throbber
US008529161B2
`
`a2) United States Patent
`US 8,529,161 B2
`(0) Patent No.:
`Sep. 10, 2013
`(45) Date of Patent:
`Gilbertet al.
`
`(54) MULTILAYER HYDRODYNAMIC SHEATH
`FLOW STRUCTURE
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`
`(75)
`
`Inventors: John R. Gilbert, Brookline, MA (US);
`Manish Deshpande, Canton, MA (US);
`Bernard Bunner, Watertown, MA (US)
`
`(73)
`
`Assignee: Cytonome/ST, LLC, Boston, MA (US)
`
`(*)
`
`Notice:
`
`Subject to any disclaimer, the term ofthis
`patent is extended or adjusted under 35
`US.C. 154(b) by 201 days.
`
`(21) Appl. No.: 13/179,084
`
`(22)
`
`Filed:
`
`Jul. 8, 2011
`
`(65)
`
`Prior Publication Data
`
`US 2012/0009025 Al
`
`Jan. 12, 2012
`
`3/1972 Randolph ww. 250/364
`3,649,829 A *
`3/1985 Haynes........
`. 324/714
`4,503,385 A *
`
`7/1988 Gohde etal. .
`.. 209/3.1
`4,756,427 A *
`7/1989 North, Jr.
`.
`we 356/73
`4,844,610 A *
`
`9/1990 Zold ........
`.. 250/461.1
`4,954,715 A *
`1/1991 Ohkietal.
`oe. 356/246
`4,983,038 A *
`
`.
`7/1991 North, Jr.
`we 356/73
`5,030,002 A *
`.
`8/1991 North, Jr.
`we 356/72
`5,040,890 A *
`
`5/1994 Olson etal.
`. 356/634
`..
`§,311,290 A *
`5/1996 Dorian etal.
`. 435/174
`§,521,079 A *
`
`9/1998 Edensetal. wu . 356/246
`5,808,737 A *
`
`5/1999 Butler etal.
`.
`. 435/297.2
`5,902,745 A *
`
`6,159,739 A * 12/2000 Weiglet al.
`we, 436/52
`4/2002 Nagat wn.eee 422/73
`6,365,106 BL*
`
`(Continued)
`FOREIGN PATENT DOCUMENTS
`0070080 Al
`11/2000
`03078972 Al
`9/2003
`
`WO
`WO
`
`Related U.S. Application Data
`
`(63)
`
`(60)
`
`(1)
`
`(52)
`
`Continuation of application No. 12/610,753, filed on
`Nov. 2, 2009. now Pat. No. 7,997,831, which is a
`continuation of application No. 11/998,557, filed on
`Nov. 30, 2007, now Pat. No. 7,611,309, which is a
`continuation of application No. 10/979,848, filed on
`Nov.1, 2004, now Pat. No. 7,311,476.
`
`Provisional application No. 60/516,033, filed on Oct.
`30, 2003.
`
`Int. Cl.
`B65G 51/00
`US. Cl.
`USPC wee 406/198; 406/86; 406/94; 406/195;
`356/246; 435/174
`
`(2006.01)
`
`(58) Field of Classification Search
`USPC wee 406/86, 93, 94, 195, 198; 356/246;
`435/174
`See application file for complete search history.
`
`Primary Examiner — Joseph A Dillon,Jr.
`(74) Attorney, Agent, or Firm — McCarter & English, LLP;
`David R. Burns
`
`ABSTRACT
`(57)
`A microfabricated sheath flow structure for producing a
`sheath flow includes a primary sheath flow channel for con-
`veying a sheath fluid, a sample inletfor injecting a sample into
`the sheath fluid in the primary sheath flow channel, a primary
`focusing region for focusing the sample within the sheath
`fluid anda secondary focusing region for providing additional
`focusing of the sample within the sheath fluid. The secondary
`focusing region may be formedbya flow channelintersecting
`the primary sheath flow channel to inject additional sheath
`fluid into the primary sheath flow channel from a selected
`direction. A sheath flow system may comprise a plurality of
`sheath flow structures operating in parallel on a microfluidic
`chip.
`
`20 Claims, 12 Drawing Sheets
`
`
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 1
`
`

`

`US 8,529,161 B2
`
`Page 2
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`.
`Oeeo BI oot puny “a sestvnssertenen 356/246
`6's37501 B1® 3/2003 Holletal..
`493/537
`6576194 BL®
`6/2003 Holldal 499/81
`6592821 BL
`7/2003 Wadaetal.
`....escse 356/246
`6,674,525 B2*
`1/2004 Bardell et al.
`
`3/2004 Mavliev .........
`. 356/336
`6,710,874 B2*
`7,116,407 B2* 10/2006 Hansen etal.
`356/73
`1/2007 Bohmetal. wc 435/325
`7,157,274 B2*
`7,223,371 B2
`5/2007 Hayengaetal.
`7,311,476 B2
`12/2007 Gilbert etal.
`7,355,696 B2*
`4/2008 Muethetal. o......c 356/244
`
`......ccccee 494/36
`7,402,131 B2*
`7/2008 Muethet al.
`7,442,339 B2* 10/2008 Sundararajan et al.
`.... 422/82.05
`
`7,452,726 B2* 11/2008 Chouetal. oo. 436/63
`7,553,453 B2*
`6/2009 Guetal. icc 422/537
`7,611,309 B2
`11/2009 Gilbert etal.
`......... 436/63
`7,638,339 B2* 12/2009 Sundararajan etal.
`
`........ 422/73
`7,641,856 B2*
`1/2010 Padmanabhan etal.
`7,751,040 B2*
`7/2010 Chang et al. 1... 356/246
`7,760,351 B2*
`7/2010 Cox etal. cece 356/246
`8/2010 RiCh weccssscseessssesssneees 422/81
`7,776,268 B2*
`
`7,802,686 B2™ 9/2010 Takagi et al...
`209/172.5
`
`7,833,421 B2™ 11/2010 Huymann .....
`. 210/748.01
`12/2010 Sundararajan
`«1.0.0... 422/50
`7,850,907 B2*
`8/2011 Tabata et al... 436/174
`7,993,934 B2*
`7,997,831 B2
`8/2011 Gilbert et al.
`8,263,387 B2*
`9/2012 Pagano etal. oe 435/283.1
`8,383,043 B2*
`2/2013 Padmanabhan et al.
`..... 422/68.1
`
`* cited by examiner
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:21)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 2
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 1 of 12
`
`US8,529,161 B2
`
`
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:22)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 3
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 2 of 12
`
`US8,529,161 B2
`
`
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:23)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 4
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 3 of 12
`
`US8,529,161 B2
`
`Fig.3
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:24)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 5
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 4 of 12
`
`US8,529,161 B2
`
`12a
`
`
`
`
`~“.
`
`~e,
`~
`\
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:25)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 6
`
`
`KARR KRWi
`
`
`ox Nope
`
`so
`
`%
`“se
`‘
`*
`A
`
`“ ™,
`
`:
`
`“
`
`,
`
`
`
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 5 of 12
`
`US8,529,161 B2
`
`
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:26)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 7
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 6 of 12
`
`US8,529,161 B2
`
`
`
`
`
`
`preersel ey
`Ioooes,
`Bh mene=
`
`noes
`
`
`St
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:27)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 8
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 7 of 12
`
`US8,529,161 B2
`
`78
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:28)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 9
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 8 of 12
`
`US8,529,161 B2
`
`
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:19)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 10
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 9 of 12
`
`US8,529,161 B2
`
`zo
`
`eae
`
`searhsneenbemnenensmsoreneas
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:20)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 11
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 10 of 12
`
`US 8,529,161 B2
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:21)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 12
`
`0[‘
`
`SL
`
`UROL
`
`V6‘Sl
`
`
`
`eotecccnncennon(HYBG
`
`O0ESe
`
`
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet 11 of 12
`
`US 8,529,161 B2
`
`tnttlose
`
`[prog—"invent—1{ABELwomen§JSUMIYTS
`
`auacone72UBIERESSHOBUELAcom
`omem
`came5FOULscans
`
`
`
`
`
`;gan
`
`FOLGELLLQOLLG)96|eSeieBeJe0ieiehiiaHWeoeoeaoFueai
`
`LT8lg
`
`092
`
`sz
`
`Log
`
`set
`
`Logi
`
`Sz
`
`Loot
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:22)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 13
`
`
`
`
`

`

`U.S. Patent
`
`Sep. 10, 2013
`
`Sheet12 of 12
`
`US8,529,161 B2
`
`CoreSige
`
`tum}
`
`Ghannel
`
`Fig. 12
`
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:23)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 14
`
`

`

`US 8,529,161 B2
`
`1
`MULTILAYER HYDRODYNAMIC SHEATH
`FLOW STRUCTURE
`
`RELATED APPLICATIONS
`
`The present invention is a continuation application of U.S.
`patent application Ser. No. 12/610,753, filed Nov. 2, 2009 and
`is a continuation application of U.S. patent application Ser.
`No. 11/998,557, filed Nov. 30, 2007, which, in turn, is a
`continuation application of U.S. patent application Ser. No.
`10/979,848, now U.S. Pat. No. 7,311,476, entitled, “Multi-
`layer Hydrodynamic Sheath Flow Structure” filed Nov. 1,
`2004, which claimspriority to U.S. Provisional Application
`Ser. No. 60/516,033, filed Oct. 30, 2003, the entire content of
`each application is herein incorporated by reference in their
`entirety.
`
`FIELD OF THE INVENTION
`
`The present invention relates to a system and method for
`producing a sheath flow in a flow channel. Moreparticularly,
`the present invention relates to a system and method for
`producing a sheath flow in a microchannelin a microfluidic
`device.
`
`BACKGROUNDOF THE INVENTION
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`2
`sheath flow channel and a sample inlet for introducing a
`sample to the structure. A sample is introducedto the sheath
`fluid in the primary sheath flow channel via the sample inlet
`and suspended therein. The primary sheath flow channel may
`branch at a location upstream ofa sample inlet to create a flow
`in an upper sheath channel. The primary sheath flow channel
`formsa primary focusing region for accelerating sheath fluid
`in the vicinity of a sample channel connected to the sample
`inlet. The sample channel provides the injected sample to the
`accelerating region, such that the particles are confined in the
`sheath fluid. The primary focusing region further focuses the
`sheath fluid around the sample. The sheath flow then flows to
`a secondary sheath region downstream ofthe primary accel-
`erating region connects the upper sheath channelto the pri-
`mary sheath flow channel to further focus the sample in the
`sheath fluid. The resulting sheath flow forms a focused core of
`sample within a channel.
`The sheath flow structure may be parallelized to provide a
`plurality of sheath flow structures operating in parallel in a
`single system. The parallelized system may have a single
`sample inlet that branches into a plurality of sample channels
`to inject sample into each primary sheath flow channelof the
`system. The sample inlet may be provided upstream ofthe
`sheath inlet. Alternatively, the parallelized system may have
`multiple sample inlets. The parallelized sheath flow structure
`may have a single sheath fluid inlet for providing sheath fluid
`to all of the primary sheath flow channels and/or secondary
`sheath channels, or multiple sheath fluid inlets for separately
`Sheath flow is a particular type of laminar flow in which
`providing sheath fluid to the primary sheath flow channels
`onelayer offluid,or a particle, is surrounded by another layer
`and or secondary sheath channels.
`of fluid on more than one side. The process of confining a
`Accordingtoafirst aspect of the invention, a sheath flow
`particle stream in a fluid is referred to as a ‘sheath flow’
`structure for suspending a particle in a sheath fluid is pro-
`configuration. For example, in sheath flow, a sheath fluid may
`vided. The sheath flow structure comprises a primary sheath
`envelop and pinch a sample fluid containing a number of
`flow channel for conveying a sheath fluid, a sample inlet for
`particles. The flow of the sheath fluid containing particles
`injecting a particle into the sheath fluid conveyed through the
`suspended therein may be narrowed almostto the outer diam-
`primary sheath flow channel, a primary focusing region for
`eter of particles in the center ofthe sheath fluid. Theresulting
`sheath flow flows in a laminar state within anorifice or chan-
`focusing the sheath fluid aroundtheparticle in atleasta first
`direction and a secondary focusing region provided down-
`nel so that the particles are lined and accurately pass through
`stream of the primary focusing region. The secondary focus-
`the orifice or channel in a single file row.
`ing region focuses the sheath fluid aroundtheparticle in at
`Sheath flow is used in many applications whereit is pref-
`least a second direction different from the first direction.
`erable to protect particles or fluids by a layer of sheath fluid,
`for example in applications wherein it is necessary to protect
`particles from air. For example,particle sorting systems, flow
`cytometers and other systems for analyzing a sample, par-
`ticles to be sorted or analyzedare usually supplied to a mea-
`surement position in a central fluid current, which is sur-
`rounded by a particle free liquid sheath.
`Sheath flow is useful because it can position particles with
`respect to sensors or other components and preventparticles
`in the center fluid, which is surrounded by the sheath fluid,
`from touching the sides of the flow channel and thereby
`prevents clogging of the channel. Sheath flow allows for
`faster flow velocities and higher throughput of sample mate-
`rial. Faster flow velocity is possible without shredding cells in
`the centerfluid because the sheath fluid protects the cells from
`shear forcesat the walls of the flow channel.
`Conventional devices that have been employed to imple-
`ment sheath flow have relatively complex designs and are
`relatively difficult to fabricate.
`
`50
`
`55
`
`60
`
`SUMMARYOF THE INVENTION
`
`The present invention provides a microfabricated sheath
`flow structure for producing a sheath flow fora particle sort-
`ing system or other microfluidic system. The sheath flow
`structure may comprise a two-layer construction including a
`sheath inlet for introducing a sheath fluid into a primary
`
`65
`
`Accordingto anotheraspect ofthe invention, a sheath flow
`structure for suspending a particle in a sheath fluid comprises
`a first substrate layer including a primary sheath flow channel
`for conveying a sheath fluid and a second substrate layer
`stacked onthefirst substrate layer. The second substrate layer
`includesa first sheath inlet for introducing a sheathfluid to the
`primary sheath flow channel, a sample inlet downstream of
`the first sheath inlet for providing the particle to the primary
`sheath flow channel in a primary focusing region to form a
`sheath flow including the particle surrounded by the sheath
`fluid on at least one side. A first secondary sheath channelis
`formedin thefirst or second substrate layer in communication
`with the primary sheath flow channel. The first secondary
`sheath channel diverts a portion of said sheath fluid from the
`primary sheath flow channel.
`Accordingto still another aspect of the invention, a focus-
`ing region for focusing a particle suspended in a sheath fluid
`ina channelofa sheath flow device is provided. The focusing
`region comprises a primary flow channel for conveying a
`particle suspendedin a sheath fluid anda first secondary flow
`channel
`intersecting the primary flow path for injecting
`sheath fluid into the primary flow channel from above the
`particle to focus the particle away from a top wall of the
`primary flow channel.
`According to another aspect of the invention, a method of
`surrounding a particle on at least two sides by a sheath fluid,
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:24)
`ABS Global, Inc. and Genus ple — Ex. 1001, p. 15
`
`

`

`US 8,529,161 B2
`
`4
`FIG. 11 is a histogram superimposing the fluorescence
`measurements from all eight primary sheath flow channels in
`the system of FIGS. 8A-8B.
`FIG. 12 illustrates the distribution of core sizes for the
`
`sheath flows producedin the primary sheath flow channels in
`the system of FIGS. 8A-8B.
`
`DETAILED DESCRIPTION OF THE INVENTION
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`The present invention provides a system and method for
`producing a sheath flow in a flow channel, such as a micro-
`channel. The present invention will be described belowrela-
`tive to illustrative embodiments. Those skilled in the art will
`appreciate that the present invention may be implemented in
`a numberofdifferent applications and embodiments andis
`not specifically limited in its application to the particular
`embodiments depicted herein.
`As used herein, the term “microfluidic” refers to a system
`or device for handling, processing, ejecting and/or analyzing
`a fluid sample includingat least one channel having micros-
`cale dimensions.
`The terms “channel” and “flow channel” as used herein
`refers to a pathway formedin or through a medium that allows
`for movementoffluids, such as liquids and gases. A “micro-
`channel”refers to a channelin the microfluidic system pref-
`erably have cross-sectional dimensionsin the range between
`about 1.0 um and about 500 um, preferably between about 25
`um and about 250 um and most preferably between about 50
`uum and about 150 um. Oneof ordinary skill in the art will be
`able to determine an appropriate volume and length of the
`flow channel. The ranges are intended to include the above-
`recited values as upperor lower limits. The flow channel can
`have any selected shape or arrangement, examples of which
`include a linear or non-linear configuration and a U-shaped
`configuration.
`FIG.1 illustrates a microfabricated sheath flow structure
`
`3
`comprises the steps of injecting a sheath fluid into a primary
`sheath flow channel diverting a portionofthe sheath fluid into
`a branching sheath channel, injecting the particle into the
`primary sheath flow channel to suspend the particle in the
`sheath fluid to form a sheath flow and injecting the diverted
`portion of the sheath fluid into the sheath flow to focus the
`particle within the sheath fluid.
`According to another aspect of the invention, a method of
`surrounding a particle on at least two sides by a sheathfluid,
`comprises the steps of conveying a sheath fluid through a
`primary sheath flow channel, injecting a particle into the
`sheath fluid conveyed through the primary sheath flow chan-
`nel, focusing the sheath fluid aroundtheparticle in at least a
`first direction and focusing the sheath fluid aroundthe particle
`in at least a seconddirection different from thefirst direction.
`
`According to still another aspect, a sheath flow system is
`provided which comprises a plurality of a sheath flow struc-
`tures operating in parallel on a substrate. Each sheath flow
`structure comprises a primary sheath flow channel for con-
`veying a sheath fluid, a sample channel for injectinga particle
`into the sheath fluid conveyed through the primary sheath
`flow channel, a primary focusing region for focusing the
`sheath fluid aroundtheparticle in at least a first direction and
`a secondary focusing region provided downstream of the
`primary focusing region for focusing the sheath fluid around
`the particle in at least a second direction different from the
`first direction.
`
`BRIEF DESCRIPTION OF THE FIGURES
`
`FIG. 1 illustrates a sheath flow structure according to an
`illustrative embodimentof the invention.
`FIGS. 2A-2B illustrate a multilayer sheath flow structure
`according to an illustrative embodimentofthe invention.
`FIG. 2C illustrates is a cross sectional view through the
`centerline of the sheath flow structure of FIG. 2A, showing
`the path of an injected particle throughthe structure.
`FIG.3 illustrates the path of a particle through the multi-
`layer sheath flow structure of FIGS. 2A-2C.
`FIG. 4A illustrates the flow profile within the primary
`focusing region and the secondary focusing region during
`operation of the sheath flow structure of FIGS. 2A-2C.
`FIGS. 4B-4Dare detailed cross-sectional views ofthe flow
`
`profiles within the primary sheath flow channelat different
`stages during operation of the sheath flow structure of FIGS.
`2A-2C,
`
`FIGS. 5A-5Cillustrates a multilayer sheath flow structure
`according to an alternate embodimentofthe invention, where
`a sample is injected directly into a focusing region.
`FIG. 6 is a perspective view of a sheath flow structure
`according to another embodimentof the invention.
`FIGS. 7A-7Billustrate a sheath flow structure including a
`sample inlet provided upstream of a sheath flow inlet accord-
`ing to another embodimentof the invention.
`FIGS. 8A-8B illustrate a parallelized sheath flow system
`for producing sheath flow in multiple parallel channels
`according to another embodimentof the invention.
`FIG. 9A is a fluorescent microscope image of a primary
`sheath flow channel downstream from the secondary focusing
`region in the parallelized sheath flow system of FIGS. 8A and
`8B.
`
`FIG.9Bis fluorescent microscope image taken of a sample
`in the primary sheath flow channel of FIG. 9A after focusing
`of the sample.
`FIG. 10 is a histogram diagramming the measured amount
`of fluorescence in the channel observed in FIG. 9B across
`axis-A-A-.
`
`40
`
`45
`
`10 according to an illustrative embodimentof the invention.
`The sheath flow structure 10 may be used to suspendparticles
`in a sheath fluid flow stream for use in a particle sorting
`system or other microfluidic system. The sheath flow struc-
`ture 10 includes a primary sheath flow channel 12 for con-
`veying sheath fluid through the sheath flow structure 10. A
`flow maybe induced through the primary sheath flow channel
`12 through any means knownintheart, including one or more
`pumps. The sheath flow structure 10 further includes a sample
`inlet 15 for introducing a sample, such as one or more par-
`ticles, to the sheath fluid flowing through the primary sheath
`flow channel 12, so that the sample is surrounded by the
`flowing sheath fluid. The sample inlet 15 may comprise a
`channel, reservoir or other suitable component in communi-
`cation with the primary sheath flow channel 12.
`According to one embodiment, the microfabricated sheath
`flow structure is formed on a microfluidic chip andthe pri-
`mary sheath flow channel and other flow channels formed
`therein are microchannels having microscale dimensions.
`However, one skilled in the art will recognize that the sheath
`flow structure mayalternatively have larger dimensions and
`be formed using flow channels having cross-sectional dimen-
`sions greater than 500 jun. The illustrative sheath flow struc-
`ture can be fabricated in glass, plastics, metals or any other
`suitable material using microfabrication, injection molding/
`stamping, machiningor other suitable fabrication technique.
`After introduction of the sample into the sheath fluid, a
`primary focusing region 17 accelerates and focuses the sheath
`fluid around the injected sample. Preferably, the primary
`focusing region 17 focuses the sheath fluid away from the
`sides and bottom of the sample. A secondary focusing region
`(cid:36)(cid:37)(cid:54)(cid:3)(cid:42)(cid:79)(cid:82)(cid:69)(cid:68)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:42)(cid:72)(cid:81)(cid:88)(cid:86)(cid:3)(cid:83)(cid:79)(cid:70)(cid:3)(cid:177)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:19)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:25)
`ABS Global, Inc. and Genusple — Ex. 1001, p. 16
`
`50
`
`55
`
`60
`
`65
`
`

`

`US 8,529,161 B2
`
`10
`
`6
`5
`the sample particles are suspendedin the sheath fluid. Alter-
`19, disposed downstream of the primary focusing region 17
`natively, each of the subchannels 12a, 125 may have a sepa-
`along the primary sheath flow channel, provides additional
`rate inlet, and the separated subchannels may convergein the
`focusing of the sheath fluid around the sample afterthe pri-
`primary focusing region 17.
`mary focusing region performs the primary focusing. Prefer-
`In the primary focusing region 17, the sample particles
`ably, the secondary focusing region 19 focuses the sample in
`injected into the sheath flow are focused away from the sides
`a vertical direction from above the sample.
`and bottom by the sheath flow. As shown, the outlet of the
`Accordingto an illustrative embodiment, the combination
`sample flow channel 16 is in substantially the middle of the
`ofthe primary focusing region 17 and the secondary focusing
`primary focusing region 17, between the outlets of the sub-
`region 19 provides three-dimensional focusing of the sheath
`channels 12a, 124, such that the particles are surrounded by
`fluid around the sample. The resulting sheath flow is sample-
`sheath fluid flowing from the subchannels on both sides ofthe
`focused hydrodynamically on all sides of the sample away
`injected particles and centralized within the sheath fluid flow.
`from the walls ofthe primary sheath flow channel12, with the
`The sheath flow channel 12 in the primary focusing region
`sample being suspendedas a focused core in the approximate
`center of the channel.
`thentapers fromarelatively wide width W atthe outlets ofthe
`15
`subchannels 12a, 124 to a smaller width W'to force the sheath
`The secondary focusing region 19 passes the resulting
`sheath flow in the primary sheath flow channel 12to a particle
`fluid around the suspended sample particles.
`sorting system or other microfluidic system or component in
`After suspension of the sample particles, the sheath flow
`fluid communication with an outlet 19a of the secondary
`then flows from the primary focusing region 17 through the
`focusing region 19. The microfluidic system for receiving the
`sheath flow channel 12, which forms the secondary focusing
`sheath flow may be formed on the samechip or substrate as
`region 19 downstream of the primary focusing region 17.
`the sheath flow structure or a different substrate in fluid com-
`According to an illustrative embodiment,
`the secondary
`munication with the sheath flow structure 10.
`focusing region 19 utilizes sheath fluid to provide secondary
`According to one embodiment, the sheath flow structure
`focusing ofthe sheath flow in a vertical direction after the
`may be formed using a plurality of stacked layers. For
`initial focusing provided by the primary focusing region 17.
`example, FIGS. 2A-2C illustrate a two-layer sheath flow
`For example, as shown in FIGS. 2A-2C,the secondary focus-
`structure 100 for producing sheath flow according to one
`ing region 19 may be formed by secondary sheath channels
`embodimentof the invention. In FIGS. 1 and 2A-2C, similar
`13a, 134 that intersect the primary sheath flow channel 12 in
`parts are indicated by equivalent reference numbers. The
`the secondary focusing region 19. The secondary sheath
`illustrated sheath flow structure 100 has a two-layer construc-
`channels 13a, 136 flow and inject sheath fluid into the primary
`tion including a bottom substrate layer 105 and atop substrate
`sheath flow channel 12 to focus the sample within the sheath
`fluid.
`layer 10a stacked on the bottom substrate layer 105. Those of
`As shown,the inlets to the secondary sheath channels 13a,
`ordinary skill will recognize that any suitable number of
`138, respectively, may intersect the primary sheath flow chan-
`layers can be used. The top substrate layer 10a may have
`nel 12 in an intermediate upstream region between the sheath
`formedtherein a sheath inlet 11 for introducing a sheath fluid
`inlet 11 and the outlet ofthe sample channel 16. Branch points
`to the primary sheath flow channel 12 and a sample inlet 15
`24a, 246 connect each of the secondary sheath channels 13a,
`for introducing a sample to the sheath flow structure. The
`136 to the primary channel12 to divert a portionofthe sheath
`primary sheath flow channel 12 for conveying the sheath fluid
`fluid from the primary sheath flow channel to each of the
`throughthe structure is formed in the bottom layer 106 of the
`secondary sheath channels 13a, 135,
`respectively. The
`two-layer sheath flow structure 100. As shown, the sample
`diverted sheath flow then flows to the secondary focusing
`inlet 15 connects to a sample channel 16, which intersects the
`region 19, wherethe outlets of the secondary sheath channels
`primary sheath flow channel 12 downstream of the sheath
`13a, 136 intersect the primary sheath flow channel 12. Pref-
`inlet 11 to inject a sample, such as a stream ofparticles, into
`erably, the outlets of both secondary sheath channels extend
`a sheath fluid flowing in the primary sheath flow channel 12.
`above and substantially parallel to the fluid flow in the pri-
`While the illustrative two-layer sheath flow structure 100
`mary sheath flow channel 12 in the vicinity of the secondary
`injects the sheath flow and sample particles from a top surface
`focusing region 19. In this manner, secondary sheath fluid
`of the structure, one skilled in the art will recognize that the
`from the secondary sheath channels 13a, 134 enters the pri-
`sheath inlet 11 and sample inlet 15 can be provided in any
`mary sheath flow channel 12 from the sameside as the
`suitable location and have anysuitable size and configuration.
`sample, compressing the suspended sample away from the
`The primary focusing region 17 in the two-layer sheath
`flow structure 100 of FIGS. 2A-2C maybe formedbytaper-
`upper wall of the channel 12 (1.e., in the otherdirection from
`
`ing the primary sheath flow channel 12 fromarelatively wide the main sheath of fluid aroundthe particle).
`width W to a smaller width W' downstream ofthe intersection
`In the illustrative embodiment, branch points 24a, 245
`ext

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket