throbber
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
`
`(19) World Intellectual Property Organization
`International Bureau
`
`I IIIII IIIIIIII II IIIIII IIIII IIII I II Ill lllll lllll lllll lllll llll lllllll llll llll llll
`
`(43) International Publication Date
`3 May 2001 (03.05.2001)
`
`PCT
`
`(IO) International Publication Number
`WO 01/30760 Al
`
`(51) International Patent Classification 7:
`401/04
`
`C07D 231/44.
`
`(21) International Application Number:
`
`PCT/EP99/08687
`
`(22) International Filing Date: 22 October 1999 (22.10.1999)
`
`(25) Filing Language:
`
`(26) Publication Language:
`
`English
`
`English
`
`(71) Applicant (for all designated States except US): AVENTIS
`CROPSCIENCE S.A. [FR/FR]: 55, avenue Rene Cassin,
`F-69009 Lyon (FR).
`
`(72) Inventors; and
`CLAVEL,
`(75) Inventors/Applicants
`(for US only):
`.Jean-Louis
`[FR/FR]; La Brosse, F-69420 Ampuis
`(FR). PELTA, Isabelle [FR/FR]; 30, impasse Jean de
`la Fontaine, F-69680 Chassieu (FR). LE BARS, Sylvie
`[FR/FR]; Hameau de Thiers, F-38200 Chuzelles (FR).
`CHARREAU, Philippe [FR/FR]; 9, rue Salvador Dali,
`F-69110 Sainte Foy les Lyon (FR).
`
`(74) Agent: PRAS, Jean-Louis; Aventis Cropscience S.A.,
`Boite postale 9163, F-69263 Lyon Cedex 09 (FR).
`
`(81) Designated States (national): AE. AL AM, AT. AU, AZ.
`BA, BB, BG. BR, BY, CA. CH. CN, CR. CU, CZ, DE. DK,
`DM. EE, ES, FL GB, GD, GE, GH, GM, HR, HU, ID. IL
`IN, IS, JP, KE, KG, KE KR. KZ, LC, LK, LR, LS, LT. LU,
`LY, MA. MD, MG. MK, MN, MW, MX, NO, NZ, PL, PT,
`RO. RU, SD, SE, SG. SI. SK, SL, TJ, TM, TR, TT. TZ, UA,
`UG, US. UZ, YN, YU, ZA. ZW.
`
`(84) Designated States (regional): ARIPO patent (GH, GM,
`KE, LS, MW, SD, SL. SZ, TZ, UG, ZW), Eurasian patent
`(AM, AZ. BY, KG, KZ, MD, RU, TJ, TM), European patent
`(AT, BE, CH, CY, DE, DK, ES, FL FR, GB, GR, IE, IT, LU,
`MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM,
`GA, GN, GW, ML, MR, NE, SN, TD, TG).
`
`Published:
`fVith international search report.
`Before the expiration of the time limit for amending the
`claims and to be republished in the event CJ[ receipt of
`amendments.
`
`For two-letter codes and other abbreviations, refer to the "Guid(cid:173)
`ance ]Votes on Codes and Abbreviations" appearing at the begin(cid:173)
`ning of each regular issue of the PCT Gazette.
`
`-------
`---~
`---
`--iiiiiii -
`
`(54) Title: PROCESS FOR PREPARING 4-TRIFLUOROMETHYLSULPHINYLPYRAZOLE DERIVATIVE
`
`(I)
`
`(II)
`
`0
`\0
`t(cid:173)o
`
`~ -(cid:173)~
`
`O
`(57) Abstract: A process for the preparation of a compound of formula {1), R1 represents halogen, haloalkyl, haloalkoxy, R4S(0)0 -,
`0 or -SF5; R2 represents hydrogen or halogen; R3 represents halogen; R4 represents alkyl or haloalkyl; and n represents 0, 1 or 2; which
`> process comprises oxidising a compound of formula (II); wherein R 1, R2 and W are as defined above, with trifluoroperacetic acid in
`FINCHIMICA EXHIBIT 2022
`ADAMA MAKHTESHIM v. FINCH/MICA
`CASE IPR2016-00577
`
`;.,- the presence of a corrosion inhibiting.
`
`

`

`WO 01/30760
`
`PCT /EP99/08687
`
`PROCESS FOR PREPARING 4-TRIFLUOROMETHYLSULPHINYLPYRAZOLE DERIVATIVE
`This invention relates to improved processes for preparing
`
`1-arylpyrazole pesticides such as 5-amino-1-(2,6-dichloro-4-
`
`trifluoromethylphenyl)-3-cyano-4-trifluoromethylsulphinylpyrazole
`
`5
`
`known as Fipronil (Pesticide Manual 11th Edition), and for the
`
`intermediates used in its preparation 5-amino-1-(2,6-dichloro-4-
`
`trifluoromethylphenyl)-3-cyano-4-trifluoromethylthiopyrazole and 5-
`
`amino-1-(2, 6-dichloro-4-trifl uorometh y l phenyl )-3-cyanopyrazo 1-4-y l
`
`disulphide.
`
`10
`
`European Patent Publication No.295117 describes the
`
`preparation of 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-
`
`cyano-4-trifluoromethylsulphinylpyrazole by the oxidation of 5-amino-
`
`1-(2, 6-dichloro-4-trifl uoromethy lpheny 1)-3-cyano-4-
`
`trifl uoromethy lthiopyrazole with 3-chloroperbenzoic acid. The use of
`
`15
`
`trifluoroacetic acid and hydrogen peroxide (forming trifluoroperacetic
`
`acid in situ) for the oxidation of sulphides to sulphoxides and/or
`
`sulphones is known and is generally useful for the oxidation of electron
`
`deficient sulphides such as trifluoromethylsulphides which are less
`
`readily oxidised than other sulphides. Such procedures have been
`
`20
`
`reported in the literature, for example in the preparation of certain 1-
`
`arylpyrazole pesticides.
`
`A problem encountered in the preparation of 5-amino-1-(2,6-
`
`dichloro-4-trifluoromethylphenyl)-3-cyano-4-
`
`trifluoromethylsulphinylpyrazole by the oxidation of 5-amino-1-(2,6-
`
`25
`
`dichloro-4-trifl uoromethy 1 pheny 1)-3-cyano-4-
`
`trifluoromethy lthiopyrazo le is the co-formation of the corresponding
`
`sulphone compound 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-
`
`3-cyano-4-trifluoromethylsulphonylpyrazole, which is difficult to
`
`remove from the sulphoxide. A number of oxidants (including amongst
`
`30
`
`others sodium vanadate, sodium tungstate, peracetic acid, performic acid
`
`and pertrichloroacetic acid) have been employed in an attempt to obtain
`
`

`

`WO 01/30760
`
`-
`
`2
`
`-
`
`PCT /EP99/08687
`
`an efficient and regioselective oxidation which will provide 5-amino-1-
`
`(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-4-
`
`trifluoromethylsulphinylpyrazole in pure form and which may also be
`
`utilised for large scale preparations. All of the above methods were
`
`5
`
`found to be unsatisfactory in one respect or another.
`
`It has now been found that a mixture of trifluoroacetic acid and
`
`hydrogen peroxide (trifluoroperacetic acid) gives excellent results in
`
`terms of both selectivity and yield.
`
`However a problem of using the trifluoroacetic acid and hydrogen
`
`10
`
`peroxide mixture on large scales is that it leads to corrosion of the glass
`
`linings of industrial reaction vessels, which is rapid (typically
`300µm/year) even at ambient temperatures, whilst at so0c the speed of
`corrosion increases to about 1430µm/year. This corrosion occurs as a
`
`result of the formation of hydrogen fluoride, and therefore prohibits the
`
`15
`
`use of this reagent mixture in such vessels.
`
`It has now been found that the addition of a corrosion inhibiting
`
`compound such as boric acid to the reaction mixture inhibits the
`
`corrosion process and reduces the speed of corrosion to a level that is
`
`typically less than 5µm/year.
`
`20
`
`European Patent Publication No. 0374061 and J-L.Clavel et.al. in
`
`I.Chem.Soc.Perkin I, (1992), 3371-3375 describe the preparation of 5-
`
`amino-1-(2, 6-dichloro-4-trifl uoromethy lpheny 1 )-3-cyanopyrazol-4-y I
`
`disulphide, and the further conversion of this disulphide to the
`
`25
`
`pesticidally active 5-amino-1-(2, 6-dichloro-4-trifl uoromethy I pheny 1)-3-
`
`cyano-4-trifluoromethy lthiopyrazo le by reaction with trifluoromethyl
`
`bromide in the presence of sodium formate and sulphur dioxide in N,N(cid:173)
`
`dimethylformamide in an autoclave at low pressure (typically 13 bars) at
`
`60°C.
`
`

`

`WO 01/30760
`
`-
`
`3
`
`-
`
`PCT/EP99/08687
`
`However on larger scales the reaction is very exothermic which
`
`results in a substantial pressure increase in the vessel and associated
`
`operator hazard.
`
`Moreover it is necessary to add the trifluoromethyl bromide
`
`5
`
`quickly (generally within 0.5 hour), because the mixture of disulphide,
`
`sodium formate, sulphur dioxide and N,N-dimethylformamide has been
`
`found to be unstable (typically leading to 55% degradation into
`
`unwanted by-products within 2 hours at 50°C). This requirement for
`
`rapid addition of trifluoromethyl bromide is not compatible with the
`
`10
`
`exothermic nature of the reaction.
`
`In order to overcome these problems and develop a process which
`
`can be used on a large scale other conditions have been sought.
`
`In the above described procedures the reaction was performed by
`
`addition of the trifluoromethyl bromide to a mixture of the other
`
`15
`
`components. A new process has now been developed in which the order
`
`of addition is different.
`
`European Patent Publication No. 0374061 describes the
`
`preparation of 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-
`
`20
`
`cyanopyrazol-4-yl disulphide by the reaction of 5-amino-1-(2,6-
`
`dichloro-4-trifl uoromethy 1 pheny 1 )-3-cyano-4-thiocyanatopyrazo 1 e with
`
`base, and the further conversion of this disulphide to the pesticidally
`
`active 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-4-
`
`trifluoromethylthiopyrazole.
`
`25
`
`European Patent Publication No. 295117 discloses a process for
`
`the preparation of 1-aryl-3,5-disubstituted-pyrazol-4-yl disulphides by
`
`the hydrolysis of the corresponding 4-thiocyanatopyrazole derivatives
`
`using hydrochloric acid in ethanol, or by reduction using sodium
`
`borohydride in ethanol, or by treatment with aqueous sodium hydroxide
`
`30
`
`under phase transfer conditions in the presence of chloroform and
`
`benzyltriethylammonium chloride.
`
`

`

`WO 01/30760
`
`- 4
`
`-
`
`PCT/EP99/08687
`
`The preparation of the above 5-amino-1-aryl-3-cyano-4-
`
`thiocyanatopyrazole intermediates is also described in European Patent
`
`Publication Numbers 0374061 and 295117, and these are obtained by
`
`the thiocyanation of the corresponding 5-amino-1-aryl-3-cyanopyrazole
`
`5
`
`derivatives using an alkali metal or ammonium thiocyanate in the
`
`presence of bromine and methanol at low temperature.
`
`The above 2-step process for the preparation of 5-amino-1-aryl-3-
`
`cyanopyrazol-4-yl disulphide intermediates from 5-amino-1-aryl-3-
`
`cyanopyrazoles presents several problems which limit its usefulness for
`
`10
`
`application on large scales:
`
`i)
`
`the thiocyanation step is generally performed at very low
`
`temperatures,
`
`ii)
`
`the mixture of bromine and methanol used in the
`
`thiocyanation reaction may form explosive mixtures,
`
`15
`
`iii)
`
`iv)
`
`the above reactions involve heterogeneous mixtures, and
`
`it is difficult to obtain complete transformations to product
`
`in either reaction stage.
`
`In order to overcome these problems other conditions have been
`
`sought. Thus the explosive hazard may be avoided in the thiocyanation
`
`20
`
`reaction by replacing the methanol with a mixture of dichloromethane
`
`and water, however this procedure is not efficient on large scales.
`
`The thiocyanation reaction may alternatively be successfully
`
`carried out using an alkali metal or ammonium thiocyanate in the
`
`presence of hydrogen peroxide and a mineral acid such as hydrochloric
`
`25
`
`acid in a solvent such as an alcohol for example methanol. An improved
`
`procedure for the subsequent hydrolysis step has been found which
`
`involves the use of a base such as an alkali metal hydroxide, for example
`
`sodium hydroxide, in the presence of formaldehyde and a solvent such
`
`as aqueous methanol, however the disulphide thus obtained is very
`
`30
`
`powdery and difficult to filter. Furthermore in order to obtain the above
`
`disulphide in satisfactory quality it is necessary to subject the starting
`
`

`

`WO 01/30760
`
`- 5
`
`-
`
`PCT/EP99/08687
`
`material 5-amino-1-aryl-3-cyanopyrazole to additional purification
`
`before it is used in the thiocyanation and hydrolysis reactions.
`
`Hence it may be appreciated that the above 2-step procedure is
`
`inefficient for an industrial process, and a single step method lacking
`
`5
`
`these disadvantages would clearly be preferred.
`
`The present invention seeks to provide improved or more
`
`economical methods for the preparation of pesticides.
`
`It is a first object of the present invention to provide a convenient
`
`10
`
`process for preparing 5-amino-1-aryl-3-cyano-4-
`
`trifluoromethylsulphinylpyrazole pesticides, which are obtained in high
`
`yield and high purity.
`
`It is a further object of the present invention to provide a process
`
`for preparing 5-amino-l-aryl-3-cyano-4-
`
`15
`
`trifluoromethylsulphinylpyrazole pesticides which is simple and safe to
`
`perform, and which results in minimal vessel corrosion.
`
`It is a further object of the present invention is to provide a process
`
`for the preparation of 5-amino-1-aryl-3-cyano-4-
`
`trifluoromethylsulphinylpyrazole pesticides which includes an efficient
`
`20
`
`recovery procedure for the trifluoroacetic acid.
`
`It is a further object of the present invention to provide a
`
`convenient process for preparing 5-amino-1-aryl-3-cyano-4-
`
`trifluoromethylthiopyrazole pesticides and pesticidal intermediates,
`
`which are obtained in high yield and high purity with improved
`
`25
`
`transformation of the 5-amino-1-aryl-3-cyanopyrazol-4-yl disulphide.
`
`It is a further object of the present invention to provide a process
`
`for preparing 5-amino-l-aryl-3-cyano-4-trifluoromethylthiopyrazole
`
`pesticides and pesticidal intermediates, which is simple and safe to
`
`perform, is operated at lower pressures and temperatures, and in which
`
`30
`
`side reactions are minimised.
`
`

`

`WOOl/30760
`
`-
`
`6 -
`
`PCT /EP99/08687
`
`It is a further object of the present invention to provide a
`
`convenient process for preparing 5-amino-1-aryl-3-cyanopyrazol-4-yl
`
`disulphide pesticidal intermediates, which are obtained in high yield and
`
`high purity.
`
`5
`
`It is a further object of the present invention to provide a single
`
`step process for preparing 5-amino-1-aryl-3-cyanopyrazol-4-yl
`
`disulphide pesticidal intermediates from 5-amino-1-aryl-3-
`
`cyanopyrazole intermediates.
`
`It is a further object of the present invention to provide a process
`
`10
`
`for preparing 5-amino-1-aryl-3-cyanopyrazol-4-yl disulphide pesticidal
`
`intermediates which is simple and safe to perform, utilises readily
`
`available materials, allows efficient isolation of the product and does not
`
`require additional purification of the 5-amino-1-aryl-3-cyanopyrazole
`
`starting material.
`
`15
`
`It is a further object of the present invention to provide a
`
`convenient process for preparing 5-amino-1-aryl-3-cyano-4-
`
`trifluoromethylsulphinylpyrazole pesticides by a three step process
`
`starting from 5-amino-1-aryl-3-cyanopyrazoles.
`
`These and other objects of the invention will become apparent
`
`20
`
`from the following description, and are achieved in whole or in part by
`
`the present invention.
`
`According to a feature of the present invention there is provided
`
`an improved process (A) for the preparation of a compound of formula
`
`25
`
`(I):
`
`

`

`WO 01/30760
`
`- 7
`
`-
`
`PCT /EP99/08687
`
`CF3SO'u----(CN
`
`H2N_/(N}~
`
`R2
`
`wherein W represents nitrogen or -CR 3;
`
`(I)
`
`R 1 represents halogen, haloalkyl (preferably trifluoromethyl),
`
`5
`
`haloalkoxy (preferably trifluoromethoxy), R4S(O)n-, or -SF 5;
`
`R2 represents hydrogen or halogen (for example chlorine or
`
`bromine);
`
`R3 represents halogen (for example chlorine or bromine);
`
`R4 represents alkyl or haloalkyl; and
`
`10
`
`n represents 0,1 or 2; which process comprises oxidising a
`
`compound of formula (II):
`
`wherein R 1, R 2 and W are as herein before defined, with
`
`15
`
`trifluoroperacetic acid in the presence of a corrosion inhibiting
`
`(II)
`
`compound.
`
`In a preferred embodiment of the invention the trifluoroperacetic
`
`acid is generated in situ by the reaction of trifluoroacetic acid and
`
`hydrogen peroxide. Accordingly, this embodiment comprises treating a
`
`

`

`WO 01/30760
`
`-
`
`8
`
`-
`
`PCT/EP99/08687
`
`compound of formula (II) as defined above with trifluoroacetic acid and
`
`hydrogen peroxide.
`
`Unless otherwise specified in the present specification 'alkyl'
`
`5
`
`means straight- or branched- chain alkyl having from one to six carbon
`
`atoms (preferably one to three). Unless otherwise specified 'haloalkyl'
`
`and 'haloalkoxy' are straight- or branched- chain alkyl or alkoxy
`
`respectively having from one to six carbon atoms (preferably one to
`
`three) substituted by one or more halogen atoms selected from fluorine,
`
`10
`
`chlorine and bromine.
`
`When Rl represents R4S(O)n- and n is O or 1, the process may
`
`bring about oxidation to the corresponding compound in which n is 1 or
`
`2, respectively.
`
`15
`
`The corrosion inhibiting compound is generally boric acid or an
`
`alkali metal borate such as sodium borate; or any hydrogen fluoride
`
`trapping agent such as silica (silicon dioxide), optionally in the form of
`
`silica oil. Preferably the corrosion inhibiting compound is boric acid.
`
`The amount of corrosion inhibiting compound used is generally
`
`20
`
`0.08-0.22 molar equivalents, and preferably about 0.08-0.1 molar
`
`equivalents.
`
`The amount of trifluoroacetic acid employed is generally from 14-
`
`15 molar equivalents.
`
`The amount of hydrogen peroxide influences the reaction since an
`
`25
`
`excess will lead to the formation of the corresponding sulphone of the
`
`compound of formula (I), whilst a deficiency will lead to incomplete
`
`transformation, and in either event an impure final product is obtained.
`
`Thus the amount of hydrogen peroxide used in the reaction (generally as
`
`a 35% aqueous solution) is generally from 1.3-1.5 equivalents,
`
`30
`
`preferably about 1.31-1.35 equivalents and more preferably about 1.33
`
`equivalents.
`
`

`

`WO 01/30760
`
`- 9
`
`-
`
`PCT /EP99/08687
`
`The reaction is generally performed at a temperature of from 10-
`
`150 C and preferably at about 12°c.
`
`A further problem associated with the use of trifluoroacetic acid
`
`and hydrogen peroxide concerns the recovery and recycling of the
`
`5
`
`expensive trifluoroacetic acid which is essential for the operation of an
`
`economically efficient process. In one procedure that was developed in
`
`an attempt to solve this problem, the reaction mixture was quenched
`
`with sulphur dioxide and a part of the trifluoroacetic acid removed by
`
`distillation. An excess of ethanol was then added to the residue to form
`
`10
`
`ethyl trifluoroacetate which was then removed by distillation. The
`
`product was then crystallised from a mixture of ethanol/water. This
`
`procedure was found to have two disadvantages:
`
`i)
`
`the ethanol/water mixture does not provide sufficiently pure 5-
`
`amino-1-(2,6-dichloro-4-trifl uoromethy lpheny 1 )-3-cyano-4-
`
`15
`
`trifluoromethy lsulphiny lpyrazole; and
`
`ii) the recycling of trifluoroacetic acid via the acid hydrolysis of
`
`ethyl trifluoroacetate is a complex process on a large scale and generates
`
`a large quantity of unwanted sodium sulphate thus presenting a waste
`
`problem.
`
`20
`
`A new procedure has now been found which solves both of these
`
`problems and thus provides a simple and efficient method for the
`
`preparation of 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-
`
`cyano-4-trifluoromethylsulphinylpyrazole in high yield and purity, and
`
`in addition provides an efficient recovery procedure for trifluoroacetic
`
`25
`
`acid. In this process, when the reaction in trifluoroacetic acid and
`
`hydrogen peroxide is judged to be complete, the excess of hydrogen
`
`peroxide is generally quenched with sulphur dioxide ( or equivalent
`
`reagent), chlorobenzene is added and the trifluoroacetic acid removed by
`
`distillation. Typically the trifluoroacetic acid is removed by azeotropic
`
`30
`
`distillation under reduced pressure. An alcohol such as methanol,
`
`ethanol or isopropanol (preferably ethanol) is then added to the residue
`
`

`

`WO 01/30760
`
`- 10 -
`
`PCT /EP99/08687
`
`and warmed to about 80°C until a solution is formed, and then cooled to
`
`about 40°C when the 5-amino-1-(2,6-dichloro-4-
`
`trifl uoromethy 1 pheny 1 )-3-cyano-4-trifl uoromethy lsul phiny 1 pyrazole
`
`5
`
`crystallises. The alcohol is evaporated at 40°C under reduced pressure,
`the mixture cooled to about o0 c, filtered, and the product washed and
`
`dried in vacuo. Chlorobenzene has been found to be the only industrial
`
`solvent which is compatible with the mixture, has a boiling point
`
`significantly higher than that of trifluoroacetic acid, and allows
`
`crystallisation of 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-
`
`10
`
`cyano-4-trifluoromethylsulphinylpyrazole in good yield and quality.
`
`Thus a preferred aspect of the process of the invention as
`
`described above further comprises adding chlorobenzene to the reaction
`
`mixture on completion of the oxidation reaction, and recovering the
`
`trifluoroacetic acid by distillation.
`
`According to a further feature of the present invention there is
`
`provided an improved process (B) for the preparation of a compound of
`
`formula (II) as defined above; which process comprises the addition of
`
`sulphur dioxide to a mixture comprising a disulphide of formula (III):
`
`NC
`
`s~~~s
`
`CN
`
`~NH2 H2N~
`R.2
`
`15
`
`20
`
`(III)
`
`wherein R 1, R 2 and W are as hereinbefore defined, a formate salt,
`
`trifluoromethyl bromide and a polar solvent. The polar solvent is
`
`generally selected from N,N-dimethylformamide, N,N-
`
`25
`
`dimethy lacetamide, N-methy lpyrrolidinone, dimethylsulphoxide,
`
`

`

`WO 01/30760
`
`- 11 -
`
`PCT/EP99/08687
`
`sulpholane, hexamethylphosphoramide and ethers such as dioxan,
`
`tetrahydrofuran and dimethoxyethane. It is preferably N,N(cid:173)
`
`dimethylformamide, N ,N-dimethy lacetamide, N-methy lpyrrolidinone,
`
`dimethylsulphoxide or sulpholane, more preferably N,N-
`
`5
`
`dimethy lformamide.
`
`The advantages of performing the process with this order of
`
`addition are:
`
`i)
`
`the mixture of disulphide of formula (III), sodium formate,
`
`10
`
`trifluoromethyl bromide and polar solvent (preferably N,N(cid:173)
`
`dimethylformamide) is stable and so the sulphur dioxide may be added
`
`more slowly without risk of degradation, thus providing a more
`
`convenient and safe process,
`
`ii) the new process is efficient being characterised by good yields
`
`15
`
`of product and high transformation of disulphide, and
`
`iii) the rate of addition of sulphur dioxide may be controlled so
`
`that any increase in the reaction temperature and/or pressure can be
`
`maintained at a safe level, thus allowing large scale reactions to be
`
`performed safely (including for example typical commercial reactors
`
`20
`
`having about l 5m3 volume).
`
`The formate salt is generally an alkali metal or ammonium salt,
`
`preferably sodium formate.
`
`The reaction temperature during the addition of the sulphur
`
`25
`
`dioxide is generally from 35-55°C, preferably from about 35-50°C,
`
`most preferably from about 43-47°C, which allows efficient control of
`
`the heat from the exothermic reaction. Below 35°C the reaction tends to
`
`proceed too slowly to be useful for an industrial process. At
`
`temperatures above 55°C the yield and quality of product is reduced.
`
`30
`
`The sulphur dioxide is generally added at such a rate that the
`
`temperature is maintained within the above defined range. On large
`
`

`

`WO 01/30760
`
`- 12 -
`
`PCT/EP99/08687
`
`scales this is generally carried out over a 0.5-2 hour period, preferably
`
`during about 1-1.5 hours. An addition time of about 1-1.5 hours has
`
`been shown to be optimal in minimising the formation of by-products.
`
`The molar ratio of trifluoromethyl bromide:disulphide of formula
`
`5
`
`(III) is preferably from 3: 1 to 5: 1. It is convenient to employ a molar
`
`ratio of about 3: 1.
`
`The amount of sulphur dioxide used is generally from 1.2-1.5
`
`molar equivalents relative to the disulphide of formula (III) and
`
`preferably about 1.3 molar equivalents. When only 1 equivalent is
`
`10
`
`employed the yield of product is lowered and transformation of
`
`disulphide tends to be incomplete, whilst an excess of sulphur dioxide
`
`leads to degradation during evaporation of the solvent in the work-up.
`
`The amount of formate salt used is generally 4-6 molar
`
`equivalents relative to the disulphide of formula (III), preferably about
`
`15
`
`4.5-5.5 molar equivalents. A joint reduction in the amount of sulphur
`
`dioxide and formate salt can be made until the ratio of sulphur
`
`dioxide:disulphide is from about 1.2: 1 and the ratio of formate
`
`salt:disulphide is from about 4.5: 1.
`
`By using the process according to the above description the
`
`20
`
`pressure in the vessel is generally easily maintained in the safe range of
`
`3-6 bars.
`
`According to a further feature of the present invention there is
`
`provided a process (C) for the preparation of a disulphide of formula
`
`25
`
`(III) as defined above; which comprises adding sulphur monochloride,
`
`(S2Cl2) to a solution in an organic solvent of a compound of formula
`
`(IV):
`
`

`

`WO 01/30760
`
`- 13 -
`
`PCT /EP99/08687
`
`(IV)
`
`wherein R 1, R 2 and W are as herein before defined.
`
`The reaction is preferably conducted in a solvent selected from
`
`5
`
`toluene, dichloromethane or dichloroethane, or aliphatic or aromatic
`
`nitriles such as acetonitrile, propionitrile, methylglutaronitrile and
`
`benzonitrile; or mixtures thereof, optionally as a mixture with
`
`chlorobenzene (which is present when a chlorobenzene solution of the
`
`compound of formula (IV) obtained from the previous reaction stage is
`
`10
`
`used). Acetonitrile optionally in the presence of chlorobenzene is the
`
`preferred solvent for the reaction. The reaction is very sensitive to the
`
`effect of solvent and whilst it may be convenient to use toluene since a
`
`toluene solution of (IV) may be available from the previous reaction
`
`stage, a significant amount of the monosulphide (V):
`
`NC~S
`
`CN
`
`C)--NH2 H2N
`
`R2
`
`R2
`
`~
`
`15
`
`(V)
`
`

`

`WO 01/30760
`
`- 14 -
`
`PCT /EP99/08687
`
`is generally formed as a by product when these conditions are
`
`employed. Moreover the product is very slow to filter when toluene is
`
`employed, although an acceptable filtration rate may be obtained by
`
`addition of a proportion of acetonitrile to the toluene solution. When the
`
`5
`
`reaction is performed in the preferred solvent acetonitrile, the amount of
`
`monosulphide impurity (V) is reduced and the rate of filtration of the
`
`product (III) is satisfactory.
`
`The sulphur monochloride used in the process is generally from
`
`99.4-99.9% w/w pure.
`
`10
`
`The quality of solvent used may affect the reaction since the
`
`presence of certain impurities can influence the yield of product (with
`
`the formation of (V) as by-product). Thus when acetonitrile is employed
`
`as solvent it is preferred that the content of water is <1 OOOppm, the
`
`content of ethanol is <1500ppm and the content of ammonia is
`
`15
`
`<1 OOppm. It is also preferable to avoid the presence of even low
`
`amounts of acetone or N,N-dimethylformamide in the solvent mixture
`
`since, for example, the presence of about 1 OOppm of acetone in
`
`dichloromethane may have a negative impact on the yield of product.
`
`The order of addition of the reagents is an important feature of the
`
`20
`
`reaction. Thus it is very important to add the sulphur monochloride to a
`
`solution of compound of formula (IV) (rather than the reverse). A rapid
`
`addition time for the sulphur monochloride is a preferred feature of the
`
`process. Thus if the sulphur monochloride is added during 1 minute, the
`
`disulphide (III) crystallises about 15 seconds after the completion of the
`
`25
`
`addition (and all of the compound of formula (IV) has been consumed).
`
`When added over a 15 minute period the disulphide (III) crystallises in
`
`mid-addition and as a result the disulphide (III) co-crystallises with the
`
`remaining compound of formula (IV). Washing the impure product so
`
`obtained with a large excess of acetonitrile does not effect removal of
`
`30
`
`the unreacted compound of formula (IV). The time for the sulphur
`
`

`

`WO 01/30760
`
`- 15 -
`
`PCT/EP99/08687
`
`monochloride addition is preferably from 1-10 minutes, more preferably
`
`about 1-5 minutes.
`
`The reaction temperature of the mixture at the start of the addition
`
`of the sulphur monochloride is preferably from 5 to 25°C, more
`
`5
`
`preferably from about 10 to 20°C . If the temperature is at 30°C at the
`
`start of the addition, a lower yield is obtained due to the formation of
`
`trisulphide and tetrasulphide by-products. As the reaction is exothermic
`
`the temperature increases during the reaction and is preferably held at
`
`from about 20 to 35°C.
`
`10
`
`The molar ratio of compound of formula (IV): sulphur
`
`monochloride used in the reaction is generally from 2: 1 to 2: 1.06, and
`
`preferably from about 2:1 to about 2:1.04. Using a larger excess of
`
`sulphur monochloride results in the formation of an increased amount of
`
`the monosulphide by-product (V). If a lower proportion of sulphur
`
`15
`
`monochloride is used the reaction does not proceed to completion.
`
`A further feature of the process of the invention is the method used
`
`for the purification of the product. Thus the reaction mixture containing
`
`the disulphide of formula (III) is first degassed to remove hydrogen
`
`chloride, generally by heating at about 40°C under reduced pressure,
`
`20
`
`generally at about 0.2 atmosphere. It is then heated at about 80°C for
`
`about 1 hour at atmospheric pressure. After cooling to about 30°C, a
`
`weak base (generally ammonia) is added to neutralise any remaining
`
`hydrogen chloride and obtain a pH about 6.5-7. The mixture is then
`
`cooled to about 5°C and the product isolated by filtration. This
`
`25
`
`procedure enables the disulphide of formula (I) to be obtained in high
`
`yield and purity by a simple procedure convenient for large scale
`
`operations.
`
`In formulae (I), (II), (III) and (IV), preferred values of the
`
`symbols are as follows:-
`
`30
`
`R 1 represents haloalkyl (preferably trifluoromethyl), haloalkoxy
`
`(preferably trifluoromethoxy) or -SF 5;
`
`

`

`WO 01/30760
`
`- 16 -
`
`PCT /EP99/08687
`
`W represents -CR 3;
`
`R2 and R3 represent halogen (preferably chlorine).
`
`A particularly preferred compound of formula (I) is:
`
`5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-4-
`
`5
`
`trifluoromethylsulphinylpyrazole.
`
`A particularly preferred compound of formula (II) is:
`
`5-amino-1-(2,6-dichloro-4-trifluoromethy I phenyl )-3-cyano-4-
`
`trifluoromethylthiopyrazole.
`
`A particularly preferred compound of formula (III) is:
`
`10
`
`5-amino-1-(2, 6-dichloro-4-trifl uoromethy lpheny I )-3-
`
`cyanopyrazol-4-y l disulphide.
`
`Compounds of formula (II), (III) and (IV) are known.
`
`According to a further feature of the present invention the
`
`15
`
`processes (A), (B) and (C) can be combined to prepare a compound of
`
`formula (I) from a compound of formula (IV).
`
`The above processes (A), (B) and (C) when combined together
`
`form a particularly useful and efficient method for the preparation of
`
`Fipronil.
`
`20
`
`The following non-limiting examples illustrate the
`
`invention.
`
`Example 1
`
`Preparation of 5-amino-1-(2,6-dichloro-4-
`
`25
`
`trifluoromethylphenyl)-3-cyano-4-trifluoromethylsulphinylpyrazole
`
`Trifluoroacetic acid (1660g, 14.Smol) was added to a stirred
`
`solution of 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-
`
`4-trifluoromethylthiopyrazole ( 436g, l.03mol) and boric acid (5g,
`
`0.08mol) in a glass reactor at 12°c. Hydrogen peroxide (131.5g of
`
`30
`
`35%w/w, l.35mol) was added over 2 hours whilst maintaining the
`
`temperature at 12°c, and the mixture kept at this temperature for a
`
`

`

`WO 01/30760
`
`- 17 -
`
`PCT /EP99/08687
`
`further 4-5 hours. When the transformation had reached 97-98%, or the
`
`amount of unwanted 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-
`
`3-cyano-4-trifluoromethylsulphonylpyrazole reached 2% (as judged by
`
`HPLC analysis), sulphur dioxide was added to quench any remaining
`
`5
`
`hydrogen peroxide, and the mixture maintained at 1 O-l 8°C for 0.5 hour.
`
`Chlorobenzene (370g) was added and the mixture placed under reduced
`
`pressure (from 0.17 to 0.04 atmosphere) and heated to 47-50°C with
`
`azeotropic distillation. A homogeneous fraction containing recovered
`
`trifluoroacetic acid was obtained. During the distillation additional
`
`10
`
`chlorobenzene (1625g) was added continuously in order to maintain a
`
`constant volume. At the end of the azeotropic distillation the reactor
`
`contents were maintained at 47-50°C under reduced pressure (0.04
`
`atmosphere), and a homogeneous fraction of chlorobenzene distilled.
`
`After release of the vacuum, the reactor was heated to 40°C, ethanol
`
`15
`
`(207g) and chlorobenzene (235g) added, and the mixture heated to 80°C
`
`with stirring to give a solution. On cooling to 40°C the product
`
`crystallised. The reactor was placed under progressively reduced
`
`pressure (from 0.13 to 0.03 atmosphere) and the ethanol distilled at
`
`40°c. The vacuum was released and the mixture cooled to 5°C during
`
`20
`
`3.5 hours and left for a further 0.5 hour. The product was filtered off,
`
`washed with cold chlorobenzene, then with cold aqueous ethanol, then
`
`with water, and dried in vacuo at 135°C to give the title compound
`
`( 407 .5g), in a typical yield of 89% and purity of 95.5%.
`
`Example 2
`
`25
`
`Preparation of 5-amino-3-cyano-1-(2,6-dichloro-4-
`
`trifluoromethylphenyl)-4-trifluoromethylthiopyrazole
`
`Sodium formate (76g, 1.1 lmol) was added to a mixture of 5-
`
`amino-1-(2,6-dichloro-4-trifl uoromethy l phenyl )-3-cyanopyrazo 1-4-y 1
`
`disulphide (157.5g, 0.223mol)

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket