throbber
DEVELOPMENT OF A LARGE SCALE FLEXIBLE LED
`DISPLAY MATRIX FOR THE SCREEN INDUSTRY
`
`Dominic Michael Xavier, BEng Infomechatronics
`
`
`
`
`
`
`
`Prof. Duncan Campbell
`Dr. Michael Mason
`
`Submitted in fulfilment of the requirements for the degree of
`Master of Engineering (Research)
`Faculty of Built Environment and Engineering
`Queensland University of Technology
`2013
`
`Samsung Exhibit 1027
`Samsung Elecs. Co., Ltd. v. Ultravision Techns., LLC
`IPR2020-01176
`Page 00001
`
`

`

`Keywords
`
`Light-emitting diode displays; Image communication; Smart pixels; Light-emitting
`diodes; Color graphics; DC-DC power conversion; Image processing; Magnetic
`circuits; Thermal factors
`
`IPR2020-01176 Page 00002
`
`

`

`
`
`
`
`IPR2020-01176 Page 00003
`
`IPR2020-01176 Page 00003
`
`

`

`Abstract
`
`Significant opportunities exist in the display market, which require high quality,
`highly portable, easily managed displays. However current technology struggles to
`fill this need, often requiring large construction equipment, multiple signal
`processing layers and large power requirements. This research has developed an 18
`meters squared full scale prototype display that meets these requirements.
`
`The display development is driven by the increasing need to present information and
`graphics to larger audiences in more temporary and flexible formats. The need for
`portability, fast setup, easy reconfiguration and multiple uses has driven the need for
`light, efficient, easily erected, high quality displays. Through collaboration with
`multiple industry representatives, the display was designed to meet expectations of
`visual quality, portability, and display management, influenced by the LED
`arrangement, power efficiency, thermal regulation and physical construction.
`
`The display is comprised of a series of illuminated elongated members juxtaposed to
`create a dynamic image. The design seeks advantage in the physical construction of
`the system to achieve high visual quality, efficient operation in a calibrated panel,
`and passive thermal management, achieved in a commercially viable environment. A
`novel method of pitch adjustment is proposed for future designs that could further
`enhance the portability of the display, opening up opportunities for displays much
`larger than currently available, while still remaining ultra-portable.
`
`The key outcomes of this research include an operational, full scale prototype
`display, which implements large LED display colour aliasing, a purely passive
`thermal management solution, a rapid deployment system, individual seven bit LED
`current control with two way display communication, auto-configuration and
`complete signal redundancy, all of which are in direct response to industry needs.
`
`
`
`IPR2020-01176 Page 00004
`
`

`

`
`
`
`
`ii
`
`IPR2020-01176 Page 00005
`
`IPR2020-01176 Page 00005
`
`

`

`Table of Contents
`
`Keywords ...................................................................................................................... i
`
`Abstract ....................................................................................................................... iii
`
`Table of Contents ........................................................................................................ iii
`
`List of Figures ............................................................................................................ vii
`
`List of Tables............................................................................................................ xxii
`
`List of Supplementary Material ............................................................................... xxv
`
`List of Abbreviations............................................................................................... xxvi
`
`Statement of Original Authorship .......................................................................... xxvii
`
`Acknowledgements ............................................................................................... xxviii
`
`Chapter 1
`
`Chapter 2
`
`Introduction ...................................................................................... 1
`
`The Large Scale Display Market ..................................................... 4
`
`2.1 Market Definition ............................................................................................ 4
`
`2.2 Market Trends ................................................................................................ 13
`
`2.3
`
`Industry Correspondence ............................................................................... 14
`
`2.4 Chapter Conclusions ...................................................................................... 18
`
`Chapter 3
`
`LED Technology............................................................................ 19
`
`3.1 LED Calibration ............................................................................................. 20
`
`3.2 Direct Current Control ................................................................................... 36
`
`3.3 Direct Control LED Sign Classification ........................................................ 43
`
`3.4 Active Current Control .................................................................................. 47
`
`3.5 LED Lifetime Curves..................................................................................... 55
`
`3.6 LED Intensity/Efficiency Improvements ....................................................... 58
`
`3.7 Chapter Conclusions ...................................................................................... 59
`
`iii
`
`IPR2020-01176 Page 00006
`
`

`

`Chapter 4
`
`Display Luminance and Gamut...................................................... 60
`
`4.1 Display Luminance ........................................................................................ 60
`
`4.2 Display Gamut ............................................................................................... 74
`
`4.3 Chapter Conclusions ...................................................................................... 94
`
`Chapter 5
`
`Previous Prototype Display ............................................................ 96
`
`5.1 Display Structure ........................................................................................... 96
`
`Chapter 6
`
`LED Arrangement and Visual Fidelity ........................................ 103
`
`6.1 LED Density ................................................................................................ 107
`
`6.2 LED Arrangement ........................................................................................ 114
`
`6.3 Gloss and Matt Finishes ............................................................................... 121
`
`6.4 Display Panel Alignment ............................................................................. 129
`
`6.5 Driver Selection ........................................................................................... 131
`
`6.6 Chapter Conclusions .................................................................................... 135
`
`Chapter 7
`
`LED Board Power Optimisation .................................................. 138
`
`7.1 Efficiency of LEDs ...................................................................................... 138
`
`7.2 Optimisation of the Driver Circuits ............................................................. 144
`
`7.3 Power Loss Optimisation of the Conversion Circuits .................................. 147
`
`7.4 Final Design ................................................................................................. 154
`
`7.5 Chapter Conclusions .................................................................................... 160
`
`Chapter 8
`
`Thermal Management .................................................................. 163
`
`8.1 Tube Material and Profile ............................................................................ 163
`
`8.2 Material Testing – LEXAN SLX ................................................................. 164
`
`8.3 Tube Material Options ................................................................................. 171
`
`8.4 Thermal Coupling ........................................................................................ 175
`
`8.5 Other Thermal Considerations ..................................................................... 179
`
`8.6 Alternate Solution ........................................................................................ 182
`
`8.7 Construction ................................................................................................. 185
`
`iv
`
`IPR2020-01176 Page 00007
`
`

`

`8.8 Chapter Conclusions .................................................................................... 191
`
`Chapter 9
`
`Physical Display Structure ........................................................... 193
`
`9.1 Current Fixed Display Structure .................................................................. 193
`
`9.2 Display Transparency .................................................................................. 201
`
`9.3 Dynamic Structure ....................................................................................... 204
`
`9.4 Electrical Implementation for Physical Structure ........................................ 216
`
`9.5 Chapter Conclusions .................................................................................... 229
`
`Chapter 10
`
`Communication and Control Architecture ................................... 231
`
`10.1 Signal Redesign Process ............................................................................ 237
`
`10.2 Test Board Design ..................................................................................... 246
`
`10.3 Segment Controller Design ........................................................................ 250
`
`10.4 LED Board Signal Structure ...................................................................... 257
`
`10.5 A6280 Scrambling ..................................................................................... 265
`
`10.6 Final Design ............................................................................................... 268
`
`10.7 A6281 Sparkle ........................................................................................... 272
`
`10.8 Chapter Conclusions .................................................................................. 278
`
`Chapter 11
`
`Conclusions and Recommendations ............................................ 280
`
`11.1 Discussion .................................................................................................. 280
`
`11.2 Research Outcomes.................................................................................... 290
`
`Reference List .......................................................................................................... 292
`
`Appendix A:
`
`Company Profile .......................................................................... 301
`
`Appendix B:
`
`LED Characteristics Data Interpolation ....................................... 310
`
`Appendix C:
`
`LED Intensity and Density Calculations ..................................... 320
`
`Appendix D:
`
`LED Intensity and PWM cycle .................................................... 326
`
`Appendix E:
`
`Tabulated Power Supply Testing Results .................................... 330
`
`Appendix F:
`
`Materials Table ............................................................................ 336
`
`Appendix G:
`
`Thermally Conductive Materials ................................................. 337
`
`v
`
`IPR2020-01176 Page 00008
`
`

`

`Appendix H:
`
`Design Option Matrix .................................................................. 338
`
`Appendix I:
`
`LED Board Schematics and Layout Prints .................................. 353
`
`Appendix J:
`
`Test Board Overlay Prints and Schematics .................................. 362
`
`Appendix K:
`
`Segment Controller Overlay Prints and Schematics .................... 366
`
`Appendix L:
`
`Segment Controller Test Board Targets....................................... 375
`
`Appendix M:
`
`PIC16F Code for 16LED Prototype Board .................................. 377
`
`Appendix N:
`
`Segment Controller Re-work Tracking Sheets ............................ 385
`
`Appendix O:
`
`BOM for Test Boards ................................................................... 392
`
`Appendix P: Wavelength and Doping Materials .............................................. 395
`
`Appendix Q:
`
`Core Area Calculation .................................................................. 397
`
`Appendix R:
`
`Ivoke: LAADtech 3.0 Visual Brief March 08.............................. 402
`
`Appendix S:
`
`Mass Transit Design Document ................................................... 404
`
`Appendix T:
`
`Colour Matching Functions Data ................................................. 423
`
`Appendix U: MII Further Pin Explanation ........................................................ 425
`
`Appendix V:
`
`Segment Controller Code ............................................................. 428
`
`Appendix W:
`
`Dynamic Pitch Board Configuration ........................................... 466
`
`Appendix X:
`
`SC Control Code table ................................................................. 468
`
`Appendix Y: Meeting Minutes and Interviews.................................................. 471
`
`Appendix Z:
`
`Component Descriptions .............................................................. 495
`
`Appendix AA: Allegro 6280 Data Sheet .............................................................. 501
`
`Appendix BB: Allegro 6281 Data Sheet .............................................................. 507
`
`
`
`vi
`
`IPR2020-01176 Page 00009
`
`

`

`List of Figures
`
`Figure 1.1
`
`LAADtech fullscale prototype display ............................................ 3
`
`Figure 2.1
`
`Hong Kong Light Festival 2007-2008 [6] ....................................... 6
`
`Figure 2.2
`
`Stadium Advertising/informational full colour display.
`Woolloongabba Stadium, picture taken: 13/12/2007 ...................... 7
`
`Figure 2.3
`
`Post Office Square LED display, Queen St, Brisbane CBD. .......... 8
`
`Figure 2.4
`
`Figure 2.5
`
`Figure 2.6
`
`Figure 2.7
`
`Figure 2.8
`
`Figure 2.9
`
`VMS signs are often rented out for advertising very
`effectively because passersby expect to see critical road
`condition information on them. ....................................................... 9
`
`DriverTron’s seven meter display positioned on Moggill
`Road Indooroopilly. Picture Taken: 3/10/2009, 12:43pm,
`Moggill Road Indooroopilly. ......................................................... 10
`
`3 tonne base for DriverTron’s portable display, requiring a
`crane and 3 tonne truck for transportation. .................................... 10
`
`Hutchinsons crane on SouthBank at night, photo taken:
`22/09/2009 6:56p and Hutchinsons crane on SouthBank at
`day, photo taken 23/09/2009 6:46am ............................................ 12
`
`SideTrack subway media installation of multiple frames
`illuminated briefly in time with the train passing [8] .................... 12
`
`Longer view of SideTrack installation in subway tunnel
`showing illumination technique [8] ............................................... 12
`
`Figure 3.1
`
`Relative luminous intensity vs. forward current [24] .................... 22
`
`Figure 3.2
`
`Figure 3.3
`
`intensity vs. forward current for
`luminous
`Relative
`T676 diodes from OOS[25] ........................................................... 23
`
`Relative luminous intensity vs. junction temperature for
`T676 diodes from OOS [25] .......................................................... 26
`
`vii
`
`IPR2020-01176 Page 00010
`
`

`

`Figure 3.4
`
`Figure 3.5
`
`Figure 3.6
`
`Figure 3.7
`
`Close up of Post Office Square display, Brisbane CBD.
`Each panel contains 32x16 pixels, picture taken:9/09/2009
`8:39am ........................................................................................... 33
`
`8x7 panel Post Office Square display, total 256x112 pixels
`showing the use of panels made from different bins in a
`single display. This display is termed by professionals as
`‘poor quality’ and corresponds to large variation in intensity
`and wavelength of LEDs utilised in the display, picture
`taken: 9/09/2009, 8:34am .............................................................. 33
`
`OSRAM recommends the use of single bins for displays,
`this means that panels from display B can never be mixed
`with panels from display A [32]. ................................................... 34
`
`Inhomogeneous display configurations, commonly called
`‘tiling’. The bottom
`left hand corner panel
`is an
`inhomogeneous panel containing a patterned distribution of
`both bins a and b [32]. ................................................................... 34
`
`Figure 3.8
`
`Equivalent Circuit of LED ............................................................. 36
`
`Figure 3.9
`
`Series connected LED driver circuit .............................................. 37
`
`Figure 3.10
`
`Minimal component parallel LED driver circuit ........................... 39
`
`Figure 3.11
`
`Minimum component parallel circuit equivalent ........................... 40
`
`Figure 3.12
`
`Modified parallel connected LED drive circuit ............................. 41
`
`Figure 3.13
`
`Matrix connected LED drive circuit .............................................. 42
`
`Figure 3.14
`
`Dynamic speed sign showing uneven degradation of LEDs ......... 44
`
`Figure 3.15
`
`Figure 3.16
`
`Bus stop mixed dynamic/static advertisement on Queen St.
`Brisbane CBD. Single colour, pre-programmed, non-
`remotely updatable content. Photo taken: 9/9/2009 8:28am ......... 45
`
`Leading Edge computer store, Moggill Road Taringa.
`Single colour, co-ordinated matrix across two display’s.
`Photo taken: 3/10/2009 1:06pm ..................................................... 46
`
`viii
`
`IPR2020-01176 Page 00011
`
`

`

`Figure 3.17
`
`QUT welcome sign at parking gate, dual colour, graphics
`and text, dynamically updateable, ethernet connectivity.
`Gardens Point, Brisbane. Photo taken: 2/10/2009 2:38pm............ 46
`
`Figure 3.18
`
`Red and green LED display on Newmarket Road, Windsor.
`Picture taken: 27/09/2009 6:19pm................................................. 47
`
`Figure 3.19
`
`FET voltage controlled current source for LED Circuit ................ 48
`
`Figure 3.20
`
`TPS61042 LED driver block diagram [33] ................................... 49
`
`Figure 3.21
`
`TPS61042 LED driver typical application diagram [33] .............. 49
`
`Figure 3.22
`
`Bit Angle Modulation (BAM) example ........................................ 51
`
`Figure 3.23
`
`Internal block diagram of the A6281 device ................................. 53
`
`Figure 3.24
`
`Internal Allegro A6281 block diagram [45] .................................. 54
`
`Figure 3.25
`
`A6281 chain for multiple connected LEDs ................................... 54
`
`Figure 3.26
`
`Figure 3.27
`
`Figure 3.28
`
`span
`life
`rated
`survival vs. percent of
`Percent
`Phillips Semiconductor [46] .......................................................... 56
`
`Normalised light output over 6000 operation hours for a
`Phillips Luxeon K2 LED [46] ....................................................... 57
`
`Increase in efficiency due to thin-film technology 1960-
`2009[47] ........................................................................................ 58
`
`Figure 4.1
`
`Graphical steradian definition [50] ................................................ 61
`
`Figure 4.2
`
`OOS T676 far field display pattern [25]........................................ 63
`
`Figure 4.3
`
`Normalised emitter pattern overlayed with cosine function;
`lambertian nature of surface LED emitters ................................... 63
`
`Figure 4.4
`
`Far field distribution pattern from COTCO/CREE [52]................ 64
`
`Figure 4.5
`
`Visualisation of FFDP of COTCO/CREE Screen Master
`LED lens family ............................................................................ 65
`
`Figure 4.6
`
`Luminance area and intensity definitions ...................................... 66
`
`Figure 4.7
`
`Luminance of two different surfaces from the same point
`source, in the same solid angle ...................................................... 67
`
`Figure 4.8
`
`Illuminance of a surface at distance D .......................................... 68
`
`ix
`
`IPR2020-01176 Page 00012
`
`

`

`Figure 4.9
`
`Figure 4.10
`
`Difference in Solid Angle and ultimately illuminance due to
`increasing distance ......................................................................... 68
`
`Efficiency and luminous intensity for common LEDs and
`manufacturers ................................................................................ 71
`
`Figure 4.11
`
`Spectrum of visible light annotated from 400-700nm[58] ............ 75
`
`Figure 4.12
`
`Sensitivity diagram for the three types of cone receptors
`(S,M & L), plus rods [61] .............................................................. 75
`
`Figure 4.13
`
`Normalised cone sensitivity diagram [62] [59] ............................. 75
`
`Figure 4.14
`
`3D plot of normalised activation curves [58] ................................ 77
`
`Figure 4.15
`
`Figure 4.16
`
`Figure 4.17
`
`Figure 4.18
`
`Chromaticity surface defined by removing the effect of
`intensity on colour [58] .................................................................. 78
`
`Tri-linear mixing (Maxwell) triangle [58] ..................................... 79
`
`CIE 1931 Chromaticity diagram with annotations [64] [65] ......... 80
`
`CIE 1931 and 1978 Colour matching functions (cid:1876), (cid:1877) and (cid:1878).
`Note that (cid:1877) is intentionally identical to the intensity
`
`response, labelled V((cid:79)), and that the currently valid plot is
`the 1931 model. For full data please see Appendix T:
`Colour Matching Functions Data[66][67] . ................................... 81
`
`Figure 4.19
`
`Chromaticity diagram with x = 0.306 and y = 0.338 plotted ......... 83
`
`Figure 4.20
`
`Figure 4.21
`
`Figure 4.22
`
`1931 Chromaticity diagram with line from 565nm to 420nm
`according to 1931 colour matching functions see Appendix
`T: Colour Matching Functions Data for the table of values
`for this graph .................................................................................. 84
`
`Dual colour LED sign, Brisbane Patios Office, Newmarket
`Road, Windsor ............................................................................... 85
`
`Close up of LED display at Brisbane Patios showing only
`red and green LEDs utilised to create yellow on the left
`hand side of the picture, and the singularly lit luminary,
`green, on the right. Picture taken: 28/09/2009 11:08am ................ 86
`
`Figure 4.23
`
`Different colour working profiles for common spaces[69] ........... 87
`
`x
`
`IPR2020-01176 Page 00013
`
`

`

`Figure 4.24
`
`Figure 4.25
`
`Perceptual and colorimetric colour mapping functions from
`large to small gamut [70] ............................................................... 89
`
`Gamut for NTSC, RGB LED Backlit LCD display, CCFL
`Backlit LCD and White LED Backlit LCD[71] ............................ 90
`
`Figure 4.26
`
`Red spectra comparison LED vs lamp with gel [75] ..................... 91
`
`Figure 4.27
`
`ETC Selador VIVID range[76] ..................................................... 92
`
`Figure 4.28
`
`Selador gamut compared to conventional RGB luminary
`gamut ............................................................................................. 93
`
`Figure 5.1
`
`Figure 5.2
`
`Figure 5.3
`
`Figure 6.1
`
`Figure 6.2
`
`Illustration of display physical terminology for use with the
`LAADtech display ......................................................................... 97
`
`Functional component layout for Prototype 1 of the
`LAADtech display ......................................................................... 98
`
`the
`Completed prototype 1(demonstration display) of
`LAADtech technology................................................................. 102
`Stealth display, 31st Oct 2007, only utilised for low
`resolution, high contrast backdrops of solid colour..................... 104
`
`Stealth display showing support points and ‘sag’ between
`the supports. ................................................................................. 105
`
`Figure 6.3
`
`6x Lighthouse 20mm display modules, one dead pixel. ............. 105
`
`Figure 6.4
`
`20mm Lighthouse display module close up ................................ 107
`
`Figure 6.5
`
`Pixel pitch of a 20mm Light House module ................................ 108
`
`Figure 6.6
`
`Figure 6.7
`
`Figure 6.8
`
`20mm Lighthouse module showing white lines for 20mm
`real pitch, and blue lines showing ½, or 10mm virtual pitch ...... 109
`
`Density vs intensity for selected OSRAM LEDs that
`perform as close as possible to the full dynamic range ............... 113
`
`Standard resolution and high resolution mode displaying
`two frames of a white line moving from right left across the
`display.......................................................................................... 115
`
`Figure 6.9
`
`Pattern forming for LED layout .................................................. 116
`
`xi
`
`IPR2020-01176 Page 00014
`
`

`

`Figure 6.10
`
`Figure 6.11
`
`Figure 6.12
`
`Figure 6.13
`
`Figure 6.14
`
`Figure 6.15
`
`Figure 6.16
`
`Figure 6.17
`
`Rotating tube arrangement to remove the effect of LED
`arrangement on colour fringing ................................................... 116
`
`20mm full scale prototype (Left) and 20mm v10 Lighthouse
`display (Right) ............................................................................. 117
`
`Demonstration display with triangular pixel configuration
`and vertical pixel boundary crossing two similarly signalled
`red LEDs ...................................................................................... 118
`
`Full scale prototype with white, screen generated text, on
`black background ......................................................................... 119
`
`Construction of white text on black background using pixel
`arrangement and colour aliasing filter specific for this pixel
`layout and display ........................................................................ 120
`
`Oval Through Hole LEDs protruding through plastic facia
`under 4mm ‘sun shades’ .............................................................. 122
`
`Florescent lights reflected in the gloss acrylic finish of the
`demonstration display tubes ........................................................ 123
`
`A digital VMS display impossible to read in the morning
`sun due to a clear matt finished front........................................... 124
`
`Figure 6.18
`
`Membrane print specifications .................................................... 125
`
`Clear, black, matt and gloss finishes of the membrane when
`applied to the display, unlit .......................................................... 125
`
`LED shading due to creep in the black printing of the
`membrane panels. 4 columns appear on the display,
`distinguished by lines of discontinuous intensity. Photo
`taken: 13/01/2009 7:19pm ........................................................... 127
`
`LED shading due to creep in membrane printing. Final
`column distinction not visible due to changing viewing
`angle of the camera as the focus comes closer to the lens.
`The far column however is vividly apparent. Photo taken:
`13/01/2009 7:12pm ...................................................................... 127
`
`Figure 6.19
`
`Figure 6.20
`
`Figure 6.21
`
`xii
`
`IPR2020-01176 Page 00015
`
`

`

`Figure 6.22
`
`Figure 6.23
`
`Figure 6.24
`
`Figure 6.25
`
`Figure 6.26
`
`Figure 6.27
`
`Figure 6.28
`
`The effect of the shadow due to creep in the membrane is
`not visible when viewed perpendicular to the face of the
`display.......................................................................................... 128
`
`Gloss finished segments reflect all surrounding light,
`however only at one angle ........................................................... 128
`
`Large (1-2mm) variance in length of tube due to end cap
`variability ..................................................................................... 130
`
`juxtaposed
`two panels
`Screen configured at 40mm,
`horizontally with mis-alignment and resulting gap due to
`poor tolerance in end cap placement ........................................... 130
`
`Low contrast, low saturation image as a direct translation
`from DVI data to PWM data. Note that the display was still
`being tested at this stage and blue panels, pixels out and
`tubes malfunctioning are not part of the visual assessment ........ 132
`
`Folsom visual processor connected to display Master
`Controller ..................................................................................... 133
`
`Contrast and gamma adjustment of display by Folsom
`processor ...................................................................................... 133
`
`Figure 7.1
`
`Relative efficiency and power consumption vs. intensity ........... 140
`
`Figure 7.2
`
`Figure 7.3
`
`Figure 7.4
`
`Figure 7.5
`
`Figure 7.6
`
`Figure 7.7
`
`Graph of 1, 2 and 3 green LEDs of different base intensities
`operating at 5000nits ................................................................... 142
`
`Maximum LED voltage, and minimum driver voltage used
`for minimum rail voltage calculation .......................................... 144
`
`Efficiency vs. output current for 3V3 and 5V A8498 3A
`converters .................................................................................... 148
`
`Modified 3V3 voltage converter efficiency vs. output
`current for multiple input voltages .............................................. 149
`
`Maximum efficiency (within 500mA range) vs.input voltage
`for the modified 3V3 converter ................................................... 150
`
`Combined efficiency of DC-DC supplies and cable vs. input
`voltage for various display power ............................................... 152
`
`xiii
`
`IPR2020-01176 Page 00016
`
`

`

`Figure 7.8
`
`Figure 7.9
`
`Combined efficiency of DC-DC supplies and cable vs .input
`voltage for various cable resistances ........................................... 153
`
`Initial 3V3 switching regulator design around the A8498
`buck controller ............................................................................. 155
`
`Figure 7.10
`
`Initial 5V switching regulator design around the A8498
`buck controller ............................................................................. 156
`
`Figure 7.11 3V3 Voltage converter efficiency vs. output current for multiple
`input voltages ............................................................................... 156
`
`Figure 7.12
`
`3V3 Ripple at 250mA with 10uH Inductor, RTSET = 100k,
`and Cout = 20uF, 48V input voltage ........................................... 157
`
`Figure 7.13
`
`Minimum on-time violation for low values of RTSET [87] ....... 157
`
`Modified 3V3 regulator at 610mA output, 50uH inductor,
`250uF output capacitance, 67k7 RTSET, 48V input ................... 158
`
`Modified 3V3 regulator at 617mA output, 50uH inductor,
`250uF output capacitance, 67k7 RTSET, 8.08V input ................ 159
`
`LEXAN SLX Tube profile showing PCB position and
`orientation .................................................................................... 164
`
`Calculated averaged thermal conductivity constant for a
`theoretical thermally homogeneous material ............................... 168
`
`Density and thermal conductivity constant for common
`materials [90] ............................................................................... 171
`
`Ratio of thermal conductivity constant to density for
`common materials ........................................................................ 172
`
`for non-electrically conductive
`Thermal conductivity
`materials [90] ............................................................................... 175
`
`transfer materials
`thermal
`Thermal conductivity of
`compared to air [91][90][92] ....................................................... 176
`
`Idealised aluminium extrusion with VO Soft Gap Pad
`coupling material installed ........................................................... 177
`
`Figure 7.14
`
`Figure 7.15
`
`Figure 8.1
`
`Figure 8.2
`
`Figure 8.3
`
`Figure 8.4
`
`Figure 8.5
`
`Figure 8.6
`
`Figure 8.7
`
`xiv
`
`IPR2020-01176 Page 00017
`
`

`

`Figure 8.8
`
`Figure 8.9
`
`Figure 8.10
`
`Figure 8.11
`
`Figure 8.12
`
`Figure 8.13
`
`Figure 8.14
`
`Figure 8.15
`
`Identification of thermal

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket