`
`/
`
`f
`
`11
`
`%
`
`/
`
`V
`
`4*^ ■■■r/
`
`/
`
`v\
`
`3G Evolution
`HSPA and LTE for
`Mobile Broadband
`
`%
`
`Erik Dahiman i
`Stefan Parkvall
`Johan SRold^
`Per Bernina^
`
`Samsung Exhibit 1013, Page 1
`
`
`
`3G Evolution
`
`HSPA and LTE for Mobile Broadband
`
`Second edition
`
`Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming
`
`AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
`PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
`Academic Press is an imprint of Elsevier
`
`EI^EVIER
`
`i:
`
`I
`
`I
`
`II
`
`I
`
`I! i I
`
`I
`
`Samsung Exhibit 1013, Page 2
`
`
`
`i
`
`Academic Press is an iinprini of Elsevier
`Linacre House, Jordan Hill, Oxford, 0X2 8DP
`30 Corporate Drive, Burlington, MA 01803
`First edition 2007
`Second edition 2008
`Copyright © 2008. Erik Dahlman, Stefan Parkvall, Johan Skdld and Per Beming,
`Published by Elsevier Ltd. All rights reserved
`The right of Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming to be
`identified as the authors of this work has been asserted in accordance with the
`Copyright, Designs and Patents Act 1988
`No part of this publication may be reproduced, stored in a retrieval system or
`transmitted in any form or by any means electronic, mechanical, photocopying,
`recording or otherwise without the prior written permission of the publisher
`Permission may be sought directly from Elsevier’s Science & Technology Rights
`Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
`email: permissions@elsevier.com. Alternatively you can submit your request online by
`visiting the Elsevier website at http://www.elsevier.com/locate/permissions, and selecting
`Obtaining permission to use Elsevier material
`Notice
`No responsibility is assumed by the publisher for any injury and/or damage to persons
`or property as a matter of products liability, negligence or otherwise, or from any use
`or operation of any methods, products, instructions or ideas contained in the material herein
`British Library Cataloguing in Publication Data
`3G evolution : HSPA and LTE for mobile broadband. - 2nd ed.
`1. Broadband communication systems - Standards 2. Mobile communication
`systems - Standards 3. Cellular telephone systems - Standards
`I. Dahlman, Erik
`621.3'8546
`Library of Congress Control Number: 2008931278
`ISBN: 978-0-12-374538-5
`
`For information on all Academic Press publications
`visit our website at elsevierdirect.com
`
`Typeset by Charon Tec Ltd., A Macmillan Company, (www.macmillansolutions.com)
`Printed and bound in Great Britain by MPG Books Ltd, Bodmin, Cornwall
`08 09 10 11
`11 10 987654321
`
`Working together to grow
`libraries in developing countries
`www.elsevier.com | www.bookaid.org | www.sabre.org
`BOOK AID
`ELSEVIER
`Sabre Foundation
`International
`
`Samsung Exhibit 1013, Page 3
`
`
`
`XV
`
`xxvii
`
`XXIX
`
`XXXI
`
`xxxiii
`
`1
`
`3
`
`33
`
`5
`
`677
`
`79
`
`11
`13
`
`15
`15
`16
`17
`20
`
`21
`21
`
`24
`
`Contents
`
`List of Figures
`
`List of Tables
`
`Preface
`
`Acknowledgements
`
`List of Acronyms
`
`Part I: Introduction
`
`I
`
`1 Background of 3G evolution..........................
`1.1 History and background of 3G................
`1.1.1 Before 3G....................................
`1.1.2 Early 3G discussions..................
`1.1.3 Research on 3 G..........................
`1.1.4
`3G standardization starts............
`1.2 Standardization........................................
`1.2.1 The standardization process........
`1.2.2 3GPP..........................................
`1.2.3
`lMT-2000 activities in ITU........
`1.3 Spectrum for 3G and systems beyond 3G
`
`2 The motives behind the 3G evolution................................
`2.1 Driving forces...............................................................
`2.1.1 Technology advancements..............................
`2.1.2 Services..........................................................
`2.1.3 Cost and performance....................................
`3G evolution: Two Radio Access Network approaches
`and an evolved core network........................................
`2.2.1 Radio Access Network evolution....................
`2.2.2 An evolved core network: system architecture
`evolution...........................................................
`
`2.2
`
`V
`
`■
`
`53333;
`ne by
`electing
`
`rsons
`use
`■■rial herein
`
`sn
`
`;om)
`
`Samsung Exhibit 1013, Page 4
`
`
`
`VI
`
`Part II: Technologies for 3G Evolution
`
`3.2
`
`3 High data rates in mobile communication..................................
`3.1
`High data rates; Fundamental constraints......................
`3.1.1 High data rates in noise-limited scenarios......................
`3.1.2 Higher data rates in interference-limited scenarios........
`Higher data rates within a limited bandwidth: Higher-order___
`modulation..................
`3.2.1 Higher-order modulation in combination with
`channel coding ....................................
`3.2.2
`Variations in instantaneous transmit power . . .
`Wider bandwidth includiirg multi-carrier transmission
`3.3.1
`Multi-carrier transmission
`
`3.3
`
`4 OFDM transmission
`4.1 Basic pi'inciples of OFDM....................
`4.2
`OFDM demodulation............................
`4.3
`OFDM implementation using IFFT/FFT
`4.4
`Cyclic-prefix insertion..........................
`4.5
`Frequency-domain model of OFDM transmission....................
`4.6
`Channel estimation and reference symbols..........
`4.7
`Frequency diversity with OFDM: Importance of channel coding
`4.8
`Selection of basic OFDM parameters
`4.8.1
`OFDM subcarrier spacing
`4.8.2 Number of subcarriers . . .
`4.8.3 Cyclic-piefix length................
`Variations in instantaneous transmission
`power
`OFDM as a user-multiplexing and multiple-access scheme
`Multi-cell bi-oadcast/multicast transmission and OFDM . .
`
`processing
`
`....................................
`
`4.9
`4.10
`4.11
`
`ii
`
`5 Wider-hand ‘single-carrier’ transmission
`5.1
`Equalization against radio-channel frequency selectivity
`5.1.1 Time-domain linear equalization......................
`5.1.2 Frequency-domain equalization........................
`5.1.3 Other equalizer strategies.....................................
`Uplink FDMA with flexible bandwidth assignment........
`DFT-spread OFDM........................
`5.3.1
`..............................................
`Basic principles
`5.3.2 DFTS-OFDM
`recerver........................
`5.3.3
`User multiplexing with DFT'S-OFDM.
`5.3.4 Distributed DFTS-OFDM..................
`
`5.2
`5.3
`
`Contents
`
`27
`
`29
`29
`31
`. . 33
`
`34
`
`35
`36
`37
`40
`
`43
`43
`. . 46
`. 46
`48
`51
`. 52
`. . 53
`55
`55
`57
`58
`58
`. 59
`61
`
`65
`65
`66
`. 68
`71
`71
`73
`74
`76
`77
`78
`
`%
`
`Samsung Exhibit 1013, Page 5
`
`
`
`mm
`
`Coutenls
`
`6 Multi-antenna techniques
`6.1 Multi-antenna configuration,s..........
`6.2
`Benefits of multi-antenna techniques
`Multiple receive antennas................
`6.3
`6.4
`Multiple transmit antennas..............
`6.4.1
`Transmit-antenna diversity. . . .
`6.4.2
`Transmitter-side beam-forming
`Spatial multiplexing
`6.5.1
`Basic principles..............................
`6.5.2
`Pre-coder-based spatial multiplexing
`6.5.3
`Non-linear receiver processing........
`
`6.5
`
`7 Scheduling, link adaptation and hybrid ARQ..........................
`7.1 Link adaptation: Power and rate control..............................
`7.2 Channel-dependent scheduling............................................
`7.2.1 Downlink scheduling..............................................
`7.2.2 Uplink scheduling..................................................
`7.2.3 Link adaptation and channel-dependent scheduling
`in the frequency domain..........................................
`7.2.4 Acquiring on channel-state information..................
`7.2.5 Traffic behavior and scheduling..............................
`7.3 Advanced retransmission schemes......................................
`7.4 Hybrid ARQ with soft combining........................................
`
`Part III: HSPA
`
`8 WCDMA evolution: HSPA and MBMS......................
`8.1
`WCDMA: Brief overview......................................
`8.1.1
`Overall architecture..................................
`8.1.2 Physical layer............................................
`8.1.3
`Resource handling and packet-data session
`
`9 High-Speed Downlink Packet Access
`9.1
`Overview....................................
`9.1.1
`Shared-channel transmission
`9.1.2
`Channel-dependent scheduling..........
`9.1.3
`Rate control and higher-order modulation
`9.1.4 Hybrid ARQ with soft combining..........
`9.1.5
`Architecture
`Details of HSDPA. .
`
`9.2
`
`Vll
`
`81
`81
`82
`83
`88
`89
`93
`96
`97
`100
`102
`
`105
`106
`107
`108
`112
`
`115
`.... 116
`117
`118
`120
`
`125
`
`127
`129
`129
`132
`137
`
`139
`139
`139
`. . . . 140
`142
`. . . . 142
`143
`144
`
`is
`
`7
`
`9
`;9
`1
`■3
`
`4
`
`6
`'6
`•7
`■0
`
`3
`■3
`
`66
`
`1
`2
`3
`
`55 7
`
`8
`9
`1
`
`5
`■5
`.6
`
`1
`1
`3
`4
`6
`7
`8
`
`Samsung Exhibit 1013, Page 6
`
`
`
`1
`
`Vlll
`
`Contents
`
`9.2.1 HS-DSCH: Inclusion of features in WCDMA
`144
`Release 5............................................................
`9.2.2 MAC-hs and physical-layer processing..............
`147
`149
`9.2.3 Scheduling..........................................................
`150
`9.2.4 Rate control........................................................
`154
`9.2.5 Hybrid ARQ with soft combining......................
`157
`9.2.6 Data flow............................................................
`159
`9.2.7 Resource control for HS-DSCH..........................
`160
`Mobility..............................................................
`9.2.8
`162
`9.2.9 UE categories......................................................
`162
`9.3 Finer details of HSDPA....................................................
`9.3.1 Hybrid ARQ revisited: Physical-layer processing
`162
`9.3.2
`Interleaving and constellation rearrangement . . .
`167
`9.3.3 Hybrid ARQ revisited: Protocol operation..........
`168
`170
`9.3.4
`In-sequence delivery............................................
`172
`9.3.5 MAC-hs header..................................................
`CQI and other means to assess the downlink quality........174
`9.3.6
`177
`9.3.7 Downlink control signaling: HS-SCCH
`Downlink control signaling: F-DPCH .
`180
`9.3.8
`180
`9.3.9 Uplink control signaling: HS-DPCCH.
`
`10 Enhanced Uplink.........................................................
`10.1 Overview..............................................................
`10.1.1 Scheduling..............................................
`10.1.2 Hybrid ARQ with soft combining..........
`10.1.3 Architecture............................................
`10.2 Details of Enhanced Uplink................................
`10.2.1 MAC-e and physical layer processing . . .
`10.2.2 Scheduling..............................................
`10.2.3 E-TFC selection......................................
`10.2.4 Hybrid ARQ with soft combining..........
`10.2.5 Physical channel allocation....................
`10.2.6 Power control..........................................
`10.2.7 Data flow................................................
`10.2.8 Resource control for E-DCH..................
`10.2.9 Mobility..................................................
`10.2.10 UE categories..........................................
`10.3 Finer details of Enhanced Uplink........................
`10.3.1 Scheduling - the small print....................
`10.3.2 Further details on hybrid ARQ operation
`10.3.3 Control signaling..................................
`
`185
`185
`186
`188
`. . 189
`190
`193
`195
`202
`203
`208
`210
`211
`212
`213
`213
`214
`214
`223
`230
`
`V
`
`Samsung Exhibit 1013, Page 7
`
`
`
`Contents
`
`11
`
`MB MS: Multimedia Broadcast Multicast Services
`11.1 Overview. .........................................................
`11.1.1 Macro-diversity..................................
`11.1.2 Application-level coding....................
`11.2 Details of MB MS............................................
`11.2.1 MTCH................................................
`11.2.2 MCCH and MICH..............................
`11.2.3 MSCH................................................
`
`IX.
`
`239
`242
`243
`245
`246
`247
`247
`249
`
`251
`12 HSPA Evolution............................................................................
`251
`12.1 MIMO......................................................................................
`252
`12.1.1 HSDPA-MIMO data transmission..............................
`256
`12.1.2 Rate control for HSDPA-MIMO................................
`. . . 256
`Hybrid-ARQ with soft combining for HSDPA-MIMO
`12.1.3
`257
`12.1.4 Control signaling for HSDPA-MIMO . .
`..........259
`12.1.5 UE capabilities......................................
`259
`12.2 Higher-order modulation....................................
`260
`12.3 Continuous packet connectivity........................
`261
`12.3.1 DTX-reducing uplink overhead..........
`.264
`12.3.2 DRX-reducing UE power consumption
`12 3.3 HS-SCCH-less operation: downlink overhead reduction. . 265
`12.3.4 Control signaling............ ................
`12.4 Enhanced CELL_FACH operation
`12.5 Layer 2 protocol enhancements............................
`12.6 Advanced receivers................................................
`Advanced UE receivers specified in 3GPP
`12.6.1
`12.6.2 Receiver diversity (type 1)......................................
`Chip-level equalizers and similar receivers (type 2) .
`12.6.3
`Combination with antenna diversity (type 3)............
`12.6.4
`Combination with antenna diversity and interference
`12.6.5
`cancellation (type 3i)
`12.7 MBSFN operation
`12.8 Conclusion........
`
`267
`269
`.......... 270
`271
`271
`272
`273
`
`274
`275
`275
`
`Part IV: LTE and SAE
`
`13 LTE and SAE: Introduction and design targets
`13.1 LTE design targets........................................
`13.1.1 Capabilities......................................
`13.1.2 System performance........................
`
`277
`
`279
`.280
`.... 281
`282
`
`I
`
`II
`
`i
`
`m
`
`Samsung Exhibit 1013, Page 8
`
`
`
`»
`
`I m
`
`ii
`
`X
`
`Deployment-related aspects.
`13.1.3
`Architecture and migration .
`13.1.4
`Radio resource management
`13.1.5
`Complexity..........................
`13.1.6
`General aspects....................
`13.1.7
`13.2 SAE design targets
`
`14 LTE radio access: An overview....................................
`14.1 LTE transmission schemes: Downlink OFDM and
`uplink DFTS-OFDM/SC-FDMA...................... • •
`14.2 Channel-dependent scheduling and rate adaptation
`14.2.1 Downlink scheduling................................
`14.2.2 Uplink scheduling....................................
`14.2.3 Inter-cell interference coordination..........
`14.3 Hybrid ARQ with soft combining..........................
`14.4 Multiple antenna support......................................
`14.5 Multicast and broadcast support............................
`14.6 Spectrum flexibility..............................................
`14.6.1 Flexibility in duplex arrangement............
`14.6.2 Flexibility in frequency-band-of-operation
`14.6.3 Bandwidth flexibility................................
`
`15 LTE radio interlace architecture............................
`15.1 Radio link control..............................................
`15.2 Medium access control......................................
`15.2.1 Logical channels and transport channels
`15.2.2 Scheduling............................................
`15.2.3 Hybrid ARQ with soft combining........
`15.3 Physical layer....................................................
`15.4 Terminal states..................................................
`15.5 Dataflow............................................................
`
`Contents
`
`283
`285
`286
`286
`286
`287
`
`289
`
`289
`291
`292
`292
`293
`294
`294
`295
`296
`296
`297
`297
`
`299
`301
`302
`303
`305
`308
`311
`314
`315
`
`16 Downlink transmission scheme.................................. .. • • •
`Overall time-domain structure and duplex alternatives
`16.1
`The downlink physical resource........................
`16.2
`Downlink reference signals...................... .........
`16.3
`16.3.1 Cell-specific downlink reference signals
`16.3.2 UE-specific reference signals....................
`Downlink L1/L2 control signaling........................
`Physical Control Format Indicator Channel
`16.4.1
`16.4.2 Physical Hybrid-ARQ Indicator Channel
`16.4.3 Physical Downlink Control Channel . . .
`
`16.4
`
`317
`317
`319
`324
`325
`........328
`330
`332
`334
`338
`
`Samsung Exhibit 1013, Page 9
`
`
`
`XI
`
`340
`348
`352
`352
`357
`361
`361
`
`362
`363
`
`365
`366
`.366
`367
`367
`371
`372
`373
`377
`. 378
`
`383
`383
`385
`385
`393
`396
`398
`411
`413
`415
`
`416
`418
`
`421
`421
`.... 421
`424
`424
`
`Contents
`
`16.4.4 Downlink scheduling assignment......................
`16.4.5 Uplink scheduling grants..................................
`16.4.6 Power-control commands..................................
`16.4.7 PDCCH processing..........................................
`16.4.8 Blind decoding of PDCCHs..............................
`16.5 Downlink transport-channel processing........................
`16.5.1 CRC insertion per transport block....................
`16.5.2 Code-block segmentation and per-code-block
`CRC insertion....................................................
`16.5.3 Turbo coding..................................................
`16.5.4 Rate-matching and physical-layer hybrid-ARQ
`functionality....................................................
`16.5.5 Bit-level scrambling........................................
`16.5.6 Data modulation..............................................
`16.5.7 Antenna mapping............................................
`16.5.8 Resource-block mapping................................
`16.6 Multi-antenna transmission..........................................
`16.6.1 Transmit diversity............................................
`16.6.2 Spatial multiplexing........................................
`16.6.3 General beam-forming....................................
`16.7 MBSFN transmission and MCH..................................
`
`17 Uplink transmission scheme....................................................
`17.1 The uplink physical resource............................................
`17.2 Uplink reference signals....................................................
`17.2.1 Uplink demodulation reference signals................
`17.2.2 Uplink sounding reference signals........................
`17.3 Uplink L1/L2 control signaling........................................
`17.3.1 Uplink L1/L2 control signaling on PUCCH........
`17.3.2 Uplink L1/L2 control signaling on PUSCH..........
`17.4 Uplink transport-channel processing................................
`17.5 PUSCH frequency hopping.......................................... .. • •
`17.5.1 Hopping based on cell-specific hopping/mirrormg
`patterns..................................................................
`17.5.2 Hopping based on explicit hopping information . .
`
`II
`
`Ii
`
`18 LTE access procedures........................................
`18.1 Acquisition and cell search..........................
`18.1.1 Overview of LTE cell search..........
`18.1.2 PSS structure..................................
`18.1.3 SSS structure..................................
`
`i
`
`ii
`
`Samsung Exhibit 1013, Page 10
`
`
`
`Xll
`
`Contents
`
`18.2 System information......................................................
`425
`18.2.1 MIB and BCH transmission............................
`426
`18.2.2 System-Information Blocks............................
`. 429
`18.3 Random access............................................................
`432
`18.3.1 Step 1: Random-access preamble transmission
`434
`18.3.2 Step 2: Random-access response....................
`441
`18.3.3 Step 3; Terminal identification........................
`442
`18.3.4 Step 4: Contention resolution..........................
`443
`18.4 Paging ............................................................
`444
`
`19.2
`
`19 LIEtransmission procedures........................
`RLC and hybrid-ARQ protocol operation
`19.1
`19.1.1 Hybrid-ARQ with soft combining
`19.1.2 Radio-link control......................
`Scheduling and rate adaptation................
`19.2.1 Downlink scheduling..................
`19.2.2 Uplink scheduling......................
`19.2.3 Semi-persistent scheduling..........
`19.2.4 Scheduling for half-duplex FDD .
`19.2.5 Channel-status reporting............
`Uplink power control..............................
`19.3.1 Power control for PUCCH..........
`19.3.2 Power control for PUSCH..........
`19.3.3 Power control for SRS................
`Discontinuous reception (DRX)..............
`Uplink timing alignment..........................
`UE categories..........................................
`
`19.3
`
`19.4
`19.5
`19.6
`
`20.2
`20.3
`20.4
`
`20 Flexible bandwidth in LTE
`20.1 Spectrum for LTE........................................
`20.1.1 Frequency bands for LTE................
`20.1.2 New frequency bands......................
`Flexible spectrum use..................................
`Flexible channel bandwidth operation........
`Requirements to support flexible bandwidth
`20.4.1 RF requirements for LTE................
`Regional requirements....................
`20.4.2
`BS transmitter requirements............
`20.4.3
`BS receiver requirements................
`20.4.4
`Terminal transmitter requirements. .
`20.4.5
`20.4.6Terminal receiver requirements
`
`447
`447
`448
`459
`465
`.467
`470
`476
`478
`479
`482
`482
`485
`488
`488
`490
`.495
`
`497
`497
`498
`501
`502
`503
`505
`505
`506
`507
`511
`514
`515
`
`Samsung Exhibit 1013, Page 11
`
`
`
`Contents
`
`xin
`
`517
`
`518
`
`21 System Architecture Evolution............................................
`Functional split between radio access network and core
`21.1
`network..........................................................................
`21.1.1 Functional split between WCDMA/HSPA radio
`access network and core network......................
`518
`21.1.2 Functional split between LTE RAN and core network ... 519
`HSPAAVCDMA and LTE radio access network..................
`520
`21.2.1 WCDMA/HSPA radio access network....................
`521
`21.2.2 LTE radio access network......................................
`526
`Core network architecture....................................................
`528
`21.3.1 GSM core network used for WCDMA/HSPA........
`529
`21.3.2 The ‘SAE’ core network: The Evolved Packet Core
`533
`21.3.3 WCDMA/HSPA connected to Evolved Packet Core
`536
`21.3.4 Non-3GPP access connected to Evolved Packet Core.... 537
`
`21.2
`
`21.3
`
`22 LTE-Advanced..........................................................................
`22.1 IMT-2000 development......................................................
`22.2 LTE-Advanced - The 3GPP candidate for IMT-Advanced
`22.2.1 Fundamental requirements for LTE-Advanced . . .
`22.2.2 Extended requirements beyond ITU requirements.
`22.3 Technical components of LTE-Advanced..........................
`22.3.1 Wider bandwidth and carrier aggregation............
`22.3.2 Extended multi-antenna solutions........................
`22.3.3 Advanced repeaters and relaying functionality . . .
`22.4 Conclusion................................
`
`Part V: Performance and Concluding Remarks
`
`539
`539
`540
`541
`542
`542
`543
`544
`545
`546
`
`547
`
`23 Performance of 3G evolution
`549
`23.1
`Performance assessment
`549
`23.1.1 End-user perspective of performance
`550
`23.1.2 Operator perspective........................
`552
`Performance in terms of peak data rates........
`552
`Performance evaluation of 3G evolution ....
`553
`23.3.1 Models and assumptions..................
`553
`23.3.2 Performance numbers for LTE with 5MHz FDD earners. 555
`Evaluation of LTE in 3GPP................................
`557
`23.4.1 LTE performance requirements............
`557
`23.4.2 LTE performance evaluation................
`559
`23.4.3 Performance of LTE with 20 MHz FDD
`560
`Conclusion............................
`560
`
`earner
`
`23.2
`23.3
`
`23.4
`
`23.5
`
`I
`
`s
`
`Samsung Exhibit 1013, Page 12
`
`
`
`■
`
`XIV
`
`Contents
`
`563
`563
`565
`566
`567
`567
`568
`569
`571
`573
`573
`575
`575
`576
`577
`577
`578
`
`580
`581
`581
`581
`582
`583
`584
`584
`585
`586
`588
`
`589
`590
`591
`591
`592
`
`593
`
`603
`
`I III
`
`I
`
`24 Other wireless communications systems..................
`24.1 UTRATDD........................................................
`24.2 TD SCDMA (low chip rate UTRA TDD)..........
`24.3 CDMA2000..........................................................
`24.3.1 CDMA2000 1X........................................
`24.3.2 IxEV-DORevO....................................
`24.3.3 IxEV-DORevA....................................
`24.3.4 lx EV-DO Rev B....................................
`24.3.5 UMB (lx EV-DO Rev C)........................
`24.4 GSM/EDGE........................................................
`24.4.1 Objectives for the GSM/EDGE evolution
`24.4.2 Dual-antenna terminals..........................
`24.4.3 Multi-carrier EDGE................................
`24.4.4 Reduced TTI and fast feedback................
`24.4.5 Improved modulation and coding
`24.4.6 Higher symbol rates....................
`24.5 WiMAX (IEEE 802.16)..........................................
`24.5.1 Spectrum, bandwidth options and duplexing
`arrangement................................................
`24.5.2 Scalable OFDMA........................................
`TDD frame structure................................
`24.5.3
`Modulation, coding and Hybrid ARQ ....
`24.5.4
`Quality-of-service handling......................
`24.5.5
`Mobility....................................................
`24.5.6
`Multi-antenna technologies......................
`24.5.7
`Fractional frequency reuse........................
`24.5.8
`Advanced Air Interface (IEEE 802.16m). .
`24.5.9
`Mobile Broadband Wireless Access (IEEE 802.20)
`Summary................................................................
`
`24.6
`24.7
`
`m
`
`25 Future evolution..................
`25.1 IMT-Advanced............
`25.2 The research community
`25.3 Standardization bodies .
`25.4 Concluding remarks . . .
`
`References
`
`Index
`
`pif
`
`Samsung Exhibit 1013, Page 13
`
`
`
`Part I
`Introduction
`
`i I
`
`ii
`
`gv.'
`
`ii
`
`Wt
`
`■ili
`
`M m
`
`Samsung Exhibit 1013, Page 14
`
`
`
`1
`Background of 3G evolution
`
`From the first experiments with radio communication by Guglielmo Marconi in
`the 1890s, the road to truly mobile radio communication has been quite long. To
`understand the complex 3G mobile-communication systems of today, it is also
`important to understand where they came from and how cellular systems have
`evolved from an expensive technology for a few selected individuals to today’s
`global mobile-communication systems used by almost half of the world’s popu
`lation. Developing mobile technologies has also changed, from being a national
`or regional concern, to becoming a very complex task undertaken by global
`standards-developing organizations such as the Third Generation Partnership
`Project (3GPP) and involving thousands of people.
`
`1.1 History and background of 3G
`The cellular technologies specified by 3GPP are the most widely deployed in
`the world, with more than 2.6 billion users in 2008. The latest step being stud
`ied and developed in 3GPP is an evolution of 3G into an evolved radio access
`referred to as the Long-Term Evolution (LTE) and an evolved packet access core
`network in the System Architecture Evolution (SAE). By 2009-2010, LTE and
`SAE are expected to be first deployed.
`
`g?I
`
`I
`
`I II
`
`Looking back to when it all it started, it begun several decades ago with early
`deployments of analog cellular services.
`
`:g
`
`■'si
`
`IS-''
`1-1.1 Before 3G
`Wm
`»
`GS Federal Communications Commission (FCC) approved the first com-
`mercial car-borne telephony service in 1946, operated by AT&T. In 1947 AT&T
`also introduced the cellular concept of reusing radio frequencies, which became
`fundamental
`to all subsequent mobile-communication systems. Commercial
`mib
`telephony continued to be car-borne for many years because of bulky
`
`*i
`
`3
`
`Samsung Exhibit 1013, Page 15
`
`
`
`&
`
`4
`
`3G Evolution: HSPA and LTE for Mobile Broadband
`
`and power-hungry equipment. In spite of the limitations of the service, there
`were systems deployed in many countries during the 1950s and 1960s, but the
`users counted only in thousands at the most.
`
`These first steps on the road of mobile communication were taken by the monop
`oly telephone administrations and wire-line operators. The big uptake of sub
`scribers and usage came when mobile communication became an international
`concern and the industry was invited into the process. The first international
`mobile communication system was the analog NMT system {Nordic Mobile
`Telephony) which was introduced in the Nordic countries in 1981, at the same
`time as analog AMPS {Advanced Mobile Phone Service) was introduced in North
`America. Other analog cellular technologies deployed worldwide were TAGS
`and J-TACS. They all had in common that equipment was still bulky, mainly
`car-borne, and voice quality was often inconsistent, with ‘cross-talk’ between
`users being a common problem.
`
`With an international system such as NMT came the concept of ‘roaming,’ giv
`ing a service also for users traveling outside the area of their ‘home’ operator.
`This also gave a larger market for the mobile phones, attracting more companies
`into the mobile communication business.
`
`The analog cellular systems supported ‘plain old telephony services,’ that is
`voice with some related supplementary services. With the advent of digital
`com-
`munication during the 1980s, the opportunity to develop a second generation
`of mobile-communication standards and systems, based on digital technology,
`surfaced. With digital technology came an opportunity to increase the capacity
`of the systems, to give a more consistent quality of the service, and to develop
`much more attractive truly mobile devices.
`
`In Europe, the telecommunication administrations in CEPT' initiated the GSM
`project to develop a pan-European mobile-telephony system. The GSM activities
`were in 1989 continued within the newly formed European Telecommunication
`Standards Institute (ETSI). After evaluations of TDMA, CDMA, and FDMA-
`based proposals in the mid-1980s, the final GSM standard was built on TDMA.
`Development of a digital cellular standard was simultaneously done by TIA in
`the USA resulting in the TDMA-based IS-54 standard, later simply referred to
`as US-TDMA. A somewhat later development of a CDMA standard called IS-
`95 was completed by TIA in 1993. In Japan, a second-generation TDMA stand
`ard was also developed, usually referred to as PDC.
`
`iI®
`
`The European Conference of Postal and Telecommunications Administrations (CEPT) consist of the telecom
`administrations from 48 countries.
`
`Samsung Exhibit 1013, Page 16
`
`
`
`Background oj 3G evolution
`
`5
`All these standards were ‘narrowband’ in the sense that they targeted ‘low
`l,a„dw.d,h server auch aa voice. With the aecond-gettetatio^ digit n^Me
`CO, m.,„,cat,„„s came also the „pp„t,„„i,y
`data sa vtcea „v , d e
`mol„Ie-co„„„„„,eat,o„ aetwotfa. The pritaaty data aa-vice,s inttodoeeZ 2G
`wete ext ,pes,aa8.ttg (SMS) and citc„i,-,sw,tched data setv.ce,, enahhag e-mad
`aad othet data appiteattoaa. The peak data tatea ia 2G wete ia.t.ally 9 6khp
`Higher data rates were introduced later in evolved 2G svstem. h ,
`multiple time slots to a user and by modified coding schemes.
`
`Packet data over cellular systems became a reality during the second half of fhf>
`U90s with General Packet Radio Services (GPRS) introduced in GSM and
`packet data also added to other cellular technologies such as the Japanese PDC
`standaid. These technologies are often referred to as 2.5G. The success of the
`wireless data service iMode in Japan gave a very clear indication of the potfn
`tialfoi applications over packet data in mobile systems, in spite of the fairfy low
`data lates supported at the time.
`^
`
`With the advent of 3G and the higher-bandwidth radio interface of UTRA
`( uversal lerrestnal Radio Access) came possibilities for a range of new serv
`mes that were only hinted at with 2G and 2.5G. The 3G radio ^
`'
`access develop-
`ment is today handled in 3GPR However, the initial
`steps lor 3G were taken in
`the early 1990s, long before 3GPP was formed.
`
`2;^
`
`iS
`
`m
`
`I
`
`What also set the
`stage for 3G was the internationalization ^
`of cellular stand-
`ardization. GSM
`was a
`
`zs “ r-» zet rZkrZczrz
`
`deployed A globalZ “d d
`products becoZes laZ TOs?"V"
`lion around 2G cellular
`
`“
`technologies than for the earlier
`
`"'we GSM is „o(
`“““
`‘'»‘'
`coopera-
`
`generations.
`
`1
`it
`
`pii
`
`1-2 Early 3G discussions
`
`ilia
`
`/;
`ITU-R issued a fir.i J
`communication sec-
`i'~,:cZ:Ze —Z"‘' “
`■me for 3G within ITTI HgH u u ,
`[48]. The
`>rld Ad,ni„is,ra,ive rZ Z
`MT-2000. The
`
`™
`‘ « Pnired .specZ ‘ fo ™ (T
`DD {Frequency Division Duplex) and 35 MHz
`
`as
`
`iw!
`
`tre
`he
`
`P-
`b-
`lal
`,al
`'le
`le
`th
`:s
`ly
`m
`
`/-
`'It
`;s
`
`IS
`I-
`n
`
`yp 1
`
`s
`%
`
`1
`)
`
`Samsung Exhibit 1013, Page 17
`
`
`
`3G Evolution: HSPA and LTE for Mobile Broadband
`
`npaired spectrum for TDD {Time Division Duplex), both for terrestrial use. Some
`spectrum was also set aside for satellite services. With that, the stage was set to
`specify IMT-2000.
`
`6 u
`
`T
`
`Task Group 8/1 within ITU-R developed a range of recommendations for IMT-
`2000, defining a framework for services, network architectures, radio interface
`requirements, spectrum considerations, and evaluation metho