`the attached English document is an accurate translation of the Japanese document attached entitled
`Suzuki JPH7—322566. I understand that willful false statements and the like are punishable by fine or
`imprisonment, or both, under Section 1001 of Title ]8 ofthe United States Code.
`
`
`
`Michael O’Keeffe
`
`10 January 2018
`
`LANGUAGE AND TECHNOLOGY SOLUT:ONS FOR GLOBAL BUSINESS
`
`F 212.689.1059 1 WWW.TRAN5PERFECT.COM
`THREE PARK AVENUE, 39TH FLOOR, NEW YORK, NY 10016 I T 212.689.5555 |
`OFFICES IN 92 CITIES WORLDWIDE
`
`Am. Honda V. IV 11 - IPR2018-00349
`
`PET_HONDA_1005—0001
`
`Am. Honda v. IV II - IPR2018-00349
`PET_HONDA_1005-0001
`
`
`
`
`
`(19) The Japanese Patent Office (JP)
`
`
`
`
`
`
`(51) Int. Cl.6
`
`(12) PATENT APPLICATION LAID-OPEN PUBLICATION (A)
`(11) Laid-Open Publication Number:
`No. H07-322566
`(43) Laid-Open Date: December 8, 1995
`
`
`
`ID Code
`
`
`
`Filing No. FI
`
`
`
`
`
` Technical Display
`
`(21) Application Number: 06-134932
`(22) Filing Date: May 24, 1994
`
`
`
`
`Request for Examination (not filed) Number of Claims: 1 (total 3 pages)
`(71) Applicant: 000006622 KK Yasukawa Denki,
`2-1
`Kurosakishiroishi, Yahatanishi-ku, Kitakyushu, Japan
`(72) Inventor: SUZUKI Tsuruji, c/o KK Yasukawa Denki, 2-1
`Kurosakishiroishi, Yahatanishi-ku, Kitakyushu, Japan
`(72) Inventor : YOSHIDA MIKIO, c/o KK Yasukawa Denki, 2-1
`Kurosakishiroishi, Yahatanishi-ku, Kitakyushu, Japan
`(74) Patent Attorney NISHIMURA Masao
`
`
`
`(54) [Title of Invention] METHOD OF MANUFACTURING COOLING DEVICE
`
`
`(57) [Abstract]
`[Object] Provided is a method of manufacturing a cooling device
`that allows a cooling tube to be fitted onto a stator of a servo
`motor or the like, and molded in resin so that the contact area
`between the two parts can be maximized without creating a large
`gap between them.
`[Structure] A spiral groove having a same diameter as a flexible,
`highly thermally conductive and thin-walled cooling tube is
`formed on the outer periphery of the stator, and the cooling tube is
`placed in the groove in a spiral configuration, and the outer
`periphery of the stator and tube is molded in resin while fluid
`pressure is applied to the interior of the cooling tube.
`
`1 stator
`
`3 cooling tube
`4 molding resin
`
`2 coil
`
`
`
`
`
`Am. Honda v. IV II - IPR2018-00349
`PET_HONDA_1005-0002
`
`
`
`[Claims]
`[Claim 1] A method of manufacturing a cooling device,
`comprising: forming a spiral groove around an outer periphery of a
`stator; winding a flexible and highly thermally conductive cooling
`tube is wound into the groove, the groove having a same cross
`sectional shape as the cooling tube; and performing an insert
`molding of thermoplastic resin so as to integrally join the outer
`periphery of the stator with the cooling tube in a mold die
`assembly surrounding the outer periphery of the stator and the
`cooling tube while applying liquid or gaseous pressure into the
`cooling tube in such a manner that a wall of the cooling tube
`adequately expands.
`[Detailed Description of the Invention]
`[0001]
`[Technical Field] The present invention relates to a method of
`manufacturing a cooling device for a compact servo motor
`configured to perform a precise rotation control that can prevent
`servo control errors which could be caused by thermal expansion
`owing to an internal heat generation.
`[0002]
`[Prior Art] Conventionally, it has been practiced to fit a cooling
`tube onto an outer periphery of a stator by molding resin.
`[0003]
`[Task to be Accomplished by the Invention] However, the prior art
`is unable to provide a high cooling efficiency because the contract
`area between the stator and the cooling tube is limited, and the
`contact pressure between the stator and the cooling tube cannot be
`controlled. Once the cooling tube and the outer periphery of the
`stator are integrally molded in resin, the two parts are permanently
`joined to each other, and there is nothing that can be done to
`improve the cooling efficiency. In view of such problems of the
`prior art, a primary object of the present invention is to provide a
`method of manufacturing an ideal cooling device.
`[0004]
`[Means to Accomplish the Task] To accomplish such a task, the
`method of manufacturing a cooling device according to the present
`invention
`(1) maximizes the contact area between the stator outer periphery
`and the cooling tube, and
`(2) maximizes the contact pressure between the two parts by
`applying pressure to the interior of the cooling tube that contacts
`the stator outer periphery.
`More specifically, the present invention provides a method of
`manufacturing a cooling device, comprising the steps of: forming
`a spiral groove around an outer periphery of a stator; winding a
`flexible and highly thermally conductive cooling tube by placing
`the cooling tube in the groove, the groove having a same cross
`sectional shape as the cooling tube; and performing an insert
`molding of thermoplastic resin so as to integrally join the outer
`periphery of the stator with the cooling tube in a mold die
`assembly surrounding the outer periphery of the stator and the
`cooling tube while applying liquid or gaseous pressure into the
`cooling tube in such a manner that the wall of the cooling tube
`adequately expands.
`[0005]
`[Effect] Owing to such a structure of the method of manufacturing
`a cooling device according to the present invention, the contact
`area between the stator outer periphery and the cooling tube can be
`maximized, and no gap is created between the stator outer
`periphery and the cooling tube so that the Joule heat generated
`within the stator can be expelled away from the stator via the
`cooling tube in a highly efficient manner.
`[0006]
`
`(2)
`
`
`Patent Application Kokai H07-322566
`
`[Embodiment] An embodiment of the present invention is
`described in the following with reference to the appended
`drawings. Figure 1 is a sectional side view of a stator of a servo
`motor fitted with a cooling tube according to the embodiment of
`the present invention. Numeral 1 denotes a stator core formed by
`stacking laminates made of electromagnetic steel, numeral 2
`denotes a coil wound around the stator to conduct a field current,
`and numeral 3 denotes a cooling tube made of flexible and highly
`thermally conductive metallic material and having a circular cross
`section in the illustrated embodiment. Numeral 4 denotes molded
`thermoplastic resin. In all of the drawings, like numerals denote
`like or corresponding parts. Figure 2 is a side view showing a
`stator having a spiral groove for receiving the cooling tube 3
`formed on an outer periphery thereof according to the embodiment
`of the present invention. The outer periphery of the stator is
`formed with a groove having a same cross sectional shape as the
`cooling tube, and end parts of the coil 2 of the stator 1 can be seen
`on the respective end surfaces of the stator in the embodiment of
`the present invention. Figure 3 is a side view showing the cooling
`tube fitted into the spiral groove so as to be wound around the
`outer periphery of the stator 1 in a spiral configuration. The
`present invention is characterized in integrally molding the cooling
`tube and the stator outer periphery in resin. Figure 4 is a sectional
`side view illustrating the method of manufacturing a cooling
`device according to the embodiment of the present invention.
`More specifically, in Figure 4, K1a denotes a lower mold, and K2a
`denotes an upper mold. The lower mold K1a includes a gate K1b, a
`cooling pipe insertion portion K1c configured to form a hole for
`receiving the cooling tube in cooperation with a part K2c which
`will be discussed later, a mandrel K1d or a bolt fastening portion
`for positioning the stator 1 on the lower mold K1a. The upper mold
`K2a includes a sprue K2b, and a cooling pipe insertion portion K2c
`configured to form the hole for receiving the cooling tube in
`cooperation with the cooling pipe insertion portion K1c mentioned
`earlier. Following such preparatory steps, a fluid pressure
`consisting of a gaseous or liquid pressure is applied from an end B
`of the cooling tube 3. The other end of the cooling tube 3 is closed
`although not shown in the drawings. The cooling tube 3 may
`consist of a thin-walled cylindrical tube made of flexible and
`highly thermally conductive metallic material such as copper and
`brass. The cooling tube 3 is interposed between the stator 1 and the
`lower mold K1a, and the fluid pressure such as air pressure and
`liquid pressure is applied to the inside of the cooling tube 3 so that
`the cooling tube 3 is made conformal to the surface of the groove
`on the stator outer periphery, and is made to contact surface of the
`groove on the stator outer periphery with an adequate surface area
`without any gap. Resin is then filled into the upper mold K2a from
`a part A. The fluid pressure applied to the part B is maintained
`until the resin has been filled into the cavity of the mold, and
`solidified. Once the resin has solidified, the lower mold K1a and
`the upper mold K2a are separated from each other, and the stator
`integrally fitted with the cooling pipe by resin molding is obtained.
`[0007]
`[Effect of the Invention] As described above, according to the
`present invention, an adequate contact surface area can be ensured
`between the stator and the cooling tube, and a contact pressure can
`be applied to the cooling tube so that no gap is created between the
`cooling tube and the stator, and the stator can be cooled with a
`high efficiency.
`[Brief Description of the Drawings]
`Figure 1 is a sectional side view of a stator of a servo motor fitted
`with a cooling tube according to an embodiment of the present
`invention;
`Figure 2 is a side view showing a stator having a spiral groove for
`receiving the cooling tube formed on an outer periphery thereof
`according to the embodiment of the present invention;
`
`
`
`
`
`Am. Honda v. IV II - IPR2018-00349
`PET_HONDA_1005-0003
`
`
`
`Figure 3 is a side view showing the cooling tube fitted into the
`spiral groove so as to be wound around the outer periphery of the
`stator in a spiral configuration; and
`Figure 4 is a sectional side view illustrating the method of
`manufacturing a cooling device according to the embodiment of
`the present invention.
`[Glossary of Terms]
`1
`stator
`2
`coil
`3
`cooling tube
`
`
`
`(3)
`
`
`4
`K1a
`K1b
`K1c
`K2a
`K1d
`K2b
`K2c
`
`
`Patent Application Kokai H07-322566
`
`molding resin
`lower mold
`gate
`cooling pipe insertion portion
`upper mold
`mandrel for positioning the stator
`sprue
`cooling pipe insertion portion
`
`Figure 1
`
`Figure 2
`
`Figure 3
`
`1 stator
`
`3 cooling tube
`4 molding resin
`
`2 coil
`
`Figure 4
`
`A molding resin inlet
`K2b sprue K2a upper mold
`
`K1b gate
`
`K2c cooling pipe
`insertion portion
`3 cooling tube
`B pressure inlet
`
`K1c cooling pipe
`
`1 stator
`
`3 cooling tube
`
`4 molding resin
`
`2 coil
`
`K1a lower mold
`
`K1d mandrel for positioning the stator
`
`
`
`
`
`Am. Honda v. IV II - IPR2018-00349
`PET_HONDA_1005-0004
`
`
`
`(5I)Int.CI. '
`HO 2 K
`
`9/19
`
`F I
`
`!l\fOO.ljZ7 -322566
`
`(21) ltia3i7
`
`lIta'Jl6 - 134932
`
`(22) ltias
`
`(71) ltillA 000006622
`1*'it~1II1!i1l
`fil!ll~;lt7t.:I+Imi\.i'!IlK~II1\~:O 23 1 -I't
`
`(72) ~1!iI'i!f ** ~
`
`(72) ~lJ!Jol'f
`
`fil!ll~;lt7t.:I+Imi\.i'!IlK~II1\~:O 23 1 i7
`1*'it~:tt1i:1II.1IP'J
`iSlE
`=:1111~
`fil!lll~Ut:1L:I+Imi\.i'!IlK~II1\~:O 23 1 i7
`l*~~:tt1i:JrI.IIP'J
`i1!i:M J.Ut
`(74) ft.lll!A :'1I'.III!±
`
`(57)【要約】
`【目的】 サーボモータ等のステータに冷却管を装着す
`るときに、両者間の接触面積を大きく間隙が少なくして
`モールド化する製造方法を得る。
`【構成】 ステータ外周部に冷却管の外径と同一の螺旋
`状の溝を穿設し、この溝にフレキシブルな良熱伝導度の
`中空薄膜状の冷却管を巻回し、管の内部から流体圧を掛
`けながらステータと管のそれぞれの外周部に樹脂をモー
`ルドする。
`
`Am. Honda v. IV II - IPR2018-00349
`PET_HONDA_1005-0005
`
`
`
`Am. Honda V. IV 11 - IPR2018-00349
`
`PET_HONDA_1005-0006
`
`(2)
`
`特開平7−322566
`
`【特許請求の範囲】
`【請求項1】 ステータ外周部に良熱伝導度の材質から
`成る可撓性の冷却管と同じ断面の螺旋形状の溝を穿設
`し、その溝に前記冷却管を巻回し、その冷却管の内部の
`管壁が十分に膨張し拡張する程度に、気圧もしくは液圧
`をかけながら、前記ステータ外周部と前記冷却管を囲繞
`するモールド型間に、前記ステータ外周部と前記冷却管
`を一体化する熱可塑性の樹脂モールドを行うことを特徴
`とする冷却装置の製造方法。
`【発明の詳細な説明】
`【0001】
`【産業上の利用分野】本発明は、小型で高精密な回転制
`御が行われるサーボモータの、自己内部発熱などによる
`熱膨張に伴うサーボ演算の誤差を防止する冷却装置の製
`造方法に関する。
`【0002】
`【従来の技術】従来技術として見られる従来例には、ス
`テータ外周部に冷却用管を樹脂モールドして装備した方
`式が、一般に施行されている。
`【0003】
`【発明が解決しようとする課題】ところが、従来例にお
`いてはステータと管の接触面積が広く取れないことと、
`両者間の折衝圧力を管理することができないため、冷却
`効率が悪い状態であった。両者間に樹脂モールドが一旦
`なされると、最早両者が一体化されるから、それから後
`では手の施しようもない。ここにおいて、本発明は、従
`来例の隘路を全て払拭し、理想的な冷却装置の製造方法
`を提供することを目的とする。
`【0004】
`【課題を解決するための手段】上記問題点を解決するた
`めに、本発明は、
` ステータ外周部と冷却管の接触面積を極力拡大化す
`る、
` ステータ外周部と接触する冷却管になお部から圧力
`をかけて、両者の接触圧力をでき得る限り高める
`という冷却装置の製造方法である。すなわち、本発明
`は、ステータ外周部に良熱伝導度の材質から成る可撓性
`の冷却管と同じ断面の螺旋形状の溝を穿設し、その溝に
`前記冷却管を巻回し、その冷却管の内部の管壁が十分に
`膨張し拡張する程度に、気圧もしくは液圧をかけなが
`ら、ステータ外周部と冷却管を囲繞するモールド型間
`に、ステータ外周部と冷却管を一体化する熱可塑性の樹
`脂モールドを行う冷却装置の製造方法である。
`【0005】
`【作用】本発明はこのような冷却装置の製造方法である
`から、ステータ外周部と冷却管管の接触面積は最大であ
`り、かつ両者間の接触間隙は全く無く、ステータ内部で
`発生したジュール熱などは効率良く冷却管によりステー
`タ外部に放出される。
`【0006】
`
`【実施例】以下、本発明の実施例を図面に基づいて説明
`する。図1は、本発明の一実施例により生成された冷却
`管を具えるサーボモータのステータの側断面図である。
`1は薄板状の電気鋼板の積層されて成るステータコア、
`2は電機子電流を流すステータに巻回されたコイルであ
`り、3は例えば可撓性でかつ良熱伝導度の薄い金属製か
`ら成る冷却管で本例では断面が円形である。4は熱可塑
`性の樹脂モールドである。全ての図面において、同一符
`号は同一もしくは相当部材を示す。図2は、本発明の一
`実施例のステータの外周面に螺旋状に冷却管を巻回する
`溝を穿設した状態を示す側面図である。冷却管3と同一
`形状の螺旋状の溝を穿設した外周表面を形成しており、
`そのステータ1の両端面部にステータ1のコイル2のコ
`イルエンドが見える。図3は、本発明の一実施例におけ
`るステータの外周表面部に螺旋状の冷却管をステータ外
`周溝に巻回装着したときの側面図である。このような状
`態のステータと冷却管をモールド一体化するときの手法
`が本発明である。すなわち、図4は、本発明の一実施例
`における冷却装置の製造方法を示す側断面図である。図
`4において、K1aはモールド下型、K2aはモールド上型
`を形成する。モールド下型K1aの構成部分のK1bはモー
`ルド用ゲート、K1cは後述のK2cと共に冷却管の挿入孔
`を成す冷却管挿入部、K1dはステータ1をモールド下型
`K1aに位置決めするボルト閉め固定手段[マンドレル]
`である。モールド上型K2aの構成部分のK2bは湯道、K
`2cは先のK1cと共に冷却管の挿入孔を成す冷却管挿入部
`である。このような準備段階を経てから、冷却管3の一
`端Bから適度の気体もしくは液体の流体圧力を印加す
`る。もっとも、冷却管3の他端は密閉しておく[不図
`示]。その冷却管3は、たとえばフレキシブルな良熱伝
`導度の銅,真鍮等の、薄膜状の円筒形状の金属管が挙げ
`られる。この冷却管3はステータ1とモールド下型K1a
`の間に挟まれ、管の内部からは空気圧,液体圧などの流
`体圧が掛けられ、ステータ1の外周溝の表面と同一形状
`となり、接触面も十分に取れ、ステータ1と冷却管3の
`間隙は無い。次に、モールド上型K2aのA部から樹脂モ
`ールドを入れて行く。B部からの流体圧力は、樹脂を含
`浸が完了し、樹脂モールドが固形化するまで、掛け続け
`る。樹脂モールドが固形化すれば、モールド下型K1a,
`上型モールドK2aを分解して、冷却管が樹脂モールドし
`て一体化した所要のステータが得られる。
`【0007】
`【発明の効果】以上述べたように本発明によれば、ステ
`ータと冷却管の接触面積が十分に取れ、両者の間隙も無
`く接触圧力も外部から加えることができ、ステータの冷
`却効率の高い構造を得られことが可能という特段の効果
`を奏することができる。
`【図面の簡単な説明】
`【図1】本発明の一実施例におけるステータの側断面図
`【図2】本発明の一実施例のステータの外周面に螺旋状
`
`Am. Honda v. IV II - IPR2018-00349
`PET_HONDA_1005-0006
`
`
`
`
`
`
`
`Am. Honda V. IV 11 - IPR2018-00349
`
`PET_HONDA_1005-0007
`
`(3)
`
`特開平7−322566
`
`に冷却管を巻回する溝を刻設した状態を示す側面図
`【図3】本発明の一実施例における冷却管をその外周面
`に螺旋状に巻回したステータの側面図
`【図4】本発明の一実施例におけるステータを樹脂モー
`ルドする形態を表す側断面図
`【符号の説明】
`1 ステータ
`2 コイル
`3 冷却管
`
`4 樹脂モールド
`K1a 下型
`K1b 樹脂モールド用ゲート
`K1c 冷却管挿入部
`K1d ステータ位置決めマンドレル
`K2a 上型
`K2b 湯道
`K2c 冷却管挿入部
`
`【図1】
`
`【図2】
`
`【図3】
`
`【図4】
`
`Am. Honda v. IV II - IPR2018-00349
`PET_HONDA_1005-0007
`
`