difluoromethyl)-1-methylpyrazole-4carboxamide and has the structure:

Bixafen has the chemical name N-(3',4'-dichloro-5-fluorobiphenyl-2-yl)-3-(difluoromethyl)-1-methylpyrazole-4carboxamide and the structure:

Fluxapyroxad has the chemical name 3-(difluoromethyl)-1-methyl-N-(3',4',5'-trifluorobiphenyl-2-yl)pyrazole-4-carboxamide and has the structure:

Furametpyr has the chemical name (RS)-5-chloro-N-(1, 3-dihydro-1,1,3-trimethylisobenzofuran-4-yl)-1,3-dimethylpyrazole-4-carboxamide and has the structure:

5

10

Isopyrazam is a mixture of 2 isomers 3-(difluoromethyl)-1-methyl-N-[(1RS,4SR,9RS)-1,2,3,4-tetrahydro-9-isopropyl-1,4-methanonaphthalen-5-yl]pyrazole-4-carboxamide and 2 aisomers 3-(diffuoromethyl)-1-methyl-N-[(1RS,4SR, 9SR)-1,2,3,4-tetrahydro-9-isopropyl-1,4-methanonaphthalen-5-yllpyrazole-4-carboxamide and its tautomer's have the structure:

Penflufen has the chemical name N-[2-(1,3-dimethyl-²⁵ butyl)phenyl]-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carboxamide, and has the following structure:

Penthiopyrad has the chemical name (RS)-N-[2-(1,3-45 mixtures thereof. dimethylbutyl)-3-thienyl]-1-methyl-3-(trifluoromethyl) pyrazole-4-carboxamide, and has the following structure:

Sedaxane is a mixture of 2 cis-isomers 2'-[(1RS,2RS)-1, 1'-bicycloprop-2-yl]-3-(difluoromethyl)-1-methylpyrazole-4-carboxanilide and 2 trans-isomers 2'-[(1RS,2SR)-1,1'-biclarran_9_v11_3_(diffuaramethv1)_1_methv1nvr2zale_4

In an embodiment, the succinate dehydrogenase inhibitor 15 fungicide may be selected from the group consisting of benodanil, flutolanil, mepronil, isofetamid, fluopyram, fenfuram, carboxin, oxycarboxin, thifluzamide, boscalid and IR9792.

In an embodiment, the third and/or fourth fungicides in ²⁰ the combinations of the present invention may be selected from ergosterol biosynthesis inhibitors, and/or Quinone outside (Qo) inhibitors or mixtures thereof.

Thus in an embodiment, the ergosterol biosynthesis inhibitors may be selected from the group consisting of azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, etaconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imibenconazole, Ipconazole, metconazole, myclobutanil, penconazole, Propiconazole, simeconazole, 30 tebuconazole, tetraconazole, triadimefon, triadimenol, triticonazole, prothioconazole, imazalil, oxpoconazole, pefurazoate, prochloraz, triflumizole, fenarimol, nuarimol, pyrifenox, pyrisoxazole, triforine and mixtures thereof.

In another embodiment, the ergosterol biosynthesis 35 inhibitors may be selected from prothioconazole, tebuconazole, hexaconazole, cyroconazole or epoxiconazole.

In an embodiment, the third fungicide may be a Quinone outside (Qo) inhibitor fungicide selected from azoxystrobin, 40 coumoxystrobin, enoxastrobin, flufenoxystrobin, picoxystrobin, pyraoxystrobin, mandestrobin, pyraclostrobin, pyrametostrobin, triclopyricarb, kresoxim-methyl, dimoxystrobin, fenaminostrobin, metominostrobin, trifloxystrobin, famoxadone, fluoxastrobin, fenamidone, pyribencarb and

In an embodiment, the Quinone outside (Qo) inhibitor fungicide may be selected from azoxystrobin, picoxystrobin, kresoxim-methyl, pyraclostrobin and trifloxystrobin.

In an embodiment of the combinations of the present ₅₀ invention, the preferred succinate dehydrogenase inhibitor fungicide is isopyrazam.

In an embodiment, the combinations of the present invention include the following preferred combinations:

33	S No.	I	II	III	IV
	1	Mancozeb	Isopyrazam	Cyproconazole	_
	2	Mancozeb	Isopyrazam	Difenoconazole	_
	3	Mancozeb	Isopyrazam	Epoxiconazole	
<u> </u>	4	Mancozeb	Isopyrazam	Hexaconazole	_
00	5	Mancozeb	Isopyrazam	Tebuconazole	_
	6	Mancozeb	Isopyrazam	Tetraconazole	_
	7	Mancozeb	Isopyrazam	Prothioconazole	_
	8	Mancozeb	Isopyrazam		Azoxystrobin
	9	Mancozeb	Isopyrazam	—	Picoxystrobin
	10	Mancozeb	Isopyrazam		Pyraclostrobin
65	11	Mancozeb	Isopyrazam	_	Kresoxim-

-continued

8

-continued

III

IV

					-	_		
S No.	Ι	II	III	IV	_	S No	. I	II
12	Mancozeb	Isopyrazam	_	Trifloxystrobin		68	Mancozeb	Benzovindiflup
13	Mancozeb	Isopyrazam	Cyproconazole	Azoxystrobin	5			
14	Mancozeb	Isopyrazam	Cyproconazole	Picoxystrobin		69	Mancozeb	Benzovindiflup
15	Mancozeb	Isopyrazam	Cyproconazole	Pyraclostrobin		70	Mancozeb	Benzovindiflup
16	Mancozeb	Isopyrazam	Cyproconazole	Kresoxim-		71	Mancozeb	Benzovindiflup
				methyl		72	Mancozeb	Benzovindiflup
17	Mancozeb	Isopyrazam	Cyproconazole	Trifloxystrobin		73	Mancozeb	Benzovindiflup
18	Mancozeb	Isopyrazam	Difenoconazole	Azoxystrobin	10			
19	Mancozeb	Isopyrazam	Difenoconazole	Picoxystrobin		74	Mancozeb	Benzovindiflup
20	Mancozeb	Isopyrazam	Difenoconazole	Pyraclostrobin		75	Mancozeb	Benzovindiflup
21	Mancozeb	Isopyrazam	Difenoconazole	Kresoxim-		76	Mancozeb	Benzovindiflup
				methyl		77	Mancozeb	Benzovindiflup
22	Mancozeb	Isopyrazam	Difenoconazole	Trifloxystrobin		78	Mancozeb	Benzovindiflup
23	Mancozeb	Isopyrazam	Epoxiconazole	Azoxystrobin	15			
24	Mancozeb	Isopyrazam	Epoxiconazole	Picoxystrobin		79	Mancozeb	Benzovindiflup
25	Mancozeb	Isopyrazam	Epoxiconazole	Pyraclostrobin		80	Mancozeb	Benzovindiflup
26	Mancozeb	Isopyrazam	Epoxiconazole	Kresoxim-		81	Mancozeb	Benzovindiflup
			-	methyl		82	Mancozeb	Benzovindiflup
27	Mancozeb	Isopyrazam	Epoxiconazole	Trifloxystrobin		83	Mancozeb	Benzovindiflup
28	Mancozeb	Isopyrazam	Hexaconazole	Azoxystrobin	20			
29	Mancozeb	Isopyrazam	Hexaconazole	Picoxystrobin	20	84	Mancozeb	Benzovindiflup
30	Mancozeb	Isopyrazam	Hexaconazole	Pyraclostrobin		85	Mancozeb	Benzovindiflup
31	Mancozeb	Isopyrazam	Hexaconazole	Kresoxim-		86	Mancozeb	Benzovindiflup
				methyl		87	Mancozeb	Benzovindiflup
32	Mancozeb	Isopyrazam	Hexaconazole	Trifloxystrobin		88	Mancozeb	Benzovindiflup
33	Mancozeb	Isopyrazam	Tebuconazole	Azoxystrobin				
34	Mancozeb	Isopyrazam	Tebuconazole	Picoxystrobin	25	89	Mancozeb	Benzovindiflup
35	Mancozeb	Isopyrazam	Tebuconazole	Pyraclostrobin		90	Mancozeb	Benzovindiflup
36	Mancozeb	Isopyrazam	Tebuconazole	Kresoxim-		91	Mancozeb	Benzovindiflup
				methyl		92	Mancozeb	Benzovindiflup
37	Mancozeb	Isopyrazam	Tebuconazole	Trifloxystrobin		93	Mancozeb	Benzovindiflup
38	Mancozeb	Isopyrazam	Tetraconazole	Azoxystrobin				
39	Mancozeb	Isopyrazam	Tetraconazole	Picoxystrobin	30	94	Mancozeb	Benzovindiflup
40	Mancozeb	Isopyrazam	Tetraconazole	Pyraclostrobin				
41	Mancozeb	Isopyrazam	Tetraconazole	Kresoxim-				
				methyl		In	an embo	diment of th
42	Mancozeb	Isopyrazam	Tetraconazole	Trifloxystrobin		inve	ntion the	preferred suc
43	Mancozeb	Isopyrazam	Prothioconazole	Azoxystrobin		func	iaida ia D	preferred ba
44	Mancozeb	Isopyrazam	Prothioconazole	Picoxystrobin	35	lung	icide is Po	entmopyrad.
45	Mancozeb	Isopyrazam	Prothioconazole	Pyraclostrobin		In	an embod	liment, the co
46	Mancozeb	Isopyrazam	Prothioconazole	Kresoxim-		tion	include th	e following
47	Mancozeb	Isopyrazam	Prothioconazole	Trifloxystrobin				
		1.4		·				

In an embodiment of the combinations of the present invention, the preferred succinate dehydrogenase inhibitor fungicide is Benzovindiflupyr.

In an embodiment, the combinations of the present invention include the following preferred combinations:

S No.	. I	II	III	IV	-
48	Mancozeb	Benzovindiflupyr	Cyproconazole	_	
49	Mancozeb	Benzovindiflupyr	Difenoconazole	_	50
50	Mancozeb	Benzovindiflupyr	Epoxiconazole	_	
51	Mancozeb	Benzovindiflupyr	Hexaconazole	_	
52	Mancozeb	Benzovindiflupyr	Tebuconazole	_	
53	Mancozeb	Benzovindiflupyr	Tetraconazole	_	
54	Mancozeb	Benzovindiflupyr	Prothioconazole		
55	Mancozeb	Benzovindiflupyr		Azoxystrobin	55
56	Mancozeb	Benzovindiflupyr	_	Picoxystrobin	55
57	Mancozeb	Benzovindiflupyr	_	Pyraclostrobin	
58	Mancozeb	Benzovindiflupyr	_	Kresoxim-	
				methyl	
59	Mancozeb	Benzovindiflupyr	_	Trifloxystrobin	
60	Mancozeb	Benzovindiflupyr	Cyproconazole	Azoxystrobin	60
61	Mancozeb	Benzovindiflupyr	Cyproconazole	Picoxystrobin	00
62	Mancozeb	Benzovindiflupyr	Cyproconazole	Pyraclostrobin	
63	Mancozeb	Benzovindiflupyr	Cyproconazole	Kresoxim-	
				methyl	
64	Mancozeb	Benzovindiflupyr	Cyproconazole	Trifloxystrobin	
65	Mancozeb	Benzovindiflupyr	Difenoconazole	Azoxystrobin	
66	Mancozeb	Benzovindiflupyr	Difenoconazole	Picoxystrobin	65

DOCKET

LARM

Α

	_				
5	68	Mancozeb	Benzovindiflupyr	Difenoconazole	Kresoxim-
	69	Mancozeh	Benzovindiflupvr	Difenoconazole	Trifloxystrohin
	70	Mancozeb	Benzovindiflupyr	Epoxiconazole	Azoxystrohin
	71	Mancozeb	Benzovindiflupyr	Epoxiconazole	Picoxystrobin
	72	Mancozeb	Benzovindiflupyr	Epoxiconazole	Pyraclostrohin
	73	Mancozeb	Benzovindiflupyr	Epoxiconazole	Kresovim-
10	,5	Maneozeo	Benzev mannapyr	Epoxiconazoie	methyl
	74	Mancozeb	Benzovindiflupyr	Epoxiconazole	Trifloxystrobin
	75	Mancozeb	Benzovindiflupyr	Hexaconazole	Azoxystrobin
	76	Mancozeb	Benzovindiflupyr	Hexaconazole	Picoxystrobin
	77	Mancozeb	Benzovindiflupyr	Hexaconazole	Pyraclostrobin
	78	Mancozeb	Benzovindiflupyr	Hexaconazole	Kresoxim-
15					methyl
	79	Mancozeb	Benzovindiflupyr	Hexaconazole	Trifloxystrobin
	80	Mancozeb	Benzovindiflupyr	Tebuconazole	Azoxystrobin
	81	Mancozeb	Benzovindiflupyr	Tebuconazole	Picoxystrobin
	82	Mancozeb	Benzovindiflupyr	Tebuconazole	Pyraclostrobin
	83	Mancozeb	Benzovindiflupyr	Tebuconazole	Kresoxim-
20					methyl
	84	Mancozeb	Benzovindiflupyr	Tebuconazole	Trifloxystrobin
	85	Mancozeb	Benzovindiflupyr	Tetraconazole	Azoxystrobin
	86	Mancozeb	Benzovindiflupyr	Tetraconazole	Picoxystrobin
	87	Mancozeb	Benzovindiflupyr	Tetraconazole	Pyraclostrobin
	88	Mancozeb	Benzovindiflupyr	Tetraconazole	Kresoxim-
25	0.0		D	m	methyl
	89	Mancozeb	Benzovindiflupyr	letraconazole	Trifloxystrobin
	90	Mancozeb	Benzovindiflupyr	Prothioconazole	Azoxystrobin
	91	Mancozeb	Benzovindiflupyr	Prothioconazole	Picoxystrobin
	92	Mancozeb	Benzovindiflupyr	Prothioconazole	Pyraclostrobin
	93	Mancozeb	Benzovindiflupyr	Prothioconazole	Kresoxim- methyl
30	94	Mancozeb	Benzovindiflupyr	Prothioconazole	Trifloxystrobin

In an embodiment of the combinations of the present invention, the preferred succinate dehydrogenase inhibitor fungicide is Penthiopyrad.

In an embodiment, the combinations of the present invention include the following preferred combinations:

40	S No.	Ι	II	III	IV
-	95	Mancozeb	Penthiopyrad	Cyproconazole	_
	96	Mancozeb	Penthiopyrad	Difenoconazole	_
	97	Mancozeb	Penthiopyrad	Epoxiconazole	_
	98	Mancozeb	Penthiopyrad	Hexaconazole	_
	99	Mancozeb	Penthiopyrad	Tebuconazole	_
45	100	Mancozeb	Penthiopyrad	Tetraconazole	
	101	Mancozeb	Penthiopyrad	Prothioconazole	_
	102	Mancozeb	Penthiopyrad	_	Azoxystrobin
	103	Mancozeb	Penthiopyrad	_	Picoxystrobin
	104	Mancozeb	Penthiopyrad	_	Pyraclostrobin
	105	Mancozeb	Penthiopyrad	_	Kresoxim-
50					methyl
	106	Mancozeb	Penthiopyrad	_	Trifloxystrobin
	107	Mancozeb	Penthiopyrad	Cyproconazole	Azoxystrobin
	108	Mancozeb	Penthiopyrad	Cyproconazole	Picoxystrobin
	109	Mancozeb	Penthiopyrad	Cyproconazole	Pyraclostrobin
	110	Mancozeb	Penthiopyrad	Cyproconazole	Kresoxim-
55					methyl
	111	Mancozeb	Penthiopyrad	Cyproconazole	Trifloxystrobin
	112	Mancozeb	Penthiopyrad	Difenoconazole	Azoxystrobin
	113	Mancozeb	Penthiopyrad	Difenoconazole	Picoxystrobin
	114	Mancozeb	Penthiopyrad	Difenoconazole	Pyraclostrobin
	115	Mancozeb	Penthiopyrad	Difenoconazole	Kresoxim-
60					methyl
00	116	Mancozeb	Penthiopyrad	Difenoconazole	Trifloxystrobin
	117	Mancozeb	Penthiopyrad	Epoxiconazole	Azoxystrobin
	118	Mancozeb	Penthiopyrad	Epoxiconazole	Picoxystrobin
	119	Mancozeb	Penthiopyrad	Epoxiconazole	Pyraclostrobin
	120	Mancozeb	Penthiopyrad	Epoxiconazole	Kresoxim- methyl
65	121	Mancozeb	Penthiopyrad	Epoxiconazole	Trifloxystrobin

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

