Claims

1. A compound of Formula (I)

wherein
R^{1} is selected from the group consisting of methyl, ethynyl, 1-propynyl, phenyl and a 5 or 6 membered heteroaryl which comprises one or two nitrogen heteroatoms, said phenyl and heteroaryl optionally substituted by one or two R^{15} substituents;
R^{2} is selected from the group consisting of methyl, ethyl, methoxy and chloro;
R^{3} is selected from the group consisting of methyl ethyl, methoxy and chloro;
R^{4} is selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy-, $\mathrm{C}_{1}-$ C_{4} haloalkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{4}$ haloalkyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}} \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}} \mathrm{C}_{1}-$ C 6 haloalkyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{C}_{3}-\mathrm{C}_{6}$ Cycloalkyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}} \mathrm{C}\left(\mathrm{R}^{11}\right) \mathrm{R}^{12} \mathrm{R}^{13},-\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{C}(\mathrm{O})-$ $\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\quad-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{R}^{11}\right) \mathrm{R}^{12} \mathrm{R}^{13}, \quad-\mathrm{C}(\mathrm{O}) \mathrm{C}_{2}-\mathrm{C}_{4}$ alkenyl, $\mathrm{C}(\mathrm{O})\left(\mathrm{CR}^{9} \mathrm{R}^{10}\right) \mathrm{CN}, \quad-\mathrm{C}(\mathrm{O})\left(\mathrm{CR}^{9} \mathrm{R}^{10}\right)\left(\mathrm{CR}^{9} \mathrm{R}^{10}\right) \mathrm{CN}, \quad-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O})-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\quad-$ $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\quad-\mathrm{C}(\mathrm{O}) \mathrm{OC}_{1}-\mathrm{C}_{6}$ alkyl, $\quad-\mathrm{C}(\mathrm{O}) \mathrm{OC}_{1}-\mathrm{C}_{6}$ haloalkyl, $\mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~S}(\mathrm{O})_{n} \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxyC $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxyC ${ }_{2}-$ C_{6} alkenyl, - $\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxyC2- C_{6} alkynyl, - $\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{3} \mathrm{alkox}_{1} \mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkyl, $\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxyC $\mathrm{C}_{3}-\mathrm{C}_{6}$ Cycloalkyl, $\quad-\mathrm{C}(\mathrm{O}) \mathrm{OC}_{1}-\mathrm{C}_{3}$ alkoxyC $_{1}-\mathrm{C}_{6}$ alkyl, $\quad-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-$ C_{3} alkoxyC $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy $_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NR}^{5} \mathrm{R}^{6},-\mathrm{C}(\mathrm{O})-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-\mathrm{NR}^{7} \mathrm{C}(\mathrm{O}) \mathrm{R}^{8}$, $-\mathrm{C}(\mathrm{O})-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-\mathrm{O}-\mathrm{N}=\mathrm{CR}^{5} \mathrm{R}^{5}, \quad-\mathrm{CN}, \quad-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{16} \mathrm{R}^{17}, \quad-\mathrm{S}(\mathrm{O})\left(=\mathrm{NR}^{18}\right) \mathrm{R}^{19}, \quad-$ $\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{O}) \mathrm{R}^{20},-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{R}^{23}\right)=\mathrm{N}-\mathrm{O}-\mathrm{R}^{24},-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{R}^{23}\right)=\mathrm{N}-\mathrm{NR}^{25} \mathrm{R}^{26},-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-$ phenyl, $-\mathrm{C}(\mathrm{O})-\left(\mathrm{CH}_{2}\right)_{n}$-phenyl, $\quad-\mathrm{S}(\mathrm{O})_{n}-\left(\mathrm{CH}_{2}\right)_{n}$-phenyl, \quad-heterocyclyl, $\quad-\mathrm{C}(\mathrm{O})-\left(\mathrm{CH}_{2}\right)_{n}-$ heterocyclyl, $-\mathrm{S}(\mathrm{O})_{n}-\left(\mathrm{CH}_{2}\right)_{n}$-heterocyclyl, wherein each heterocyclyl is a 5 - or 6-
membered heterocyclyl which may be aromatic, saturated or partially saturated and can contain from 1 to 4 heteroatoms each independently selected from the group consisting of oxygen, nitrogen and sulphur, and wherein said heterocyclyl or phenyl groups are optionally substituted by one, two or three substituents independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, halogen, cyano and nitro;
R^{5} is selected from the group consisting of hydrogen and $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R^{6} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, C_{2}-Calkynyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkyl, hydroxyl-, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, , $\mathrm{C}_{1}-$ C_{4} alkoxy $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxyC $\mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkyl, $-\left(\mathrm{CR}^{9} \mathrm{R}^{10}\right) \mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkyl, $\left(C R^{9} R^{10}\right) C(O) N R^{5} R^{5}$, phenyl, -pyridyl, wherein the phenyl and pyridyl are optionally substituted by one, two or three substituents independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, halogen, cyano and nitro; or
R^{5} and R^{6} together form $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}$-; and
R^{7} is selected from the group consisting of hydrogen and $C_{1}-C_{6}$ alkyl;
R^{8} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, phenyl, -pyridyl, wherein the phenyl and pyridyl are optionally substituted by one, two or three substituents independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, halogen, cyano and nitro;
R^{9} is hydrogen or methyl;
R^{10} is hydrogen or methyl; or
R^{9} and R^{10} together form $-\mathrm{CH}_{2} \mathrm{CH}_{2}$-; and
R^{11} is hydrogen or methyl;
R^{12} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, hydroxyl and
$\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy-;
R^{13} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, hydroxyl and $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy; or
R^{12} and R^{13} together form $-\mathrm{CH}_{2}-\mathrm{X}-\mathrm{CH}_{2}-$; and
X is selected from the group consisting of O, S and $\mathrm{N}-\mathrm{R}^{14}$;
R^{14} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl and $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy-;
R^{15} is independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ haloalkyl, cyano and halogen;
R^{16} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl; and
R^{17} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{3}-$ C_{6} cycloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy- $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl-,-C(O) $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{OC}_{1}-\mathrm{C}_{6}$ alkyl and $\mathrm{CH}_{2} \mathrm{CN}$; or
R^{16} and R^{17} together form $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-;
R^{18} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R^{19} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, C_{3} - C_{6} Cycloalkyl, phenyl, -pyridyl, wherein the phenyl and pyridyl are optionally substituted by one, two or three substituents independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, halogen, cyano and nitro;
R^{20} is selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkyl, $\mathrm{C}_{1}-$ C_{6} alkoxy-, $\mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkoxy, $-\mathrm{NR}^{21} \mathrm{R}^{22}$, phenyl and -pyridyl, wherein the phenyl and pyridyl are optionally substituted by one, two or three substituents independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, halogen, cyano and nitro;
R^{21} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl-, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkyl- and $\mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkoxy, $-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, phenyl, -pyridyl, wherein the phenyl and pyridyl are optionally substituted by one, two or three substituents independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, halogen, cyano and nitro;
R^{22} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl; or
R^{21} and R^{22} together form $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}$-;
R^{23} is selected from the group consisting of hydrogen, $C_{1}-C_{6}$ alkyl, C_{1-} C_{6} haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkoxy- and C_{1} - C_{6} haloalkoxy-;
R^{24} is selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, C_{1-} C_{6} alkoxyC ${ }_{1}-\mathrm{C}_{3}$ alkyl-, $\mathrm{C}_{3}-\mathrm{C}_{6}$ Cycloalkyl, $-\mathrm{CH}_{2} \mathrm{CN}$, tetrahydropyranyl-, phenyl and -pyridyl, wherein the phenyl and pyridyl are optionally substituted by one, two or three substituents independently selected from the group consisting of C_{1} C_{3} alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3} h a l o a l k y l, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, halogen, cyano and nitro;
R^{25} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
R^{26} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl;
G is selected from the group consisting of hydrogen, $-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{R}^{\mathrm{a}},-\mathrm{C}(\mathrm{O})-\mathrm{R}^{\mathrm{a}}$, -$\mathrm{C}(\mathrm{O})-\left(\mathrm{CR}^{\mathrm{c}} \mathrm{R}^{\mathrm{d}}\right)_{n}-\mathrm{O}-\mathrm{R}^{\mathrm{b}},-\mathrm{C}(\mathrm{O}) \mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{a}},-\mathrm{S}(\mathrm{O})_{2}-\mathrm{R}^{\mathrm{a}}$ and $\mathrm{C}_{1}-\mathrm{C}_{8}$ alkoxy $-\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl-;
R^{a} is independently selected from the group consisting of hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ Cycloalkyl, heterocyclyl and phenyl wherein said heterocyclyl and phenyl groups are optionally substituted by one, two or three substituents independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, C_{1} - C_{3} alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2^{-}}$ C_{3} alkynyl, halogen, cyano and nitro;
R^{b} is selected from the group consisting of $C_{1}-\mathrm{C}_{8}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ haloalkyl, $\mathrm{C}_{2^{-}}$
C_{8} alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkynyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, heterocyclyl and phenyl wherein said heterocyclyl and phenyl groups are optionally substituted by one, two or three substituents independently selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, C_{1} - C_{3} haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl, $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkynyl, halogen, cyano and nitro;
R^{c} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
R^{d} is hydrogen or $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl; and
n is independently 0,1 or 2 ;
or an agriculturally acceptable salt thereof.
2. A compound according to claim 1 which is a compound of Formula (la)

wherein
R^{2} is methyl or methoxy;
R^{3} is methyl or methoxy;
R^{4} is selected from the group consisting of $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy-, C_{1-} C_{4} haloalkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}$ - C_{4} haloalkyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}} \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}} \mathrm{C}_{1}-$ C6haloalkyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-\mathrm{C}_{3}-\mathrm{C}_{6}$ Cycloalkyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}} \mathrm{C}\left(\mathrm{R}^{11}\right) \mathrm{R}^{12} \mathrm{R}^{13},-\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{C}(\mathrm{O})-$ $\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\quad-\mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{R}^{11}\right) \mathrm{R}^{12} \mathrm{R}^{13}, \quad-\mathrm{C}(\mathrm{O}) \mathrm{C}_{2}-\mathrm{C}_{4}$ alkenyl, $\mathrm{C}(\mathrm{O})\left(\mathrm{CR}^{9} \mathrm{R}^{10}\right) \mathrm{CN}, \quad-\mathrm{C}(\mathrm{O}) \mathrm{OC}_{1}-\mathrm{C}_{6}$ alkyl, $\quad-\mathrm{C}(\mathrm{O}) \mathrm{OC}_{1}-\mathrm{C}_{6}$ haloalkyl, $\mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~S}(\mathrm{O})_{n} \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxyC ${ }_{1}-\mathrm{C}_{6}$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{NR}^{5} \mathrm{R}^{6},-\mathrm{C}(\mathrm{O})-$ $\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{NR}^{7} \mathrm{C}(\mathrm{O}) \mathrm{R}^{8},-\mathrm{CN},-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}$-phenyl, $-\mathrm{C}(\mathrm{O})-\left(\mathrm{CH}_{2}\right)_{n}$-phenyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}$ phenyl, -heterocyclyl, - $\mathrm{C}(\mathrm{O})-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}$-heterocyclyl, $-\mathrm{S}(\mathrm{O})_{\mathrm{n}}-\left(\mathrm{CH}_{2}\right)_{n}$-heterocyclyl,

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

