throbber
LASER FUNDAMENTALS
`
`SECOND EDITION
`
`WI LL IAM T. SI LFVAST
`
`School of Upfits r CHE-DL
`Lhivmfiily of Centrd Florida
`
`CAMBRIDGE
`UNIVERSITY PRESS
`
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`(cid:36)(cid:54)(cid:48)(cid:47) (cid:20)(cid:20)(cid:19)(cid:25)
`
`ASML 1106
`
`1
`
`

`
`PUBLISHED B1" THE Fl 5‘|"N']fl3.|'1'l'E OF THE. UNIVERSITY I]-F Ch.hlBll]II3E
`The P‘i1 lhilrilg. 'I'rI.|Ipi|gI:n SII'aet.('_‘:n|J|ifi;e. lltiud Iiingclnln
`
`CIHERJEIIFE UNIVERSITY l-‘RE
`T|IaE:i|i1I:gh|II1lIi|1g.Ca.llnidgaE|52 znuulc
`4ll'I|h:t31i1SlIaelJvl|m-‘lh:l,N'I'lIl]Il--I-2Il,l|SA
`4'.'TI”il|il|ia|IsI:IrnIInu'l.FbIIllelbtn|Io, \r[c3:m,.uun1i:
`nuizda.n.1m5uI3.2an|+ IluiIicI.Spu'n
`Duc1Hu.|9s.1In'I|hnIfiult.CqJIe1imrnflI)l.SocIiI.lfri|:a
`hmflww
`
`Fustplflidledlflflfi
`|1aprinmd|w9.mm.2am
`
`HE-Hi.fim]£3CflIh'i.@".IiIE'§i]PI'ES
`SaumtladiinI'I€H|I'IlIal1T_fi.lfIastEIl-I
`
`'[‘|IisIu1d'.isi.a.m[.gI1'igI_ Sthjemunlmmjamccpliulald
`mflIap|m'i:in|l:1:d'11:haI|inuflaui1IB1i:mi.r|gag|:a:naIi5.
`lnmpudminnduypnnaylteflamfiflmn
`flIeII1ilEnpu'nis1'nI'Iufvl1Ih|i:h¢=IJ.Iin3I1sil3'Prnss.
`
`F|lstpIflifl1ed2{IM
`
`Priutadi1Iu Urilai 5I:.I§uf.l.11m'I.'.a.
`
`npgrmwinas m.-mas mdAuati' 33mmu.1s.1|5x |FH]
`
`naming rEI3mdfiIrfli:E¢oatiI'aIu'fluflefmm'!IeEIi.E:fi'1flI\mry.
`
`uamryafcan-gustiauagamnrnuicuimaam
`si1rmt.‘Ja"ui-1'1'hnmm.I9I.r—
`LnsI3rf|IIineIinlsI'|fl|1IIiInT.§1flIst.—2|r]ed.
`p.
`cm.
`Iu1dm flfl iIIia\I._
`ISBN l.'I—52l—333-15-0
`1. Laser:
`]_ 'I"|‘J3.
`
`I'll]!
`'[?aI5'.F5.S52
`ISII_"H5"6—d:QI
`
`ISBN I] SEIIEIBI1-5|] I1:lII:|l:I
`
`‘K113055352
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`2
`
`

`
`Contents
`
`Prefix: Io Ike Second‘ .E'n'i£icm
`
`Prefixes so the Firm‘ Edition
`
`Acknawfetflgnlwcnis
`
`I
`
`INTIIDDUETIDN
`CW'ER'|I'IE|I'
`Illtrolluclion
`Deliilion of lhe Lme-1'
`
`b1|npl||1"' "I3: 0|’ a Luel-
`Unique
`of a Lmer
`The Laser Spectrum and Wavdungths
`A Brief I-lislory oflbe Laser
`flwI'I"IeI'Ir of III! ll‘-uok
`
`SECTION 1- FUNDAMENTAL WAVE FIIDPERTITES OF LIGHT
`
`Z WAVE NATURE OF LIGHT — THE INTERACTION CIF LIGHT
`‘WITH MATERIALS
`(W'E.ll‘||'IlI|I'
`
`2.1 Maxwell’: Eipntions
`2.1 Ma:n-lull’: Wave Equalione
`Maxwell's ‘Wave Equations for a Vacuum
`Solution ofthe Genera] Wave Equation — Equivalence of Light and
`E c Radiation
`‘WaveVe|o::il].r — Phase and Group Velodljea
`Generalizeii Sn-Iution ofdlewalre Equalion
`Transverse Eleclrollztagoetic ‘Waves and Polarized liglu
`Flow of Elemroinagnetic Energy
`Randiation [mm a Point Source (EIe:t:u:ic Dipole Radiation]
`2.3-
`lute-I-aclion of Eluflrotlagnt-lit Radialioll (light) wih Matter
`Speed of Light in a Medium
`Maxwell's Equaliona in a Me:diu.1n
`Application ol'Ma.uI.reil's Equations lo Dieiecuic Malerials —
`Laser Gain Media
`
`Compie: Index of RcI'Ia.c:Iion — Opljcai Conalanla
`Abaorpljolt and Dispesraion
`
`page xix
`
`xxi
`
`:u(i.ii
`
`L.n,p.I,_1h;b_1._.__.._
`
`
`
`§§UEEHIEEEEEEL~'-5E~o-nu:
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`3
`
`

`
`CDIITEHTS
`
`Estimating Particle Densities o-fltllatetials for Use in the
`Dispersion Equations
`LI Coherence
`
`Teropotal Coherence
`Spatial Coherence
`REFERENCE
`PI:l]IlI..E.Il'S
`
`SECTION 2. F7l.lHD.AHEH'I'Al. CliJ.AH'I'UM FIIDPEIITIES OF LIEHT
`
`3 PART|.CI.E HAJURE OF LIGHT — DISCRETE ENERGY’ LEVELS
`{|‘I"EI‘I"IE'W
`
`3.] Bohr Theory oltbe Hydrogen Alum
`Historical Development ofihe Concept of Discrete. Energy Levels
`Enesgy I..El|'ElS of the Hydrogen Atom
`Frequency and Wavelczngtf-lr oi Emission lines
`Ionization Energiesand Energy ]_.e1.reh o-flons
`Photons
`
`offittoulir Fsrergy I.e'rels
`3.1 Qualrlum
`Wave Nature otlPanir:les
`
`Heisenberg lJncer1a.inty Principle
`Warre'l'l1eoIy
`Wave Functiorrs
`Quantum States
`The Schrodinger Wave Equation
`Energy and Wave I-"11nr:Iionl'or ll'!.I’:'GtlJtItl.l2l State of the
`Hydrogen Atom
`Excited States of Hyrkogen
`Alloured Ouauturo Numbers for Hydrogen Aiomwave Functions
`3.] Angular Mumeulrli of Alums
`Drbital Angular hloorenturo
`Spin Angulx Momerrurm
`Total Angular Mornenlnrn
`Jul Energr Levels Afioeialerl with Due-Electron Atoms
`Fine S«u1u:ture cl" Spectral Lines
`Pauli Exclusion Principle
`J5 Periodic Table 0|’ the Elements
`
`Quanturo Conditions Associated with Multiple Electrons Auaeheil
`to Nuclei
`
`Shoetlranazl Notation for Electronic Configurations ofAtJon1s Having
`More Than One Electron
`
`3.6 Fnergy Levels 0I‘l't'Itlli-Flleelmu Atoms
`Ene:gy—I..e'I.rel Designation For Multi—Electron Stare:
`Russ.ell—Saunders or L5 Coupling — Notation lorEnergy Levels
`Energy Levels Asaocialed with Two Electrons in Uulillead Shells
`Rules for Obtaining S, L. and J for L3 Coupling
`Degerieracy and Statistical Weights
`Coupling
`Iaoeleotrouic Scaling
`
`E?
`
`E333333
`fifififiéflflflfi
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`4
`
`

`
`EEFEIDOCES
`PROBLEMS
`
`-I RADIATNE TRAHSITIJNS AND EIIIIS-SIGN LINEWIDTH
`0'|'E.ll‘I|'IE‘II'
`
`4.1 Decay of F.n:itefl Stalcs
`Rar:|iaIiveDecayofE:rcileriSrateso1'Isol.aieda!Lloms—
`Spontaneous Emission
`Spontaneous Emission Deeay Rate — Rmlistirle Transition
`Probability
`Li:I'e!imo oia Radiating Electron — The Electron as a Classical
`Radiating Hannonic Oscillator
`Nonradiatirre Decay of the Excited States — Collisional Decay
`42 Elnifiion Braadeting and Iinerridfll Due to Radiative Decay
`Classical Emission l..i.nenrid:l1 of a Radiating, Eliecllon
`Namral Emission Linewidllr as Derluceri by Quantum lvIeclran.ir.'s
`[Minimmo Ljrtenririth)
`4.} Additiond Erfnsion-Ilrocadcning Processes
`Broadening Due to hlooratliative (Colfisional) Decay
`Brocarlening Due to Dephasing Collisions
`AItI1rphous Crystal Broadening
`Doppler Broadening i.n Gases
`Voigt Lihape Pmlile
`Broadening in Gases Due to lsolope Shifts.
`Comparison of Various Types ofEm.i$ion Broadening
`-I.-4 Qtlanllli Mechanical D-I!'Sl!I'i|]IilII'I of Ratlirrtirrgfitonrs
`Ejecuic Dipole Ratliation
`Electric Dipole Matrix. Element
`Eloctric Dipole Transition Probability
`Oscillator Suengrh
`Selection. Rules for Electric Dipole Trmsitions lmrolrling Atoms
`wi1lr a Single Electron in an IJnIi.|Ie|:| Subshell
`Seleclion Rules for Rrtlialive Transitions lmrolrling Atoms will:
`More Than One Electron in an Unlillied Subslrell
`
`Parity Sclueclion Rule
`lnefficienr. llariiarive Tr:-msitions — Electric Quadmpole and Other
`Higlrer-Drcler Transitions
`nsncss
`Fnoacssls
`
`5 ENERGY LEVELS AND RAEIATWE PROPERTIES OF MOLECULES.
`LIEIIJIDS. AND SOLIDS
`CWF.ll'a"IElI'
`
`5.1 lblolecular Energy I..e1.rels and Speclrs
`Energy Levels of lvlolerailes
`Classification of Single lhllolsurles
`Rotational Energy Levels oILinear llrlolecoles
`Rotational Energy Levels of fimnietlic-Top Moleorlles
`Selection Rules for Rotational Transitions
`
`ED
`35
`
`B9
`II?
`
`90
`
`90
`
`94
`
`9'5
`9E
`I01
`I0]
`
`I03
`I05
`ICIS
`I0?
`I09
`I09
`I I4
`I I5
`I I3
`I2]
`I22
`I23-
`I24
`I24
`
`I25
`
`I29
`
`I30
`
`I 3]
`I31
`I31
`
`I35
`I35
`
`I35
`I35
`I33
`I39
`I4]
`I4]
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`5
`
`

`
`CIIIITEHT5
`
`Wlntalzional Eneigy Levnells
`Selection Rule for ‘Vibuational Trmilions
`RotationaI—‘t"ibIational Transitions
`Probabilities ol'Rotati:ona| and Vibrational Transitions
`
`Electronic Eneegy Levels ofMc-laoculiea
`Electronic Transitions and Associated Selection Rules of
`Molecules
`Emission Linewidlh ofMnl'.ecul.ar Transitions
`
`'I11e F|.'anck—Condon Principle
`Exciroer Energy I..E!l|'ElS
`5.] liquid EneI'g3'Le1rekand'l'II:eir]l:|diatinn Properties
`Structure oi Dye Molecules
`Energy Levels offljre Molecules.
`Excitation and Emission of Dye Molecules
`Denimental Triplet Slates. ol'D_',re Molecules
`5.1 Energy I.e1Iels in5oIds— Dielectric Lmer Malerials
`Host Materials
`
`Laser Species — Dopant Iona
`hlarro1.E-I_.ine'widd1 Laser Materials
`Broailnand Tumble Laser Materials
`
`Broadening lI'Iechanistn for Solid—State Lasers
`SA Fatergy Levels in SnIds— Se|IiJeondIueIost' Laser llvlaterials
`Energy Bands in Crystalline Sofids
`Energy Levels in Periodic Stmcltues
`Energy Levels of Coruzluctoua, lruulators. and Sel1ll.(:DI'Id]I.'.tDt'5
`E:cilan'on and Decay ofE:ci|ed Energy Levels — Recombination
`Radiation
`
`Direct and Indirect Eandgap Scmiconductols
`Electron. Elianibution Function and D€II£ll'j' of States in
`Semiconductors
`Intrinsic Semiconductor Materials
`
`Extrinsic Semiconductor Materials —Doping
`p—n .lEI.I1E.'.l2l.DlB — Reootnlsination Radiation Due to Electrical
`Excitation
`
`I'hfEID_f'll_nction ' Mate:1'al!s
`Quantum Wells
`Vaiation of Eandgap Energy md Radiation Wavelength with
`Alloy Composition
`Reeoltlninalion Radiation Transition Probability and Line-width
`IEFEIENCE3
`PIEIIILEE
`
`ll
`
`II.AD'lATfl3¢N All} THERMAL EQUILIBRIUM — ABSORPTION AND
`5IIfll.iI.A.'I'ED EMISSIJN
`DVEIHEW
`
`6.] Equililn-ital
`Tl'If.l'lTI3l Equilibrium
`Thermal Equilibrium via Contluction and Convection
`Tbetmal Equilibriuro via Radiation
`
`I43
`I43
`I44
`I48
`[49
`
`[SI]
`ESI}
`ESI
`E52
`I53
`I53
`I55
`ISIS
`E5?
`[58
`[58
`E59
`ifil
`I66
`I63
`I63
`[68
`ITI}
`H2
`
`H3
`I'M
`
`H5
`H9
`H9
`
`IE2
`IE4
`IE6
`
`WI
`[95
`I95
`I95
`
`I99
`I99
`I99
`I99
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`6
`
`

`
`OOIIIHITS
`
`Ste:l'an—BoItzn1ann Law
`Wierfs Law
`[rradianoe and Radianee
`
`-6.3 Canrity Iladiation
`Counting the Nuloh-er offlavity Modes
`R.a}rIeigh—Jeans Fornmla
`Planck’: Law for Cavity Radiation
`Relationship between Cavity Radiation and Blackbody
`Radiation
`
`Waimlenglh Dependence of Blackborly Emission
`6.4 Ahsorplion and Slimnlakd Emfion
`The Principle oF[IIc1aik:d Balance
`Absorption fllii Stimulated Emission Co-Izfiiaccienls
`IEFEIEECES
`PROBLEMS
`
`SEIHIOH 3. LASER AHPLIFIE
`
`T IEONIII-ITION5 FOR PROEIJEING A LASER — POPULATION
`INVERSIONS. GAIN. AND GAIN SATURHIIOH
`CW'E.R"¢|'IE“'
`
`'.-‘.1 Ahsorplion and Cain
`Absorplion andflain on a Homogenasonsly Broadeneri Radiative
`Transition (Lorentzzian F Distribulion)
`(kin Coefficient and Stilnnlatcri Emission Cross Section for
`
`Hornogmeous Broadening
`Absorplion and Gain on an Inhomogenasous|}r Broadened Radi.aI.i1.Ie
`Transition (Doppler Broadening nrilh a Gaussian Distribution)
`Gain Coeflicient and Stimulated Emission Csom Section for
`
`Doppler Broadening
`Statistical Weigtuts and lie Gain Equation
`Relationship of Gain Coezlficient and S-tilonlaled Emission
`Csoss Section toAb.sorp1ion Coeflieient and Alzisorplion
`Cross Section
`
`1.2 Fopulaiinn Inversion I Nor:-mar} Condition for 3 Lat-r]
`1.3 Salurslioll Intensity {Sufficient Cnnditioll for a Iaser}
`'.-‘.4 Development and Growth of a Laser Beam
`Growth oflileam for a Gain Medium with Homogeneous
`Broadening
`Shape or Geometry ofhmplifiring Medium
`Growlh c-{Beam for Doppler Broadening
`'.-‘.5 Ihpnnential Growl]: Factor {C:l'n]I
`'.-‘.6 "Threshold Ileqilisterlelits for a Laser
`Laser with No Minors
`Laser with One Mirror
`Laser with Two Mirroni
`REFER
`PROBLEMS
`
`2!]
`2ir5I
`2E5
`2&6
`2!?
`22]
`22]
`
`225
`225
`225
`
`225
`
`229
`
`230
`
`23]
`232
`
`233
`234
`235
`233
`
`233
`2-H
`
`245
`24?
`24?
`
`249
`253
`253
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`7
`
`

`
`255
`255
`255
`
`255
`
`CCIITENTS
`
`LASER OSEILLATIOPI ABOVE Tl-IIESHOLD
`lII'|'EI”t']E'W
`8.] Imer Grin Saturation
`
`Rate Equations oftlre Laser levels That lncluiie Stimulated
`Emission
`
`Population Densities ol Upper and Lower Laser levels with
`Beam Present
`
`Slnall-Signal Gain Coefficient
`Sraturatzion ofthe I..aset Gain abo1.neTlIresholri
`
`I12 Ixaer BEIIII Crmrtlr heyuntl the Salnralion Intensity
`(lungs from Experiential Growth to Linear Growth
`Steady-State Laser Intensity
`IL! Oplintimation of laser Outpnl Po-war
`Optimum Output Minor Transmission
`Optimum Laser Output Intensity
`Estimating Optimum l..aserOutput Power
`Er-I Fnergy Exchange between Upper Laser [revel Population and
`Laser‘ Photons
`
`Decay Time ofa Laser Beam within an Optical Cavity
`Basic Laser Cavity Rate Equations
`Steady-State Solutions below Laser Ttner.hoh:l
`S1ea|:ly—State Operation above L:1serT'hI'esho{d
`I15 Lmer Onlpll Flnctuaflions
`Laser Spilting
`Relaxation Oscillations
`
`8.6 I.ase1'.-hnplifiers
`Basic Amplifier Uses
`Pmpagation ofa High-Power, Short-Dusation Optical Pulse through
`an rltrnplzifier
`Sanitation Enesgy Fluenoe
`Amplifying Long Laser Pulses
`Amplifying Short Laser Pulses
`Cornparison c-{Efficient Laser Arnplifiess Based upon Funtl‘.aI:nentaI
`Saturation limits
`
`lu'Iin'or fitrtay ar1d Resonator (Regenerative) Amplifiers
`IEFEIENC
`IIDIILEIE
`
`REQUIREMENTS FDR OBTAINING POPIJLAIIDN INVERSIGHS
`lIl|'EII'a"]E'll'
`
`9.] Invasion: and Two-Irevel Systems
`9.2 Relative Decay Ilales — Ibcliati-re versus Collisions]
`9.3 Steady-1-llatelnrersions in Thrce- and Four-I.-evel Systems
`Tluee-Level laser‘ with the Inierrnediale I..etIel as the Uppei Laser
`level
`
`Tlnee-l..evel Laser with the Upper Laser Level as the Highest level
`Four—]..evel Laser
`
`El.-II Transient Population lnlrcrions
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`8
`
`

`
`COHTHITS
`
`9.5 Pmeease-5 Thal lrlliliit orI}estro_gr 1I]'l-'E'fS10I15
`Radiationfiapping in Atortm and loos
`Elocsron Colliaionai The::matiza.tion of the Laser Levels in Atoms
`and lons
`
`Comparison oi Radiation Trapping and Election. Collisional Mixing
`in a Gas Laser
`
`Absorption within the Gain Medium
`|1EI'EE'DH]?.5
`PREIIIIIIIS
`
`1|} LASER Pl.l|'||I3IflG REQUIREMENTS AND TECHNIQUES
`l.'WE.I‘.'|'lE“"
`
`10.1 F.xeitalion or PiIlpiIgTlireaIioId Ilequirements
`10.2 Ptmtping Palln-rays
`Excitation by Direct Pumping
`Excitation by lodirect Pumping (Pump and Trmsfafl
`Specific Pump-arI.d—TransIer Processes
`10.3 Specific Excitaliim Parameters Assn-|:iale~d with
`Optical Ptltnping
`Pumping Coolzneirica
`Pumping Roqoiremcms
`A Simplified Optical Pumping Approximation
`Transverse Pumping
`End Pumping
`Diode. Pumping of Soiid—SIalo Lmors
`Characterization ofa Laaerflain Medium with Optical Pumping
`{Slope Efficiencjri
`10.4 Speeifie 1-Ixeitalion Parameters Asaoeialed with
`Particle Plumping
`Elocstmn Collisional Pumping
`Hcavjr Pmficlc Pumping
`A Morefitocurate DescIipI.ic~n ofElectmn Excitation Rate to a
`Specific Enczgy Lave! in a Gas Discharge
`Elemrical Pumping offlemiconduclors
`|1EI'EE@I]?.5
`PRIJILEHIS
`
`SECTION I. LASER RESONATORS
`
`11 LASER CAHITY MODES
`D'-VEI‘.'l"IEW'
`11.1 [ntroduetinn
`
`11.1 Loogiudirnl Laser Cavigr Modes
`Fal:rr)r—Picrol Resonator
`Fahr}r—Perot Cavity Modes
`Lon.gitud;inal. Laser Cavity Modes
`Longiordinai lIn'It'.|d:E'. Number
`Requirements for die. Developincm oi L.ong;iIndinal
`Laser Mode:
`
`31]
`
`3l5
`316
`319
`319
`322
`322
`322
`324
`32.4
`32?
`330
`
`339
`339
`
`351'.
`
`355
`355
`359
`
`359
`36]
`363
`
`3'3]
`3'1]
`3'3]
`3'32
`3'31
`3'39
`33-0
`330
`
`332
`
`(cid:3)
`
`(cid:3)
`
`(cid:3)
`
`9
`
`

`
`CCIHTEHTS
`
`I 1.3 THIISI-‘I!l'9I? Laser Cari} Modes
`FIesrueI—KirohhofI Difliaolion Integral Formula
`Development ofTranswrse Modes in. aCa.1I.Iity widi. Plane—F‘.ua.llel
`Mirrors
`
`Transverse Modes Usingflurirod Mirrors
`Transverse Mode Spatial [.‘risI:ilJm‘.ions
`Transverse Mode Frequencies
`Gaussian—S|1ap-e¢!T|:ansvezse Modes wifliin and beyond Ihe
`laser Cavity
`I 1.4 Properlies of laser Modes
`Mock-. fim
`Effiectoflvlodeson die Gain Medium Profile
`REFERENCES
`PIOIIIHS
`
`12 STABLE LASER RESDHATDRS AND GAUSSIAN BEAMS
`OVERVIEW
`Ill Slable Cu11'HI Mirror Cavities
`Cunrexi Minor Cavities
`ABCD Matrices
`
`Cavity Stability C:iIe:ia
`I12 Properlies of Calmian Beams
`Propagation of aflaussian Beam
`Ihilssian Beam Plopmties oI'Turo-Minor 1.aserCavities
`Properties ofspeoifle Two-Minor Laser Cavities
`Mode Volume of:-1 I-lero1i1e—Ga.ussian Mode
`
`of Real Laser Beats
`IL!
`ILI Prnpuagafion offlalmiai Ilieanui lJsing.4IH’CI.'l Matrices-
`Complex Ilean Paramcll.-r
`Complex Beam Pararouserfisppliud to aTuro-Minor 1.aserCavity
`IEFEIENC
`PIOIIIHS
`
`13 SPECIAL LASER CAHITIES AND CA'U'lT‘I' EFECTS
`OVERVIEW
`I3.I Ullflable Resonafiors
`
`I32 Q-Suiltliing
`General Descriplion
`Theory
`Methuzls o-fProd.IJc:ing Q—Swi§el:|ing wil['rin a Lases Cavity
`ILL! Ca'n-Switching
`I3.-I Mode-I..oclLiog
`
`Theory
`Techniques for Producing MI:I:le—Looking
`I35 1'-'l:he5I1orleningTedII'ques
`Self-Phase Moclulalion
`
`Pulse Shortening or laengdiening Using Group Velocity Dispersion
`Pulse Coropressiorn [filaaorteningl with Gratings or Prison
`[]'lt:ashon—PuIse Iaserand Aloplifer System
`
`All
`
`-125
`418
`432
`-$32
`
`(cid:3)
`
`(cid:3)
`
`10
`
`(cid:3)
`
`10
`
`

`
`ODIIIHITS
`
`1.1.15 Ring Imers
`Monolithic UnidiI13:cI.ion:aI Single.-Mode hld:YA.{] Ring Laszr
`Two-Minor Fling Laser
`1.1.7 Complex Beam Pamneter Analysis Applied to I't-Itlti-Mirror
`Lmtr Cavities
`
`Tltrcc-Mirror Ring Laser Cavity
`Thrcc- or Four—Min'or Focused Cavity
`13.8 Cavities for Producing Spectral Plarrouing of
`laser flutpul
`Cavity with Additional Fahry—PEsotE1;aIon for hla:Tow—]-irocpency
`Selection
`
`Tunable Cavity
`Bmadlxand. Tun-able cw Ring Lasers
`Tunable Cavity for Ultlanazrour-Frequency Output
`Distributed Fcodback {DFB} lasers
`Distributed Bragg Roflcction Lmcrs
`1.1.9 LHI.-r Cavilic-s floqoiriug Sliall-Diauwter Gin Regions —
`Asliglatically Compensated Carilir-s
`1.3.10 Waveguide Caxilies for Ca: Iran:
`REFERENCES
`FRDILEM5
`
`SECTION 5. SPECIFIC LASER S"I"':TI'EHS
`
`14 LASER SYSTEMS IN"|I"DL"o"IHG LOW-DEHSFFY GAIN IIIEDIA
`DVEIIIIEW
`14.1 Atomic Cat: 12921:
`introduction
`I-1elilI—Ncon l..a-scr
`
`Genara] Descfiption
`Laser Stluolnm
`Excitation Mcchanism
`
`Applications
`Argon [on Laser
`Gencral Destxipti-on
`laser Stluoturc
`Excitation Mechanism
`
`Krypton [on Laser
`Applications
`I-1elilI—Cadmiuu1Las=er
`
`General Description
`Laser Stnnzturc
`Excitation Mcchanism
`
`Applications
`Copper Vapor Lmer
`General [Description
`laser Suuolurc
`Excitation Mechanism
`
`Applications
`
`4'I'{I
`
`4'i|'l]
`4'i'{I
`4'13
`
`4'13
`
`4'I'E
`4'I'E
`4&0
`4ErI]
`4B|
`
`455
`456
`433
`
`49 I
`49 I
`49 I
`49I
`492
`
`493
`494
`49?
`49?
`49?
`493
`
`§§§§§§§§§§§§§
`
`(cid:3)
`
`(cid:3)
`
`11
`
`(cid:3)
`
`11
`
`

`
`CCIITEHTS
`
`I42 Molecularflas Lasers
`Introduction
`Carlmn Dioxide Laser
`
`General Elescriplioo
`lanes‘ Slrucnlre
`Excitation Mechanism
`
`Applicalions
`Exciner Lasers
`
`General Descriplion
`laser Smicture
`Excitation Mechanism
`
`Applicalions
`Nitrogen laser
`General Elescriplioo
`laser Slnicsmre and Ezccilalion Mechanism
`
`Applicalions.
`Far-Infrared Gas Lasers
`
`General Desncriplion
`Laser Strucmre
`Exci:a1ioo. Mechanism
`
`Applicalions
`Cliunical Lasers
`
`General Elescriplioo
`Laset Slrucmre
`Excitmion Mechanism
`
`Applicalions
`I4.3 I-Ray Plasma I...a9ers
`Inlroduulion
`
`Pornping Energy Requiremems
`Exciimion. Mechanism
`
`Dplical Cavities
`)(—Ray Laser Transitions
`Applicalions
`I444 Flee-Electron Lasers
`Intmdoczion
`Laser Slroeture
`
`Applicalions
`Iisslznsucss
`
`15 LASER SYSTEMS HIUOLVING HIGH-DENSl'|:"I" GMII MEDIA
`ovmvmw
`
`lS.l Organic Dye Lasers
`Io1n:x|‘.necion
`]..asea' Slnicsmre
`Elciiation Mechanism
`
`ilipplicalions.
`lS.2 Solid-State Lasers
`Innuduution
`
`51D
`5llJ
`5] I
`
`5] I
`5] I
`515
`
`515
`516
`
`516
`5]?
`518
`
`521]
`52]]
`521]
`52I
`
`522
`522
`
`522
`523
`523
`
`524
`514
`
`524
`524
`524
`
`525
`525
`525
`
`525
`523
`
`532
`532
`532
`535
`535
`536
`
`53?
`531'
`
`539
`539
`
`539
`539
`54!]
`543
`
`544
`545
`545
`
`(cid:3)
`
`(cid:3)
`
`12
`
`(cid:3)
`
`12
`
`

`
`55 I
`553'-
`554
`555
`555
`556
`556
`55?
`55?
`55?
`557
`553
`553
`55'}
`55'}
`
`CCIITEITS
`
`Ruby Laser
`Genetal [k.'s£:ripliI:|n
`Laser 5II1.II:!.l.Il'E:
`Excitalion lluloolianism
`
`Applications
`N-fillynium ‘YAC and ‘C123 Iaslers
`Genera! Deacriplioui
`laser S1md.u:e
`Excilaiion Mechanism
`
`Applications
`NeoII}'nI'nm:YI..F Lasers
`General Elasorip-I.ion
`Laser Sllumue
`Emitajion lklocllanism
`
`Applications
`NeoIl].'nI'um:‘t'll.rim1 Iianadate { N|i:YVO4]I Lasers
`Geneta! Eleacriplion
`Laser Slnlctuse
`Excitalion hloollanism
`
`Applications
`'t'llcrbiml:‘I'AC Lasers
`
`Genetal [k.'s£:ripliI:|n
`Laser 5II1.II:!.l.Il'E:
`Escilalion Inloollanjsm
`
`Applications
`Alunndrile Lmer
`
`Genera! Deacriplioui
`laser S1md.u:e
`Excitafion Mocllanism
`
`Applications
`Tl.IiI'lIl.IIII'I Sapphire I...a.ser
`General Ellosoriplion
`Laser Slmfiure
`Excilalion lIn'IE:cl1.an.iso1
`
`Applications
`Chroulili l..iSAF and l.iCAF lasers
`
`Geneta! Eleacriplion
`Laser Slnlctuse
`Excitalion lklodlanism
`
`Applications
`Fiber Lasers
`
`Genetal [k.'s£:ripliI:|n
`Laser 5II1.II:!.l.Il'E:
`Escilalion Inloollanjsm
`
`Applications
`Color C-eI|tfi'I.uE1's
`
`Genera! Deacriplioui
`laser S1n|d.u:e
`
`(cid:3)
`
`(cid:3)
`
`13
`
`(cid:3)
`
`13
`
`

`
`CCIITEHTS
`
`Excitation Mechanism
`
`Applications
`I53 Semiconductor Diode Lifll.‘l‘S
`[Introduction
`
`Four Buio Types of Laser Materials
`l..a5e:' Str1Je:1It'e
`
`Frequency Control of l..aser Output
`Quantum Cascade Lasers
`p-Doped Gennaniulzn Lasers
`Exeitation 1't{ec|1an.isIn
`
`Applicaljotts
`IILEFEIENCES
`
`SECTIIEII 6. FRECILIJIEHCY HULTIPLIEATIDH OF LASER BEAMS
`16 FREQUENCY MULTIPLHIATIDH OF LASERS AND OTHER
`HCIILINEAR OPTICAL EFFECTS
`fll'IIll'u"]I7'tI'
`
`lIS.l Wave Propagation in an Anieolropric Crystal
`I62 Polarization Response offirlalerials to Light
`I63 Second-Order NnId'near flplieal Pmoc-mes
`Seoond Harrnonic Generation
`
`Sum and Differenoe Ft'equenc:y Generation
`Dpljoai Parametric Deecillaiien
`IISJI Third-Order Nonlinear Dptical Procvmc-5
`Thin! Harmonie Generation
`
`i1IlEllEil'_'||'—DEpEI'IdI:‘.llI Refraetive Index — Seif-Focusing
`IE5 Nonlinear flptical Materials
`I615 Pllme Matching
`Description offltase Matelting
`Achieving Phase Matching
`Types of Phase Matching
`Il5.T Sattlrable Absorption
`I63 Tl'l'l'.|~PIHlII0lII Absorption
`ll5.'.I Slimldatcd Raman Scattering
`lIS.lIl]' llanionic Generation in Cases
`REFERENCES
`
`Appendix
`Index
`
`574
`5715
`576
`576
`5T9
`SEI
`59I
`5%
`594
`594
`596
`5'3’?
`
`61 I
`62.5
`
`(cid:3)
`
`(cid:3)
`
`14
`
`(cid:3)
`
`14
`
`

`
`1 I
`
`ntroduction
`
`-DUEEUIEW A l;ase:r is a device lint amplifies light
`and produces a highly directional. high-imemiry
`bealnlhatmofioftenliasavelypure frequencyor
` . ll comesinsiees ranging lrom approx-
`inistelyolietenlhlhediamelerofalmlisanhairlso
`Ihesii:eofavetyla.lgebnildi.ng.inpnwersrangir|g
`from I04‘ to I03" ‘W, and in wavelengths ranging
`fI'omEJ1emicro'wavetolhesoft—X-rayspectraliegimls
`with ooiresponding freqmncies from EU" to H1" H1.
`Lmershavepu|seene:giessshigl1.ss ll]‘Jmd pulse
`dnral.ionss.ss]IoIt:ai5 3-: I-l]"5 s. Theyesnly
`mill hnlesin Ihe mosldurshle ofmslerislsand-can
`
`of I.'.'li.flEI1I:e!
`
`welddelsachedretiriaswilhinllselmmaneye. They :-ne
`alcey component ocfsmneofourmost modem com-
`ltmniczlliort systemssnd a1elhe'"phonograph nee::lle"'
`clourcompactilisc players. They perform lIesttIeat-
`meniofhigh-strenglh matelials. aloha die pistons of
`ourantsomobile engines. and provide a. special surgi-
`csllznife for many types olfmedicsl p|tI::e¢k1res_"[hey
`aclaslsrgeldesigmltors for mililasy weapons andpro-
`vide for Iiverapidcheck-out we ltaveeornetoexpect
`at l.l'IE sup-enI1srket.'WlIaI a remarEableIangeol'chaI-
`aelseristics fnradeviee Ihslis in only its liflil decade
`
`INTRDDIJCTIJN
`
`There is nothing magical about a laser. It can be thought ofasjust another type
`of light source. Itcertainly has many unique properli that make it a special light
`source. but these propeniesean be understood without tnowledgeof sophisticated
`matlIemal.ica.I techniques oreomplea ideas. It istlle objective oflhis text loexplain
`the operation oflhelaserina simple, logical approach l'l1a1bui|dsfromou1eooI1—
`eeptluotheneatasilzlecliaptersevo-Ive. Tl1eooIIcepts,mll:|eyarel:lev1eioped, will
`he applied to all classes of laser malerials, so that tlve reader will develop a serme
`oi the broad field oi lasers while still aequiringtlie capability lostudy, design, or
`simply understand a specific type of laser system in deiai:L
`
`DEFINITIOIII OF THE LASER
`
`The 1v-oltl laser is an acmnym for Light Aniplificflion by Stimulated Emission of
`R.adi:H.iorL The laser makes use of prooesses that increase or amplify light signals
`aflerthose signals have been genelated by other means. These pm-(T include
`(I) stimulated emission, a oatunfl effect that was deduced by eonsideratinns re-
`lating lo tllemlodynamie equilibrium, and {2} optical feedback {present in most
`
`(cid:3)
`
`(cid:3)
`
`15
`
`(cid:3)
`
`15
`
`

`
`INTRODUCTION
`
`Clplieal resonator or eauity
`r'
`Amplllyiig rnedlum
`
`
`
`Partlall-.-1-ansm-1ting
`niror
`
`in-‘l-I Fnipilieel
`sdleindicoltgrpicalhsar
`
`Fully rmlecting
`rriror
`
`luets) that is usually provided by ntinols. Thus, in its simplest foernt, a l:uer4:o11-
`sists of a gain or alnplifying Inediuui Iwlleie Sl.lJ'I2IIl.lI1l:E£l emimion oeeurs',l, and a
`setofmirrors to feed the Iighthaek intolhe alnplitierforeontinued grnwlhofthe
`developing heam, as seen in figtle I-l.
`
`5IPfl5'I.lCI'I'Y OF A LASER
`
`Tlaesiunplieityofalasereiai heunderstoodhy eonsideting the light from acanclle.
`Nonnally, a hunting candle nadiales light in all directions, flld thelefore illumi-
`nates various ohjeets equally if thejr are equidistmt floin the eaidle. A lasertales
`light tllat would normally be emitted in all direetiolis, such as from a candle, and
`eoncerilnles that light into a single direction. Thus, iflhe light naclifling in all di-
`reofiocsfiomaearallewerehatedinmasinglehealnoffllediuneterofflie
`pupil ofyottreye fappmxinlalely 3 nun], and ifyml were standing adistanee of
`lmfrom lheeandle, Ihen thelight interuity wouldhe |,l.'I]l.tIIl times H hrightas
`the light that you normally see radiating from the ttmdlel That is essentialljr the
`urideflyingoomxptoftheoperali.-out ofalaser. However, acandle isnot the kind of
`medium tlnl prnduees amplification, and thus there are no cantle lmers. It ties
`relatively special conditions within the Imer meaditun for amplification to oeeur,
`but it istilat cqiahilityoflaking light that would normally Iadisle from asoume in
`all diieelioru — and eolieerimling that light into ahean uaveling in a single dltE!.':-
`1ion—Ihu is involved in Initingalaser. These special conditions, and the media
`within which they are produced, will hedeserihecl in soinedetail in this hook.
`
`UNICILE FIIOFERTES CI: ALASEII
`
`Theheainofliglitgelleruedhgratgrpical lnsei'eaI1havrernan'_I,rpln|:IerIies1I1atu'e
`unique. when oompa1inglaaerprnpertiestothoaeofotherliglbtsnuroes,ite:Ii
`l:e Iea1:lil}r reuigllizned that the values of various paameters for laser ligll lher
`gleailyexoeedoraremuehnmrerestdefivelhanflievaluesfinnintyoomnuin
`Iiglllsouloes. We never use lasers Eorstreet illumination. orforillumination within
`our llotaes.
`‘We don't use them for seanehlights or flashlights or as headlights in
`
`(cid:3)
`
`(cid:3)
`
`16
`
`(cid:3)
`
`16
`
`

`
`IH1'EDl.ICT|DH
`
`our ears. Lasers generally have :1 narrower flequeuey distsibuticnn, or much. lliglter
`intensity. or I1 rnueh greaterdegree Dl£.13ll.irlIfll'.i[II, or much shorter pulse dursl.i.=un,
`Ihsnlhsr evailflsle [mm more common lypesnfliglir sources. Theiefure, we flu use
`drern in. eulrnpect disc players, in supermsrtcet cheek-oul sesnnels, in surveying in-
`slnlsnems, and in medical appliesliarls as :1 surgical knife or for welding cletsellert
`retinas. We also use them in eomnvunieatiulzis systems and in mint and militssy
`targeting applicafinrrs, as well as many other mean. A laser is is specialized light
`source that skould be used cu-r.I!'y when its unique properties are required.
`
`THE LASER SPECTRUM All} WAVELENGTPES
`
`A pcu1.i.un nfdrne eleaelzlnnlsgnetiar: radiation qsectrum is drawn in Figure I-2 fur the
`regiIJnomreru:l by cunenfly existing lasers. Snell lasers spam the wavekrnglli range
`from the fsrilnfrsrerl pert ufdzle spectrum {IL = IJIKI um} In the snfl—X—rey region
`UL = 3 nm),the:ehyooIerh1garang1enfwn1eleIigtl:sofahnr:n1six(mleIs IJfn1ag-
`nitude. There are several types of units that sue used to define laser wavelengI.IIs.
`These range from Inic:rolI|eterscJrn1ieruIrs[;.rIn}intI|eint'mI1:d to nanlnrlletersfnrll)
`and angstroms {All} in the visible, u]t.n1v'iulet[UV), vacuum ultraviolet {VUV ], ex-
`treme ultrsrviolet {EUV or}CUV], and sufl—X-my [SXR] spectral regions.
`
`'|'£I'N'ELEl|IG"I'H I.|llI'l"S
`
`l_u.rn = lll_Ell1:
`H.210-“m;
`lnm= [D4 In.
`
`Consequently, I niieran {urn} : I{},|IIIlangst.run|s {ill} : lifllnannmeless {um}.
`Furexslrlple. green Iiglstbas Inveirelenglh-rJf5 3-: H14 m =l}.5 use = 5,[II|A =
`SCI) run.
`
`_-___
`
`..
`
`.
`HF
`
`I
`_.___
`
`D''‘“’°
`19 '3"
`Ar
`..
`..
`
`.,.
`
`CG
`
`_
`
`____
`
`..
`
`l
`I
`1-21"
`H
`(Huge uf1'iI'in-L|5 lasers
`
`.
`i
`
`FIR Lasers.
`..
`..
`
`"2
`Hub?
`KrF
`H9-Ne
`Nd:‘|'.M3
`HR l.'..‘.|I
`
`San-I-Hay
`Lasers,
`..
`..
`.
`-
`
`CC}?
`
`He He
`
`Ffll Infrared
`
`Ifilrured
`
`Eugenie Dpe_
`Tl.n3.|2C|3
`".I'iu|:I|rI
`
`.I1rF
`Uhlervulel
`
`Sta‘! Ill-Ray:
`
`supm 1u»pm
`
`1pm-3I:H:Inm1I:HJnm 3-Clnm
`apm
`.. is
`he‘
`-——--ENEst:a*r{T;
`
`-.
`
`Hnnm
`
`(cid:3)
`
`(cid:3)
`
`17
`
`(cid:3)
`
`17
`
`

`
`IHTIIODUCTIDH
`
`IIEHIELEIIGTH IIEGIDHS
`
`Far infrared: II] to I,[l]1 um;
`middk: infrared: I to 10 _u:m;
`nearinI'rared: 0.? to lj.'.[.lI1;
`visible: 0.4- to l].'i" run. or 4I'.I}to ill) mo:
`ultraviolet: I12rol}.4 pl.ll'l, or2lIIto-ill) mo‘.
`vacuum ultraviolet: 9.] to 9.2 um, or Ill] to Ellhtm;
`extreme ultraviolet: 10 to It'll] nm;
`soft X-rays1 ] nm to approximately 211-30 nm {some overlap with EUV].
`
`A BEEF HISTORY OF THE LASER
`
`Cha:rlesTtmrnes took advantage ofdae stimulated emission process toconstruct a
`microwave amplifier, referredtouamaser. This device jzirnducedacoherent beam
`of microwaves to be used for corrtmunicaiions. The lirst maser was produced in
`ammonia vapor with the inversion between two energy levels that produced gain at
`awavelenglh oi L25 cm. The wavelengths produced in the ntaserwere compara-
`ble to the dimensions of the device, so eimapn-laiion to the optical regirne — where
`wavelengths were live orders ofrnagnittlcie srnaller— was not an obvious extension
`of that work.
`
`In 1953, Townes and Schawlow publisher! a paperconcerning Iheiridem about
`extending the maser concept to optical frequencies. They developed the concept
`-nfan optical amplifier surrounded by an optical l'l2Ill'I1J]' resonant cavity to allow for
`growth olthe bea.rn. Townes andS-chawloweaeh rcceivedablohel Price forhis
`worlz in this field.
`
`In 1960, Theodore Maiman of Hughes Research laboratories produced the
`first laser using aruby crystal 3 the amplifierandallashlanipm the energy source.
`The helical flashlamp sunoundetl a rod-shaped ruby crystal, and the optical cavity
`was lormed by coating the flattened ends oflhe ruby rod with a highly reilecting
`material. Anintenseredbeamwas-observedtnernergefrnmtheerid oflherod
`when the flashlamp was Iiredl
`The tilstgaslaserwmdevelopedin l'9I5| byAJavai1.,"W. Bennett. and D. Han"-
`Iiott oi Bell Laboratories, using a mixture of helium and neon gases. At 1he same
`laboratories, L. F. Johnson and K. Nassau demonstrated the first nectlymium laser,
`wltichhassiricebecomeonenftltemnstreliahle lasers available. Thiswas followed
`
`in I962 by the first semiconductor laser, dernonshated by R. Hal] at the General
`Electric Research Laboratories. In 1963, C. K. N. Patel of Bell laboralories dis-
`covered the infrared carbon dioxide laser, which is one of use most efliacient md
`jzllwerfill lasers available
`Liter that same year, E. Bell -of Sjrxxra Physics
`discovered the lirst ion laser, in me:rctu'y vapor. In 1964 W. Bridges of Hughes Re-
`search LaI:I:raIori discovered the arg-ctli ion laser, and in |9€l‘.'I
`‘W. Silfvafl, G. R.
`Forwles, and B. D. Hopkins produced the lirst blue heliuIn—cadm.itIm metal vapor
`
`(cid:3)
`
`(cid:3)
`
`18
`
`(cid:3)
`
`18
`
`

`
`IHTIIDIIJCTIDH
`
`laser. During Ihatsarne year, P. P. S-orolzinand J. R.Lrl1kard of1heIEM Research
`Lxborai developerllhe lira liquid laser using annlgarriacdyerfissrnlvul in asoI-
`vent, thereby leading to the category of broadly tunable lasers. Also at that time,
`\If.‘Wallerandco-worlaers atTRGrcpor1ed the lirsteoppervaporlaser.
`The first vacuum ultraviolet laser" was reported to occur in molecular hydro-
`genb-}rR.HodgsonofIBMandindeper1dernlyh3rlLWa3na11te1al.oflheNaval
`Research I_.abora:nri.es in I970. The hr: of lbe well-lzncrwn
`ex-
`ctimer lasers was observed insenonfluoridebyl. J. Ewingandfl. Brauofthe
`.Purco—Everel1 Reseaavch l_aboraIor_-,' in I975. In that same year, the first quantum-
`well laser was marfie in a gallium arsenide serniconduclor by I. van der Ziel and
`co-workers at Bel] I_a.borator'ies. In I976, I. M. J. Macley and co-workers 51 Stan-
`ford University tlaernorlsnated the lirst free—electron laseramplifleroperaling in the
`infrared at the C0; laser wavelenglh. In l9T9, ‘Walling and co-worlrers 3 Allierl
`Ch-ernicaICorporati.on obtained broadly tunable Iaseroulputfrornasolid-stalelaser
`material called alesanrbite, and in I935 the first sofl—X—ra3r laser was successfully
`derraJnsl.rate::linabigbl_',rior1izerlseIunI
`D. hIla11hewsa.ndalslgenum-
`ber of co—workers at the Lawrence Livermore Laboratories. In IQEIS, P. Iuloulton
`discovered the Iitalirnn sapphire laser. In ]'99I, M. Hasse and co-workers devel-
`oped the lirst hlne—green diode Iaserin fZr1Se. In 1994, F. Capasso and co-worlters
`developed the quantum cascade laser. In I996, S. Nakamluadevelopai the first
`blue diorle laser in GaN—haserl materials.
`In ]'96l. Fox andI..i describerlthe esistenceofresorrantuansverse modes in
`
`a laser cavity. That same yea", Boyd and (hrrlon obtained solutions of the wave
`equaiion for confocal resonator modes. Unstable resonators were demonstrated
`in I969 by Krupke and Sony and were rlescribed theoreiicallgr by Siegman. Q-
`switching was fizlst obtained by h'Ic.C'|ung and I-Iellwarth in 1962 ar1d described
`later by Wagrrer and
`The first mode-locking was obtained by l'IaIgrD‘\-'8,
`Fork, and Pollack in I964. Since then, many special cavity anangemenis, feetflrack
`scllernes. and otberdevices have heer1 developed to improve thecontrol. operflion.
`and reliability of lasers.
`
`OVERVIEW OF '|1'lE BOOK
`
`Isaac Newlnn l2ll.'.SI:l'IlJB£l light as small lJlIIll'.B.5 emilled frorn fltining substalces.
`This view was no doubt influenced by the fact that light appears to propagale in a
`line. Chriaian Huygens. on the other hard. dmcrilzred light as a wave n1.o-
`tion in which a small source sprearbi out in all directions; most observed effects —
`including diffrE:IiorI.. reflection, and rel'racI.irrn —ca1 be attributedtoihe expansion
`ofprima'}r wa

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket