`
`vI 9
`
`~
`i 5 «
`ninnu
`mmnl
`mmm
`K
`‘
`mmm Ilhml
`ruum mum npggq
`.
`mum Imllll ‘V
`E ) mam’!
`mum! ‘"“"'
`‘
`gm‘ [gum
`Mmm lII_IIm
`nN'|l| mum ham mum "gum
`Imam lfllml 3'1 uutlll mum!
`:::::::: mm W
`mmm
`mm“. mm.“ yguuu
`'"*‘"" “"‘."‘
`"nu
`«ma
`as mm
`H [mum m-mo.
`gum: ,,:,4.;,;,
`‘ “-"W “""".p-mes.-n mum vmmr
`"""’" '""". mien mmm nurm
`I\m;_ix|
`r.‘:‘_,,,‘ 5, ..,;.! Hm.-, ,
`
`',
`
`'_
`
`11> L 016-00407’;/./ff
`S
`Pqs Supplemental
`-
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019
`PGS v. WG
`
`
`
`Society of Exploration Geophysicists
`
`Expanded Abstracts
`with Biographies
`
`1984 Technical Program
`
`54th Annual International SEG Meeting
`
`‘December 2-6, 1984 / Atlanta, Georgia
`
`PGS Su lemental Exhibit 1019, PGS V. WG
`
`IPR2016-00407
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019, PGS v. WG
`
`
`
`ISBN: O-931830-32-X
`
`Society of Exploration Geophysicists
`P.O. Box 702740
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019, PGS v. WG
`
`
`
`Abstracts
`
`Borehole Geophysics Sessions
`Monday Afternoon, BHG I, Full Wave Sonic Logging .
`Thursday Morning, BHG ll, General .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. ..
`. ..
`
`1
`21
`
`Electrical Methods Sessions
`
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Monday Afternoon, EM I, Magnetotellurics .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Tuesday Afternoon, EM ll, TDEM .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Wednesday Morning, EM Ill, Miscellaneous .
`Wednesday Afternoon, EM IV, Instrumentation and Case Histories .
`.
`Thursday Morning, EM V, Controlled Source .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`. ..
`. ..
`. ..
`. ..
`. ..
`
`43
`61
`75
`93
`112
`
`Engineering Session
`Tuesday Afternoon, ENG .
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. ..
`
`133
`
`Engineering and Groundwater Applications of
`the Self-Potential Method
`
`Thursday Morning, SP .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. . .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. ..
`
`152
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. ..
`
`169
`
`Exploration Economics Session
`Tuesday Afternoon, ECON .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Geophysical Archaeology Sessions
`Wednesday Morning, ARCH I .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Wednesday Afternoon, ARCH II
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Gravity and Magnetics Sessions
`Monday Afternoon, G/M I .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Wednesday Morning, G/M ll
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`Marine Data Acquisition Sessions
`.
`.
`.
`Tuesday Afternoon, MAR l, Seismic .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Wednesday Morning, MAR ll, Air Guns .
`.
`.
`.
`.
`.
`Wednesday Afternoon, MAR Ill, Miscellaneous .
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`179
`.
`.
`. .
`.
`. .. 200
`
`.
`.
`. .
`
`.
`.
`
`215
`. ..
`. .. 232
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`. . .
`
`248
`. ..
`.
`267
`. . ..
`.
`. .. 286
`
`.
`
`.
`
`. ..
`
`303
`
`.
`.
`
`.
`.
`.
`
`. . .
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`Mining Session
`Tuesday Morning, MIN .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Papers from the AAPG Meeting
`Monday Afternoon, GEOL .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. . .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. ..
`
`323
`
`PGS Su lemental Exhibit 1019, PGS V. WG
`
`IPR2016-00407
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019, PGS v. WG
`
`
`
`Research Symposium on Geophysical Methods
`in Production and in Reservoir Delineation
`
`Monday Afternoon, RS .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. ..
`
`326
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .. 344
`
`Rock Physics Session
`Thursday Morning, RP .
`.
`.
`.
`.
`.
`
`Seismic Sessions
`
`.
`.
`.
`.
`Monday Afternoon, S 1, Seismic Processing I
`.
`.
`.
`.
`S 2, Seismic Modeling l
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 3, Seismic Interpretation I
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . . .
`.
`.
`.
`.
`.
`Tuesday Morning, S 4, Seismic Processing ll .
`.
`.
`.
`.
`S 5, Seismic Migration I .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 6, Seismic Land Acquisition and Equipment .
`.
`S 7, Seismic Interpretation ll
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 8, Seismic Case Histories .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`S 9, Seismic Processing Ill .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Tuesday Afternoon, S 10, Seismic Processing IV .
`S 11, Seismic Modeling ll
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 12, Seismic Inversion I
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 13, Seismic Shear Wave I
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`Wednesday Morning, S 14, Seismic Processing V .
`.
`.
`.
`.
`.
`.
`.
`.
`S 15, Seismic Modeling Ill .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 16, Seismic Inversion ll
`.
`. .
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 17, Seismic Wide-Angle Reflections .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Wednesday Afternoon, S 18, Seismic Processing VI .
`.
`.
`.
`.
`.
`.
`S 19, Seismic Migration ll
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 20, Tomography .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 21, Seismic Shear Wave ll .
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 22, General Geophysics .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Thursday Morning, S 23, Seismic Processing Vll—Filtering .
`S 24, Seismic Modeling IV .
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`. . . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 25, Seismic Migration lll .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`S 26, Seismic Land and Marine Vibrator Methods .
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`
`.
`.1
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`364
`. ..
`386
`.
`.
`.
`405
`.
`.
`.
`.
`.
`. 420
`.
`.
`. 442
`.
`.
`. 457
`.
`.
`.
`475
`.
`.
`.
`491
`. ..
`505
`. ..
`525
`. ..
`541
`.
`.
`.
`560
`.
`.
`.
`582
`
`. .. 604
`.
`.
`. 625
`.
`.
`.
`638
`.
`.
`.
`659
`.
`.
`.
`675
`.
`.
`.
`691
`.
`.
`.
`711
`. ..
`721
`.
`.
`. 738
`.
`.
`.
`756
`.
`.
`.
`776
`.
`.
`. 796
`.
`.
`.
`814
`
`Vertical Seismic Profiling
`Tuesday Morning, VSP .
`.
`.
`.
`. .
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. ..
`
`832
`
`Special SEG Workshops
`Thursday Afternoon, Workshop I, Reconciliation of Seismic, VSP,
`and Sonic Log Data .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Workshop ll, Electromagnetics .
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. ..
`. ..
`
`851
`851
`
`Friday Morning, Workshop Ill, Integrated Exploration through Volcanics .
`Workshop IV, Shear Waves, Shales, and Anisotropy .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`Workshop V, Seismic Modeling Techniques .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Friday Afternoon, Workshop V, continued .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Workshop Vl, Permafrost Effects on Geophysical Exploration .
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`852
`.
`. 852
`. 854
`.
`854
`.
`855
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019, PGS v. WG
`
`
`
`This material may be protected by Copyright law (Title 17 u s Code)
`
`04
`V
`
`O5
`l
`
`HMEtSECOND$
`06
`07
`08
`I
`1
`T
`
`Marine ll
`
`pattern modeling scheme provides yet a better prediction for
`the observed radiation patterns,
`In conclusion,
`the observed data confirm our ability to
`make field measurements of 3-D radiation patterns, allowing
`us to observe the effectiveness of various array designs. For
`instance, wide arrays are designed to minimize out-of-line
`scattered energy and maximize in-line energy. The observed
`data show that the range of take-off angles for which the
`energy is less than 6 dB down from the peak energy is nearly
`twice as wide in the in-line plane for the wide array as it is for
`the square array. Similarly,
`long arrays are designed to
`minimize in-line multiple energy. The observed data show
`that the radiation pattern, as measured above, is almost one-
`fourth as wide in the in-line plane and nearly twice as wide in
`the crossline plane for the long array as it is for the square
`array. These data can also be used to demonstrate our ability
`to model source array radiation patterns. Such modeling,
`incorporating monitored air gun depths, allows us to observe
`the importance of various parameters, particularly air gun
`depth control. in tailoring the source array signature.
`
`MAR2.8
`Three-Dimensional Air Gun Arrays
`G. C. Smith, Southern Oil E.\‘pl0rati0n Carp.. Sou!/1 Afiica
`
`the
`In a marine air gun array composed of subarrays,
`depth of each subarray can be different. To ensure a vertical-
`ly downgoing wave field,
`the firing of each subarray is
`delayed by a time which depends on the depth. In this way
`the ghost reflection can be suppressed and the peak-to-
`bubble ratio can be improved. Care must be taken in the
`arrangement of such subarrays to ensure acceptable energy
`emission characteristics in directions away from the vertical.
`The experiment described in this paper can be extended to
`the design of very broad—band high resolution sources.
`
`Introduction
`
`The historical development of air gun arrays followed a
`number of stages. The oscillatory signature of a single air
`gun was largely overcome by the use of a number of guns of
`different sizes, to a greater or lesser extent interacting, to
`produce a signature with a large primary-to-bubble ratio
`(Giles and Johnstone, 1973; Nooteboom, 1978: Brandsaeter
`et al.. 1979).
`The arrangement of the air guns (or other sources) into
`spatial arrays became a subject of much interest. Arrays in
`which sources have been arranged in the in-line direction to
`act as spatial filters were described by Newman et al. (1977).
`Lofthouse and Bennett (1978), and Ursin (I978, I983).
`The deployment ofextended source arrays in the crossline
`direction was also developed (Parkes et al.. 1981; Tree et al..
`1982). Such arrays act as spatial filters in a direction across
`the survey line, and serve principally to suppress noise
`scattered from near-surface anomalies (Larner et al.. 1983)-
`This paper extends the concept of spatial arrangements of
`sources into the third, \ értical dimension.
`
`FIG. 4. Signature 33 degrees behind array. Scale factor 2
`
`(Figure 2). The scale factors shown in the figures give the
`relative amplitude scaling between these three figures.
`
`Modeled radiation patterns
`
`There are many parameters that may have an effect on the
`observed radiation patterns. Some ofthese are the 2-D array
`geometry, air gun distribution within the array, variations in
`the firing times ofthe air guns, and variations in the depths of
`individual air guns. The radiation pattern due to the array
`geometry can be modeled using equally weighted ideal
`dipole sources (point source plus free-surface ghost) at each
`air gun position within the array, and summing these at
`desired observation points. Such modeling predicts an iso-
`tropic radiation pattern for the square array. symmetrical
`directionality with more energy in the in-line vertical plane
`for the wide array, and symmetrical directionality with moi'e
`energy in the crossline vertical plane for the long array.
`Other observed radiation pattern properties for these three
`arrays must therefore be due to other factors.
`Modeling ofthe far—field radiation patterns using measured
`near-field air gun signatures allows the effect of the gun
`distribution within the arrays to be observed. Because the
`subarrays are designed with the largest guns in the front and
`the smallest guns in the rear, some forward directionality
`results from gun distribution. This effect does not completely
`account for the strong forward directionality observed for
`the wide array.
`The firing times of each individual air gun and its depth
`can also be incorporated into the model. Because the firing
`times were closely controlled and monitored during data
`they will not have a significant effect on the
`radiation patterns. The depths of the air guns were also
`monitored during data collection and displayed a rather wide
`variation within the arrays. Variations of more than 2 in
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019, PGS v. WG
`
`
`
`beneath the array the primary energy sums in phase while
`the ghost is spread out in time.
`The idea of distributing the elements ofa seismic source in
`the vertical direction, with time delays, is not a new one. It
`was the subject of a patent (Prescott, 1935) and variations on
`the same theme have been described for seismic surveys on
`[and many times, the result being achieved by the progres-
`sive detonation of a long charge or multiple charges, or by
`summing separate recordings made with shots at different
`depths in the same shot-hole (Shock, 1950; Van Melle and
`Weatherburn, 1953; Musgrave et al., 1958; Seabrooke, 1961;
`Hammond, 1962; Sengbush, 1962; Martner and Silverman,
`1962; Fail and Layotte, 1970).
`
`Field parameters
`
`The energy source parameters used in the experiment
`described here were as follows. The air gun array consisted
`of four identical subarrays, each consisting of 7 different
`sized guns so chosen and arranged to provide a signature
`with a large peak-to-bubble ratio at a range of depths. The
`total capacity of the array was 5 560 inch‘.
`Each subarray was 19 m long, with large guns at the front
`and small guns at the back. This geometry was considered to
`provide a good in-line spatial antialias filter for 25 m channel
`
`__
`2'"
`’''-°
`«ti;
`‘rm:
`IHSEC)
`FIG. 1.
`F -f’
`Id
`'
`t
`iv rt"
`ll
`di t'buted arra .
`(b) Far-fi(:|)clsEi1§;n§ures'gi13nLif:?rr$1d:ptll?aariIay.Sl3{i')threcorde)i1
`with fie|d fmers 5_3 Hz, 13 dB/Oct; 54 Hz_ 18 dB/oct_
`
`‘
`
`'
`
`FREOUENCV (HZ)
`
`(a) Amplitude spectrumiof Figure 1a. (b) Amplitude
`FIG. 2.
`spectrum of Figure 1b.
`
`separation in the cable, and therefore the subarrays were not
`spread out in the in-line direction.
`
`the subarrays were
`Across the direction of the line,
`positioned 15 and 37.5 m to port and starboard of the center
`line, making a four element array 75 m wide. Newman (1983)
`pointed out that the CDP stack suppresses noise scattered
`from directions directly to the side of the line, and that the
`“dangerous” direction is closer to the in-line direction than
`to the crossline direction. However, we felt that the noise
`should be suppressed early in the acquisition and processing
`sequence in order to provide maximum signal-to-noise ratio
`for prestack processing. Thus a wide array was chosen with
`dimensions appropriate to the suppression of side-scattered
`noise in the main seismic frequency band.
`The vertical distribution was obtained by towing the four
`subarrays at depth of 5.4, 7.2, 9.1, and 11.0 m with delays of
`0, 1.25, 2.5 and 3.75 ms, respectively. These delays are small
`enough not to affect significantly the spatial filtering action
`of the wide array.
`
`Far-field signatures
`
`together with their amplitude and
`Far-field signatures,
`phase spectra, were computed for the vertically distributed
`array and for an array towed at a uniform depth of 9.1 m. The
`far-field signatures were calculated from near-field signa-
`tures by the method described by Ziolkowski et al. (1982).
`The signatures are shown in Figure 1. The field filters used
`were 5.3 Hz, 18 dB/octave lowcut and 64 Hz, 18 dB/octave
`high-cut. The amplitude and phase spectra are illustrated in
`,
`,
`.
`Flgures 2 3nd 3a Te5P€°‘1V°1Y- The Umform depth array
`shows a notch in the amplitude spectrum with an associated
`
`PGS Su lemental Exhibit 1019, PGS V. WG
`
`IPR20l6-00407
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019, PGS v. WG
`
`
`
`._
`_,
`is»
`we
`FREQUENCY (HZ)
`
`-
`
`-
`
`FIG. 4. The 12 different ways of arranging four subarrays in
`a wide array with depths of 5.4, 7.2. 9.1, and 11.0 m. Vertical
`exaggeration is 2: 1.
`AIIIIUVN inn:-us)
`
`Fie. 3. Phase spectrum of Figure 1a. (b) Phase spectrum of
`
`in the case of the
`phase ambiguity which is not present
`vertically distributed array. A further advantage shown by
`the vertically distributed array is the bubble suppression.
`This is because the depth of a gun influences the bubble
`period. so that
`the variation in gun depths gives further
`variation in bubble periods beyond that obtained by using
`guns with difl'erent capacities.
`The depths chosen for this experiment, 5.4. 7.2. 9.1. and
`11.0 m were chosen to fit certain constraints. If subarrays
`are too shallow, too much energy is lost. and if they are too
`deep. peak—to—bubble ratios become poor. Also the streamer
`depth was constrained by dilficult sea conditions. and this
`limited the frequencies which it was useful to introduce into
`the ground. However. combinations of depths can be de-
`signed to make high resolution sources. especially with
`sources where bubbles do not need to be taken into account.
`For instance. sources at depths of 3.75. 7.5. 11.25. and 15 m
`with delays of(). 5. I0 and 15 ms. respectively. give rise to a
`ghost operator whose amplitude spectrum is less than 3.5 dB
`down between 13 and 187 Hz. The ghost operator for a
`uniform depth of3.75 in has an amplitude spectrum less than
`3.5 dB down only between 47 and 153 Hz.
`The danger in this approach lies in the possibility of setting
`up undesirable energy emission Characteristics in directions
`
`tIaIo:):n1:n)nu
`
`isn-oaumuunu
`
`an
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019, PGS v. WG
`
`
`
`-"i‘I|lI"i'i1lii:li-iii.IilliI
`.,iv.'fi"':'
`ii‘
`I‘ l"||l"'|
`tip.
`.;:,i3i:|il::il:ill"'||i|ll“li|.ii‘lii1il?l',,If'
`..
`.i-.n.'ii.|r....
`.
`,l.“.';':?‘-illl
`
`.
`I _
`
`'-
`
`4
`
`.
`
`FREWCY 5...
`
`PH!
`
`(DEG)
`
`(a) corresponds to
`FIG. 6. Directivity plots for the array:
`arrangement 1
`in Figure 4; (b) corresponds to arrangement
`10 in Figure 4.
`
`Figure 5 shows the relative times of primary and ghost
`arrivals in the far-field
`a function of angle in the plane
`perpendicular to the seismic line. for two of the possible
`arrangements.
`In Figure 5a the subarrays are arranged in
`order ofincreasing depth from left to right (5.4: 7.2; 9.1: 11.0
`m), and it can be seen that a wave is set Up at about 8%
`degrees to the vertical, caused by the constructive interfer-
`ence of ghost reflections.
`In Figure 5b the depths of the
`subarrays are “randoinized" (9.1: 5.4: 11.0: 7.2 m). and the
`ghost reflections are well spread out in time at all angles.
`Directivity plots for these two arrangements are shown in
`Figure 6; they are noticeably dil’ferent. There is more energy
`emission close to the vertical
`in 6a (corresponding to the
`sequential depth arrangment) than in 6b (Corresponding to
`the random depth arrangement). Of course, the total energy
`emitted by the two configurations is the same. however. the
`distribution with angle differs. Consequently, the decreased
`mainlobe emission in Figure 6b is balanced by increased
`sidelobe emission. However. because of its narrower main-
`lobe emission. particularly at lo\v frequencies. the random-
`ized arrangement of subarray depths was chosen for the
`experiment.
`
`will apply to other sources, also, and if such sources do not
`generate bubbles then individual sources can be considered
`rather than subarrays. In the case of air guns the vertical
`distribution of subarrays also improves the peak-to-bubble
`ratio.
`
`Acknowledgments
`
`I would like to thank Gregg Parkes of Merlin Profilers Ltd
`for providing several of the diagrams in this paper.
`
`References
`
`Brandsaeter, H., Farestveit, A., and Ursin, B., 1979,
`resolution or deep penetration air gun array: Geophysics, 44, 865-
`879.
`Fail, J. P., and Layotte, P. C., 1970, Méthode de filtrage du
`fantome: application a des cas réels: Geophys. Prosp.. 18, 434-
`464.
`Giles. B. F., and Johnston, R. C., 1973, System approach to air gun
`array design: Geophys. Prosp., 21, 77-101.
`Hammond, J. W., 1962, Ghost elimination from reflection records:
`Geophysics, 27, 48-60.
`Larner, K., Chambers, R., Yang, M., Lynn, W., and Wai, W., 1983.
`Coherent noise in marine seismic data: Geophysics, 48, 854-886.
`Lofthouse, J. 1-1., and Bennett. G. T., 1978, Extended arrays for
`marine seismic acquisition: Geophysics, 43. 3-22.
`Martner, S. T., and Silverman, D., 1962, Broomstick distributed
`charge: Geophysics, 27, 1007-1015.
`Musgrave, A. W., Ehlert, G. W., and Nash, D. M., Jr., 1958,
`Directivity effect of elongated charges: Geophysics, 23. 81-96.
`Newman, P., Small, J. 0., and Waites, J. D., 1977. Theory and
`application of water gun arrays in marine seismic exploration:
`Presented at the 47th Annual SEG Meeting, Calgary.
`Newman, P., 1983, Seismic response to sea fioor dilfractorsz Pre-
`sented at the 53rd Annual SEG Meeting, Las Vegas.
`Nooteboom, J. J., 1978, Signature and amplitude of linear air gun
`arrays: Geophys. Prosp., 26, 194-201.
`Parkes, G. E., 1-Iatton, L., and 1-Iaugland. T., 1981, Marine source
`array directivity - A new wide airgun array system: Presented at
`the 51st Annual SEG Meeting, Los Angeles.
`Prescott, H. R., 1935, Method of making geological explorations:
`U.S. Patent No. 1,998,412; filed March 29, 1934.
`Seabrook, D. S., 1961, Anomalous events on the refiection seismo—
`gram: Geophysics, 26, 85-99.
`Sengbush, R. L., 1962. Stratigraphic trap study in Cottonwood
`Creek field, Big Horn basin, Wyoming: Geophysics, 27, 427-444.
`Shock, L., 1950. The progressive detonation of multiple charges in a
`single seismic shot: Geophysics, 15. 208-218.
`Tree, E. L., Lugg, R. D., and Brummitt, J. G., 1982, The attenua-
`tion of source generated noise in marine seismic using areal arrays
`of l\lNater guns: Presented at
`the 52nd Annual SEG Meeting,
`Da as.
`Ursin, B., 1978, Attenuation of coherent noise in marine seismic
`exploration using very long arrays: Geophys. Prosp.. 26. 722-749.
`Ursin, B., 1983, Spatial filtering of marine seismic data: Geophysics,
`48, 1611-1630.
`Van Melle, F. A., and Weatherburn, K. R., 1953, Ghost reflections
`caused by energy initially refiected above the level of the shot:
`Geophysics, 18, 793-804.
`Ziolkowski, A., Parkes, G., l-latton, L.. and Haugland, T., 1982,
`The signature of an air gun array: Computation from near-field
`measurements including interactions: Geophysics. 47, 1413-1421.
`
`PGS Su lemental Exhibit 1019, PGS V. WG
`
`IPR2016-00407
`
`IPR2016-00407
`PGS Supplemental Exhibit 1019, PGS v. WG



