throbber
Principles of Biochemistry
`
`ALBERT L. LEHNINGER
`
`THE }C)Hf\‘S H()PKII\.'S UI\’I‘v'ERSI'l"Y
`
`SCI-IDOL OF I\-VIEDICINE
`
`WORTH PUBLISHERS. INC.
`
`Amgen Exhibit 2006
`Apotex Inc. et 211. V. Amgen Inc. et 211., IPR2016-01542
`Page 1
`
`

`
`FORIAN
`
`Pl’il'l(2ipit:S nfBim;|1mnistr-3.2
`
`f.Iu:r:j-:1 gglei
`
`Jr" NIH“.-‘ by Wxjrllt !’I,1l2‘.is1ui-2'5. §nr,,.
`
`M! ]'::}_‘]“t|:~,1 :'1~,«n.~zx'a':r,i
`
`i’r'L|'.3I,~.r.‘1 in tin‘, ¥.,’nite_'r.i
`
`.*§|g1l4'-+4 mi ;\3m;:rim
`
`‘.,.iin':v.r'\' u: I IL1zw,I‘t,=:»s“ E,.raI;a|n'w;;
`
`I. AL’|.[-:1
`
`;\;rr» 3&1-'./‘lsfnaii
`
`ISBN: [J-H79'J[]']—1I3[,i-.“{
`
`E’i1'-.4! g,n'iu1mg. ;\pri'. Hm:
`
`
`
`
`
` E'Idiiar.. , , Hy .-“m~:;§r*1‘snn, [mu- é’«ie.\;
`
`l’rm,Ju::li.:u1; [\'a::nm.-I11 1-'I§~;}<:,+,r';s
`
`]IEus1I'n::.wr:
`
`
`
`f-'~L|Li,v Balk’
`
`|‘in,.Inm ]V-Idilnir:
`
`.-Nrmw }"u]u]r,21«'.m
`
`Hr=¢.\‘i<,:H:
`
`;‘\I:alr mlm L,?rr.=:n H1!Si§_.E]lE5i'!<
`
`T_\/']3|.lE,T'r'1]3hv1,"|'2 P
`
`
`‘Ii T3;::n1r'a1)‘s1::r's. [nu
`
`1’['i1Lti.n_-.,u_su‘1 Jimciilngg; M114‘,
`
`\1:'?\’.{1l|j" :m=,i
`
`f,I4,«rup2.'a1t}‘
`
`(Tc,-\'r-3" t_,r,nn;‘1':mrr _1;1u,':p':1i<:s: }‘I‘.])["I.;.‘~il',lll«llit'E1'l H1’
`
`is-u\‘iI'h' 2rjJ1;:~,'iH i|ai1:|3:la,;I‘
`
`1:"_-.'u.’~.'i;'1 t:<'2lt‘x])]m;
`
`~§inl11'hih,u .~;Ll]‘M<:1‘. in and. trjrgmgizu ‘<11!-tat».
`
`in gJ,I‘Ltt,~11}. =IJLJl“.I‘f9}' uh’ }'§ub:,::‘|
`
`§.£\[l§,1l’il1_SZ,I,E
`
`\"1.‘m'th I’1Lh“$hl3l'S‘ Inc.
`
`4-44 |"«1'|“5;
`
`.“\’*.'l:1IlbI_','
`
`.‘-imliin
`
`I‘\’et\x' Yn'|'3\.
`
`:\F:\'¢ YI'="‘b. W|'J1T’\
`
`Page 2
`
`

`
`This material may be protected W COP‘/l'lEl“ law (Tme 17 U5‘ Codel
`
`4137
`
`CHAPTER 1 7
`
`Electron Transport, Oxidative
`Phosphorylation, and Regulation
`of ATP Production
`
`Now we come to the culminating events in cell, respiration.
`electron transport and oxidativn phosphoryiation. All the enzy-
`matic steps in the oxidative degradation of carbohydrates, fats.
`and amino acids in aerobic cells converge into this final stage
`of cell respiration. in which electrons ilow from organic sub-
`strates to oxygen, yielding eiiergy for the generation of ATP
`from ADP and phosphate.
`An approximate calculation will show the quantitative im-
`portance of oxidative phosphorylation in the human body. A
`normal 7U—kg adult male in a business or:cupation requires
`about 2800 kcal of energy per day. This amount of energy can
`be yielded by the hydrolysis under standard conditions of
`about 2800/27.3 = 384 mol or 190 kilograrns of ATP. However.
`the total amount of ATP actually present in his body is only
`about 50 grams. In order to furnish chemictal energy for body
`needs, the 50 g of ATP must be broken down into ADP and
`phosphate and resyrittiesized again thousands of times in the
`course of a day. l\1lDl‘£3OV(3!‘. the rate of ATP turnover in the body
`must also vary greatly. from its rnininial rate during sleep to its
`maximal
`rate during extreme muscular activity. Oxidative
`phosphorylation is not only a vital, continuous process. but its
`rate must be rogulaterl over a very wide range.
`
`Electron I~'io~;-v from Etiuiistrates to Cl'X_Vf_§f}l1
`is the Sriunre of :‘[t"'P l'Iii.izrgy
`
`Figure 17-1 shows the overall organization of electron trans-
`port and oxidative phosphorylation. In each turn around the
`citric acid cycle. four pairs of hyclrog-(an atoms are removed.
`from isocitrate, mketriglutarate. succinate. and malate, by the
`action of specific dehydrogonases. These hydrogen atoms at
`some point donate their electrons to the electron-transport
`chain and become H‘
`ions. which escape into the aqueous
`medium. The electrons are transported along a chain of
`elect1‘oii—(:arrying molecules until they reach i'i‘_t’i_t_3I_t:‘Vl_1_t‘t’_J_i_T1_ti_‘_t_1_CtV;g_.
`
`Page 3
`
`

`
`468 PART 1i Biraezmrgtzticrs andf\.e1e1,abrJIis111
`
`Figgizm 17-?
`Tfm flzztr sf1e',~c:! r)_f1'esp1'rutr'on. 5j'1um'11;4 Hm
`0r~r';__g,r'rr uf Hm pairs :),1'f1y(fr:;~,-",1:-:11 mrmh Ft?-
`l’1’1Dt«'f.?[i fry (’ft§>h‘.‘dmgmm$t?5‘. with l1':ms_f':.c:' of
`
`Hwir Q mi:tmn_~: [20 "] to NM‘ 1*:It}e7fI‘m1-mn1$;)t'11‘I
`ti:J'1m'n. which carrJ'es them to r,";.\'}.,‘,g',c::a_ .Hr.~d1n::—
`Man of each umm of oxygen reqL1i1‘e5 26'
`“r
`ZH I-}nerg_\" see! frrae d u ri Hg trtlnspmt of r‘;
`prgtir of electrons _fr(m1 _\3.-"~.|JH In cf1xA\'gz‘:21 is
`hLIrne:a'seu‘ 10 cause the Lrcjtzpfted rzynthesis of
`ifmsu Inm‘e.=r:u1z.=s nf ATP fmm ADP and phw.-€-
`phutu In the f,1rr)[1E_£S5 0_f'rJx1"dv:1tI'\'e phos-
`pJ“rr'Jr_v}n‘¢ir.m. Tilt’ r-.-Jur:trmz—lmnsymrl
`r'J‘1,rrz'n is
`shown here in nbb1‘m>iuted f0r.n1.
`
`514191 '1
`
`/
`I’
`I
`
`. /\i'c11‘d1,t’:
`
` (lxalaacetaln
`
`flfi
`
`\
`
`
`Isocmate
`
`Citric
`acid
`r.:}=c!e
`
`Stave KG
`
`‘.
`N
`
`1’Lm1a res l :2
`
`\
`
`Sm:.r:in:1tu
`
`(:02 tut/fl
`1
`n--I-(et0;.=,h:tar:1‘m 3
`|
`J
`2_}y//
`» /
`
`.__‘/(
`
`SucCi11_vl-
`
`L10,
`\\\ V
`
`
`
`
`UK
`|I\|V
`\‘<
`
`\_
`
`Stage 3
`
`Elerttrnn
`U'v’iD5DD1'1
`and
`oxidative
`phtJsph01'_vlafim1
`
`\‘\_i ,5
`J.\Al}H
`$1,.
`NADH
`dehydmgenase
`
`lfbiquimme
`lfi
`Cytochrome h
`
`1""
`Fytotzhronle C.
`13.
`(Iytnchrome C
`1:‘.
`Cylmihrome
`nxidase
`
`ADP
`
`+ p‘,
`
`ATP
`
`ADP
`
`‘FF:
`
`‘ATP
`
`ADP ‘
`
`‘A ATP‘
`
`+
`
`M)-_»
`
`H ‘_-D
`
`/
`
`Page 4
`
`

`
`c_':imJ*'J'i:R '17
`
`ta'tvt:trr,ir1 ‘l'ramspm't. ():<it'l:,ativr.':
`
`llltnr-t[,)lttt!'_\."lH'[ttttt. ziml
`
`l‘\’:_as,;1i[a1i:iri mt" :‘t‘t'P Pmclmttinn -lfitt
`
`t)'I'(_1_i/._"_l’(}t"i.ltI‘fV,}ITl{J zzxirlriste, which ;::I‘r,)1nnt:v=..~; tlw ti‘eai1s+fEa:,‘ mftlité. t%ler.~
`t'mn.5 to :J_~<_Vg_7,z:i1. the fimal
`()lfi?t2lI“DI] &tt_‘.Ct3])l0t‘
`in am‘uI1it,:
`target-
`l'ttSIflS. /\s (-.‘.*ElCl] atom of r:;>:):gs:1i Eir.?f_‘.fS‘.plH two f_¥lt3(‘.iI‘flI1S tmm the
`Cllfllllt twn I-i eqtlivalent
`to tho two H‘
`lrtist
`rrarlieai“ fmm the
`two hyclmgen atoms 1'e1i,1ciw2t_l by f.l,Bltyfi1‘{J§__’,€tléifitéfi. are léil-;(2J.'1 up
`from tlm aqtmmis nmdium to ‘form lllgfl}.
`In addition tn tllt.‘ tmir pairs of lij..»'cl1'cngr_en5 arisingg, lrmn the
`Cllt‘l(: é,I(;IlCl :';yr;le. mtliers mnie from, the duhycl1*r)gm1zist:s that act
`upmi pyrL1m1r::. t'attv ar_:iu:ls. and EiITtlI'lUi'1t.'l(lS tltirizig thczir (,l£}gt‘&t-
`datimi
`to Z1('lt,?l¢\;’l-[ZIJA and 0tl1E°.I‘
`])]‘f.'J(lt1(.'t5 [t"igL1i'e: 17-1].
`‘\«’ir~
`tuali}..«' all the l1_\»‘(fll‘0gt3I1 atrmis;
`tla=:1‘iv:'2i’l by the acticm of di':l1_\=-
`dmgenases on fuel iiitilzmiles in awmhit; malls L1l,lliT1ifti[-Ely donate
`their electrons to thus: mspi1'atm‘_\g clmin.
`the Final
`r:mm.m'm
`patliweiy leading to the terminal t-Eleflfrfltl &1fI(I{:1]‘.]l0I‘. mx).~'gt3I1.
`The m«;pii‘at0r_\r (,il1,8.it1 ucntsists of a (~$t}I‘it).‘u' of pmtnins with
`tightly bound ;Jmstl:mtit: gmups (2Ft},)Hhlf,3. of 8f.,‘.CG]JltI1§_’, and do-
`nating electrons. F.ach Ii1E’.IT]l]-8.1" cam £1(IIIt£]f)l ele<::ti‘mis from the
`p1“8C€:CliI’1g member amt t1‘ans;fertl1emi tn thm thllowiitg f)It(-24 in El
`specific suqtieiicre. Tim t=,lr;ec:t‘mi1s f:‘.l1lE‘t‘lt'Igg the eeletttmn-tmiisipmrt
`Lzhain are ram,-argy-ric,li, but as tlu,-2_y pass down the chain to ox»
`ygen in a 5tr:;n—t1jy-step memner. tlieay lose t'i‘t,-ca t:'}ttt:}I”g}.f.
`l\-lucxh of‘
`this eI1e1‘gy is L'.'()I1F,a'€l"VBCl
`in the t"or111uf;"'x'l"t"lJjv iimlmtilm‘ mech-
`anisms in the inner niitoclmmlrial 1]1t1II1l)I‘Et1”tE3. As intiicatecl in
`Figure ‘1 ?-’t, as Uatjlll pair of uletztrcms passes r;l:,"iwi1 the re2spi1‘a-
`tory f.‘.l18,lI1 from NADE-I
`to CII2\’},'gt:3T1.
`the czmtiplecl sytttlmsis of
`lh‘i‘€}E) molecules of ATP from ADP and plinsphatrzz takes plmjse.
`The tliree segments of the mspir;—,itor_\«" txhaiii that pmvidu €,3t1(£I‘gj,:'
`to graiugmte All’ by O?=(lt'latlVt'} plmspl1::ai').=lattain aim uallml
`the
`‘?:l1!'€¥T°.1if§§f?_!1;‘5£3”’l“S sites 01‘ s.n.:saz1 G
`
`Electron Transport and Uxidatiw: Pll0S]}l‘ttJI!'}v'lE1llDI1 Take
`Place in the lunar Mitocxllnndrial Membrane
`
`l‘f:':—
`In e1_1l<arjt»'0tic cells Iiearly all the spt:t:ih£: tl€l't:¢'(l]‘CJgE¢I],flSEtS
`quired in the U>=:idati01'i tin“ pyimivatti and (]1,l1t3T fuels via the citric
`acid cycle are lzjcatecl in the inttzmal c,:m1ip;irt1iis3nt ()fl”l"tltOCl1OI]-
`dria. the r_11_a_trix_ [Figtire '17-2].
`'1'h<,;~. mim:tmn~treinst'erri.ng mole-
`czulezs of the rt;a.s‘pir;—itcJry chain and the ti:nzyIi’1t.e 11mlcar,:ule,2s that
`S\’Iltl’1E)SilZE7} ATP fmm ADP and ptmstizhattiz em: c':1nbnclrlr:tl in the
`inmzr immihrziim. F114,-its; at the tiitritz aciirzl. cjstzle. such as pyrii-
`vate, must pass from the t:jutrJs0l. whem lllt-3_t-’ are forlimrl.
`through both mit0c:lmm'lrial nminliranes into the intrzrtial ma-
`trix compartment. wltama
`tlm_\_r are atztetl upcm by (lt3‘l1}’—
`tlrogeiiases. Similarly.
`the ADP torment
`train ATIV’ during
`ens3rg_V~reqL1i1"i11g acztivititrs in the (:_Vt(J$-'.Dl niust pass into the mi-
`ttachrmdrial matrix. to be ]”8[Jl1t']St}l1t'Jl‘jtFlitt(3t'l
`tu ATP. The new
`ATP formed must then pass back to thee uytasol. Special mem-
`brane t1‘a11spm"t systenis [_pagt: 4515‘)
`in the inner mitochonclrial
`membrane promote not only flu: tmtry of pyrtivatiae and other
`fuels inln the 1']ttll',)('2l‘iOl1[ll'lEt but alsu the cmtry 0l:pl1D5|Jl,'l‘d1E} and
`ADP and tl‘It,? exit of ATP (luring oxirlativn pt1c1sphnry|ati0ti..
`
`Page 5
`
`

`
`47!)
`
`I‘.-\R'I‘
`
`J: Bineiiergtztics and Metabcmern
`
`l"igti1':2 1.7-.2
`The l1im;iit:mir't,:nl nrrutr.:m_t' r1_frnitor:l1(:n-
`t'iI'icI, 5imn'ing the iumrinn r;:_t' the t.’,‘I1Z_t,-'tI1E?.‘,-3 at
`the r.'itrIc' mziti !..‘_‘."tJll,‘. the electrnn—tn‘:ns4pm"t
`(:llr1itt:;. the iaiizt'rtit;*s r,:titui_t'7.ing oxidutive
`phnspltoryintinn. and the inI‘n:rnr.1l pool of
`CtJ&‘l1Z_\-‘E1185. Tim inner mr;2ml)rune of ti single
`liver l'I1iif.J{.‘l‘t{}I1riJ'i(JH Imiy have met '1tf1.llfJU
`sets tit ulu(:irmz—|'mn5pnrt rshctins and !\,TP
`$_t-'rrti1etrimr iltrnitttztrima. The m_1n1ber'r.rt'.~';eIs is
`prnpmtionni tn the area at the inner mem-
`bmnrz. Heart rnitcrchrmriria. which have very’
`nro_t'use cjrietne nnri thus U much it‘r1”,_£',BT nren
`raj’ inner ntemhrnrie. C'DJ'1i{lili amr 3 times {is
`mrm_t' stats of e'1im‘:tmn-tmImport Systcertts as
`live-Jr“ mitr,mhmn'iriu:L The intermit peel off
`E08212}-‘[7185 and internmr,iinIr,=s is tLim:ti0ncill_v
`separate frmn the r‘:ytn:;nJ'iz: peel. See
`Chapter 2 fur r.9tl'i4.~r rietnils of Fl'1iif)Cll{J'I1[lI'i[Il
`.‘:'iflJ{.‘i[[l'€~,3.
`
`inner’ rnernbrmier
`It contains the elet;tr0n—trEinSp:‘Jrt
`chains. simtginate (l(a"l'l_\’Ei]‘(,)g[3I'tflSt‘..
`ATP-synthesizirtg en7._\r:ne5. anti
`several mern,l.:ran,e tremspnrt
`sysients. It is impei7Ineal)le.=. tn
`Innst small inns.
`
`Matrix;
`
`The matrix t,:utnpe1:'tn1er1t tzgmtains
`most at the citric m,:ir_i cf,-‘rxle
`en7.j.'mes, the pyruvate
`dehytlmgenase system. the Fatty
`acid nxiclatien systeni. and many
`()il'1.F,:J‘ t2I‘1Z_\~'m(‘.S. It also tznntains '
`ATP. AITIIP, AMP. [Jiu_a5pl1:itn,
`NAD. NAIJPt and c:(>t:n7.ytne A,
`Also present are K’. Mtg”.
`and Caz".
`
`[Tristae
`
`W
`
`(Jitter ineiiihmm;-:
`it
`is fnzt‘,-!.\-' ptzrmeable
`tn nmst small nmlerzulns
`and inns and mntains
`smite rmzymes.
`
`inlrzuizristril
`space
`
`Inner
`membrane
`
`ADP
`‘l’ P.’
`
`ATP
`
`Matrix space
`
`lnturanenibmne suture:
`it ttnntains aczlenylate
`kinase and nther ezizymes.
`
`ATP s_t'r1tlmtas;r~ molecules:
`Their base pieces are located within
`the inner meinbrane. ATP is made
`in the matrix as Sl1CtWI1.
`
`The inner mitochondrial membrane is thus a cninplex struC—
`ture. containing the electron-carrier rnnleculee, a number of 611‘
`zymes. and several membrane transport systems. which 811-
`together make up 75 percent or more of the total l]‘lC3I1ilJI'El1'19
`Weight, the remaincler being lipid. The inner membrane has -‘fin
`intricate. rnnsait: structure whose i,nteg1‘ity is essential for 115
`life-stipporlitig activity‘ in generating ATP‘
`
`Piletitm:1u"I't'2}11si't'n‘t‘i11;; Reatztinns ,=‘ta‘u:
`ffixiilattimviietiiltztiett t?.e;aCtinI3+~:
`
`Although we have extilninecl some enzy1ne—catal_Vzetl l‘t}at‘.[i[‘JI15
`in which ltyclrogen atoms or electrons are tramferretl frmn en:
`1n0it:r,:L1le In another, we must new review the properties 0
`
`Page 6
`
`

`
`(:nM='r|n1 '1?
`
`l7.lect.run Transport. Oxitlative l’hrJ:+pl1orylaIlor:. mul Regulation of .r*’5.'|‘P l’md,uction 471
`
`such reactions in :1 more quantitative way: Chernicnl reactions
`in which electrons are transferred from one molecule to an
`other are called oxirlcxtion-reclirctfon reorttions [also oxidore~
`cluctions or redoét
`T i1-lHo1ir:rii11.g niolecnle
`in stilchlla rezictionlilsmcfalletl-the rerl u i'orEnli1(:i:i:r1t; the
`elm.‘tron—n:1t:c:c;Jllng molecule is
`(J.>{lt_llzlIlg,ML1g(;‘ltF-U1‘ (JXl(,lf11il.
`it WR”e_d’filcing anti
`n3EHi}fi11'g
`ager1t.5;mt'u1ictiEf?s.
`c:§fi'u’g?f:%:
`reductnni~oxirloni pairs [redox pairs]. just as article and bases
`fnln Ellllar:iEfBase: pairs [page 78). Recall that in
`acid-base reactions we can write the general equation
`
`Proton donor 7:: H "
`
`proton acceptor
`
`in redox reactions we can write a similar general equation
`
`Electron donor :r— e“ + electron. mjtceptol‘
`
`A specific example is the reaction
`
`Fe“ is: e’ + Fe”
`
`in which the ferrous 1011 We“) is the electron donor and the
`ferric ion {Fe“"] the electron acceptor. Together l'*'e“"" and Fe“
`constitute a conjugate redox pair.
`Electrons are transferred f_rTfn one molecule to another in
`one of four different ways:
`
`1. They may be transferred directly as electrons. For example,
`the Fe“”‘—i*‘e"“
`rcclox pair can transfer an electron to the
`Cu*—CL1'""‘ redox pair:
`
`Fe”‘‘ + Cu“ —> Fe“ + Co’
`
`2. Electrons may he lransferred in the form of hydrogen atoms.
`Recall that a hydrogen atom consists of a proton (H"] and a
`single electron (e‘].
`in this case we can write the general
`equation
`
`Alrlg +4 A + 21:?" + 2H‘
`
`where AH; is the hydrogen {or electron] donor, A is the hy-
`drogen acceptor, and Al'lg and A together constitute a con-
`jugate reclox peir, which can reduce the electron acceptor B
`by transfer of H atoms:
`
`AH? + B ?'> A “t EH2
`
`3. Electrons may be transferred from an electron donor to an
`acceptor in the form of a hydride ion [=ll‘]. which bears two
`electrons, as in the case ol5‘l*:lWAD—linl'{ed dehyclrogenases [see
`page 236].
`
`Page 7
`
`

`
`472 P.-H21‘
`
`[I
`
`l'ti4‘;ene:';,:,etics and M4’.-tal';olis:rn
`
`4. Electron transtier also takes place when there is a cl.irect cum
`hination of an organic reductant with oxygen. to give a pl-Ud_
`not in which the oxygen is covalently incorporated. as in the
`oxidation of a hyclrocarlimn to an alcohol:
`
`R—c1~c + got —> i<—t::i-c—-oii
`
`In this reaction the lijxdrocarlion is the electron donor and
`the oxyg(:,i1 atom is the electron acceptor.
`
`All four types of electron transfer occur in cells. The neutral
`torni reducing ecjuimlerit
`is coinrnonly used to designate a
`si11gle' tEJeWt participating in an oxidoreduction,
`whether it is in the form of an electron per se, a liydrogen atom,
`a hydride ion, or takes place in a reaction with oxygen. to yield
`an oxygenated product. As we shall see. in mitochondrial elec-
`tron transport electrons are transferred in different forms, as
`hydride ions, as hydrogen atoms. and. in the later steps cata-
`lyzed ti); (,:ylOCl1I‘CII"flBS, as electrons.
`Because biological fuel molecules usually undergo enzy~
`matic dohjgclrogenation to lose two reducing equivalents at a
`time. and because each oxygen atom can accept two reducing
`equix-'ale1'1ts, it is customary to think of the un.it of biological ox-
`idalions as a pair of reducing equivalents passing from sub-
`strate to oxygen.
`
`Eacli Conjugate Retlox. Couple Has a
`(Iharacteristic Standard Potential
`
`The tenclency of a conjugate acid-base pair to lose a proton
`reversibly is given by the dissociation constant K {Page ml‘
`Similarly. the tendency of a given conjugate redo): pair to 1059
`an electron can also be specified, quantitatively hjc a constant.
`the standard oxiclotion-reduction potential E’). This is defined
`as th TllH7t?iHT?§i\7?n by a responslvfl
`electrode placed in a solution containing both the electron
`donor and its conjugate electron a(;ceptor at 1.0 M concentT3*
`tion. 2:3"’CI_. and pH = ?.U [Figure 17-3]. The electrode must lie
`able to accept electrons from the electron donor and Clflllale
`theni to the conjugate electron acceptor. Such an electrode H11‘
`niersed in a mixture of the conjugate redox pair coustitut85 3
`troll
`:ell. In order to determine its emf it must he electricalll’
`Efiiiiectecl to a rejterenco liolficell whose emf is known llllgule
`t,7—3j. The t1ltirWcfi(%_r_ell?ErE‘I11ce_"h_Eilf-cell
`is the l1_\t't't1‘0.i%9" elm-
`ll‘U(,lE.‘. which has an emf arlaitrarily-’ set at zero \«‘l*Tt‘E‘-_tlMl—-"
`V
`ls
`in equilibrium with '1.Uatrn Hg gas at 25"(I at pH 0. At DH 7- holl-
`ever. the l1_VClr0E—’.en electrode has an emf of i-0.41 V lfigure
`'l 7-3 .
`Itlis the convention in biochemistry,-' to express the stflllllafil
`potentials of conjugate reclox pairs as rectutrtion Ittffiienjillwl-1
`whicli assign imzreasirigly negative values t"E_i_"s:i7s‘t5ii1sl13"‘”ig_
`an increasing |er’irleiic)..' to lose electrons. and inr_:reasi11?»l3’P0S
`
`Page 8
`
`

`
`
`
`ffjg[i;'r- J7-It
`
`:1_f'I‘lw .~‘lt.‘I](lt1i'tl rer,ilIir:tJ'nr1 pu-
`.\ler.L»“z1raamrenl
`f,_.;;ej:2l.
`'lln_".';olz1tioi1 Ii'{}Illttll?li1_§;‘ the mr'_\'rI,Jre
`of 1.1.1 Xi u.\;iu,lim-ll uml rmlm;'cr.l tr,m'r'I.a' of tin‘
`”’,{fU;t-
`:_;.=:iuplr: to l,}(?‘ nxmniriml is plormi in
`llitf!‘t_11li1 1.'e,s.=;sel.
`'i‘l1e elecIroz‘J'e.
`ll§w‘LJIilll_1’ plut-
`inum.
`is ;.‘tJ.'2lli,3tL"l1,‘tl by on l;"XI€.'rmi1l
`4,:ir‘c:uit
`to
`G p,2_r‘en:.-i1r;i> ln:l_t'-col l of ca
`t't.?(|'().\' esouple of
`knotm potential [at the left}. Wu‘ ultirmzte
`ref(.‘t‘I;?tii'P cell or the li_1"o‘roger: 4.-ler:irot,ie, o
`pl-utlliltfil electrode in r;onr,oct witlt LU .,\/ll I-ll
`[j_¢1._, pH [1] mm‘ .s:rtur.rztet;l with ii._.gos at 1.1]
`atm. ‘.'.‘l?l('7lt is nrhitr'nriiy rissigzwerl n :a‘tom:lorri
`pm:;nriol at (H1. Tim eler.'trorlr:5 con e;icci':;zt
`gr rlonnte eler:Irr_;nns to the reolorc couple in
`each II‘-‘ill, o',epr:izr,lin_g izpon their i'e.~;per_:tiwr
`potentir,:l.<. A Stlll l'zri:i_;;e cmttoining o .wotL1-
`mterl Kill mlution prm=io'e.~; on e?lectrir.:ul con-
`nection l‘mm*een the text cell mm‘ the i‘t‘:/t'er-
`ence mil.
`i;'le:i.'tr'om* will _J'To1\' from the 1:23!
`electa‘oalr_- to the I'P_l"(3t‘f‘,‘J'Ir;Z‘E r;ler:tro4.le. or irir:r,.-
`verse.
`'.:"n the E‘.\Zi[.‘fltt'Jl c:irr::uit, in u <1‘iz'et.:tioi:
`depending upon the rrrloliwa electron "pmrav
`sure" or gworentiol otthr: two cells, but
`alwrns ft’-:'::11 the cell of more I1!1‘gf.1llt'(.* to the
`cell c)_tmuI'{.‘ }]1(l.Ex‘lil'n’(.‘ potential. Front the
`ohsertml einf and the known emf of the
`refertjrltflf m:-ll. the r;n1_‘t"r2_f'tl1:e test well mn-
`tuining llm t'(.H.lDX couple is ol3ior'nerl_
`
`r.:IMP'J‘t:i< ti‘
`
`I,-Ilu:ac;tron 'l‘r.'i::spt'n‘t. {)7-;icl/miw I‘|‘m.e;nl1or_\*l;ition. Eittll islegulation oi ATP l3mrl‘.1t,:f,ion 473
`
`Uti\"l{:t! fin‘
`:'iIe;as11ring; zanit
`
`H,
`
`1'11] itlilt} Kt}! .-solL1tion
`
`
`t<e':ierenc:e ltoli-cs.-ll of
`l~:nown emt. The
`ultim.--ite .<,+t:—m(la1‘t'l is
`the l‘i_1.'r;l1‘:1,ge11 electrode
`HlJLJ“.‘(). in which H3
`gar: at H! atm is
`eqiiilihrntetl at the
`electrmle with l M
`ll". to give an
`Eli‘lIit1“€!!'}.' emf of
`U1] V. The hf.
`of tlw l1_\"{lI'(')‘b'E,’l"1
`tZl()[Il1‘t)f'l(:‘ at [all 7.[l
`is
`U,-ti V.
`
`"i"eet h:ili—r;ell
`coiutatinirig i.'vi
`z,:onc:entrz:ti,on_~; of
`the [J\'t(ll7.Bf.l and
`retlucecl .«;_necies
`of the rotlox
`couple to he
`f.'.I‘(Eii'i1li"IU(l.
`
`tive values to systems having an incgreasing terirleilcy to accept
`electrons. The terms .s'tandord reduction potential, standard
`potential, and stonrjiorrl rntidrit'ion:reduction pcftentiol aieusetl
`iTt_e1“f.'hEi11geabl3t'.
`'
`V
`V
`l
`V
`l
`7'”
`V
`Table 17-‘! gives the standard reduction potentials of a
`number of conjugate redox pairs important in biological elec-
`tron transport. They are listetl in order of increasing potential.
`in the order of ciergreasing tendency to lose electrons. Thus
`conjugate rodox pairs havi11g relatively negative standard po-
`tentials tend to lose electrons to those lower in the table. which
`have more positive standard potentials. For example, when the
`iSUf:liI‘E1l(3/'05-l(8'[OglUtafiile + CO2 couple is present in 1.0 M cron-
`oentrations it has a standard potential P3,} of -=~ (1.38 V. This reclox
`couple tends to pass electrons to the redox couple NAI3I~I/NADT.
`which has a relatively more positive potential, in the presence of
`isocitrate (lehydrogenaso {page 445]. Conversely, the strongly
`positive stanclard potential of the water-oxygen couple. 0.82 V.
`indicates that the water molecule has very little tendency to lose
`eleclrom; to form molecular oxygen. Put another way, molecu-
`lar oxygen has a very higlt affinity for electrons or hydrogen
`atoms. Although standard potentilals are given in units ofvolts.
`they are often expressed in rnillivolts for coiweniettce. ——_
`
`Page 9
`
`

`
`474 PART ll Birgeiitrrgeticn and Metabolfsni
`
`Tolile 17-1 The Standarrt Retitictirm Potentials Hf. of Seine tflorijugatz: Redgx
`ijouples PHrtic:ipatin,r; in (,):><id-ativrz Metabolisnrt
`
`Reriox couple
`
`Suiiie .«;L1lssti';stt'* t;uL1pli.*.~J
`-4- 2e’ --~> pyrtivate + COA
`Arjety-‘l-(_‘.m\
`+- CD3 + 2H‘
`o~Ketogl,iit+iretr: + {JCJ2 + 2H" + fie ——> isocitrate
`3-}’l1o5pl1oglyr:oro}.-'l phosphate + 2!!‘ + 2:} —>
`gl};ceral(leliycle ;;t—phospl'ia,te -r P;
`Pymvate 4- 2H -4- 2e — -> lactate
`Uxailoacetate + 2H‘
`2e’ v—-9 rnalnte
`Fmnrirate + 2H‘
`! Zen‘ ~—w> si1:::r;:inatt':
`
`l::t!lt]]}t3l't€fi1lS til‘ ll1t,' ultr(,tmH-tré:mi;m1't izliziin
`EH" + 21*’ —-—-'- H_.
`l\'AD‘” + H‘
`F Zr?
`l\."A[Jl4’"" + H‘
`*1‘ 2::
`
`-—+ NADH
`-
`-4- NAUPH
`
`NAUH dehytirtggtenase {F-‘MN forrn] 4- 2li“‘ + 26'‘ :>
`NADPI rlrzhydrogenese [F.\'1l\'t‘l,;. fo1‘mt
`
`5;,
`
`-5143
`-0.33
`
`-1129
`—g.1g
`—u_1g
`+£1.03
`
`*[l.4’t
`-0.32
`"1132
`
`-0.30
`
`‘
`l
`
`.
`
`’
`
`i
`3
`
`l
`
`;
`'
`
`+0.04
`+0.9?
`
`+0.23
`
`+0.25
`+0.29
`+0.55
`4-0-82
`
`Uliiquinmic 7 2H’ + 2e’ —v ubiquinol
`Cytoclironie b (ox) + e —> cytochrome b {red}
`
`Cytochrome C1 [ox] 4-
`
`1,!
`
`-~—-> cytociirorrie tr,
`
`[ymrlt
`
`——-==-+ cjutoohronie r; [red]
`ra
`tI_\'tor:lirome C fox] 4-
`Cytochrome (1 [ext t (2 —-v> C}/tochroiiie (.1 (red)
`Cytochrome (13 tux) + e” —Jr cytochrtirmz -13 [Ted]
`in. + in 1» 20" ——~ mu
`
`+ Assuming ‘1 M concentmtions of all mrnponents, pH = 7.0, and 25”C. Half-
`rezictiomi which express the affiriit}; of each system for electrons are shown.
`The more me alive the E4. the lower the affinity of the systein for electrons.
`Conver5elj.,z tie more positive the E’, of a eystreni. the greater its electron af-
`finitjg. Thus electrons tend to tlnw from one redo): couple to another in tha
`direction of the more positive system. Two landmark potentials [color] are for
`the H-¢f2H" couple and the I-i2(_l;’%t}2 couple.
`
`ltlI‘iv!I€*EIiE3i‘}:§f.‘
`
`tilieiiiges Pttrrtztiiiigiziriy Eiectron 't'reiris-;i’-me;
`
`The E5 values of various redox couples allow us to predict the
`direction of flow of electrons from one redox couple to another
`when both are press-n.t under standard conclitions and a catalysl
`is available. Electrons usually will not flow from one redflx
`couple to aiiotliei‘ unless 8 catalyst or enzyme is present to
`accelerate the process; the catalyst, however, does not aiter the
`direction of flow or affect the fine] equilibrium attained. Llnclef
`such conclitions. elecztmns will tend to flow from a relatively
`clectronegative conjugate rodox pair, such as NADFIINAW
`[M3 = — (1.32 V],
`to more eletitmptisitive electron zit:ccpt0T5*
`such as 1‘educed (:3-‘tt)clirmi1e cftixidized cytochrome if
`llstl :
`+0.23 V}. Similarly.
`tlie}; will also tend to flow from the C?"
`tochrome C reclox pair to the watermxygen pair [E3 -= ‘t (3-32 Vl’
`The tenrlency for electrons to How from electronegatiw: toward
`eloctropositive systeiiis is the result of the loss of free €I1f3T33l‘
`sl[‘1[;t'3 electrons always tend to move in such a direction that the
`free energy of tho reacting system decreases. The great” lhe
`t‘tiffe1‘e1ice in the standard pottjantials between two rerlox Palrs’
`
`Page 10
`
`

`
`CIiM"I‘ER '17
`
`ltllectron Transport. Oxirlative Pbosphor}-'latiuIi. and Regulntimi of All’ l’rorluc.;l,ion -175
`
`the greater the free-energy loss as electrons pass from the elec-
`tronegative to the electropositive couple. Therefore. when elec-
`trons flow down the complete electron-transport chain from
`NAD1-I [E5 = —~ 0.32 V] to oxygen [E3 : +0.82 V], via the sev-
`eral
`electron—carrying molecules of
`the electron—transport
`chain. they lose a large atnount of free energy because the dif-
`ference between the standard potentials of the redox pairs
`NADH/NAD‘ and H20/$02 is relatixlely great.
`Let us now calculate exactly how much free energy will be-
`come available as a pair of electrons passes from NADIJ to ox-
`ygen. The standard-free-energy change of a reaction in which
`there is a transfer of electrons is given by
`
`AG” : —n.§5 _'\E,'.
`
`where AG“ is the stancla1‘d—free~energy change in calories, 11 is
`the number of electrons transferred, 9}‘ is a constant called the
`fcirggox [23,Ut32 cal/V-moi], and A55 is the clifference between
`the standard potential of the electron-donor system and that of
`the electron-acceptor system. All components are assumed to
`be at 1.0 M concentration at 25°C and pH 7.0. The standard-
`freeenergy change as a pair of electron equivalents passes from
`the NAIJH/NAB" pair {E4} = -0.32 V]
`to the H20/{<02 pair
`[E5 = +0.82 V} is thus
`
`AG“ = —2(23.oe2][o.s2 — [—o.32)] = -52.5 kcal
`
`The 52.6 kcal of free energy released as a pair ofeleotrons passes
`from NADH to oxygeli under standard conditions is clearly
`more than enough to bring about the synthesis of three mole-
`CLllBS of ATP, which requires input of .3[7.3) = 21.5} kcal under
`standard conditions.
`
`in the same way. using the expression AG“ = — ob?’ M253}. we
`can calculate the free-energy changes for individual segments
`of the electron—trar1sport chain from the clifferences in the
`standard potentials of the electromrlonating redox pair and the
`electron-accepting pair. Figure 17-4 is an energy diagram
`
`— (1.4 a
`
`— 0.2-
`‘
`
`t[:.t,"!l
`
`f\'AtJH—>I£
`ZEN
`
`i
`I-‘.‘»<tt\'
`
`2e"
`
`=.
`“IJ
`
`-
`
`I')ire(;tim'1 at electron flow :4;
`
`Page 11
`
`Figure 2?»:
`The direction of How of electrons mm‘ the
`energy‘ relorlonsliips in the respimtory rrlmln
`‘Pf mltoclmriazlrirr. E—FMN l‘t',‘f'Jl'E.‘.h‘8I1lS NAIJII
`dBh_VC1‘1”og::-rnise. Q is tJlJlqtlll1(}t1!-I, end 1). Cl.
`C. anrl a rejJt'ese11t C1-'lI,1f,Jl1I‘IJITl€S. Note that
`there are three steps [colored arrows) in the
`ele:;Iron~tmnsport chain in which relatively
`large (lt?Ct”[?{l)4St2'h' in _tre.i':
`t’.‘t1t,3I‘g}‘" occur as eter-
`”°”9 l’J€IHs. Tl1esr:- ore the steps that pruritlte
`lrfle enr3r';4_\' for A’l"1’ A‘.’l~‘{t]t]1E3I.(l:I-l.|;A
`Tobie
`17‘1lUr the lit". vrtlues for tlie electron cm-ri-
`ers.
`
`

`
`Sl'1(‘J'WlI']g [ii the stantlarci potentials of some of the electron car.
`riers oi’ the respiratory chain. [2] the direetioii of electron flow,
`which is always "rimvnhill“ toward oxygeii. and [3] the rela-
`tive l'ree—energy cliaiige at each step. Note that there are large
`free-eriergy clecrezisras in three of the steps along the electron.
`transport chain. These are the energy—tzonserviiig sites that pm.
`vitle t:i1r:i‘gy for ATP synthesis.
`
`There Are Many Electron Carriers in the
`Electron-Traiisport Chain
`
`The respiratory chain of mitochondria contains a large number
`of eler:ti‘on-rterrgring proteins that act in sequence to transfer
`electmns from substrates to nxygeii. Although Figure 17-1
`shows the respiratory chain to have seven electron ca rriersi this
`is an ‘ril)bI‘E3‘\»"l,E]i(3Cl representation. There are 15 or more chemical
`groups in the electron-traiispert chain that caii accept and
`transfer reducing equivalents in sequence, suiiiinarized in Fig-
`ure '17-5.
`
`Note the several, diiTere1it idncis of elet_:tmn—carrying groups.
`associate:/l with proteins. They inclucle i_i_ic:'itiIioiriide
`all
`mienine riirrimleotirit: {NAB}. active with various clehycirogen-
`jlcrvin mcmonucleotirle [i’;\I'lN'}. in NADH ciehytiregeriase:
`tibiqriiimne er ceenz_ime Q, an isoprenoid lipici—solL1ble qui—
`none. which functions in association with one or more proteins;
`two different kinds of iron-containing proteins, the imn~sulfur
`
`centers {Fe—S] and the trjvtochromes: and copper of CElln?“tFGme
`third lI11,}Jt)I‘tE11]$E1T?tl1.Eii nearly all tiFelectron~
`lca1*rj,.-'ing proteins of the chain are water—insoluble and are em-
`l)t;3ClClE‘,[l in the inner initochontirial membrane.
`
`The Pyridiiie l'\3uoleotides Have a Collecting Function
`
`Most of the electron pairs entering the respiratory chain arisfl
`from the action of tleliyclmgeneses that use the cnerizytilefi
`i\2AiJ‘ or l\'Ai.)P‘ [Figure t7—t3) as electron acceptors. As 61 gr01IP
`they are (iesignateci
`the i\:’AD[P]-linked tieli_v(lrogr:iit,rs:§. W9
`liave already met several sncli Ciel1j.’ti]“l3gE,3I1EtS€.S
`in our discus‘
`sions oi" gi};r:oirysis and the Citric acid cycle. but niaiijy more fife
`kriown. Some important ones are listed in Table '17-2. All cata-
`lyze reversible reactinn.~; of the following general types:
`
`Ret,ir.ir:ecl substrate t NM)"
`
`E]XiLiiZE3t'l substrate + l\'-A]'Jt'i
`
`-+ H’
`
`l{etim;eL'i sul,1.sir‘att-:
`
`V-‘ i\'r\i)P'
`
`oxiclizenl st1hstr:_1te
`
`i\Al1IPil
`
`*’ H
`
`The great 1najorit}.= of the py"riciiiie—iinl<er.l rieliydrcigeiiases £1-T3
`ss}.)er,:it'ir: for NAIJ‘ [,'1“alile '17-2]. liowevei‘. certain otliers reftmle
`NADP' as electron ar:c:ept0r. sucli as glucose t.i—rJli:9siJl}Qf_fjjl£'
`i‘ttr'n[li‘(J§f.§(‘I?{I;H,'t? {page 4:37]. A very few. srcll as glrilflrrhiritc (l0_l_Ll"'
`,§4t‘.*rir{._<e.
`€,IFiI'1 react with either NAB“ or N/\l)P‘ [TflTT)iTt,3_T‘7'2]'
`
`
`
`Page 12
`
`476 PAIt'I'
`
`1:
`
`lil(J£?i1tj]“g(':iiCSHlltli‘»-irziiilitilifiiitt
`
`Q." the
`{li
`lmisi
`
`i’i,g_;Lit‘c'.* £7-33
`'l'l‘rz.~ r;:u13i}Jlt3tr'- Sill at t*lm‘:tr'm'i 1,'riJ‘i'I'ta
`I'espir'¢‘itzir_i‘ rimin. in site 1 there r.Il..
`five zi1'_f:r’ee*eni
`iroii-su,l_ti.ir r,:er-,g,p,-:,g In sit»: 3
`Iltm‘r.+ ere [WU rli,t‘ytere':r1t
`l‘r,:II'i'I'I.‘~, of t,".'lI11tl‘l1I‘£Il?‘r(j‘
`h, with riijtfererit
`li}J,l'IlAfJb5‘t1‘}JlirJ21 fl(.?t]l\’.‘1'. us
`irell as an imri-siil_t‘Lti' center lii.H‘iit't('1l
`te‘r,ziri
`those in site ‘1.
`in sit
`
`i Il'im'{' v.“ir‘r“'
`itmu t':r.J}JpPr
`lens in r:ru‘u'i|iv.m tn tZ_\‘ir.ItIltI"r)H1HH ti fiitii #15.
`Tim ;m':r.i::t> st:-:;iiernr:z: rmrl _i‘Lrn<:tinn at till the
`reriox centers is mat i<nrm=n with rr=rtrn'ntj.‘.
`
`
`
`Sill]:-'ill‘z’2lE3
`
`Site ‘S
`
`I
`
`Site 2
`
`Site is
`
`
`
`tie”
`Uzi“
`
`E’),
`
`

`
`cit.-\i=1‘1:Iz 17 ljlectron 'l‘rar15;:mJ‘t, Oxitlative Pliospliorylation. and Regulation of ATP Prodimtign 477
`
`
` contains
`
`a phosphate
`group in this
`position
`
`[3]
`
`Figure 174:”
`Nicotinomicie nrilmiine clirtttcleotide [ii/\T]‘t]
`and nicotinoinidc rzdeiiinn r_linLn:leoticlo
`phosphate (l\3ADP"). ta] Oxirlized }'orms
`{NAD” and NAlJP‘}. i’\‘icntinomirltz [shaded]
`is a vitamin of the B‘ cotnplex tpcige 255}
`and is the portion of the molecule partici-
`pating in m'er;fron transfer.
`fh} Reduction of
`the nicotmmmr,t'e ring of I\lAlJ' by substrate.
`The two redu.r:in,g equivalents ore troiislerretl
`fmm the szil).sti‘ate [clesigiioiml RCHQUH] to
`NAB’ in the forrn of o liydride ion [Ill ].
`The other l1_'r'Cl1”()gtJl"l removed fmrn the Still-
`stmte lie-,r.'mizes HT
`
`(ill
`I
`‘”
`R
`
`(:—:\‘n
`
`(,1
`
`:3‘:
`Ht.‘
`"‘
`ll
`H(,,).,___ mt H o
`'“:N‘’
`.
`l
`R
`
`"
`
`it
`
`r -—(,—wN!L
`II
`t!
`“
`cn o
`
`4:
`‘
`<—'‘
`1*
`
`H
`
`:{ :”
`
`HIZ
`1]
`Hc,
`
`N’
`5
`R
`
`mo
`
`NADH
`
`{bl
`
`Some pyridine—linl<.ed dehydrogenases are located in the cy-
`tosol. some in the mitochondria. and still others in both. Cyto-
`solic deliydrogenases can react only with cytoeolic pyridine
`nucleotides; siniilarly. initochondrial dehyolrogenases gener-
`ally react only with niitochondrial pyridine nucleotides in the
`matrix. The cytosolic and mitochondrial pools of NAD and
`NADP are separated by the inner I‘l'lllUCl'|,UI1Cl1"lE!l mernbrane,
`which is impermeable to these coenzymes. We shall come heck
`to this point later.
`The most
`important NAD—linkecl dehydrogenases func-
`tioning in carbohydrate catabolism are gilyceraldehyjde pl‘lQS-
`chute. ci_e;h.y_ctreg::L1a_§§ and lrictgttt:
`ii,§i,*3l1t:<ir0s.r?r_19§e of
`the
`glycolytic system, located in the cytosol, and 1g§1rgggtrg_dgy—
`ggggengge, present
`in the mitochondria [Table 17-2). Three
`NAD—linl<ecl dehydrogenases participate in the citric acid cycle
`in the IT1liOCl1On(lFla:l§§_1'_J__(;if_l:§fi3, gr-ke_tcgg_lr_4to<i;gr_t_e, and inolotem-;Le_—
`l_1yi;;l_i1ggeIictses. Other mitocllondrial dehydrogertases of impor-
`tance are ,3__-liydroiiztic
`
`Table 1722 Some important Reactions Catalyzed by NA!T}[P]-Linked
`Dehgwlrogenastzsa
`
`.“~3;‘tI]-linktrtl
`
`Isocitrate + .\JAD'' :;
`
`(X-l(E3lIC3gl11tElI'&1if: + CD2 + NADH + H“
`a—KetoglL1tarele + Co!/\ 4- NAD‘-' 1.1“
`suz;r;inyl—Cr)I\ + £202 + NADH -'— H’
`l‘~.’A[J‘” : oxaloacetztte
`NAIJH + tit
`L-Malate ~.’—
`Pyruvate + ("Jo/X + NAT)“ ef-
`acetyl-CJUA + CD2 +» NADH + H’
`Cl_vceralrlcl1_yt_le 3—phosphate + P,- + MAD 1
`tilktliphosphoglycerate 4- NADH + H*
`l.actat.ri + NAB‘ H: pyru.vate '9 NADII 4- H‘
`':“1ill’—liI1l‘ucl
`
`Isocitrete + NAUP‘ """
`wketoglutarate + CD3 + NADPH <1’ H‘
`Glucose 6—pl1osphate
`NADP’ :
`t‘z—p}iosphogluconete + l\EA1’1Pl‘i + H‘“
`
`VA!) or IX‘.-Kill’
`
`L—Glutamate + Il2(J + NAIF {.7\lAlJP'} T:
`gr-Vketoglutarate + NH; + NADH [,NADPH) + H”
`
`t‘ M = mitochondria and (I = rgytosrial.
`
`Location+
`
`M
`
`M
`M and C
`
`M
`
`(J
`{ll
`
`M and [I
`
`C
`
`M
`
`Page 13
`
`

`
`478 mm‘ H Bi0et1eI'gt':tir:s and Metabt')]i§1n
`
`f*"z'ggt11'c- JFA7
`Thee r.::)IJ‘etttitt;—; ftmrrtirm nil‘. NM} and

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket