throbber
United States Patent
`
`[19]
`
`IlllllllllllllllllllllIlllllillllllllllllllllllIillllllllllllllllllllllllll
`
`USO05663304A
`[11] Patent Number:
`
`5,663,304
`Builder et al. [45] Date of Patent:
`Sep. 2, 1997
`
`
`
`[54] REFOLDING OF MISFOLDED INSULlN-
`L[KE GROWTH FAc'1'()R.[
`
`[75]
`
`Inventors: Stuart Builder. Belmont; Roger Hart.
`Burlingame; Philip Lester. San
`Lorenzo; David Reifsnyder. San
`Mate“ all 0f Calm
`
`_
`.
`.
`[73] Ass1gnee: Genentech, Inc. San Francisco. Calif.
`
`[21] App1_ NW 110,554
`
`[22] Filed:
`
`Aug. 20, 1993
`
`Int. Cl.“ ......................... C07K 14/475; C12N 15/18
`[51]
`[52] U.S. Cl.
`.......................... 530/399; 530/418; 530/420;
`530/422; 530/424; 435/69.4; 435/172.3;
`435/252.3; 435/320.1
`[58] Field of Search .................................. 435/69.4. 69.1.
`435/240.2. 172.1. 172.3. 252.3. 320.1; 530/350.
`399. 303. 418-420. 421-422. 424
`
`361330
`360937
`0433225/x1
`M13440”
`
`4/1990 Eumpean Pat 05- -
`4/1990 European Pat. OE. .
`11/1990 European Pat. on. .
`2/1991
`E“‘°P°"‘“ P3" 05- -
`gumpean gm‘
`‘
`8/1987 1;?” at‘
`’
`62490199
`63-204796 1211983
`Japan.
`63-294796 12/1933
`Japan.
`W036/05399 10/1935 wlpo.
`W088/08003 10/1988 WIPO .
`W088/08849 11/1988 WIPO .
`W091/00344
`1/1991 WIPO .
`W091/(T2089 W199l WIPO .
`W092/03477
`3/1992 WIPO .
`w093m240
`5,1993 WIPO A
`W093/19084
`9/1993 WIPO .
`
`‘
`
`OTHER PUBLICATIONS
`Callard & Gearing (1994). The Cytokine Facts Book. Aca-
`demic Press. Harcourt Brace & Co. Publishers pp. 2-3.
`Marston (1986). Biochemical
`Journal. vol. 240. pp.
`1-l2.Brems et al.. “Equilibrium Denaturation of Pituitar-
`y-and Recombinant—Derived Bovine Growth Hormone”.
`3:.:;6::;66§.5:;:::a::§.:;::.::.;::.:s..:38:......
`in Escherichia coli is Favored By Lower Growth Tempera-
`tures”. pp. 291-294. Biotechnology. vol. 6. Mar. 1988.
`Mizukami et al.. “Production of Active Human Interferon-B
`in E. coli I. Preperential Production By Lower Culture
`T
`19‘
`‘
`I.
`-
`.
`I
`Nzmgerfggrg Pp 605410 B‘°t°°h“°1°gy L°“°“ V°1 8
`.'
`'.
`'
`.
`.
`.
`.
`%’I‘:1"ak1F°‘F‘g1dmg9I_1]1t¢T1;I}°t“l:13lt1¢5i1nd
`
`011113 0" ~ PP-
`
`~
`
`10 C no 0837» V0 -
`
`~
`
`0 Y
`1989.
`Marston et al.. “[20] Solubilization of Protein Aggregates".
`pp. 264-276. Biochem. J. 240. 1 (1986).
`Wetzel. “Protein Aggregation in Vivo-Bacterial Inclusions
`-
`ammah
`-
`-v
`__
`-~
`glfgigzgggltliials Parf';3i°§l'qn3{};::§::fl’{V:§’,s§)i'.‘])S‘:abfl;:3;i;)If
`.
`'
`. '
`.
`.
`.
`gm
`and Strateg1es for Ptotem Stab1l1zat1on. New York. 1992.
`Raschdort et al.. “Location of Disulphide Bonds in Human
`1080110-Like Growth Factors (IGFS) Synthcs1zed by Recom-
`binant DNA Technolgy”. pp. 3-8. Biomedical and Environ-
`mental Mass Spectormetry. vol. 16. 1988.
`§,‘,$i,.f.E..‘:‘y‘;s.§’Z’.i’..?°1§.';.f..f"£.‘é‘ii‘.’::,§?.§‘.§.*“%.§‘.i‘.“§ZS§§
`pp. 803-806. Biochem. J. (1990) 268.
`.
`.
`0415‘ °°“‘"'“°d °" "W P3339
`primary Examiner____[ohn mm
`Assistant Egmml-ner__P1.ema Menz
`Attome); Agent, or Firm—Walter H. Dreger
`[57]
`ABSTRACT
`
`A composition is provided comprising about 0.1 to 15
`mymL of a polypeptide in a bufler having a pH of about
`7_
`-
`'
`-
`
`metal. or ammonium salt. about 0.1 to 9M of a chaotropic
`d
`1
`agent. an about.0.0. to 15 11M of a copper or manganese
`salt. The buffer is suitably used 1n a method for refoldmg
`Improperly folded polypeptides.
`
`12 Claims, 12 Drawing Sheets
`
`APOTEX EX1033
`
`Page 1
`
`[56l
`
`4,511,502
`4.511503
`4512322
`
`4,565,785
`4 72,79
`
`.......................... 530/417
`.- 530/422
`-- 530/403
`-
`
`Referellces Cited
`mm
`4/1985 Builder et al.
`4/1985 Olson et al.
`4/1935 101165 3‘ 31-
`(S__;:‘)‘l’:‘“z
`.
`.........
`1/1936 Gilbert et 21.
`2
`6
`ths
`.
`.7133. §;:..::_'.......
`
`
`
`435/317
`2:321;
`
`530/344
`....... 435/68
`S30/399
`..... 435/320
`
`..
`
`..
`.
`
`~-
`
`_
`
`3/1987 Bentle et al.
`4,652,630
`6/1987 Georgeet al.
`4,673,641
`11/1987 Yang et al.
`4,705,848
`4,710,473 12/1987 Morris ............
`I1?I:!1a8aJ€t<:l31«
`unge
`.
`.
`,
`,
`.
`5/1990 Bobbitt etal. ..
`4,923,967
`530/351
`1/1991 Yokoo et al.
`4,985,544
`530/399
`5/1991 Ieda at 31.
`5 019500
`435/69 1
`7/1991 Ueda gt 3].
`5:093531
`435/69:4
`5,153,375 10/1992 Miller et al.
`435/69.1
`5,191,o63
`3/1993 Inouye at a1_
`53o/324
`5,288,93l
`2/1994 Chang et al.
`........................... 530/399
`Foam: mm seams
`0128733
`6/1984 European Fat. 011".
`.
`0130166
`6/1984
`E
`P 1. Off.
`.
`123733 12/1984 Big: P::.o1r. .
`130166
`1/1985 European Pat. 01f. .
`0135094
`3/1985 European Pat. Off. .
`E:
`’
`196056 10/1986 European Pat. on. .
`219814
`4/1987 European Pat. Off. .
`0264074 10/1987 European Fat. 03..
`European :31»
`-
`uropean at.
`..
`mm on.
`0360937
`9,1988 Eumpean Pat‘ OE‘ '
`286345 10/1988 European Pat. Ofl‘.
`.
`238451
`lo/1983 European Pu OE _
`293793 12/1933 European pm‘ Ofig _
`302469
`2/1939 European Pat. on. .
`312358
`4/I989 European Pat. OE. .
`0361830A2
`4/1990 European Pat. Ofli .
`
`APOTEX EX1033
`
`Page 1
`
`

`
`5,663,304
`Page 2_j__
`
`OTHER PUBLICATIONS
`
`Toren et al.. “Determination of Interchain Crosslinkages in
`insulin B—Chain Dimers by Fast Atom Bombardment Mass
`Spectremetry”. pp. 287-299. Analytical Biochemistry 169.
`(1988).
`Green et al.. “Cheddar cheesemaking with recobinant calf
`chymosin synthesized in Escherichia coli”, pp. 281-286.
`Journal of Dairy Research. (1985).
`Frank et al.. “The Production of Human Proinsulin and Its
`Transformationto Human Insulin and C—Peptide”. pp.
`729-738 Rich and Gross. (1981).
`Cleland et al.. “Refolding an Deggregation of Bovine Car-
`bonic Anhydrase B: Quasi-Elastic Light Scattering Analy-
`sis”. pp. 11072-11078. Biochemistry. 29. 1990.
`Halenbeck et al.. “Renaturation and Purification of Biologi-
`cally
`Active
`Recombinant
`Human Macrophage
`Colony—Stirnu1ating Factor Expressed in E‘. Coli”, pp.
`710-715. Biotechnology. vol. 7. Jul. 1989.
`Tsuji et al.. “Characterization of Disulfide Bonds in Recom-
`binant Proteins: Reduced Human Interleukin 2 in inclusion
`Bodies and Its Oxidative Refolding”. pp. 3129-3134. Bio-
`chemistry. 26. 1987.
`George et al.. “High-Level Expression in Escherichia coli
`of Biologically Active Bovine Growth Hormone". pp.
`273-281. Mary Ann Liebert. Inc. Publishers, 1985.
`Gill et al.. “Recombinant Chicken and Bovine Growth
`Hormones Accelerate Growth in Aquacultured Juvenile
`Pacific Salmon Oncorhynchus Kisutch”. pp. 643-646. Bio-
`technology. vol. 3. 1985.
`Sekine et al.. “Cloning and expression of cDNA for salmon
`growth hormone in Escherichia coli ”, pp. 4306-43 10. Proc.
`Natl. Acad. Sci. USA. vol. 82. 1985.
`Winkler et al.. “Purification and Characterization of Recom-
`binant Urokinase from Escherichia coli”. pp. 990-1000..
`Biotechnology. vol. 3. Nov. 1985.
`Kohnert et al. . “Production of a Recombinant Human Tissue
`Plasminogen Activator Variant (BM 06.022) from Escheri-
`chia coli Using a Novel Renaturation Technology”. p. 44.
`Posters 1. 1990.
`
`‘The pmiiication of eukaryotic polypeptides
`Marston.
`sysnthesized in Escherichia coli”, pp. 1-12. Biochem. J.
`240.(1986).
`Boss et al.. “Assembly of functional antibodies from immu-
`noglobulin heavy and Light chains synthesized in E. coli”,
`pp. 3791-3806. Nucleic Acids Research. vol. 12. NO. 9.
`1984.
`
`Cabilly et al.. “Generation of antibody activity from immu-
`noglobulin polypeptide chains produces in Escherichia
`coli”, pp. 3273-3277. Proc. Natl. Acad. Sci. USA. vol. 81.
`Jun. 1984.
`
`Marston et al.. “Pm1'.fication of Calf Prochymosin (Proreen-
`nin) Synthesized in Echerichia coli ”, pp. 800-804. Bio-
`technology. Sep.. 1994.
`Hoppe
`et
`al..
`“Preparation of Biologically Active
`Platelet—Derived Growth Factor Type BB from a Fusion
`Protein Expressed in Escherichia coli
`pp. 2956-2960.
`Biochemistry. 28. 1989.
`Bowden et al.. “Structure and Morphology of Protein Inclu-
`sion Bodies in Escherichia coli”, pp. 725-730. Biotechnol-
`ogy. vol. 9. Aug. 1991.
`Wetzel et al.. “Mutations in Human Interferon Gamma
`Afiecting Inclusion Body Formation Identified ByAGeneral
`Immunochemical Screen". pp. 731-737. Biotechnology.
`vol. 9. 1991.
`
`Hejnaes et al.. “Development of an optimized refolding
`process for recombinant Ala—Glu—IGF-1". pp. 797-806.
`Protein Engineering. vol. 5. 1992.
`Obukowicz et al.. “Secretion and Export of IGF—1 in
`Escherichia coli strain JM101”. pp. 19-25. Mol Gert Genet
`vol. 215 1988.
`
`Wong et al.. “Expression of secreted insulin-Like growth
`factor—1 in Escherichia coli”. pp. 193-203). Gene. 68
`(1988).
`Saito et al.. “Direct Expression of a Synthetic Somatomedin
`C Gene in Escherichia coli” by Us eof a Two-Cistron
`System”. pp. 1281-1288. J. Biochem. 101. 1987.
`Schulz et al.. “Increased Expression in Escherichia coli of a
`Synthetic Gene Encoding Human Somatiomedin C after
`Gene Duplication and Fusion”. pp. 5385-5392. Journal of
`Bacteriology. Dec. 1987.
`Saito et al.. “Production and Isolation of Recombinant
`Somatomedin C”. pp. 123-134. J. Biochorn. 101. 1987.
`Niwa et al.. “Chemical Synthesis. Cloning. and Expression
`of Genes for Human Somatomedin C (Insulin-Like Growth
`Factor I) and 59Val-Somatomedin C”. pp. 31-52. Annals
`New York Academy of Sciences. 1986.
`Hober et al.. “Disulfide Exchange Folding of Insulin-Like
`Growth Factor l”. pp. 1749-1756. Biochemistry. 31. 1992.
`Snyder. “Free Energy Relationships for 'I'hiol—Disulfide
`interchange Reactions between Charged Molecules in 50%
`Methanol”. pp. 7468-7472. The Jounral of Chemistry. vol.
`12. 1984.
`
`Funakoshi et al.. “Isolation of a tumor—derived 186-residue
`peptide amide related to a human chromogranin A and its in
`vitro conversion to human pancreastatin-48”, pp. 512-514.
`Recent bioactive Peptides and Biology. 1989.
`Lustig et al.. ‘The thermal denaturation of ribonuctease A in
`aqueous-methanol solvents”. pp. 205-210. Biochimica et
`Biophysica Acta. (1992).
`Bryant et al.. “Detection of an Equilibrium intermediate in
`the Folding of a Monomeric Insulin Analog”. pp.
`5692-5698. Biochemistry. vol. 31. No. 25 (1992).
`of
`Hua
`et
`al..
`"I‘wo—dimensional NMR studies
`Des-(B26-B30)-insulin:
`sequence-specific
`resonance
`assignments and efiects of solvent composition”. pp.
`101-110. Biochimica et Biophysica Acta. 1078 (1991).
`Brems et al.. “Equilibrium Denaturation of Insulin and
`Proinsulin”. Biochemistry. vol. 29. (1990).
`Jackson et al.. “Hatogenated alcohols as solvents for pro-
`teins: FI'lR spectroscopic studies”. pp. 139-143. Bio-
`chimica et Biophysica Acta. 1118. )1992.
`Shibata et al.. “Biphasic Eifects of Alcohols on the Phase
`Transition of Poly(L-Lysine) between a-Heliz and B—Sheet
`Confonnations". pp. 5728-5733. Biochemistry. vol. 31.
`(1992).
`
`Zhong et al.. “Enviromnent aifects amino acid preference for
`secondary structure”. pp. 4462-4465. Proc. Natl. Acad Sci.
`USA. May 1992.
`
`Wetzel. “Principles of protein stability. Part 2-enhanced
`folding and stabilization of proteins by suppression of
`aggregation in vitro and in vivo”. pp. 191-219. Protein
`Engineering. 1992.
`Gold.
`“Purification of Biosynthetic Human Relaxin
`A-Chain and B—chain and Scaleup of the Chain Combina-
`tion Reaction”. Protein Folding and Recovery Symposium.
`1992.
`
`Page 2
`
`Page 2
`
`

`
`5,663,304
`Page 3
`
`of Recombinant Human
`“Production
`Rinderknecht.
`Relaxin". Twelfth international Symposium on HPLC of
`Proteins. Peptides and Polynucteotides”. Sydney. Australia.
`1992.
`
`Boss et al.. “Assembly of functional antibodies from immu-
`noglobulin heavy and light chains synthesised in E. coli”
`Nucleic Acids Research 12(9):3791-3806 (1984).
`Bowden et al.. “Structure and Morphology of Protein Inclu-
`sion Bodies in Escherichia Coii” Bio/Technology 91725-730
`(Aug. 1991).
`Brems D. et al.. “Equilibrium denaturation of pituitary-—
`and recombinant—derived bovine growth hormone” Bio-
`chemistry 24(26):7662—7668 (1985).
`Brerns et al.. “Equilibrium Denaturation of Insulin and
`Proinsulin” 29:9289—9293 (1990).
`Bryant et al.. “Detection of an Equilibrium Intermediate in
`the Folding of a Monomeric Insulin Analog" Biochemistry
`31(25):5692—5698 (1992).
`Cabilly et z«fl.. “Generation of antibody activity from immu-
`noglobulin polypeptide chains produced in Escherichia
`coli” Proc. Natl. Acad. Sci. USA 813273-3277 (1984).
`Cleland et al.. “Refolding and Aggregation of Bovine Car-
`bonic Anhydrase B: Quasi—Elastic Light Scattering Analy-
`sis” Biochemistry 29:11072—11078 (1990).
`Frank et al.. ‘The Production of Human Proinsulin and its
`Transformation to Human Insulin and C—Pepti
`" Peptides:
`Synthesis. Structure. Function, Rich and Gross pp. 729-738
`(1981).
`Funkakoshi et al.. “Isolation of a 'l‘umor—Derived 186—Resi-
`due Peptide Amide Related to Human Chromogranin A and
`its in vitro Conversion to Human Pancreastatin—48” Recent
`Bioactive Peptides and Biology pp. 512-514 (1989).
`George et al.. “I-Iigh—Level Expression in Escherichia coli
`of Biologically Active Bovine Growth Hormone” DNA
`4:273—28l (1985).
`Gill et al.. “Recombinant Chicken and Bovine Growth
`Hormones Accelerate Growth in Aquacultured Juvenile
`Pacific Salmon Onoorhynchus Kisutch” Bio/Technology
`3:643-646 (1985).
`Gold.
`“Purification of Biosynthetic Human Relaxin
`A—Chain and B—Chain and Scaleup of the Chain Combina-
`tion Reaction” Protein Folding and Recovery Symposium
`(1992).
`
`Green et al.. “Cheddar cheesemaldng with recombinant calf
`chymosin synthesized in Escherichia coli"
`J. Dairy
`Research 52281-286 (1985).
`
`Halenbeck et al.. “Renaturation and Purification of Biologi-
`cally
`Active
`Recombinant
`Human Macrophage
`Colony—Stimulating Factor Expressed in E. Coli” Bio/I'ech-
`nology 7:7 10-7 15 (1989).
`
`Hejnaes et al.. “Development of an optimized refolding
`process for recombinant Ala-Glu—IGF—1” Protein Engi-
`neering 5(8):797—806 (1992).
`Hober et al.. “Disulfide Exchange Folding of Insulin—Like
`Growth Factor I” Biochemistry 3l:l749-1756 (1992).
`Hoppe
`et
`al..
`“Preparation of Biologically Active
`Platelet—Derived Growth Factor Type BB from a Fusion
`Protein Expressed in Escherichia coli” Biochemistry
`28 :2956—2960 (1989).
`of
`Hua
`et
`al..
`“'l‘wo—dimensional NMR studies
`Des-(B26—B30)-insulin:
`sequence-specific
`resonance
`assignments and efiects of solvent composition” Biochimica
`et Biophysica Acta l078:l0l—110 (1991).
`
`Jackson et al.. “Halogenated alcohols as solvents for pro-
`teins: FUR spectroscopic studies” et Biochimica et Bio-
`physica Acta l118:139—l43 (1992).
`Kohnert et al.. “Production of a Recombinant Human Tissue
`Plasminogen Activator Variant (BM 06.022) from Escheri-
`chia Cali Using a Novel Renaturation Technology” Fibrin-
`olysis 4(Suppl. 3. Abs. 116):44 (1990).
`Lustig et al.. ‘The Thermal Denaturation of Ribonuclease A
`in Aqueous—Methanol Solvents" Biochimica et Biophysica
`Acta 1ll9:205—2l0 (1992).
`Marston. ‘The purification of eukaryotic polypeptides syn-
`thesized in Escherichia Cali” Biochemical
`Journal
`240:l—12 (1986).
`Marston et al.. “Purification of Calf Prochymosin (Proteu-
`nin) Synthesized in Escherichia Cali" Bio/Technology
`2:800—804 (Sep. 1984).
`Marston et al.. “Solubilization of Protein Aggregates” Meth
`Enzymol. 182(1):264—276 (1990).
`Mitraki et al.. “Protein Folding Intermediates and Inclusion
`Body Fonnation” Bio/Technology 7:690—697 (1989).
`Mizukami et al.. “Production of Active Human Interferon—|3
`in E. coli, 1. Preferential Production by Lower Culture
`Temperature" Biotechnology Letters 8(9):605-610 (1986).
`Morris et al.. “Protein folding/refolding analysis by mass
`spectrometry—Scrambling of disulphide bridges in insulin”
`Biochemical Journal 268:803—806 (1990).
`Niwa et al.. “Chemical Synthesis. Cloning. and Expression
`of Genes for Human Somatomedin C (Insulin-like Growth
`Factor 1) and 59Val—Somatomedin C” Annals New York
`Academy of Sciences 469:3l—52 (1986).
`Obukowicz et al.. “Secretion and Export of IGF—1 in
`Escherichia coli strain JMIOI” Mol. Gen. Genet. 2l5:19—25
`(1988).
`Raschdorf et al.. “Location of disulphide bonds in human
`insulin like growth factors (IGFs) synthesized by recombi-
`nant DNA technology” Biomedical and Environmental Mass
`Spectromemr 16:3—8 (1988).
`of Recombinant Human
`Rindcrknecht.
`“Production
`Relaxin” Twelfih International Symposium on HPLC of
`Proteins, Peptides and Polynucleotides (Sydney. Australia)
`(1992).
`Saito et al.. “Direct Expression of a Synthetic Somatomedin
`C Gene in Escherichia coli by Use of a 'I‘wo—Cist:ron
`System” J. Biochem. 101:1281—1288 (1987).
`Saito et al.. “Production and Isolation of Recombinant
`Somatomedin C” J. Biochem. 101:123—134 (1987).
`Schein et al.. “Formation of Soluble Recombinant Proteins
`in Escherichia coli is Favored by Lower Growth Tempera-
`ture” Bio/Technology 6:291—294 (1988).
`Schulz et al.. “Increased Expression in Escherichia coli of a
`Synthetic Gene Encoding Human Somatomedin C after
`Gene Duplication and Fusion” Journal of Bacteriology
`169:5385-5392 (Dec. 1987).
`Sekine et al.. “Cloning and expression of cDNA for salmon
`growth hormone in Escherichia coli” Proc. Natl. Acad. Sci.
`USA 82143064310 (1985).
`Shibata et al.. “Biphasic Eifects of Alcohols on the Phase
`Transition of Poly(L—lysine) between ot—Helix and [5-Sheet
`Conformations” Biochemistry 31:5728—5733 (1992).
`Snyder. "Free Energy Relationships for Thiol—Disulfide
`Interchange Reactions between Charged Molecules in 50%
`Methanol”
`Journal
`of
`Biological
`Chemistry
`259(12):7468—7472 (1984).
`
`Page 3
`
`Page 3
`
`

`
`5,663,304
`Page 4
`
`Toren et al.. “Determination of Interchain Crosslinkages in
`Insulin B—Chain Dimers by Fast Atom Bombardment Mass
`Spectrometry” Analytical Biochemistry
`169:287—299
`(1988).
`Tsuji et al.. “Characterization of Disulfide Bonds in Recom-
`binant Proteins: Reduced Human Interleukin 2 in Inclusion
`Bodies
`and Its Oxidative Refolding” Biochemistry
`26:3129-3 134 (1987).
`Wetzel. “Principles of protein stability. Part 2-enhanced
`folding and stabilization of proteins by suppression of
`aggregation in vitro and in vivo” Protein Engineering: A
`Practical Approach, Rees et al.. ed.. Chapter 8. pp. 191-219
`(1992).
`Wetzel. “Protein Aggregation in vivo—Bacterial Inclusion
`Bodies and Mamalian Amyloi ” Stability of Protein Phar-
`maceuticals, Part B: In Vivo Pathways of Degradation and
`Strategies for Protein Stabilization, Ahem et al., New
`York:Plenum Press, Chapter 2, pp. 43-88 (1992).
`Wetzel et al.. “Mutations in Human Interferon Gamma
`Affecting Inclusion Body Formation Identified by a General
`Imrnunochemical
`Screen” Bio/I'echnology
`9:731—737
`( 1991).
`Winkler et al.. “Purification and Characterization of Recom-
`binant Urokinase from Escherichia Coli” Bio/Technology
`3:990-1000 (1985).
`Wong et al.. “Expression of secreted insulin—like growth
`factor-1 in Escherichia coli” Gene 68:193-203 (1988).
`Zhong et al.. “Environment affects amino acid preference for
`secondary
`structure” Proc. Natl. Acad.
`Sci.
`USA
`89:4462-4465 (May 1992).
`Blundell et al.. ”Tertiary structures. receptor binding. and
`antigenicity of insulinlike growth factors” Federation Proc.
`42:2592-2597 (1983).
`Brems et al.. “Altering the association properties of insulin
`by
`amino
`acid
`replacement”
`Protein Engineering
`5(6):527-533 (1992).
`Brems et al.. “Improved insulin stability through amino acid
`substitution” Protein Enaineering 5(6):519—525 (1992).
`Cleland. “Impact of protein folding on biotechnology” Pro-
`tein Faiding: In Wvo and In Vitro (ACS Symposium Series
`526), Cleland (ed. ), Wzshington, D.C.:American Chemical
`Society pp. 6 (1993).
`Cooke et al.. “Solution Structure of Human Insulin-Like
`Growth Factor 1: A Nuclear Magnetic Resonance and
`Restrained Molecular Dynamics Study” Biochemistry
`30:5484-5491 (1991).
`Creighton. “Disulfide Bond Formation in Proteins" Methods
`in Enzymology 107305-329 (1984).
`
`Creighton. “Role of the Environment in the Refolding of
`Reduced Pancreatic Trypsin Inhibitor” J. Mol. Biol.
`l44:521-550 (1980).
`
`Fu and Freire, “On the origin of the enthalpy and entropy
`convergence temperatures in protein folding” Proc. Natl.
`Acad. Sci. USA 89:9335-9338 (1992).
`Furman et al., “Recombinant Human Insulin—Like Growth
`Factor II Expressed in Escherichia Cali” Bio/[echnology
`5:1047—1051 (1987).
`
`Iwai et al.. “Direct Identification of Disulfide Bond Linkages
`in Human Insulin-Like Growth Factor I (IGF—I) by Chemi-
`cal Synthesis" J. Biochem. lO6:949—951 (1989).
`Meng et al., “Reduction Studies on Bacterial Recombinant
`Somatomedin C/Insulin—like Growth Factor—l” J. Chr-
`maotgraphy 443 : 183-192 (1988).
`
`Murphy et al.. “Common Features of Protein Unfolding and
`Dissolution
`of Hydrophobic Compounds”
`Science
`247:559-561 (1990).
`Pocket and Biswas. “Self—Association of Insulin and the
`Role of Hydrophobic Bonding: AThermodynamic Model of
`Insulin Dimerization” Biochemistry 20:4354-4361 (1981).
`Rudolph et al.. “Reactivation of Microbially Produced
`Human Tissue-Type Plasminogen Activator” Senior Advi-
`sory Group on Biotechnology; Biotechnology International,
`Londonzcentury Press pp. 321-322. 324-325 (1991).
`Samuelsson et al.. “Facilitated In Vitro Refolding of Human
`Recombinant Insulin-Like Growth Factor I Using a Solu-
`bilizing Fusion Partner” Bio/Technology 91363-366 ( 1991).
`Smith et al.. “Structure and Activity Dependence of Recom-
`binant Human Insulin-Like Growth Factor 11 on Disulfide
`Bond
`Pairing”
`Journal
`of Biological Chemistry
`264(l6):93l4—9321 (1989).
`Spolar et al.. “Hydrophobic elfect in protein folding and
`other noncovalent processes involving Proteins” Proc. Natl.
`Acad. Sci. USA 86:8332-8385 (1989).
`Wetzel
`et
`al..
`“Production of Biologically Active
`N“-Desacetyl Thyrnosin oz, in Escherichia coli Through
`Expression of a Chemically Synthesized Gene" Cellular
`Responses to Molecular Modulators 251-270 (1981).
`Zettlmeissl et al.. “Reconstitution of Lactic Dehydrogenase.
`Noncovalent Aggregation vs. Reactivation.
`1. Physical
`Properties and Kinetics of Aggregation" Biochemistry
`18(25):5S67—5571 (1979).
`
`Hermann, R.. “Standard Techniques for Refolding” Protein
`Folding (Chapter 2). 1st edition, Netherlands:European
`Patent Oflice p. 1 (1993).
`
`Page 4
`
`Page 4
`
`

`
`U.S. Patent
`
`Sep. 2, 1997
`
`Sheet 1 of 12
`
`5,663,304
`
`Psfl (M49)
`Bamf-[I‘(1503)
`
`EcoRI (1149)
`xbd ("45)
`
`2,5
`
`F|G.l
`
`Page 5
`
`Page 5
`
`

`
`Sep 2 1997
`
`Sheet 2 of 12
`
`5,663,304
`
`
`
`SS5HmoomHnmm.
`
`
`
`.m..U.H..H.¢¢UU¢wU.HO¢.H¢UU.HU.H.0d¢.H.UO0UU¢¢:&0
`
`HummHH0mm
`
`U.H4U.HUU.Hw.H¢.H.UU.H.Hw4UgUBUUU<UEOU9UU< UU.H0.H.U.HU.n.4¢U.UUU.H.UUdU¢d.
`
`HZEMQ
`
`
`
`UUUUU¢¢¢UmuUUHUGBUUBUUBUBUU.HUU.H.¢UUU¢.H.GUO.H.U¢UUU¢ddU¢<U.H.HU¢..HU.H.H_UDwdio
`
`BUGUUFUGUOBU4BUB<4<UOBUBUUUUUBBDUdUBOBUUBUOUBBBBUBUDB¢¢UB¢DBBOUH<
`
`E E 5
`
`3 6 § E E E E
`
`?U E 5 =
`
`3 E E E
`
`’
`
` U.S.Patent
`UU4.H..H_4UOUUBOUB505UU.H..H.4.H.FHL.®¢U0.HU4.H.H.H.HaH¢¢UHaHUU.HsPH€UdU.H.¢Unnwddmm-.mAmwHHVHMOON
`
`
`N.o_..._
`
`Page 6
`
`

`
`._lHCtaPSU
`
`Sep 2, 1997
`
`Sheet 3 of 12
`
`5,663,304
`
`uwwzoooDo...0.55.<<0000.50Se25
`
`«.02
`
`205....A03
`
`
`
`
`
`~32...<20o_m:._.z»m_._._.=>w._.<0<..
`
`Hxoou
`
`mEo.E<a
`
`float
`
`
`mzoaooco
`ombzmzmoHzwag
`T.._o_A/uozmacmm
`._<zo_m925\«Eczema
`
`..._<
`
`Econ
`
`mmnmma
`
`um.
`
`EoouHoe:
`
`E59,...
`
`Eu_2o<m.._H82flan.
`
`moBu>E502
`
`ave:
`
`oouq
`
`ugmeqa
`
`Hmouu
`
`munmmg
`
`0e9.e6<0...Ebooo<00coo
`
`
`
`H82mEo._n_<a
`
`m.9“.
`
`7e9aP
`
`Page 7
`
`
`
`
`
`

`
`U.S. Patent
`
`Sep. 2, 1997
`
`Sheet 4 of 12
`
`5,663,304
`
`A
`
`:ou:_m=,..._uuw
`mzoaoov
`
`._o_mEo.a
`
`E58
`
`Euzo<E3«on
`
`:o=o_x.8<zo
`
`E28
`
`ESom_
`
`Hoe.
`
`Hue.
`
`Boom
`
`_on_zoom
`
`.._o_mso._.%\
`
`Hoax
`
`mo.;ua
`
`am
`
`atzofia
`
`seam
`
`mBa
`
`Yo:
`
`Hoax
`
`
`
`mflozomn.n_<
`
`28..
`
`n_2<
`
`Page 8
`
`
`

`
`U.S. Patent
`
`Sep. 2, 1997
`
`Sheet 5 of 12
`
`5,663,304
`
`Hoax
`
`ézoE_momz<Eoz
`
`z2<z__$_E
`
`Hoax
`
`mwhozomm¢<
`
`uococ..8<zo
`
`Esom
`
`Hoax
`
`.3non8.58.
`
`Em_2o<E
`
`ueaam
`
`
`
`mn:om>mh<4om_
`
`=:=umuxs.
`
`m.o_n_
`
`mo.;ua
`
`utcom
`
`=:::
`
`omhcuma
`
`Page 9
`
`
`
`
`

`
`U.S. Patent
`
`Sep.2, 1997
`
`Sheet 6 of 12
`
`5,663,304
`
`
`
`meow:2._<zo_mmes28m
`
`.o.3\o.nKH._.mn_.2
`Enmn.3TE«Eczema
`._HSE8mozuaomm
`
`
`m._:<smmam8SonsB19no_.|n_0_
`
`
`H.=ozoE.3.;
`
`
`
`mo»<z§_mu.:.._<zo=n=momz<E.3A
`
`«Eczema3....\.._l
`
`\s___.5:
`
`8.
`
`
`
`5.5:._<zo_E_momz§
`
`9»Ex
`
`mB<z_zmB
`
`
`
`
`dam.o_m9.6%m_F.-o»o:.....:...._o_.o.£...§o.3....§men..2
`8mm<mn-nmm&m3..._SHHUBRSSofis
`
`
`._:<2.32$u~_m:o...om.w_2%:2:3Sum:2...
`
`
`
`
`
`
`
`
`¢oBm>Em:o<F._5.5:.._£S%mEu2o<E83..%man.»zu2o<Em«on.Eoom
`
`
`
`mozmaoum._<zo_m9:3
`
`«Eczeman_<
`
`E5:
`
`_.I0..=
`
`.3o.0_n_
`
`
`
`
`
`85$...o.Ee_m.aofiunfla
`
`Page 10
`
`Page 10
`
`
`
`

`
`tneto3P«MU
`
`Sep. 2, 1997
`
`Sheet 7 of 12
`
`5,663,304
`
`CTG
`GAO
`
`CTG
`GAC
`
`mer
`or
`
`Ea
`
`
`
`«Eczema.n_<
`
`H20H20
`
`
`
`O...Aoz<T...._0H.._o212
`
`xnumz_<.E8
`
`Eu2o<E
`..m§SE5om_
`
`Euan;E5Buoa
`
`H32/ézoames
`
`
`
`«Eczema...2
`
`E5:
`
`
`
`_.._o.821:;Emma
`
`moSu>E58.
`
` mEmmofimum<~:.._o_xmams»J<zo_mmac
`
`.mEo:oEn_<mz_s.z8
`
`E;SE2._8z:8...
`
`TE.._ozozommBx
`
`
`
`
`
`.mz88ouzfio>.:<o_m.
`
`3H200mo»<z_:mE._<zoE_.momz<EA\._.
`
`....o_u_
`
`Page 1 1
`
`Page 11
`
`
`
`
`
`

`
`...;p.wHwommHooz
`
`cw./
`
`o_m:5mzmo<zoT..§\mE,_§xz:Eo_mEz»m
`
`SU
`
`Cm
`
`mH_.8m
`
`
`
`P..H._.s:oEn_<
`
`
`
`
`
`7Em...o<E.3oou$sw§om_Esommo8m>E502w8<8<E<.5ooo<8oH_._.m%_:=mmrzwEeomH0021,ot<»<oooo5ooo»<o258ESSo
`
`
`
`.m%
`
`f
`
`P.
`
`m
`
`M._<zo_mmes
`
`mezé
`
`E6:
`
`5,mor.
`
`410e3,m
`
`2
`
`Page 12
`
`
`

`
`PQMU
`
`Ll
`
`Sep. 2, 1997
`
`Sheet 9 of 12
`
`5,663,304
`
`Ezw:
`
`as5%
`
`<29
`
`oEEz>m2H00
`
`
`
`9Hwmupamm§...$_xm..
`
`mam
`
`H252%
`
`H82
`
`:ozmE3a
`
`T.§3
`
`m3_oE_Emz§=or222%5522...29258u8Eto2:.ma~§<z_=85:9522%mesa2mm_.8_sm_z._.<E8.u.§38-;82528
`
`
`
`
`323$H58....s:L=m.§E5:352%892-35..
`Hone.335E252.32E58.2538?H58.2%H82
`
`E558...mesa,H58.
`
`mfiozomm.2
`
`E5:
`
`m.9“.
`
`Page 13
`
`Page 13
`
`
`

`
`QMU
`
`m
`
`S
`
`m
`
`6.,
`
`Poom
`
`tTum:mmomBuaommooh
`
`_,$m_._._om..
`
`7&9oom
`
`gmmac...omcom
`
`noo_
`
`mac:_oon,700¢_ImmmzozmM2,T...._0HmBo._ou_m_s_oom
`
`
`
`5..z__2.us_:.3N.o_m0¢
`
`
`o
`
`41M.mBM,O_o_n_p
`
`4
`
`Page 14
`
`

`
`U.S. Patent
`
`Sep.2, 1997
`
`Sheet 11 of 12
`
`5,663,304
`
`0
`
`3
`
`6
`
`9
`
`l2
`
`l5
`
`I8
`
`2|
`
`Na2S04 %(w/w)
`
`F|G.||
`
`Page 15
`
`Page 15
`
`

`
`U.S. Patent
`
`Sep.2, 1997
`
`Sheet 12 of 12
`
`5,663,304
`
`40
`
`8
`
`
`
`
`
`YIELDCORRECTLYFOLDEDIGF"1("/o) B
`
`
`
`
`
`n\-
`..-..-Q
`
`
`
`1
`
`to
`
`100
`
`I000
`
`Page 16
`
`Page 16
`
`

`
`Sbfllflfl
`
`1
`REFOLDING OF MISFOLDED INSULIN-
`LIKE GROWTH FACTOR-I
`
`BACKGROUND OF THE INVENTION
`
`1. Field of the Invention
`
`This invention relates to special buffer solutions and their
`use for refolding polypeptides.
`2. Description of Related Art
`For commercial production of many polypeptides and
`proteins. recombinant DNA techniques have become the
`method of choice because of the large quantities that can be
`produced in bacteria and other host cells. Manufacturing
`recombinant protein involves transfecting or transforming
`host cells with DNA encoding the desired exogenous protein
`and growing the cells under conditions favoring expression
`of the recombinant protein. E. coli and yeast are favored as
`hosts because they can be made to produce recombinant
`proteins at high titers.
`Numerous U.S. patents on general bacterial expression of
`recombinant-DNA-encoded proteins exist. including U.S.
`Pat. No. 4.565.785 on a recombinant DNA molecule com-
`prising a bacterial gene for an extracellular or periplasmic
`carrier protein and non-bacterial gene; U.S. Pat. No. 4.673.
`641 on coproduction of a foreign polypeptide with an
`aggregate-forrning polypeptide; U.S. Pat. No. 4.738.921 on
`an expression vector with a up promota/operator and up LE
`fusion with a polypeptide such as insulin-like growth factor
`(IGF-I); U.S. Pat. No. 4.795.706 on expression control
`sequences to include with a foreign protein; and U.S. Pat.
`No. 4.710.473 on specific circular DNA plasmids such as
`those encoding IGF-I.
`
`Under some conditions. certain heterologous proteins
`expressed in large quantities from bacterial hosts are pre-
`cipitated within the cells in dense aggregates. recognized as
`bright spots visible within the enclosure of the cells under a
`phase-contrast microscope. These aggregates of precipitated
`proteins are referred to as “refractile bodies.” and constitute
`a significant portion of the total cell protein. Brems et al..
`Biochemistry, 24: 7662 (1985). On the other hand.
`the
`aggregates of protein may not be visible under the phase
`contrast microscope. and the term “inclusion body” is often
`used to refer to the aggregates of protein whether visible or
`not under the phase-contrast microscope.
`It has been found that the soluble proportion of high-level
`expressed protein in E. coli has been dramatically increased
`by lowering the temperature of fermentation to below 30° C.
`A considerable fraction of various foreign proteins. i.e.,
`human interferon-alpha (IFN-(12). interferon-gamma (IFN-
`7). and murine MX protein [Schein and Notebom. Bio/
`Technology, 6: 291-294 (1988)) and human IFN-[3
`[Mizukami et al.. Biotechnol. Lett., 8: 605-610 (1986)].
`stayed in solution. This procedure represents an alternative
`to renaturation of proteins recovered from refractile bodies.
`but requires an expression system that is efliciently induced
`at temperatures below 30° C. The procedure is therefore not
`effective for all proteins.
`For general review articles on refractile bodies. see
`Marston. supra; Mitralci and King. Bio/Technology, 7: 690
`(1989); Marston and Hartley. Methods in Enzymol., 182:
`264-276 (1990); Wetzel. “Protein Aggregation In Vivo:
`Bacterial Inclusion Bodies and Mammalian Amyloi
`.” in
`Stability of Protein Phamzaceuticals: In Vivo Pathways of
`Degradation and Strategies for Protein Stabilization, Ahem
`and Manning (eds.) (Plenum Press. 1991); and Wetzel.
`“Enhanced Folding and Stabilization of Proteins by Sup-
`
`2
`pression of Aggregation In Vitro and In Vivo." in Protein
`Engineering—A Practical Approach, Rees. A. R. et al. (eds.)
`(lRL Press at Oxford University Press. Oxford. 1991).
`Recovery of the protein from these bodies has presented
`numerous problems. such as how to separate the protein
`encased within the cell from the cellular material and
`proteins harboring it. and how to recover the inclusion body
`protein in biologically active form. The recovered proteins
`are often predominantly biologically inactive because they
`are folded into a three-dimensional conformation different
`from that of active protein. For example. rnisfolded IGF-I
`with different disulfide bond pairs than found in native IGF-I
`has significantly reduced biological activity. Raschdorf et
`al.. Biomedical and Environmental Mass Spectroscopy, 16:
`3-8 (1988). Misfolding occurs either in the cell during
`fermentation or during the isolation procedure. Methods for
`refolding the proteins into the correct. biologically active
`conformation are essential for obtaining functional proteins.
`Another property experienced by proteins during refold-
`ing is the tendency to produce disulfide-linked dimers.
`trimers. and multimers. Morris et al.. Biochem. J., 268:
`803-806 (1990); Toren et al.. Anal. Biochem., 169: 287-299
`(1988); Frank et al..
`in “Peptides:
`.s'ynthesis-structure-
`function, ”ed. D. H. Rich and E. Gross. pp. 729-738 (Pierce
`Chemical Company: Rockford. Ill.. 1981). This association
`phenomenon is very common during protein refolding.
`particularly at higher protein concentrations. and appears
`often to involve association through hydrophobic interaction
`of partially folded intermediates. Cleland and Wang.
`Biochemistry, 29: 11072-11078 (1990).
`Protein folding is influenced by the nature of the medium
`containing the protein and by a combination of weak attrac-
`tive or repellent intramolecular forces involved in hydrogen
`bonding.
`ionic bonding. and hydrophobic interactions.
`When pairs of cysteine residues are brought
`into close
`proximity as the peptide backbone folds. strong covalent
`disulfide bonds form between cysteine residues. serving to
`lock the tertiary conformation in place. Refolding protocols
`have been designed to break incorrect disulfide bonds. block
`random disulfide bonding. and allow refolding and correct
`disulfide bonding under conditions favorable to the forma-
`tion of active conformer.
`
`l0
`
`71)
`
`25
`
`35
`
`45
`
`50
`
`55
`
`60
`
`65
`
`One series of techniques for recovering active protein
`from inclusion bodies involves solubilizing the inclusion
`bodies in strongly denaturing solutions and then optionally
`exchanging weakly denaturing solutions for the strongly
`denaturing solutions (or diluting the strongly denaturing
`solution). or using molecular sieve or high-speed centrifu-
`gation techniques. Such recovery methods. described. e.g..
`in U.S. Pat. Nos. 4.512.922; 4.518.256; 4511.502; and
`4.511.503, are regarded as being universally applicable. with
`only minor modifications. to the recovery of biologically
`active recombinant proteins from inclusion bodies. These
`methods seek to eliminate random disulfide bonding prior to
`coaxing the recombinant protein into its biologically active
`conformation through its other stabilizing forces.
`In one method for recovering protein from inclusion
`bodies. the denatured protein desired to be refolded is further
`purified under reducing conditions that maintain the cysteine
`moieties of the protein as free sulfhydryl groups. The
`reducing agent is then diluted into an aqueous solution to
`enable the refolded protein to form the appropriate disulfide
`bonds in the presence of air or some other oxidizing agent.
`This enables refolding to be easily incorporated into the
`overall purification process.
`In another approach. refolding of the recombinant protein
`takes place in the presence of both the reduced (R-S-E) and
`
`Page17
`
`Page 17
`
`

`
`5fi6lKM
`
`3
`oxidized (R-S-S-R) fortns of a sulfhydryl compound. This
`allows free sulfhydryl groups and disulfides to be formed
`and reformed constantly throughout the purification process.
`The reduced and oxidized forms of the sulfhydryl compound
`are provided in a buifer having sufficient denaturing power
`that all of t

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket