throbber
Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 1 of 9 PageID #: 18
`
`
`
`
`
`
`
`Exhibit A
`
`United States Patent No. 6,914,635
`
`
`
`
`

`

`Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 2 of 9 PageID #: 19
`I 1111111111111111 11111 111111111111111 IIIII IIIII IIIII IIIII lll111111111111111
`US006914635B2
`
`(12) United States Patent
`Ostergard
`
`(10) Patent No.:
`(45) Date of Patent:
`
`US 6,914,635 B2
`Jul. 5, 2005
`
`(54) MICROMINIATURE ZOOM SYSTEM FOR
`DIGITAL CAMERA
`
`(75)
`
`Inventor: Toni Ostergard, Turku (FI)
`
`(73) Assignee: Nokia Mobile Phones, Ltd., Espoo (FI)
`
`( *) Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 695 days.
`
`(21) Appl. No.: 09/779,416
`
`(22) Filed:
`
`Feb. 8,2001
`
`(65)
`
`Prior Publication Data
`
`US 2004/0201773 Al Oct. 14, 2004
`
`Int. Cl.7 ................................................ H04N 5/225
`(51)
`(52) U.S. Cl. ....................... 348/374; 348/340; 348/351;
`348/240.3
`(58) Field of Search ................................. 348/374, 340,
`348/240.3, 351, 357, 240.99
`
`(56)
`
`References Cited
`PUBLICATIONS
`"Electrostatic Linear Microactuator Mechanism for Focus(cid:173)
`ing a CCD Camera" by Koga, et al., Journal of Lightwave
`Technology, vol. 17, No. 1, Jan. 1999; p. 43-47.*
`* cited by examiner
`Primary Examiner-Wendy R. Garber
`Assistant Examiner-Gary C. Vieaux
`(74) Attorney, Agent, or Firm-Perman & Green, LLP
`ABSTRACT
`(57)
`
`A digital camera for use in a communication device in which
`the image sensor is formed on a substrate and is mounted on
`a micro-electromechanical system for movement relative to
`the camera lens to provide an autofocus capability. In
`addition the lens may be mounted on a micro(cid:173)
`electromechanical system for movement relative to the
`image sensor to provide both an autofocus and a zoom
`capability.
`
`12 Claims, 4 Drawing Sheets
`
`24
`
`28
`
`27
`
`26
`
`

`

`Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 3 of 9 PageID #: 20
`
`U.S. Patent
`
`Jul. 5, 2005
`
`Sheet 1 of 4
`
`US 6,914,635 B2
`
`--r--,,--------- ~---
`\
`---,----.i
`
`_O
`
`,-----------------------------7
`
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`
`,.... ,----
`--
`
`II)_,
`
`-~
`
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`t
`
`-
`
`I
`I
`I
`I
`l
`
`~~
`I
`I
`I
`I
`
`\
`~-------------~---------------~
`
`

`

`Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 4 of 9 PageID #: 21
`
`U.S. Patent
`
`Jul. 5, 2005
`
`Sheet 2 of 4
`
`US 6,914,635 B2
`
`..,.
`
`N
`
`co -\
`
`.,,
`
`N
`
`N
`N
`
`an
`......
`
`I")
`
`-
`
`..,.
`-
`
`N
`N
`
`I
`I
`I
`I
`I
`I
`I
`~~
`I
`I
`I
`I
`I
`I
`I
`I
`I
`L
`
`r
`I
`I
`I
`I
`I
`I
`
`,....
`
`I -I
`
`I")
`N
`
`I
`-
`
`0
`
`-,
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`
`..,.
`
`N
`
`a,
`......
`
`..,.
`
`N
`
`C\I
`•
`(!)
`LL
`
`-
`
`r- \
`\
`\
`\
`\
`\
`\
`\
`\
`
`~-\
`
`co
`N
`
`\
`\
`\
`\
`\
`\
`\
`\
`,....
`\
`\
`\. N
`\
`
`~
`•
`C)
`LL
`
`-
`
`r--
`an -.J
`N I
`I
`I
`I
`I
`I
`I
`I
`J
`I
`l._
`
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`I
`..J
`
`

`

`Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 5 of 9 PageID #: 22
`
`U.S. Patent
`
`Jul. 5, 2005
`
`Sheet 3 of 4
`
`US 6,914,635 B2
`
`2
`
`WIDE-ANGLE
`
`3
`
`5
`
`IMAGE
`PLANE
`
`FIG.4a
`
`2
`
`VARIATOR
`
`MIDDLE
`
`3
`
`5
`
`2
`
`TELEPHOTO
`
`FIG.4b
`
`J
`
`"FIG.4c
`
`4
`
`5
`
`

`

`Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 6 of 9 PageID #: 23
`
`U.S. Patent
`
`Jul. 5, 2005
`
`Sheet 4 of 4
`
`US 6,914,635 B2
`
`2
`
`ZOOM
`
`4
`
`5
`
`. : '
`
`I
`
`f
`I
`I
`________ ,
`,
`I
`
`I
`\
`\
`\
`\
`\
`
`3
`
`FIG. 4D
`
`

`

`Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 7 of 9 PageID #: 24
`
`US 6,914,635 B2
`
`1
`MICROMINIATURE ZOOM SYSTEM FOR
`DIGITAL CAMERA
`
`BACKGROUND OF THE INVENTION
`
`2
`this coordinated movement one or both of these lens can be
`mounted for movement on the MEMS component in opera(cid:173)
`tive association with the sensor array. Since the position of
`the sensor array can be varied the movement of the lens-
`5 system/lenses could in some cases be reduced. With a
`suitable lens design and by moving the sensor array itself, it
`could e.g. be possible to reduce or completely omit the
`movement of one of the lenses, e.g. the compensator. In this
`manner a variety of configurations can be accomplished to
`10 provide the zoom and autofocus functions in a miniaturized
`version of the traditional system.
`
`Mobile communications devices are becoming more com(cid:173)
`pact while their functions and features are ever expanding.
`As a next step in this process of expanding applications, a
`digital camera may be installed. This requires a new cycle of
`development with respect to the digital camera in order to
`package the necessary functions within the compact profile
`of the mobile communications device. In order to miniatur-
`ize the camera for such use, the zoom feature is often
`eliminated or substantially reduced in functionality. This is
`because the apparatus needed to move the lens in a tradi(cid:173)
`tional zoom mechanism is cumbersome. The development is
`facilitated by the introduction of digital, semi-conductor,
`imaging sensors, such as CCD and C-MOS sensor arrays.
`In addition a new class of micro-miniature components
`have become available that provide the functionality of both
`electrical and mechanical components. These components
`are fabricated in a process similar to the manufacture of
`integrated circuit chips, namely the surface treatment of
`silicon wafers. These mechanisms can provide the function
`of sensors (resonators), actuators, transducers, motors, and
`gears to high tolerances. By micro-machining silicon wafers
`layered on a substrate, the components, of the so called
`micro-electromechanical system (MEMS), are constructed
`on a thin substrate. A description of MEMS components is 30
`contained in Philosophical Transactions of the Royal Soci(cid:173)
`ety: Physical Sciences and Engineering, Series A, Issue No.
`1703, Dec. 15, 1995, pp. 355-366, which is incorporated
`herein by reference.
`It is a purpose of this invention to provide an autofocus
`and zoom system for a compact electronic device. A further
`purpose of this invention is to provide these functions by
`using a sensor array, such as a C-MOS sensor array, and a
`lens actuation mechanism suitable for fabrication on a
`silicon wafer. It is a further purpose of this invention to
`utilize the advantages of micro-electromechanical system
`(MEMS) manufacturing techniques to obtain these goals.
`
`DESCRIPTION OF THE DRAWING
`
`The subject invention is described in more detail below
`15 with reference to the drawing in which:
`FIG. la is a schematic illustration of a traditional lens
`system with a fixed sensor array;
`FIG. lb is a schematic illustration of a lens system in
`20 which the sensor array is mounted for movement;
`FIG. 2 is a schematic illustration of the sensor array of this
`invention fabricated with the MEMS component for mul(cid:173)
`tiple positions;
`FIG. 3 is a schematic illustration of the sensor array and
`25 lens system fabricated and mounted for coordinated move(cid:173)
`ment on the MEMS component; and
`FIGS. 4a, 4b, 4c and 4d are schematic illustrations of a
`traditional lens system, showing the various relative posi(cid:173)
`tions of the lenses.
`
`DETAILED DESCRIPTION OF THE
`INVENTION
`A typical optical lens system 1 for a camera having
`35 autofocus and zoom capability is depicted schematically in
`FIGS. 4a-4d. It generally will consists of a primary lens 2,
`a variator lens 3, and a compensator lens 4 which are
`operatively associated to project a focused image on image
`plane 5. As shown, the lens has three "principal" positions,
`40 i.e., wide angle, middle and telephoto. The zoom function,
`as shown in FIG. 4d, can be a smooth movement between
`the two end positions (wide and tele), as indicated by arrow
`30, and do not necessary have to be a stepwise action with
`only three options. These variations in function are provided
`45 by moving the variator and compensator lens, 3 and 4
`respectively, as shown. Lens system 1 is used in a digital
`camera 6, as shown in FIG. 1, in which the lens system 1 is
`secured within a housing (not shown) to project an image on
`an image sensor 7 positioned at the image plane 5 of the
`50 camera 6. The assembly of lens are adjusted, as shown in
`FIGS. 4a-4d to obtain autofocus and zoom functions.
`In accordance with this invention, the mechanical move(cid:173)
`ment of the lens system 1 is constructed through the use of
`advanced micro-machining techniques. Through such
`techniques, a semi-conductor image sensor can be combined
`with a lens system in a unique manner to obtain substantially
`the same functions as described above. The resulting image
`generating system can be exceedingly small and therefore
`can be conveniently packaged within the confines of a
`mobile communications device, such as a cellular telephone.
`As shown in FIG. lb, a semi-conductor image sensor 9 is
`supported for movement by a micro-machined actuator
`assembly 10 in operative association with lens system 8 and
`positioned within the housing 11 of a digital camera or
`mobile communication device.
`The actuating assembly 10 of the digital camera is shown
`in more detail in FIG. 2. In the actuating assembly 10, an
`
`SUMMARY OF THE INVENTION
`
`A miniaturized digital camera is constructed for use with
`a mobile communication device or other compact appliance.
`The optical system of the camera consists of a small lens
`system having the traditional components of a primary lens,
`a variator lens, and a compensator lens. The lens system
`transmits the image received from an external source to a
`sensor array. The sensor array is constructed on a substrate
`using silicon wafer fabrication techniques and is positioned
`to receive the image from the lens system. The array is
`operatively associated with a micro-electro mechanical
`component for movement between at least two positions by 55
`actuation of the MEMS component. Both the array and the
`MEMS component are constructed on the same substrate
`utilizing similar techniques to create an extremely small
`fully functional imaging system for use with the lens system.
`Actuation of the MEMS component, will move the sensor 60
`array relative to the lens system. Such actuation of the
`MEMS component, can be accomplished in response to, for
`example, the sensed distance of the lens system from the
`subject of the image. In this manner an autofocus function
`can be accomplished. The movement of the sensor is com- 65
`bined with a coordinated movement of the variator and/or
`compensator lenses to provide a zoom function. To facilitate
`
`

`

`Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 8 of 9 PageID #: 25
`
`US 6,914,635 B2
`
`10
`
`15
`
`3
`image sensor 13 is constructed with its associated electron(cid:173)
`ics on a semi-conductor chip 14. Terminal 15 provides the
`sensor 13 with appropriate electrical contact to power the
`sensor 13. A micro-electrical mechanical system (MEMS)
`16 is formed on substrate 17 to support the sensor 13. 5
`MEMS 16 may take many different forms depending on the
`function of the camera and the fabricating technique used.
`For the purpose of illustration, a series of electrostatic
`resonators 18 are schematically shown. Electrostatic reso(cid:173)
`nator 18 is an example of a linear actuator which can be used
`as a precise positioner, among other things. Actuator 18
`consists of a pair of bases 19 which are fixed to the substrate
`17 and moveable supports 20. Supports 20 are connected to
`bases 19 by means of electrostatic fingers 21. Sensor chip 13
`is connected to movable supports 20 by a further pair of
`electrostatic fingers 22. The moveable supports 20 and the
`sensor chip 13 can be moved by applying a voltage between
`the moveable structure and its immediately adjacent sup(cid:173)
`porting structure. For this purpose contacts 23 are provided
`on moveable support 20 and contacts 24 are provided on
`bases 19. The actuating assembly 10, as shown in FIG. 2,
`provides a two position motion utilizing the movement of
`moveable supports 20 on their associated bases 19 and the
`movement of the sensor 13 on supports 20. Further infor(cid:173)
`mation with respect to MEMS is available from several
`sources, in particular, the MEMS and Nanotechnology
`Exchange, 1895 Preston White Drive, Suite 100, Reston,
`Va., 20191 and the University of Wisconsin Engineering
`Department.
`Since, as shown in FIG. 2, the sensor 13 is shown 30
`mounted on the substrate 17, this particular embodiment
`could be adapted to provide autofocus, if used within a
`conventional lens system. If however the sensor 13 was
`mounted on the substrate 17 (see phantom lines 12) and
`replaced by a lens mounted on the illustrated support 35
`assembly, a zoom mechanism could be provided.
`In the alternate embodiment shown in FIG. 3, a MEMS
`support assembly is shown which may be adapted to provide
`both autofocus and zoom functions. In this embodiment, a
`lens 24 is mounted on a three position ( or smoothly variable) 40
`MEMS support assembly 25 to the substrate 26 through base
`element 27. An image sensor 28 is also mounted for inde(cid:173)
`pendent motion on a two position MEMS support 29. This
`system may be adapted to provide both an autofocus and a
`zoom capability.
`The image sensor used herein is a semiconductor C-MOS
`sensor array constructed using standard silicon processing
`techniques which are compatible with the MEMS fabrica(cid:173)
`tion process. In addition appropriate electronic or manual
`systems would be connected to initiate operation of the 50
`functions provided. Ideally the sensor array is constructed
`on a chip with imbedded control circuitry including sensors,
`memory, and other functions.
`The MEMS technique used may be surface micro(cid:173)
`machining. This method is an additive fabrication technique 55
`which involves the building of the device on top of the
`supporting substrate. The substrate would be constructed
`with the necessary imbedded control circuitry, for example
`as an application specific semi-conductor integrated circuit.
`In this way the digital image sensor and the micro- 60
`electromechanical zoom are manufactured on the same chip
`using silicon based microelectronics for the sensor and
`micromachining technology for
`the micro(cid:173)
`electromechanical support.
`In this manner a micro-miniature digital camera having a 65
`variety of basic functions can be fabricated in a cost effective
`manner for use with a mobile communication device.
`
`20
`
`25
`
`45
`
`4
`
`I claim:
`1. A digital camera system comprising:
`a lens assembly mounted for receiving an image and
`projecting said image on an image plane;
`a micro-electromechanical (MEMS) system support
`mechanism for providing at least two positions of
`movement to a supported element, said MEMS support
`mechanism being fabricated integrally with said sup(cid:173)
`ported element; and
`a semi-conductor image sensor mounted at said image
`plane for movement on said MEMS system support
`mechanism and being operatively associated with said
`lens assembly to generate a digital image.
`2. A digital camera system, according to claim 1, wherein
`said MEMS system support mechanism is an electrostatic
`resonator.
`3. A digital camera system, according to claim 1, wherein
`the image sensor is fabricated on a silicon chip in which is
`imbedded control circuitry and said MEMS system support
`mechanism is integrally fabricated therewith.
`4. A digital camera system, according to claim 1, wherein
`said movement of said image sensor provides an auto focus
`function.
`5. A digital camera system, according to claim 1, wherein
`said lens assembly is mounted for movement on said MEMS
`system support mechanism for movement relative to said
`image sensor and said image sensor is fixed, said movement
`adapted to provide a zoom function.
`6. A digital camera system, according to claim 1, further
`comprising:
`a substrate for supporting said digital camera system;
`a first MEMS fabricated on said substrate and connected
`to said lens assembly for providing movement of said
`lens assembly between at least two positions;
`a second MEMS fabricated on said substrate and con(cid:173)
`nected to said image sensor for providing movement of
`said image sensor between at least two positions; and
`wherein said movement of said lens system and said
`image sensor is relative to each other to provide both an
`autofocus and zoom function.
`7. A mobile communication device including a system to
`transmit data over a communication network comprising:
`a housing containing said system to transmit data;
`a lens assembly mounted within said housing for receiv(cid:173)
`ing an image and projecting said image on an image
`plane;
`a micro-electromechanical (MEMS) system support
`mechanism for providing at least two positions of
`movement to a supported element, said MEMS system
`support mechanism being fabricated integrally with
`said supported element; said MEMS system support
`mechanism mounted within said housing; and
`a semi-conductor image sensor mounted at said image
`plane for movement on said MEMS system support
`mechanism and being operatively associated with said
`lens assembly to generate a digital image.
`8. A mobile communication device including a system to
`transmit data over a communication network, according to
`claim 7, wherein said MEMS system support mechanism is
`an electrostatic resonator.
`9. A mobile communication device including a system to
`transmit data over a communication network, according to
`claim 7, wherein the image sensor is fabricated on a silicon
`chip in which is imbedded control circuitry and said MEMS
`system support mechanism is integrally fabricated there(cid:173)
`with.
`
`

`

`Case 2:20-cv-02640-NGG-SIL Document 1-4 Filed 06/14/20 Page 9 of 9 PageID #: 26
`
`US 6,914,635 B2
`
`5
`10. A mobile communication device including a system to
`transmit data over a communication network, according to
`claim 7, wherein said movement of said image sensor
`provides an auto focus function.
`11. A mobile communication device including a system to s
`transmit data over a communication network, according to
`claim 7, wherein said lens assembly is mounted for move(cid:173)
`ment on said MEMS system support mechanism for move(cid:173)
`ment relative to said image sensor and said image sensor is
`fixed, said movement adapted to provide a zoom function. 10
`12. A mobile communication device including a system to
`transmit data over a communication network, according to
`claim 7, further comprising:
`
`6
`a substrate for supporting said digital camera system;
`a first MEMS fabricated on said substrate and connected
`to said lens system for providing movement of said lens
`system between at least two positions;
`a second MEMS fabricated on said substrate and con(cid:173)
`nected to said image sensor for providing movement of
`said image sensor between at least two positions; and
`wherein said movement of said lens assembly and said
`image sensor is relative to each other to provide both an
`autofocus and zoom function.
`
`* * * * *
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket