`Sorrento, Italy, February 11 – 15, 2008
`Source:
`Texas Instruments
`Title:
`Cell Specific CS Hopping and Slot Based CS/OC Remapping on PUCCH
`Agenda Item:
`6.1.4
`Document for:
`Discussion and Decision
`
`Introduction
`1.
`In 3GPP RAN1-51b, it was agreed that cell-specific cyclic shift (CS) hopping and slot based CS and orthogonal covering
`(OC) remapping would apply on uplink control channels (a.k.a. PUCCH). In this contribution, we propose detailed CS
`hopping and slot based CS/OC remapping for PUCCH format 0 and 1, i.e. in the context of UL ACK/NAK transmissions in
`correspondence to DL packets.
`2. Slot based OC Set remapping
`2.1. ACK/NAK Data Part
`Table 1: ACK/NAK OC Set Index for ACK/NAK Data
`Orthogonal cover sequence
`OCindex=1
`
`OCindex=0
`
`OCindex=2
`
`Set
`inde
`x
`1
`2
`3
`4
`
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`1
`1
`1
`1
`
`1
`1
`1
`1
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`3
`
`4
`
`5
`
`18
`
`19
`
`20
`
`21
`
`22
`
`23
`
`
`There are 4 possible OC sets available for the ACK/NAK data part, as shown in Table 1. It is preferable that the OC sets are
`hopped between the slots of a subframe, which helps to randomize intra – cell and inter – cell interference. Ideally, the slot
`based OC set remapping shall allow any possible combination of the OC sets within a subframe.
`Let “SFN” denote the subframe number, and “Cell ID” denote the cell ID, OCset,0 and OCset,1 denote the OC set index in
`slot 0 and slot 1 of a subframe, then the slot based OC set remapping can be
`OCset,0 =((SFN + Cell ID) mod 4) + 1
`(1)
`
`
`
`
`OCset,1 = ((OCset,0 + ((SFN + Cell ID) mod 3) + 1) mod 4) + 1
`(2)
`
` Assuming “Cell ID=0”, Table 2 gives an example of slot based OC set remapping as a function of “SFN” from equations
`(1) and (2). Apparently, the slot based OC set remapping has a period of 12 and all possible OC set combinations are
`allowed, which makes profit of OC set remapping for interference randomization.
`Table 2: Example of Slot Based OC Set Remapping
`6
`7
`8
`9
`10
`11
`12
`13
`14
`15
`16
`17
`
`0
`
`1
`
`2
`
`SFN
`OCset,0
`OCset,1
`
`2.2. ACK/NAK RS Part
`Table 3 below shows the OC set for the ACK/NAK reference signal (RS) part, in normal and extended CP scenarios. Since
`there is only one OC set in either case, RS OC set remapping between slots of a subframe is not necessary.
`
`1
`
`2
`
`2
`
`4
`
`3
`
`2
`
`4
`
`1
`
`1
`
`3
`
`2
`
`1
`
`3
`
`4
`
`4
`
`2
`
`1
`
`4
`
`2
`
`3
`
`3
`
`1
`
`4
`
`3
`
`1
`
`2
`
`2
`
`4
`
`3
`
`2
`
`4
`
`1
`
`1
`
`3
`
`2
`
`1
`
`3
`
`4
`
`4
`
`2
`
`1
`
`4
`
`2
`
`3
`
`3
`
`1
`
`4
`
`3
`
`
`Normal
`CP
`
`
`
`
`OCindex=0
`1
`1
`
`
`
`1
`
`
`
`Table 3: RS orthogonal cover sequences sets
`Orthogonal cover sequence
`OCindex=1
`
`3
`
`e
`e
`j
`j
`2
`3
`
`
`
`
`1
`
`4
`
`
`
`
`1
`
`OCindex=2
`e
`e
`j
`j
`3
`4
`
`
`2
`
`
`3
`
`
`
`- 1/8 -
`
`Ericsson Exhibit 1021
`ERICSSON v. ETRI
`
`
`
`Extende
`
`1
`
`
`
`d CP
`3. Slot Based CS/OC Sequence Remapping
`[1] captures the current agreement that ACK/NAK channel resource index ANn
` in the first slot is allocated first in the
`cyclic shift dimension and second in the OC code dimension. We propose to reverse this order for the second slot, i.e.
`allocate ANn
` first in the OC code dimension and second in the cyclic shift dimension, thus guaranteeing that two adjacent
`indexes in the first slot are not adjacent anymore in the second slot.
`3.1. ACK/NAK Data Part
`)0(
`)0(
`slot and 0,
`slot denote the cyclic shift of a UE in the first OFDM symbol of the first and second slot in a subframe, 1,
`Let
`
`
`SCN
`N
`12RB
`0
`,
`1
`RB
`)0(
`)0(
`
`
`
`
`respectively. Note
`, where
`denotes the number of CS per RB.
`slot
`slot
`SC
`0,
`1,
`)(l (where l denotes the lth OFDM
`In the first slot, i.e. slot 0, given an ACK/NAK channel index ANn
`, the CS index
`ocn , can be obtained by the following set of equations. For details, see [1].
`symbol in the slot) and OC sequence index,
`cyclic
`normal
`prefix
`
`
`prefix
`
`
`cyclic
`extended
`
`
`
`)0(
`
`slot
`
`n
`mod
`)
`PUCCH
`PUCCH
`PUCCH
`
`shift
`shift
`offset
`
`
`n
`N
`mod
`2
`PUCCH
`PUCCH
`RB
`
`shift
`AN
`offset
`oc
`sc
`In order to perform slot based CS/OC sequence remapping, we can adopt the following equations in the second slot, i.e. slot
`1, to calculate the CS index and OC sequence index.
`
`
`n
`3mod
`normal
`for
`
`prefix
`
`cyclic
`AN
`
`
`
`n
`2
`
`
`
` prefix cyclic
`extended
`for
`2mod
`
`
`
`
`N
`n
`PUCCH
`
`shift
`AN
`
`n
`2
`PUCCH
`
`
`shift
`l
`)(
`
`AN
`
`
`
`f
`
`0
`
`hop
`
`
`
`
`
`n
`
`oc,
`
`slot0
`
`
`
`
`slot
`
`0
`
`l
`)(
`
`
`
`oc
`
`
`
`
`n
`(
`n
`
`
`
`
`
`
`AN
`
`
`
`
`
`
`)0(
`
`slot
`
`0
`
`
`
`AN
`f
`
`
`
`1
`
`l
`)(
`
`hop
`
`
`mod
`
`N
`
`RB
`sc
`
`
`
`n
`
` slot1 oc,
`
`
`
`l
`)(
`
`
`
`1
`
`1
`
`
`
`1
`
`1
`
`
`
`N.A.
`
`for
`for
`
`
`N
`
`RB
`sc
`
`
`
`
`
`mod
`
`N
`
`RB
`sc
`
`for
`for
`
`normal
`prefix
`
`
`cyclic
`prefix
`
`
`cyclic
`extended
`
`
`
`
`
`RB
`sc
`N
`
`RB
`sc
`mod
`
`
`)0(
`
`slot
`
`n
`3/
`PUCCH
`
`
`
`
`shift
`
`n
`2/
`PUCCH
`
`
`
`
`
`shift
`3.2. ACK/NAK RS Part
`)(l and OC sequence index,
`For the ACK/NAK RS part, in slot 0, the CS index
`equations [1]:
`
`n
`n
`
`)0(
`
`slot
`
`n
`
`
`n
`
`In order to perform slot based CS index and OC sequence remapping, we can adopt the following equation to calculate CS
`index and OC sequence index in slot 1.
`
`
`
`
`
`
` prefix cyclicnormalfor
`
`
`
`
`
` prefix cyclicextendedfor
`
`for
`for
`
`normal
`
`
`
`cyclic prefix
`
`prefix
`
`cyclic
`extended
`
`
`
`mod
`
`N
`
`RB
`sc
`
`
`
`
`n
`(
`oc
`n
`oc
`
`mod
`PUCCH
`
`shift
`
`N
`mod
`2
`
`)
`RB
`sc
`
`PUCCH
`offset
`PUCCH
`offset
`
`
`
`
`slot
`
`AN
`
`AN
`
`
`
`)0(
`
`slot
`
`1
`
`
`
`ocn , are obtained by the following
`
`N
`
`RB
`sc
`
`
`
`
`
`
`
`PUCCH
`
`shift
`
`AN
`
`
`
`f
`
`0
`
`hop
`
`N
`RB
`sc
`l
`)(
`
`
`mod
`
`
`
`,oc
`
`slot
`
`slot
`0
`l
`)(
`
`0
`
`
`
`)
`
`mod
`
`N
`
`RB
`sc
`
`mod
`PUCCH
`
`shift
`N
`mod
`RB
`sc
`
`- 2/8 -
`
`n
`(
`n
`
`
`
`
`PUCCH
`offset
`PUCCH
`offset
`
`
`
`
`
`
`PUCCH
`
`shift
`PUCCH
`
`shift
`
`AN
`
`AN
`
`
`
`)0(
`
`slot
`
`0
`
`
`
`
`
` slot0 oc,
`
`oc,
`
`slot0
`
`Ericsson Exhibit 1021
`ERICSSON v. ETRI
`
`
`
`
`
`
`3mod
`2mod
`
`AN
`
`AN
`
`
`for prefix cyclic normal
`
`
`
`
`
`
`
`
`
`for cyclic prefix extended
`
`
`
`
`nn
`
`
`
`
`
`f
`
`1
`
`hop
`
`
`
`l
`)(
`
`mod
`
`N
`
`RB
`sc
`
`
`
`
`
`)
`
`mod
`
`N
`
`RB
`sc
`
`
`for prefix cyclic normal
`
`
`
`
`
`
`
`
`
`for cyclic prefix extended
`
`mod
`PUCCH
`
`shift
`N
`mod
`RB
`sc
`
`n
`(
`oc,
`n
`oc,
`
`
`
`
`PUCCH
`offset
`PUCCH
`offset
`
`
`
`
`
`
`3/
`PUCCH
`
`
`shift
`2/
`PUCCH
`
`
`shift
`
`slot1
`
`slot1
`
`
`)0(
`
`slot
`
`n
`
`
`n
`
`
`
`AN
`
`AN
`
`
`
`n
`oc,
`
`slot1
`
`
`
`
`slot
`
`1
`
`l
`)(
`
`
`
`)0(
`
`slot
`
`1
`
`
`
`
`1
` . Thus,
`
`PUCCH
`
`shift
`
`
`
`PUCCH
`offset
`
`can vary from subframe to subframe, e.g. by
`
`PUCCH
`
`offset
`
`
`
`SFN
`
`
`
`
`
`PUCCH
`offset
`CellID
`
`
`,...,1,0
`mod
`
`PUCCH
`
`shift
`
`Note that the parameter
`
`
`PUCCH
`offset
`Tables (4, 5), (6, 7), (8, 9), (10, 11), and (12, 13) show examples of the proposed slot based CS/OC remapping.
`
`
`. It is FFS whether
`
`shall vary between slots in a subframe.
`
`Table 4: Example of CS/OC Sequence Remapping, Slot 0,
`
`PUCCH
`shift
`
`2
`
`, Normal CP
`
`
`
`Cell specific
`RS orthogonal cover
`cyclic shift offset
`offset=1
`offset=0 OCindex=0 OCindex=1 OCindex=2
`CSindex=1 CSindex=0
`k=0
`12
`
`2
`1
`6
`
`
`3
`2
`1
`
`13
`4
`3
`
`7
`
`5
`4
`2
`
`14
`6
`5
`
`8
`
`7
`6
`3
`
`15
`8
`7
`
`9
`
`9
`8
`4
`
`16
`10
`9
`
`10
`
`11
`10
`5
`
`17
`0
`11
`
`11
`
`
`ACK/NACK orthogonal cover
`OCindex=
`OCindex=
`OCindex=
`0
`1
`2
`k=0
`12
`
`6
`
`
`1
`
`13
`
`7
`
`2
`
`14
`
`8
`
`3
`
`15
`
`9
`
`4
`
`16
`
`10
`
`5
`
`17
`
`11
`
`
`Table 5: Example of CS/OC Sequence Remapping, Slot 1,
`
`PUCCH
`shift
`
`2
`
`, Normal CP
`
`
`
`Cell specific
`RS orthogonal cover
`cyclic shift offset
`offset=1
`offset=0 OCindex=0 OCindex=1 OCindex=2
`CSindex=1 CSindex=0
`k=0
`2
`
`2
`1
`1
`
`
`3
`2
`3
`
`5
`4
`3
`
`4
`
`5
`4
`6
`
`8
`6
`5
`
`7
`
`7
`6
`9
`
`11
`8
`7
`
`10
`
`9
`8
`12
`
`14
`10
`9
`
`13
`
`11
`10
`15
`
`17
`0
`11
`
`16
`
`
`ACK/NACK orthogonal cover
`OCindex=
`OCindex=
`OCindex=
`0
`1
`2
`k=0
`2
`
`1
`
`
`3
`
`5
`
`4
`
`6
`
`8
`
`7
`
`9
`
`11
`
`10
`
`12
`
`14
`
`13
`
`15
`
`17
`
`16
`
`
`- 3/8 -
`
`
`
`
`
`Ericsson Exhibit 1021
`ERICSSON v. ETRI
`
`
`
`Table 6: Example of CS/OC Sequence Remapping, Slot 0,
`
`PUCCH
`shift
`
`3
`
`, Normal CP
`
`Cell specific
`RS orthogonal cover
`cyclic shift offset
`offset=0 OCindex=
`OCindex=
`OCindex=
`offset=2
`offset=1
`1
`2
`3
`k=0
`
`
`
`CSindex=
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`0
`1
`
`CSindex=
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`0
`
`CSindex=
`0
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`
`
`
`1
`
`
`2
`
`
`3
`
`
`
`4
`
`
`5
`
`
`6
`
`
`7
`
`
`
`8
`
`
`9
`
`
`10
`
`
`11
`
`
`
`ACK/NACK orthogonal cover
`OCindex=
`OCindex=
`OCindex=
`1
`2
`3
`k=0
`
`
`
`
`
`1
`
`
`2
`
`
`3
`
`
`
`4
`
`
`5
`
`
`6
`
`
`7
`
`
`
`8
`
`
`9
`
`
`10
`
`
`11
`
`
`
`ACK/NACK orthogonal cover
`OCindex=
`OCindex=
`OCindex=
`1
`2
`3
`k=0
`
`
`
`
`
`3
`
`
`6
`
`
`9
`
`
`
`1
`
`
`4
`
`
`7
`
`
`10
`
`
`
`2
`
`
`5
`
`
`8
`
`
`11
`
`Table 7: Example of CS/OC Sequence Remapping, Slot 1,
`
`PUCCH
`shift
`
`3
`
`, Normal CP
`
`Cell specific
`RS orthogonal cover
`cyclic shift offset
`offset=0 OCindex=
`OCindex=
`OCindex=
`offset=2
`offset=1
`1
`2
`3
`k=0
`
`
`
`CSindex=
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`0
`1
`
`CSindex=
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`0
`
`CSindex=
`0
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`
`
`
`3
`
`
`6
`
`
`9
`
`
`
`1
`
`
`4
`
`
`7
`
`
`10
`
`
`
`2
`
`
`5
`
`
`8
`
`
`11
`
`- 4/8 -
`
`
`
`
`
`
`Ericsson Exhibit 1021
`ERICSSON v. ETRI
`
`
`
`Table 8: Example of CS/OC Sequence Remapping, Slot 0,
`
`PUCCH
`shift
`
`1
`
`, Normal CP
`
`
`
`
`CSindex=
`0
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`
`RS orthogonal cover
`OCindex=
`OCindex=
`OCindex=
`0
`1
`2
`k=0
`12
`24
`
`
`
`ACK/NACK orthogonal cover
`OCindex=
`OCindex=
`OCindex=
`0
`1
`2
`k=0
`12
`24
`
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`
`13
`14
`15
`16
`17
`18
`19
`20
`21
`22
`23
`
`25
`26
`27
`28
`29
`30
`31
`32
`33
`34
`35
`
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`
`13
`14
`15
`16
`17
`18
`19
`20
`21
`22
`23
`
`25
`26
`27
`28
`29
`30
`31
`32
`33
`34
`35
`
`Table 9: Example of CS/OC Sequence Remapping, Slot 1,
`
`PUCCH
`shift
`
`1
`
`, Normal CP
`
`
`
`
`CSindex=
`0
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`
`RS orthogonal cover
`OCindex=
`OCindex=
`OCindex=
`0
`1
`2
`k=0
`1
`2
`
`
`
`ACK/NACK orthogonal cover
`OCindex=
`OCindex=
`OCindex=
`0
`1
`2
`k=0
`1
`2
`
`3
`6
`9
`12
`15
`18
`21
`24
`27
`30
`33
`
`4
`7
`10
`13
`16
`19
`22
`25
`28
`31
`34
`
`5
`8
`11
`14
`17
`20
`23
`26
`29
`32
`35
`
`3
`6
`9
`12
`15
`18
`21
`24
`27
`30
`33
`
`4
`7
`10
`13
`16
`19
`22
`25
`28
`31
`34
`
`5
`8
`11
`14
`17
`20
`23
`26
`29
`32
`35
`
`
`
`
`
`
`- 5/8 -
`
`Ericsson Exhibit 1021
`ERICSSON v. ETRI
`
`
`
`
`
`
`
`
`Table 10: Example of CS/OC Sequence Remapping, Slot 0,
`
`PUCCH
`shift
`
`2
`
`, Extended CP
`
`RS orthogonal cover
`
`Cell specific
`cyclic shift offset
`offset=0 OCindex=
`offset=1
`0
`k=0
`
`1
`
`2
`
`3
`
`4
`
`5
`
`
`CSindex=1 CSindex=0
`2
`1
`3
`2
`4
`3
`5
`4
`6
`5
`7
`6
`8
`7
`9
`8
`10
`9
`11
`10
`0
`11
`
` ACK/NACK orthogonal
`cover
`OCindex=0 OCindex=2
`k=0
`
`
`6
`1
`
`
`7
`2
`
`
`8
`3
`
`
`9
`4
`
`
`10
`5
`
`
`11
`
`OCindex=
`1
`
`6
`
`7
`
`8
`
`9
`
`10
`
`11
`
`Table 11: Example of CS/OC Sequence Remapping, Slot 1,
`
`PUCCH
`shift
`
`2
`
`, Extended CP
`
` ACK/NACK orthogonal
`cover
`OCindex=0 OCindex=2
`k=0
`
`
`1
`2
`
`
`3
`4
`
`
`5
`6
`
`
`7
`8
`
`
`9
`10
`
`
`11
`
`RS orthogonal cover
`
`Cell specific
`cyclic shift offset
`offset=0 OCindex=
`offset=1
`0
`k=0
`
`2
`
`4
`
`6
`
`8
`
`10
`
`
`CSindex=1 CSindex=0
`2
`1
`3
`2
`4
`3
`5
`4
`6
`5
`7
`6
`8
`7
`9
`8
`10
`9
`11
`10
`0
`11
`
`OCindex=
`1
`
`1
`
`3
`
`5
`
`7
`
`9
`
`11
`
`- 6/8 -
`
`Ericsson Exhibit 1021
`ERICSSON v. ETRI
`
`
`
`
`
`Table 12: Example of CS/OC Sequence Remapping, Slot 0,
`
`PUCCH
`shift
`
`3
`
`, Extended CP
`
`offset=2
`
`Cell specific
`cyclic shift offset
`offset=1
`
`RS orthogonal cover
`offset=0 OCindex=0 OCindex=
`1
`CSindex=2 CSindex=1 CSindex=0
`k=0
`
`3
`2
`1
`
`4
`4
`3
`2
`
`
`5
`4
`3
`1
`
`6
`5
`4
`
`5
`7
`6
`5
`
`
`8
`7
`6
`2
`
`9
`8
`7
`
`6
`10
`9
`8
`
`
`11
`10
`9
`3
`
`0
`11
`10
`
`7
`1
`0
`11
`
`
`
`
`
`ACK/NACK orthogonal
`cover
`OCindex=0
`OCindex=2
`k=0
`
`
`4
`
`
`1
`
`
`5
`
`
`2
`
`
`6
`
`
`3
`
`
`7
`
`
`
`Table 13: Example of CS/OC Sequence Remapping, Slot 1,
`
`PUCCH
`shift
`
`3
`
`, Extended CP
`
`offset=2
`
`Cell specific
`cyclic shift offset
`offset=1
`
`RS orthogonal cover
`offset=0 OCindex=0 OCindex=
`1
`CSindex=2 CSindex=1 CSindex=0
`k=0
`
`3
`2
`1
`
`1
`4
`3
`2
`
`
`5
`4
`3
`2
`
`6
`5
`4
`
`3
`7
`6
`5
`
`
`8
`7
`6
`4
`
`9
`8
`7
`
`5
`10
`9
`8
`
`
`11
`10
`9
`6
`
`0
`11
`10
`
`7
`1
`0
`11
`
`
`
`
`
`ACK/NACK orthogonal
`cover
`OCindex=0
`OCindex=2
`k=0
`
`
`1
`
`
`2
`
`
`3
`
`
`4
`
`
`5
`
`
`6
`
`
`7
`
`
`
`hop
`
`,
`
`4. Cell Specific Intra-Slot CS Hopping
`)0( be the cyclic shift index for a UE and l denote the OFDM symbol index within a slot. Then the cell specific CS
`Let
`hopping within a slot can be described by the following equation [1]
`
`
`l
`l
`f
`N
`)(
`)(
`mod
`)0(
`RB
`
`
`sc
`SCN
`12RB
`)0( refers to
`)0(
`)0(
`slot . The cell specific CS
`slot or
`denotes the number of cyclic shift per RB. Note that
`where
`1,
`0,
`hopping pattern can be a function of subframe number “SFN” and cell ID “Cell ID”, for example
`
`RB
`
`f
`l)(
`SFN
`l
`CellID
`N
`(
`mod
`)
`
`
`
`hop
`
`.
`
`SC
`
`5. Conclusions
`In this contribution, we propose detailed method for cell specific CS hopping and slot based CS/OC remapping on PUCCH.
`
`- 7/8 -
`
`Ericsson Exhibit 1021
`ERICSSON v. ETRI
`
`
`
` Reference
`6.
`[1] 3GPP TS 36.211 v8.1.0 (2008-01), Technical Specification Group Radio Access Network; Evolved Universal
`Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8).
`
`- 8/8 -
`
`Ericsson Exhibit 1021
`ERICSSON v. ETRI
`
`