throbber
Design Solutions
`Guide
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 1 of 86
`
`

`

`Page 2 of 86
`
`AMT Exhibit 2005
`CORPAKv. AMT IPR2007-01990
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 2 of 86
`
`

`

`Table of
`Contents
`
`Topic
`
`Part/Page
`
`Welcome! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
`Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–2
`BASF Product Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–2
`Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3
`Design Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3
`CAD/CAE Capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3
`Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3
`Design Considerations for Injection Molded Parts. . . . . . . . . . . . II
`Parting Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–2
`Draft Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–3
`Wall Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–3
`Fillets and Radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–3
`Bosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–4
`Ribs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–4
`Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–5
`Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–5
`Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–5
`Vents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–6
`Potential Knit Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–6
`Structural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
`Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–2
`Stress-Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–2
`Normal Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–3
`Shear Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–3
`Torsional Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–4
`Bending Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–5
`Section Properties of Various Cross-Sections . . . . . . . . . . . . . . . . . . . . III–6
`Explanation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–6
`Beam Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–6
`Formulas for Common Beams in Bending . . . . . . . . . . . . . . . . . . . . . . . III–7
`Formulas for Torsional Deformation and Stress . . . . . . . . . . . . . . . . . . . III–8
`I, T and L Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–9
`Formulas for Flat Plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–10
`Flat Plate Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–10
`Pressure Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–11
`Thermal Expansion and Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–12
`Impact Stresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–13
`Stress Concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–14
`Rib Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–15
`Design for Equivalent Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–18
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 3 of 86
`
`

`

`Topic
`
`Part/Page
`
`Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV
`Cruise Control Bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV–2
`Cover Cap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV–4
`Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
`Snap-Fit Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V–2
`Snap-Fit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V–2
`Cantilever vs. Cylindrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–2
`Tapered Cantilever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–2
`Short Cantilever Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–3
`New Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–4
`Snap-Fit Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–4
`Press-Fit Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–5
`Adhesive Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–6
`Bolts, Nuts, and Machine Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–8
`Molded-in Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–9
`Self-Tapping Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–10
`Inserts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–11
`Ultrasonic Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–12
`Shear Joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–12
`Energy Director . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–13
`Vibration Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–14
`Other Assembly Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–15
`Thermoplastic Staking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–15
`Spin Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–15
`Electromagnetic Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V–16
`Plastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VI
`Classification of Plastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VI–2
`Molecular Weight Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VI–4
`Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VI–5
`Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VI–5
`Thermal Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VI–5
`Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VI–6
`Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII
`The Mechanical Properties of Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–2
`Short-Term Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–2
`Notches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–2
`Rate of Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–2
`Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–4
`Thermal Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–4
`Moisture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–5
`Dimensional Considerations (Moisture Absorption) . . . . . . . . . . . . . . . .VII–6
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 4 of 86
`
`

`

`Topic
`
`Part/Page
`
`Effects of Moisture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–6
`Dimensional Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–6
`Accelerated Moisture Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–6
`Process Induced Property Variations . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–7
`Additives (Color) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–8
`Ultraviolet (UV) Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–8
`Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–8
`Long-Term Properties–Creep, Stress Relaxation and Service Life . . . .VII–9
`Coefficient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VII–11
`Design Considerations for Gas Assist Molding . . . . . . . . . . . . . . .VIII
`Hollow Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII–2
`Short Shot Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII–3
`Full Shot Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII–3
`Finishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IX
`Electroplating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IX–2
`Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IX–2
`Printing/Hot Stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IX–2
`Machining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IX–3
`Surface Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IX -3
`Appendix I: Physical Properties and Terminology . . . . . . . . . . . . .A1
`Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Brittleness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Friction and Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Isotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Lubricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–2
`Mold Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–3
`Notch Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–3
`Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–3
`Specific Gravity (Relative Density) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–3
`Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–3
`Warpage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–3
`Water Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A1–3
`Appendix II: ISO and ASTM Test Methods . . . . . . . . . . . . . . . . . . .A2
`A2–2
`Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B1
`B1–2
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 5 of 86
`
`

`

`Part I
`
`Welcome!
`
`Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–2
`BASF Product Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–2
`Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3
`Design Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3
`CAD/CAE Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3
`Safety. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 6 of 86
`
`

`

`WELCOME!
`
`Part I: Welcome!
`
`As part of our customer-driven philosophy
`
`of doing business, we have prepared this
`
`guide to give you a general product design
`
`Overview
`Proper design strategy includes:
`a) a concern for safety and performance
`
`b) appropriate material selection and preparation
`for processing to achieve the ultimate functional
`design goal
`
`c) maximum functionality
`
`overview with a focus on plastic part design.
`
`d) minimum material usage
`
`It is our goal to provide all our customers with
`
`the optimum level of technical and design
`
`support during their product development
`
`process.
`
`Our intent in developing this Design Solutions Guide is to
`supply general information for the customer on a variety of
`applications as a precursor to the more narrowly focused
`information which will appear in subsequent manuals.
`Manuals on specific applications will expand upon this
`general guide and address those precise topics. Your
`design success is our primary concern.
`
`Recycling
`Recycling is part of an all-important global drive toward
`reducing contamination, landfill volume and saving natural
`resources. Recycling is good business too, since
`in many cases, it results in reduced product lifestyle
`costs. Recycled plastic materials can often be specified into
`less-demanding applications.
`
`There are some design implications which should be
`considered when using recycled products:
`
`• One should use the same material in assembly
`applications where parts are permanently affixed to
`one another. Mixing material types is acceptable
`for mechanically assembled units which can be
`disassembled.
`
`• Color availability is generally limited.
`
`• Cadmium-free colors are available.
`
`I-2
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 7 of 86
`
`

`

`WELCOME!
`
`Safety
`When designing parts, a factor of safety should be used to
`manage the risk of catastrophic, premature and short-term
`failures. The factor is contingent upon numerous
`conditions, including type of application, temperature, lack
`of material homogeneity, unforeseen overloads,
`unknowns, etc.
`
`Having predetermined load conditions, the introduction of
`a factor will extend the service life of the product
`depending on the value used. The value used for the
`factor is based on the criticality of the function.
`Engineering handbooks cover this subject in more detail.
`
`Nylon has some unique characteristics. For instance,
`in the presence of moisture, it changes its physical
`properties. Strength, stiffness, surface hardness and
`brittleness will decrease while elongation, ductility, impact
`resistance, dimensions and creep will increase. These
`characteristics need to be tempered with the safety factor
`during design. These are reasons for designing with
`information not found on data sheets which are readily
`issued by material suppliers.
`
`Data sheet information is point data only.
`
`We trust you will find this and our other manuals of
`great value. We are always available to assist when
`needed.
`
`I-3
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 8 of 86
`
`

`

`Part II
`
`Design Considerations for Injection
`Molded Parts
`
`Parting Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–2
`Draft Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–3
`Wall Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–3
`Fillets and Radii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–3
`Bosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–4
`Ribs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–4
`Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–5
`Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–5
`Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–5
`Vents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–6
`Potential Knit Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II–6
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 9 of 86
`
`

`

`Design Considerations for Injection Molded Parts
`
`Part II: Design Considerations for Injection Molded Parts
`
`The injection molding process is the most common
`process for producing economical and automated
`thermoplastic parts. It commonly requires the use of steel
`molds, injection molding machinery and auxiliary
`equipment.
`
`To injection mold a part, there are numerous design
`aspects which should be addressed. They are:
`
`Parting Lines
`Parting line consideration depends upon shape and the
`function of the part. If a shaft diameter is used as a bearing
`surface and is going to be injection molded, it cannot
`tolerate a conventional parting line. In this situation,
`incorporating small flats on the shaft at the parting line will
`avoid mismatch and minimal flash conditions (see Figure II-
`2).
`
`1. Parting Lines
`2. Draft Angles
`3. Wall Thickness
`4. Fillets and Radii
`5. Bosses
`6. Ribs
`7. Opening Formations
`8. Shrinkage
`9. Gating
`10. Vents
`11. Potential Knit Lines
`
`Mold Clamp
`System
`
`Nozzle
`
`Heater
`Bands
`
`Hopper
`
`Screw
`
`Motor
`
`Injection
`Piston
`
`Mold
`
`Back Flow
`Check Valve
`
`Screw Travel
`Limit Switches
`
`Motors, Pumps, Valves, Oil Tank,
`Heat Exchangers, etc.
`
`Controls
`
`Parting Line
`
`.005
`
`.005
`
`Figure II-2. Free Running Shaft
`
`The parting line depends on the shape of the part. Figure
`II-3 illustrates an irregular parting line. When
`a parting line involves two mating halves with close
`tolerances, the mold mating steel parts should be
`interlocked for good positioning or take in an allowance for
`possible mismatches. The allowance should be in the
`0.005 in to 0.010 in range relative to the finished dimension.
`
`Figure II-1. Schematic of Reciprocating Screw
`Injection Molding Machine
`
`Parting line
`
`Figure II-3. Irregular Parting Line
`
`II-2
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 10 of 86
`
`

`

`Design Considerations for Injection Molded Parts
`
`Fillets and Radii
`Sharp corners should be avoided. They are the number
`one cause of part failure, stress concentrations, poor flow
`patterns and increased tool wear (see Figure II-5).
`
`Indicate radii at all inside and outside corners to the
`maximum which a design will allow.
`
`Draft Angles
`Draft is necessary for the ejection of the parts from the
`mold. Always design with draft angles. Recommended
`draft angle is normally 1° with 1/2° on ribs. Some draft
`angle is better than none and more draft is desirable if the
`design permits. Where minimum draft is desired, good
`polishing is recommended and feature depth should not
`exceed .5in.
`
`Wall Thickness
`The number one rule for designing plastic parts is uniform
`wall thickness. Uniform walls aid in material flow in the
`mold, reduce the risk of sink marks, molded-in stresses
`and differential shrinkage.
`
`For non-uniform walls, the change in thickness should not
`exceed 15% of the nominal wall (see Figure II-4) and
`should transition gradually.
`
`Corners should always be designed with a minimum fillet
`radius of 50% of the wall thickness and an outer radius of
`150% of the wall thickness to maintain a uniform wall
`thickness (see Figure II-4).
`
`NOT RECOMMENDED
`
`RECOMMENDED
`
`Z
`
`Figure II-4
`
`3Z
`Min.
`
`NOT RECOMMENDED
`
`RECOMMENDED
`
`R = .5T Min.
`
`T
`
`R = 1.5T Min.
`
`Figure II-4
`
`II-3
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 11 of 86
`
`

`

`Design Considerations for Injection Molded Parts
`
`Bosses
`Bosses are usually designed to accept inserts, self-tapping
`screws, drive pins, etc., for use in assembling or mounting
`parts.
`
`Avoid stand-alone bosses wherever possible. Bosses
`should be attached to walls or ribs by means of ribs or
`gussets for structural stability (see Figures II-5 & 6).
`
`NOT RECOMMENDED
`
`RECOMMENDED
`.5T AT BASE
`
`Ribs
`Ribs should be used when needed for stiffness and
`strength or to assist in filling difficult areas.
`
`In structural parts where sink marks are of no concern, rib
`base thickness (t) can be 75–85% of the adjoining wall
`thickness (T).
`
`For appearance parts, where sink marks are objectionable,
`rib base thickness (t) should not exceed 50% of the
`adjoining wall thickness (T) if the outside surface is textured
`and 30% if not textured. Sink marks are also dependent
`on the material.
`
`Figure II-5
`
`T
`
`Rib height should be at least 2.5–3.0 times the wall
`thickness (T) for effective strength.
`Draft should be 1/2° per side nominal.
`
`The O.D. of the boss should ideally be 2.5 times the screw
`diameter for self-tapping screw applications. Thick-walled
`bosses with bases greater than 50% of the wall could form
`visible sink marks. To overcome this condition, a thinner-
`walled boss of 2.0 times screw diameter or less can have
`multiple ribs (see Figure II-6).
`
`NOT RECOMMENDED
`
`RECOMMENDED
`
`Fillets at the base of the rib should be .020 in minimum.
`
`Multiple ribs should be spaced at least 2 times the wall
`thickness apart to reduce molded in stress and problems
`in cooling of the mold (See Figure II-7).
`

`1/2
`
`Min.
`
`2 T Min.
`
`t
`
`Figure II-7
`
`R = .020in
`
`T
`
`SINK
`MARK
`
`.5T
`
`R = .25T
`
`Figure II-6
`
`.7 T
`
`T
`
`2.5-3.0 T Min.
`
`The thickness at the base of the ribs and gussets used to
`stabilize bosses should not exceed 50% of the thickness
`of the adjoining wall.
`
`Boss inside and outside diameters should have 1/2° draft
`per side. See Part V of this guide for additional information
`on bosses for press fits and self-tapping screws.
`
`II-4
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 12 of 86
`
`

`

`Design Considerations for Injection Molded Parts
`
`Openings
`When an opening is desired in a part (such as to
`accommodate a snap-fit) and is to be formed without
`core pulls, a 5° angle mating of the core and cavity is
`required (see Figure II-8).
`
`Gating
`The gate connects the part to the runner system. It is
`usually the thinnest cross-section in the entire system. The
`design of the gate is dependent on tool design, part
`geometry and the material selection.
`
`Gate location, size, type and number must also be
`addressed.
`
`• Gates should be located away from high stress or
`impact areas.
`
`• Gate configuration and location should minimally
`affect part appearance.
`
`• Gate design and location should eliminate secondary
`degating operations, if possible.
`
`• The gate should be located to best fill the part;
`position flow for advantageous glass fiber orientation, if
`present, and locate knit lines in
`low-stress areas.
`
`Refer to the BASF Injection Molding Processing Guide for
`more details.
`
`MOLD
` PULL
`
`5° Min.
`
`“Kissoff” between
`two pieces of steel
`
`Figure II-8
`
`Shrinkage
`Shrinkage is a characteristic of resin which occurs
`during molding. Different resins have different mold
`shrinkages. Crystalline and semi-crystalline materials
`exhibit higher shrinkage than amorphous materials.
`Unreinforced plastics have higher shrinkage than
`reinforced grades. It is important that the grade of material
`be selected before the mold is constructed
`and that the proper mold shrinkage be specified. Basic
`shrinkage data is obtained from ASTM tests or ISO tests.
`
`Material shrinkage can vary with part and tool design:
`thick walls will have higher shrinkage rates than thin,
`variation in section thickness can cause differential
`shrinkage and warpage; flow direction will effect shrinkage,
`particularly with glass fiber-reinforced grades (more when
`perpendicular to flow and less when parallel to flow; see
`Figure VII-14).
`
`Shrinkage is also influenced by process conditions.
`As cavity pressure increases, shrinkage typically
`will decrease. The mold and melt temperature will
`also influence shrinkage. Cooler molds will reduce
`shrinkage while hotter melt temperatures will increase
`shrinkage especially with semi-crystalline materials.
`
`Contact BASF Technical Services for shrinkage
`recommendations on any of our products.
`
`II-5
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 13 of 86
`
`

`

`Design Considerations for Injection Molded Parts
`
`Vents
`Vents are regions in the mold where clearance is used to
`permit trapped air and gases to escape. Lack of proper
`venting can cause excessive injection pressure, short
`shots, burn marks and splay. A cavity can be considered
`adequately vented when plastic can be injected at high
`rates without showing signs of burn marks.
`
`There are many ways to vent a mold. Typically, this is
`done by machining numerous shallow channels at the
`parting line. The dimensions of the channels are
`dependent on the material injected. Contact BASF
`Technical Services for this information. Other ways
`to vent a mold are ejector pins, vent pins and runners.
`Flow analysis can identify areas needing specific venting for
`best results.
`
`Potential Knit Lines
`Knit lines are areas in the molded part where two or more
`flow fronts converge. This area generally has lower strength
`than the other areas of the part. One should anticipate knit
`lines, which show up well in flow analysis programs, and
`direct them away from anticipated high stress areas of the
`part where possible. Knit lines generally form on the
`opposite side of obstacles which are in the way of the
`normal flow path, such as pins that form holes in the part or
`bosses designed to accept inserts.
`
`II-6
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 14 of 86
`
`

`

`Part III
`
`Structural Design
`
`Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–2
`Stress-Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–2
`Normal Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–3
`Shear Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–3
`Torsional Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–4
`Bending Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–5
`Section Properties of Various Cross-Sections. . . . . . . . . . III–6
`Explanation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–6
`Beam Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–6
`Formulas for Common Beams in Bending . . . . . . . . . . . . . III–7
`Formulas for Torsional Deformation and Stress . . . . . . . . . III–8
`I, T and L Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–9
`Formulas for Flat Plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–10
`Flat Plate Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–10
`Pressure Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–11
`Thermal Expansion and Stress. . . . . . . . . . . . . . . . . . . . . . . III–12
`Impact Stresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–13
`Stress Concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–14
`Rib Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III–15
`Design for Equivalent Stiffness . . . . . . . . . . . . . . . . . . . . . . . III–18
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 15 of 86
`
`

`

`Hooke’s Law is the relationship between stress and strain,
`such that strain is proportional to stress and
`the modulus of elasticity (E) or Young’s Modulus is
`the constant of proportionality:
`σ−ε
`E =
`. All plastic materials have a characteristic stress-strain
`curve (see Figure III-2).
`
`Typical Metal
`
`Brittle Plastic
`
`Ductile Plastic
`
`STRESS
`
`Figure III-2. Stress vs. Strain
`
`In order to obtain a stress-strain curve for a resin, a tensile
`test is performed at room temperature. The part is axially
`loaded with the force directed away from the part. The
`stress-strain curve describes the resin’s response to a
`force applied at a predetermined rate (.2–.5in/min).
`The yield point (deviation from the straight line) is
`dependent upon the temperature at which it is measured.
`Plastic materials do not have a distinct
`linear response like that of metals. Temperature and
`humidity can change these curves. Higher temperatures
`and humidity generally reduce stress carrying ability and
`increase strain (deflection).
`
`When a plastic part is subjected to a high enough external
`force, it will exceed its elastic limit (the straight line portion
`of the curve in Figure III-2). Its original size and shape will
`no longer remain constant. The material behaves linearly
`as long as the stress is kept well below the yield point.
`Once the yield point is reached, the material at that point is
`in its plastic (non-linear) range. Exceeding the linear range
`results in some permanent deformation of the material. It
`is only when the part
`has not been stressed beyond its elastic limit that
`Hooke’s Law applies. There are many types of stresses:
`Normal, Shear, Torsional, and Bending. Each will be
`discussed in detail.
`
`Structural Design
`
`Part III: Structural Design
`
`Stress
`
`Stress-Strain
`When a force is applied to a part, the result is a deformed
`part which is both stressed and strained. The stress (σ) in a
`part is determined by the load (F) applied per unit area.
`σ= F_
`A
`Strain (ε) is a change in the part’s length over its original
`length (see Figure III-1).
`
`∆L
`ε =
`L
`Figure III-1. Strain
`
`F
`
`A
`
`F
`
`L
`
`∆L
`
`III-2
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 16 of 86
`
`

`

`Shear Stress
`Shear Stress (τ), like tensile and compressive stress, is
`also expressed as the force applied over a cross-sectional
`area (A).
`
`τ= F_
`A
`
`The difference is that the result of the force being applied is
`a stress which is parallel to the cross-section (see Figure
`III-5).
`
`F
`
`C
`
`F
`
`F
`
`C
`
`F
`
`A
`
`Figure III-5. Shear Stress
`
`Illustration credit: Beer & Johnson, Mechanical Materials.
`
`Structural Design
`
`Normal Stress
`Normal stress (σ) is the ratio of the force applied over a
`given cross-sectional area (A):
`σ= F_
`A
`
`When a load is applied perpendicular (normal) to
`the plane of a surface, it results in a stress normal to
`the cross-section. A normal stress is either tensile or
`compressive, depending on the direction of the force
`applied. When the force is directed away from the part,
`the stress is tensile (see Figure III-3), and when the force is
`directed toward the part, the stress is compressive
`(see Figure III-4).
`
`A
`
`F
`
`F
`
`Figure III-3. Tensile Stress
`
`A
`
`F
`
`F
`
`Figure III-4. Compressive Stress
`
`III-3
`
`AMT Exhibit 2005
`CORPAK v. AMT IPR2007-01990
`Page 17 of 86
`
`

`

`Example for solid circular shaft:
`
`A 5in long solid circular shaft of .5in diameter, is subjected
`to a torque of 8 in–lb. Calculate the shear stress and angle
`of twist.
`
`Using Ultramid•
` 8267 resin (40% mineral/glas

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket