throbber
Advanced Digital Signal Processing and Noise Reduction, Second Edition.
`Saeed V. Vaseghi
`Copyright © 2000 John Wiley & Sons Ltd
`ISBNs: 0-471-62692-9 (Hardback): 0-470-84162-1 (Electronic)
`
`Advanced
`Digital Signal
`Processing
`and Noise
`Reduction
`
`Second Edition
`
`IPR PETITION
`US RE48,371
`Sonos Ex. 1029
`
`

`

`Advanced
`Digital Signal
`Processing
`and Noise
`Reduction
`
`Second Edition
`
`SAEED V. VASEGHI
`Professor of Communications and Signal Processing,
`Department of Electronics and Computer Engineering,
`Brunel University, UK
`
`JOHN WILEY & SONS, LTD
`Chichester · New York · Weinheim · Brisbane · Singapore · Toronto
`
`

`

`First Edition published in 1996 jointly by John Wiley & Sons, Ltd. and B. G. Teubner as Advanced
`Signal Processing and Digital Noise Reduction.
`Copyright © 2000 by John Wiley & Sons, Ltd
`Baffins Lane, Chichester,
`West Sussex, PO19 IUD, England
`
`National 01243 779777
`International (+44) 1243 779777
`
`e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk
`
`Visit our Home Page on http://www.wiley.co.uk or http://www.wiley.com
`
`All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or
`transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
`otherwise, except under the terms of the Copyright Designs and Patents Act 1988 or under the terms of
`a licence issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London, WIP 9HE,
`UK, without the permission in writing of the Publisher, with the exception of any material supplied
`specifically for the purpose of being entered and executed on a computer system, for exclusive use by
`the purchaser of the publication.
`
`Neither the author(s) nor John Wiley & Sons Ltd accept any responsibility or liability for loss or
`damage occasioned to any person or property through using the material, instructions, methods or ideas
`contained herein, or acting or refraining from acting as a result of such use. The author(s) and Publisher
`expressly disclaim all implied warranties, including merchantability of fitness for any particular
`purpose.
`
`Designations used by companies to distinguish their products are often claimed as trademarks. In all
`instances where John Wiley & Sons is aware of a claim, the product names appear in initial capital or
`capital letters. Readers, however, should contact the appropriate companies for more complete
`information regarding trademarks and registration.
`
`Other Wiley Editorial Offices
`
`John Wiley & Sons, Inc., 605 Third Avenue,
`New York, NY 10158-0012, USA
`
`Weinheim •Brisbane• Singapore• Toronto
`
`Library of Congress Cataloging-in-Publication Data
`V aseghi, Saeed V.
`Advanced digital signal processing and noise reduction/ Saeed V. Vaseghi.-2nd ed.
`p.cm.
`Includes bibliographical references and index.
`ISBN 0-471-62692-9 (alk.paper)
`1. Signal processing. 2. Electronic noise. 3. Digital Filters (Mathematics) I. Title.
`
`TK5102.9. V37 2000
`621.382 '2----dc21
`
`00-032091
`
`British Library Cataloguing in Publication Data
`
`A catalogue record for this book is available from the British Library
`
`ISBN 0 471 62692 9
`
`Produced from Postscript files supplied by the author.
`Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.
`This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at
`least two trees are planted for each one used for paper production.
`
`

`

`
`
`
`
`
`
`
`
`
`
`
`
`
`
`To my parents
`
`With thanks to Peter Rayner, Ben Milner, Charles Ho and Aimin Chen
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`

`

`
`
`
`
`
`
`
`
`CONTENTS
`
`
`
`PREFACE .............................................................................................. xvii
`
`FREQUENTLY USED SYMBOLS AND ABBREVIATIONS.......... xxi
`
`CHAPTER 1 INTRODUCTION...............................................................1
`1.1 Signals and Information...................................................................2
`1.2 Signal Processing Methods ..............................................................3
`1.2.1 Non−parametric Signal Processing .....................................3
`1.2.2 Model-Based Signal Processing ..........................................4
`1.2.3 Bayesian Statistical Signal Processing ................................4
`1.2.4 Neural Networks..................................................................5
`1.3 Applications of Digital Signal Processing .......................................5
`1.3.1 Adaptive Noise Cancellation and Noise Reduction ............5
`1.3.2 Blind Channel Equalisation.................................................8
`1.3.3 Signal Classification and Pattern Recognition ....................9
`1.3.4 Linear Prediction Modelling of Speech.............................11
`1.3.5 Digital Coding of Audio Signals .......................................12
`1.3.6 Detection of Signals in Noise............................................14
`1.3.7 Directional Reception of Waves: Beam-forming ..............16
`1.3.8 Dolby Noise Reduction .....................................................18
`1.3.9 Radar Signal Processing: Doppler Frequency Shift ..........19
`1.4 Sampling and Analog–to–Digital Conversion ...............................21
`1.4.1 Time-Domain Sampling and Reconstruction of Analog
`Signals ..............................................................................22
`1.4.2 Quantisation.......................................................................25
`Bibliography.........................................................................................27
`
`CHAPTER 2 NOISE AND DISTORTION...........................................29
`2.1 Introduction....................................................................................30
`2.2 White Noise ...................................................................................31
`2.3 Coloured Noise ..............................................................................33
`2.4 Impulsive Noise .............................................................................34
`2.5 Transient Noise Pulses...................................................................35
`2.6 Thermal Noise................................................................................36
`
`
`
`

`

`viii
`
`
`Contents
`
`
`2.7 Shot Noise......................................................................................38
`2.8 Electromagnetic Noise ...................................................................38
`2.9 Channel Distortions .......................................................................39
`2.10 Modelling Noise ..........................................................................40
`2.10.1 Additive White Gaussian Noise Model (AWGN)...........42
`2.10.2 Hidden Markov Model for Noise ....................................42
`Bibliography.........................................................................................43
`
`
`
`
`
`
`
`
`
`CHAPTER 3 PROBABILITY MODELS ..............................................44
`3.1 Random Signals and Stochastic Processes ....................................45
`3.1.1 Stochastic Processes ..........................................................47
`3.1.2 The Space or Ensemble of a Random Process ..................47
`3.2 Probabilistic Models ......................................................................48
`3.2.1 Probability Mass Function (pmf).......................................49
`3.2.2 Probability Density Function (pdf)....................................50
`3.3 Stationary and Non-Stationary Random Processes........................53
`3.3.1 Strict-Sense Stationary Processes......................................55
`3.3.2 Wide-Sense Stationary Processes......................................56
`3.3.3 Non-Stationary Processes..................................................56
`3.4 Expected Values of a Random Process..........................................57
`3.4.1 The Mean Value ................................................................58
`3.4.2 Autocorrelation..................................................................58
`3.4.3 Autocovariance..................................................................59
`3.4.4 Power Spectral Density .....................................................60
`3.4.5 Joint Statistical Averages of Two Random Processes.......62
`3.4.6 Cross-Correlation and Cross-Covariance..........................62
`3.4.7 Cross-Power Spectral Density and Coherence ..................64
`3.4.8 Ergodic Processes and Time-Averaged Statistics .............64
`3.4.9 Mean-Ergodic Processes ...................................................65
`3.4.10 Correlation-Ergodic Processes ........................................66
`3.5 Some Useful Classes of Random Processes ..................................68
`3.5.1 Gaussian (Normal) Process ...............................................68
`3.5.2 Multivariate Gaussian Process ..........................................69
`3.5.3 Mixture Gaussian Process .................................................71
`3.5.4 A Binary-State Gaussian Process ......................................72
`3.5.5 Poisson Process .................................................................73
`3.5.6 Shot Noise .........................................................................75
`3.5.7 Poisson–Gaussian Model for Clutters and Impulsive
`Noise.................................................................................77
`3.5.8 Markov Processes..............................................................77
`3.5.9 Markov Chain Processes ...................................................79
`
`
`
`

`

`Contents
`
`
`
`ix
`
`3.6 Transformation of a Random Process............................................81
`3.6.1 Monotonic Transformation of Random Processes ............81
`3.6.2 Many-to-One Mapping of Random Signals ......................84
`3.7 Summary........................................................................................86
`Bibliography.........................................................................................87
`
`CHAPTER 4 BAYESIAN ESTIMATION.............................................89
`4.1 Bayesian Estimation Theory: Basic Definitions ............................90
`4.1.1 Dynamic and Probability Models in Estimation................91
`4.1.2 Parameter Space and Signal Space....................................92
`4.1.3 Parameter Estimation and Signal Restoration ...................93
`4.1.4 Performance Measures and Desirable Properties of
`Estimators.........................................................................94
`4.1.5 Prior and Posterior Spaces and Distributions ....................96
`4.2 Bayesian Estimation.....................................................................100
`4.2.1 Maximum A Posteriori Estimation .................................101
`4.2.2 Maximum-Likelihood Estimation ...................................102
`4.2.3 Minimum Mean Square Error Estimation .......................105
`4.2.4 Minimum Mean Absolute Value of Error Estimation.....107
`4.2.5 Equivalence of the MAP, ML, MMSE and MAVE for
`Gaussian Processes With Uniform Distributed
`Parameters ......................................................................108
`4.2.6 The Influence of the Prior on Estimation Bias and
`Variance..........................................................................109
`4.2.7 The Relative Importance of the Prior and the
`Observation.....................................................................113
`4.3 The Estimate–Maximise (EM) Method .......................................117
`4.3.1 Convergence of the EM Algorithm .................................118
`4.4 Cramer–Rao Bound on the Minimum Estimator Variance..........120
`4.4.1 Cramer–Rao Bound for Random Parameters ..................122
`4.4.2 Cramer–Rao Bound for a Vector Parameter....................123
`4.5 Design of Mixture Gaussian Models ...........................................124
`4.5.1 The EM Algorithm for Estimation of Mixture Gaussian
`Densities .........................................................................125
`4.6 Bayesian Classification ................................................................127
`4.6.1 Binary Classification .......................................................129
`4.6.2 Classification Error..........................................................131
`4.6.3 Bayesian Classification of Discrete-Valued Parameters .132
`4.6.4 Maximum A Posteriori Classification.............................133
`4.6.5 Maximum-Likelihood (ML) Classification.....................133
`4.6.6 Minimum Mean Square Error Classification ..................134
`4.6.7 Bayesian Classification of Finite State Processes ...........134
`
`
`
`

`

`x
`
`
`Contents
`
`
`4.6.8 Bayesian Estimation of the Most Likely State
`Sequence.........................................................................136
`4.7 Modelling the Space of a Random Process..................................138
`4.7.1 Vector Quantisation of a Random Process......................138
`4.7.2 Design of a Vector Quantiser: K-Means Clustering........138
`4.8 Summary......................................................................................140
`Bibliography.......................................................................................141
`
`
`
`
`
`
`
`
`
`CHAPTER 5 HIDDEN MARKOV MODELS.....................................143
`5.1 Statistical Models for Non-Stationary Processes .........................144
`5.2 Hidden Markov Models ...............................................................146
`5.2.1 A Physical Interpretation of Hidden Markov Models .....148
`5.2.2 Hidden Markov Model as a Bayesian Model ..................149
`5.2.3 Parameters of a Hidden Markov Model ..........................150
`5.2.4 State Observation Models ...............................................150
`5.2.5 State Transition Probabilities ..........................................152
`5.2.6 State–Time Trellis Diagram ............................................153
`5.3 Training Hidden Markov Models ................................................154
`5.3.1 Forward–Backward Probability Computation.................155
`5.3.2 Baum–Welch Model Re-Estimation ...............................157
`5.3.3 Training HMMs with Discrete Density Observation
`Models ............................................................................159
`5.3.4 HMMs with Continuous Density Observation Models ...160
`5.3.5 HMMs with Mixture Gaussian pdfs................................161
`5.4 Decoding of Signals Using Hidden Markov Models ...................163
`5.4.1 Viterbi Decoding Algorithm............................................165
`5.5 HMM-Based Estimation of Signals in Noise...............................167
`5.6 Signal and Noise Model Combination and Decomposition.........170
`5.6.1 Hidden Markov Model Combination ..............................170
`5.6.2 Decomposition of State Sequences of Signal and Noise.171
`5.7 HMM-Based Wiener Filters ........................................................172
`5.7.1 Modelling Noise Characteristics .....................................174
`5.8 Summary......................................................................................174
`Bibliography.......................................................................................175
`
`CHAPTER 6 WIENER FILTERS........................................................178
`6.1 Wiener Filters: Least Square Error Estimation ............................179
`6.2 Block-Data Formulation of the Wiener Filter..............................184
`6.2.1 QR Decomposition of the Least Square Error Equation .185
`
`
`
`

`

`Contents
`
`
`
`xi
`
`6.3 Interpretation of Wiener Filters as Projection in Vector Space ...187
`6.4 Analysis of the Least Mean Square Error Signal .........................189
`6.5 Formulation of Wiener Filters in the Frequency Domain............191
`6.6 Some Applications of Wiener Filters...........................................192
`6.6.1 Wiener Filter for Additive Noise Reduction ...................193
`6.6.2 Wiener Filter and the Separability of Signal and Noise ..195
`6.6.3 The Square-Root Wiener Filter .......................................196
`6.6.4 Wiener Channel Equaliser...............................................197
`6.6.5 Time-Alignment of Signals in Multichannel/Multisensor
`Systems...........................................................................198
`6.6.6 Implementation of Wiener Filters ...................................200
`6.7 The Choice of Wiener Filter Order..............................................201
`6.8 Summary......................................................................................202
`Bibliography.......................................................................................202
`
`CHAPTER 7 ADAPTIVE FILTERS....................................................205
`7.1 State-Space Kalman Filters..........................................................206
`7.2 Sample-Adaptive Filters ..............................................................212
`7.3 Recursive Least Square (RLS) Adaptive Filters ..........................213
`7.4 The Steepest-Descent Method .....................................................219
`7.5 The LMS Filter ............................................................................222
`7.6 Summary......................................................................................224
`Bibliography.......................................................................................225
`
`CHAPTER 8 LINEAR PREDICTION MODELS ..............................227
`8.1 Linear Prediction Coding.............................................................228
`8.1.1 Least Mean Square Error Predictor .................................231
`8.1.2 The Inverse Filter: Spectral Whitening ...........................234
`8.1.3 The Prediction Error Signal.............................................236
`8.2 Forward, Backward and Lattice Predictors..................................236
`8.2.1 Augmented Equations for Forward and Backward
`Predictors........................................................................239
`8.2.2 Levinson–Durbin Recursive Solution .............................239
`8.2.3 Lattice Predictors.............................................................242
`8.2.4 Alternative Formulations of Least Square Error
`Prediction........................................................................244
`8.2.5 Predictor Model Order Selection.....................................245
`8.3 Short-Term and Long-Term Predictors........................................247
`
`
`
`

`

`xii
`
`
`Contents
`
`
`
`
`
`
`
`
`
`
`8.4 MAP Estimation of Predictor Coefficients..................................249
`8.4.1 Probability Density Function of Predictor Output...........249
`8.4.2 Using the Prior pdf of the Predictor Coefficients............251
`8.5 Sub-Band Linear Prediction Model .............................................252
`8.6 Signal Restoration Using Linear Prediction Models...................254
`8.6.1 Frequency-Domain Signal Restoration Using Prediction
`Models ............................................................................257
`8.6.2 Implementation of Sub-Band Linear Prediction Wiener
`Filters..............................................................................259
`8.7 Summary......................................................................................261
`Bibliography.......................................................................................261
`
`CHAPTER 9 POWER SPECTRUM AND CORRELATION ...........263
`9.1 Power Spectrum and Correlation .................................................264
`9.2 Fourier Series: Representation of Periodic Signals .....................265
`9.3 Fourier Transform: Representation of Aperiodic Signals............267
`9.3.1 Discrete Fourier Transform (DFT) ..................................269
`9.3.2 Time/Frequency Resolutions, The Uncertainty Principle
`..................................................................................................269
`9.3.3 Energy-Spectral Density and Power-Spectral Density ....270
`9.4 Non-Parametric Power Spectrum Estimation ..............................272
`9.4.1 The Mean and Variance of Periodograms .......................272
`9.4.2 Averaging Periodograms (Bartlett Method) ....................273
`9.4.3 Welch Method: Averaging Periodograms from
`Overlapped and Windowed Segments............................274
`9.4.4 Blackman–Tukey Method ...............................................276
`9.4.5 Power Spectrum Estimation from Autocorrelation of
`Overlapped Segments.....................................................277
`9.5 Model-Based Power Spectrum Estimation ..................................278
`9.5.1 Maximum–Entropy Spectral Estimation .........................279
`9.5.2 Autoregressive Power Spectrum Estimation ...................282
`9.5.3 Moving-Average Power Spectrum Estimation................283
`9.5.4 Autoregressive Moving-Average Power Spectrum
`Estimation.......................................................................284
`9.6 High-Resolution Spectral Estimation Based on Subspace Eigen-
`Analysis ......................................................................................284
`9.6.1 Pisarenko Harmonic Decomposition...............................285
`9.6.2 Multiple Signal Classification (MUSIC) Spectral
`Estimation.......................................................................288
`9.6.3 Estimation of Signal Parameters via Rotational
`Invariance Techniques (ESPRIT) ...................................292
`
`
`
`

`

`Contents
`
`
`
`xiii
`
`9.7 Summary......................................................................................294
`Bibliography.......................................................................................294
`
`CHAPTER 10 INTERPOLATION.......................................................297
`10.1 Introduction................................................................................298
`10.1.1 Interpolation of a Sampled Signal .................................298
`10.1.2 Digital Interpolation by a Factor of I.............................300
`10.1.3 Interpolation of a Sequence of Lost Samples ................301
`10.1.4 The Factors That Affect Interpolation Accuracy...........303
`10.2 Polynomial Interpolation............................................................304
`10.2.1 Lagrange Polynomial Interpolation ...............................305
`10.2.2 Newton Polynomial Interpolation .................................307
`10.2.3 Hermite Polynomial Interpolation .................................309
`10.2.4 Cubic Spline Interpolation.............................................310
`10.3 Model-Based Interpolation ........................................................313
`10.3.1 Maximum A Posteriori Interpolation ............................315
`10.3.2 Least Square Error Autoregressive Interpolation ..........316
`10.3.3 Interpolation Based on a Short-Term Prediction Model
`..................................................................................................317
`10.3.4 Interpolation Based on Long-Term and Short-term
`Correlations..................................................................320
`10.3.5 LSAR Interpolation Error..............................................323
`10.3.6 Interpolation in Frequency–Time Domain ....................326
`10.3.7 Interpolation Using Adaptive Code Books....................328
`10.3.8 Interpolation Through Signal Substitution ....................329
`10.4 Summary....................................................................................330
`Bibliography.......................................................................................331
`
`CHAPTER 11 SPECTRAL SUBTRACTION.....................................333
`11.1 Spectral Subtraction...................................................................334
`11.1.1 Power Spectrum Subtraction .........................................337
`11.1.2 Magnitude Spectrum Subtraction..................................338
`11.1.3 Spectral Subtraction Filter: Relation to Wiener Filters .339
`11.2 Processing Distortions ...............................................................340
`11.2.1 Effect of Spectral Subtraction on Signal Distribution...342
`11.2.2 Reducing the Noise Variance ........................................343
`11.2.3 Filtering Out the Processing Distortions .......................344
`11.3 Non-Linear Spectral Subtraction ...............................................345
`11.4 Implementation of Spectral Subtraction ....................................348
`11.4.1 Application to Speech Restoration and Recognition.....351
`
`
`
`

`

`xiv
`
`
`
`11.5 Summary....................................................................................352
`Bibliography.......................................................................................352
`
`
`
`
`
`
`
`
`
`Contents
`
`CHAPTER 12 IMPULSIVE NOISE ....................................................355
`12.1 Impulsive Noise .........................................................................356
`12.1.1 Autocorrelation and Power Spectrum of Impulsive
`Noise ............................................................................359
`12.2 Statistical Models for Impulsive Noise......................................360
`12.2.1 Bernoulli–Gaussian Model of Impulsive Noise ............360
`12.2.2 Poisson–Gaussian Model of Impulsive Noise...............362
`12.2.3 A Binary-State Model of Impulsive Noise ....................362
`12.2.4 Signal to Impulsive Noise Ratio....................................364
`12.3 Median Filters ............................................................................365
`12.4 Impulsive Noise Removal Using Linear Prediction Models .....366
`12.4.1 Impulsive Noise Detection ............................................367
`12.4.2 Analysis of Improvement in Noise Detectability ..........369
`12.4.3 Two-Sided Predictor for Impulsive Noise Detection ....372
`12.4.4 Interpolation of Discarded Samples ..............................372
`12.5 Robust Parameter Estimation.....................................................373
`12.6 Restoration of Archived Gramophone Records.........................375
`12.7 Summary....................................................................................376
`Bibliography.......................................................................................377
`
`CHAPTER 13 TRANSIENT NOISE PULSES....................................378
`13.1 Transient Noise Waveforms ......................................................379
`13.2 Transient Noise Pulse Models ..................................................381
`13.2.1 Noise Pulse Templates .................................................382
`13.2.2 Autoregressive Model of Transient Noise Pulses ........383
`13.2.3 Hidden Markov Model of a Noise Pulse Process.........384
`13.3 Detection of Noise Pulses ..........................................................385
`13.3.1 Matched Filter for Noise Pulse Detection ....................386
`13.3.2 Noise Detection Based on Inverse Filtering .................388
`13.3.3 Noise Detection Based on HMM .................................388
`13.4 Removal of Noise Pulse Distortions..........................................389
`13.4.1 Adaptive Subtraction of Noise Pulses ...........................389
`13.4.2 AR-based Restoration of Signals Distorted by Noise
`Pulses ...........................................................................392
`13.5 Summary....................................................................................395
`
`
`
`

`

`Contents
`
`xv
`
`
`
`
`
`Bibliography.......................................................................................395
`
`CHAPTER 14 ECHO CANCELLATION ...........................................396
`14.1 Introduction: Acoustic and Hybrid Echoes ................................397
`14.2 Telephone Line Hybrid Echo .....................................................398
`14.3 Hybrid Echo Suppression ..........................................................400
`14.4 Adaptive Echo Cancellation ......................................................401
`14.4.1 Echo Canceller Adaptation Methods.............................403
`14.4.2 Convergence of Line Echo Canceller............................404
`14.4.3 Echo Cancellation for Digital Data Transmission.........405
`14.5 Acoustic Echo ............................................................................406
`14.6 Sub-Band Acoustic Echo Cancellation......................................411
`14.7 Summary....................................................................................413
`Bibliography.......................................................................................413
`
`CHAPTER 15 CHANNEL EQUALIZATION AND BLIND
`DECONVOLUTION....................................................416
`15.1 Introduction................................................................................417
`15.1.1 The Ideal Inverse Channel Filter ...................................418
`15.1.2 Equalization Error, Convolutional Noise ......................419
`15.1.3 Blind Equalization.........................................................420
`15.1.4 Minimum- and Maximum-Phase Channels...................423
`15.1.5 Wiener Equalizer...........................................................425
`15.2 Blind Equalization Using Channel Input Power Spectrum........427
`15.2.1 Homomorphic Equalization ..........................................428
`15.2.2 Homomorphic Equalization Using a Bank of High-
`Pass Filters ...................................................................430
`15.3 Equalization Based on Linear Prediction Models......................431
`15.3.1 Blind Equalization Through Model Factorisation.........433
`15.4 Bayesian Blind Deconvolution and Equalization ......................435
`15.4.1 Conditional Mean Channel Estimation .........................436
`15.4.2 Maximum-Likelihood Channel Estimation...................436
`15.4.3 Maximum A Posteriori Channel Estimation .................437
`15.4.4 Channel Equalization Based on Hidden Markov
`Models..........................................................................438
`15.4.5 MAP Channel Estimate Based on HMMs.....................441
`15.4.6 Implementations of HMM-Based Deconvolution .........442
`15.5 Blind Equalization for Digital Communication Channels.........446
`
`
`
`

`

`xvi
`
`
`Contents
`
`
`
`
`
`
`
`
`
`
`15.5.1 LMS Blind Equalization................................................448
`15.5.2 Equalization of a Binary Digital Channel......................451
`15.6 Equalization Based on Higher-Order Statistics .........................453
`15.6.1 Higher-Order Moments, Cumulants and Spectra ..........454
`15.6.2 Higher-Order Spectra of Linear Time-Invariant
`Systems ........................................................................457
`15.6.3 Blind Equalization Based on Higher-Order Cepstra .....458
`15.7 Summary....................................................................................464
`Bibliography.......................................................................................465
`
`INDEX .....................................................................................................467
`
`
`
`
`
`
`
`

`

`Advanced Digital Signal Processing and Noise Reduction, Second Edition.
`Saeed V. Vaseghi
`Copyright © 2000 John Wiley & Sons Ltd
`ISBNs: 0-471-62692-9 (Hardback): 0-470-84162-1 (Electronic)
`
`Noise-free signal space
`fh
`
`fh
`
`Noisy signal space
`
`After subtraction of
`the noise mean
`
`fh
`
`fl
`
`
`
`
`
`11
`
`fl
`
`fl
`
`
`
`SPECTRAL SUBTRACTION
`
`
`11.1 Spectral Subtraction
`11.2 Processing Distortions
`11.3 Non-Linear Spectral Subtraction
`11.4 Implementation of Spectral Subtraction
`11.5 Summary
`
`
`
`
`S
`
`pectral subtraction is a method for restoration of the power spectrum
`or the magnitude spectrum of a signal observed in additive noise,
`through subtraction of an estimate of the average noise spectrum from
`the noisy signal spectrum. The noise spectrum is usually estimated, and
`updated, from the periods when the signal is absent and only the noise is
`present. The assumption is that the noise is a stationary or a slowly varying
`process, and that the noise spectrum does not change

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket