`
`INFORMATION TO USERS
`
`
`
`
`
`
`
`
`
`
`
`
`This manuscript has been reproduced from the microfilm master. UMI films
`
`
`
`
`
`
`
`
`
`
`
`
`
`the text directly from the original or copy submitted. Thus. some thesis and
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`dissertation copies are in typewriter face, while others may be from any type of
`
`computer printer.
`
`
`
`
`
`
`
`
`
`
`
`
`
`The quality of this reproduction is dependent upon the quality of the
`
`
`
`
`
`
`
`
`
`
`
`copy submitted. Broken or indistinct print. colored or poor quality illustrations
`
`
`
`
`
`
`
`
`and photographs, print bleedthrough, substandard margins, and improper
`
`
`
`
`alignment can adversely affect reproduction.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`In the unlikely event that the author did not send UMI a complete manuscript
`
`
`
`
`
`
`
`
`
`
`
`
`and there are missing pages, these will be noted. Also, if unauthorized
`
`
`
`
`
`
`
`
`
`
`
`copyright material had to be removed, a note will indicate the deletion.
`
`
`
`
`
`
`
`
`
`
`Oversize materials (e.g., maps, drawings, charts) are reproduced by
`
`
`
`
`
`
`
`
`
`
`
`sectioning the original, beginning at the upper left-hand comer and continuing
`
`
`
`
`
`
`
`
`
`from left to right in equal sections with small overlaps.
`
`
`
`
`
`
`
`
`
`
`Photographs included in the original manuscript have been reproduced
`
`
`
`
`
`
`
`
`
`
`
`
`xerographically in this copy. Higher quality 6" x 9" black and white
`
`
`
`
`
`
`
`
`
`
`photographic prints are available for any photographs or illustrations appearing
`
`
`
`
`
`
`
`
`
`
`
`in this copy for an additional charge. Contact UMl directly to order.
`
`
`
`
`
`ProQuest Information and Leaming
`
`
`
`
`
`
`
`
`
`300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
`800-521-0600
`
`UMf
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 1 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 2 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`
`
`
`
`SOLID FREEFORM FABRICATION OF CONTINUOUS FIBER REINFORCED
`
`
`COMPOSITE MATERIALS
`
`
`ERJIAN MA
`
`
`
`A Dissertation
`
`
`
`Submitted to
`
`
`
`
`the Graduate F acuity
`
`
`
`
`of Auburn University
`
`
`
`
`
`in Partial Fulfillment of
`
`
`
`
`the Requirements for
`
`
`
`the Degree of
`
`
`
`Doctor of Philosophy
`
`
`
`Auburn Alabama
`
`
`
`August 6, 200 l
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 3 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`UMI Number: 3016100
`
`
`
`
`UMI Microfonn3016100
`
`
`
`
`
`
`
`
`
`
`Copyright 2001 by Bell & Howell Information and Leaming Company.
`
`
`
`
`
`
`
`
`
`All rights reserved. This microform edition is protected against
`
`
`
`
`
`
`
`unauthorized copying under Title 17, United States Code.
`
`
`
`
`
`
`
`
`Bell & Howell Information and Leaming Company
`
`
`
`
`300 North Zeeb Road
`
`
`
`P.O. Box 1346
`
`
`
`Ann Arbor, Ml 48106-1346
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 4 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`
`
`
`
`SOLID FREEFORM FABRICATION OF CONTINUOUS FIBER REINFORCED
`
`
`COMPOSITE MATERIALS
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Except where reference is made to the work of others, the work described in this
`
`
`
`
`
`
`
`
`
`
`
`
`dissertation is my own or was done in collaboration with my advisory committee
`
`
`ErjianMa
`
`..,,,
`
`
`
`Certificate of Approval:
`
`
`
`
`
`Dan B. ~ghitu
`
`Associat: Professor
`
`Mechanical Engineering
`
`
`
`
`
`Bor. Z. Jang, Chairman
`Professor
`
`Mechanical Engineering
`
`
`
`Sabit Adanur
`Professor
`
`Textile Engineering
`
`
`
`
`Stephen L. McFarland
`
`
`Acting Dean
`
`Graduate School
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 5 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`VITA
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Erjian Ma, son of Benli Ma and Ywiping Dai, was born on April 12, 1960, in
`
`
`
`
`
`
`
`
`
`
`
`
`
`MengCheng County, Anhui Province, P. R. China. He attended Hefei University of
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Technology, Hefei, P. R. China, where he graduated with a Bachelor of Science degree in
`
`
`
`
`
`
`
`
`
`
`
`
`
`Mechanical Science and Engineering in 1982. He then worked for Beijing Research
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Institute of Mechanical and Electrical Technology, Beijing, P. R. China, for 11 years,
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`with the title of engineer and department director. During this period of time, he attended
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`the graduate school at Harbin Institute of Technology, Harbin, P. R. China, where he
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`received a Master of Science degree in Materials Science and Engineering in 1987. From
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`1994 to 1996, he was a visiting scholar working at the Materials Research and Education
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Center at Auburn University. AL. He began to pursue a Doctor of Philosophy degree in
`
`
`
`
`
`
`
`
`Mechanical Engineering at Auburn University in October 1996.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`He married his wife, Hong Xu in 1985, and had their daughter Jennifer Ma in
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Beijing, P. R. China on February 4, 1993 and their son, Jeffiey Ma in Auburn, AL, on
`
`
`
`September 26, 1996.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`iii
`
`
`Page 6 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`DISSERT A T£ON ABSTRACT
`
`
`
`
`
`
`SOLID FREEFORM FABRICATION OF CONTINUOUS FIBER REINFORCED
`
`COMPOSITE MATERIALS
`
`ERJIANMA
`
`
`
`
`
`
`
`Doctor of philosophy, August 6, 2001
`
`
`
`
`
`
`
`
`(M.S. Harbin Institute of Technology, P.R. China, 1987)
`
`
`
`
`
`
`
`
`(B.S. Hefei University of Technology, P.R. China, I 982)
`
`
`
`
`240 Typed pages
`
`
`
`
`
`Directed by Bor. Z. Jang
`
`
`
`
`
`
`
`
`
`
`A novel computer-controlled composite layer manufacturing (CLM) process has
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`been proposed and investigated. The CLM process may be considered to be a new
`
`
`
`
`
`
`
`
`
`
`
`
`development direction in the field of rapid prototyping and manufacnrring (RP&M)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`technology. A traditional RP&M process is capable of producing a concept model or
`
`
`
`
`
`
`
`
`
`
`
`
`
`investment-casting pattern point by point and layer by layer by using monolithic
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`materials such as an un-reinforced resin or metal. In contrast, the presently developed
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`CLM process is capable of building a three-dimensional object of a complex shape from
`
`
`
`
`
`
`a high-strength fiber reinforced composite material.
`
`
`
`
`
`
`
`
`
`
`
`
`In the present dissertation study, the technical feasibility of the CLM
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`process has been demonstrated with a CLM machine constructed that is capable of
`
`
`
`
`
`
`
`
`
`
`
`fabricating both thermoplastic and thermosetting resin matrix composites. This automated
`
`
`
`
`
`
`
`
`
`
`
`
`manufacturing technology could potentially provide ( 1) a reduction in time from
`
`
`
`
`
`
`
`
`
`
`
`
`composite part design to production, (2) a cost-effective method of fabricating complex-
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`lV
`
`
`Page 7 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`shaped composite components, (3) an approach to the fabrication of integrated structures
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`for a reduced number of parts in a system and minimized need for part-to-part joining or
`
`
`
`
`
`
`
`welding, and (4) added capabilities for filament-winding.
`
`
`
`
`
`
`
`
`
`
`
`
`The dissertation research began with the formulation of new process concepts,
`
`
`
`
`
`
`
`
`
`
`
`
`continuing with the analysis of part forming strategies, material selection, concept
`
`
`
`
`
`
`
`
`
`
`
`
`designs for the syste~ feasibility experiments, detail designs, software and hardware
`
`
`
`
`
`
`
`
`integration, to a final construction of a prototype machine.
`
`
`
`
`
`
`
`
`
`
`
`Over ten part-forming methods were studied. Several feasibility experiments have
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`been carried out to prove these forming strategies and two main fabrication processes
`
`
`
`
`
`
`
`
`
`
`
`
`have been selected_ They are named Self-Anchoring process and Automatic Extrusion
`
`
`
`
`
`
`
`
`
`
`
`
`process, respectively. The error sources for the Self-Anchoring Forming Process were
`
`
`
`
`
`
`
`
`
`
`
`
`
`analyzed. Based on these results, the requirements of the software development have
`
`
`
`
`
`
`
`
`
`
`
`
`
`been established. To find the best parameters for both Self-anchoring and Automatic
`
`
`
`
`
`
`
`
`
`
`
`extrusion Forming Processes, related simulation models have been proposed and
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`evaluated. According to the result of this modeling study. new design plans were
`
`
`
`conceived and proposed.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Both of the two CLM fabrication methods have been studied experimentally and a
`
`
`
`
`
`
`
`
`
`
`
`
`
`system for self-anchoring forming process has been designed. and installed. The towpreg,
`
`
`
`
`
`
`
`
`
`
`
`
`a semi finished material used for the Self-Anchoring process was successfully formed.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`To compare the mechanical properties of the parts prepared by the new CLM
`
`
`
`
`
`
`
`
`
`
`
`
`
`method and by the conventional composite fabrication methods. three point bending tests
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`were carried. The results indicate that the parts fabricated. by CLM have acceptable
`
`
`mechanical properties.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`V
`
`
`Page 8 of 248
`
`
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`ACKNOWLEDGMENT
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`I would like to thank my advisor and committee chairman Dr. Bor. Z. Jang for
`
`
`
`
`
`
`
`
`
`
`
`
`providing knowledge, leadership, advice, and the opportunity to work on this project.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`I would like to offer my appreciation to Dr. Dan B. Marghitu and Dr. Sabit Adanur for
`
`
`
`
`
`
`
`
`
`
`
`
`serving on the advisory committee, support, encouragement and advice for my
`
`
`
`
`
`
`
`
`
`
`
`
`dissenation and to Dr. G. Mills for reading and correcting my dissertation.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`I would like to thank the members of our team, Dr. Leon W. Wu, Professor Jun H.
`
`
`
`
`
`
`
`
`
`
`Liu and Jessica Li, for their friendship, encouragements and help.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`vi
`
`
`Page 9 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`
`
`
`Manual or journal style used: __ P_,__ol__.ym"""""er=-------------------
`
`
`
`
`
`
`
`
`
`
`
`
`Computer software l;JSCd: Microsoft Word and Microsoft Excel for Microsoft Office 2000
`
`
`
`AndAutoCAD 14
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`vii
`
`
`Page 10 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`TABLE OF CONTENTS
`
`
`CHAPTER 1 INTRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
`
`
`1-1 FOREWORD · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
`
`
`1-1.1 Background · · · · · · · · · · · · • · · · · · • · · · · · · · · · · · · · · · • · · · · · · · · l
`
`
`
`
`
`
`1-1.2 Frequently Used SFF Processes · · · · · • · · · · · · · · · · · · · · · · · · · · 6
`
`
`
`
`
`1-1.3 Conventional Composite Fabrication Processes·············· ·9
`
`
`
`
`
`
`1-2 MOTIVATION BEHIND THE DISSERTATION RESEARCH · · · · · · · · · 13
`
`
`
`
`
`
`
`
`
`1-2. l LM Technology for the Fabrication of Continuous Fiber
`
`Composite· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14
`
`
`
`1-3 LITERATIJRE SURVEY····· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15
`
`
`
`
`
`
`1-3.l History of Commercial RP Systems······················ ·IS
`
`
`
`
`
`1-3.2 Present Profile of RP · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · l 7
`
`
`
`
`
`
`1-3.3 New Developments in RP Technologies··················· 19
`
`
`
`
`
`
`1-3.4 RP Technology with Composite Materials················· ·23
`
`
`
`
`1-4 CHALLENGES FOR FUTURE · · · · · • · · · · · · · · · · · · · · · • · · · · · · · · · · · · 27
`
`
`
`1-S RESEARCH OBJECTIVES····································· ·29
`
`
`
`
`
`
`
`
`CHAPTER 2 CONCEPT DESlGN AND ANALYSIS FOR COMPOSITE
`
`
`
`LA YER MANUFACTURING (CLM) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·30
`
`viii
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 11 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`2-1 INTRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30
`
`
`
`2-2 DEVELOPMENT METHODOLOGIES · · · · · · · · · · · · · · · · · · · · · · · · · · · · 31
`
`
`
`
`
`2-2.1 Developing a New Technology· · · · · · · · · · · · · · · · · · · · · · · · · · 31
`
`
`
`
`2-2.2 The Feasibility Experiment·· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·31
`
`
`
`
`2-2.3 The Intermediate Experiment · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34
`
`
`
`
`
`
`2-3 OBJECT FORMING THEORY FOR CLM · · · · · · · · · · · · · · · · · · · · · · · · · ·35
`
`
`
`
`
`
`2-3.l The General RPT Depositing Method····················· 35
`
`
`
`
`
`
`
`
`
`
`2-3.2 A Concept of Active Material Supplying and Passive Material
`
`Supplying · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 36
`
`
`
`
`
`
`
`
`
`
`2-4EFFECTS OF MATRIX AND FIBER lN THE CLM PROCESS········ ·40
`
`
`
`
`
`2-4.1 Selecting the Matrix Materials · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
`
`
`
`
`
`
`2-4.2 Accelerating the Phase Change Procedure · · · · · · · · · · · · · · · · · ·42
`
`
`
`
`
`
`
`
`
`
`
`2-4.3 Effects of Fibers and the Selection of Fibers for CLM · · · · · · · · ·46
`
`
`
`
`
`
`
`
`2-5 FORMING STRATEGY AND CONCEPT DESIGN FOR CLM · · · · · · · · ·47
`
`
`
`
`
`
`
`2-5.1 Concept Design for Thermosetting Matrix Materials········· ·48
`
`
`
`
`
`
`
`2-5.2 Concept Design for Thermoplastic Matrix Materials··· · · · · · · ·50
`
`
`
`2-6 CHAPTER CONCLUSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 72
`
`
`
`
`
`CHAPTER 3 PRINCIPLES OF TOOLPATH DESIGN··················· 74
`
`
`3-1 INTRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74
`
`
`
`
`
`
`
`
`
`3-2 POTENTIAL SOURCES OF ERRORS AND CONTROL METHODS FOR
`
`
`CLM PROCESS· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 75
`
`
`
`
`
`3-2.1 Potential Origins of Errors·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 75
`
`ix
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 12 of 248
`
`
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`
`3-2.2 Controlling the Errors · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·80
`
`
`
`
`
`
`
`3-3 ERRORS CAUSED BY DEPOSITION DlRECTION CHANGES· · · · · · ·82
`
`
`
`
`3-3.1 A mechanics model· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·84
`
`
`
`
`
`
`
`3-3.2 Derivation for the Towpreg Center Tracks· · · · · · · · · · · · · · · · · · 85
`
`
`
`
`
`
`3-3.3 Discussions of the Calculated Results·· · · · · · · · · · · · · · · · · · · · 86
`
`
`
`
`
`
`
`
`3-3.4 Analysis of Case 1: Obtuse Angle Tum··················· ·91
`
`
`3-3.5
`
`
`
`
`
`
`
`.1\nalysis of Case 2: Acute Angle Tum····················· 97
`
`
`
`
`
`
`
`3-4 ERRORS IN DEPOSITING AN ARC-SHAPED SEGMENT · · · · · · · · · 100
`
`
`
`
`
`
`
`
`3-4.1 Evaluation of Errors in Depositing an Arc · · · · · · · · · · · · · · · · · l 00
`
`
`
`
`
`
`
`
`3-4.2 Sources and Factors that Affect the Errors· · · · · · · · · · · · · · · · 106
`
`
`
`
`
`
`
`3-5 DESIGN AND PREDICTION OF COMPOSITE MECHANICAL
`
`
`
`
`PROPERTIES PRODUCED BY CLM · · · · · · · · · · · · · · · · · · · · · · · · · · · 107
`
`
`
`
`
`
`3-5.1 Arranging Layer Directions With LOM · · · · · · · · · · · · · · · · · · ·108
`
`
`3-5.2
`
`
`
`
`In Layer Mechanical Properties· · · · · · · · · · · · · · · · · · · · · · · · · 111
`
`
`
`
`3-6 SOFTWARE DEVELOPMENT STRATEGY· · · · · · · · · · · · · · · · · · · · · 112
`
`
`
`
`3-6.1 Software Development Considerations · · · · · · · · · · · · · · · · · · · · I 15
`
`
`
`
`
`
`
`
`3-6.2 A Method to optimize the in-Layer Toolpath· · · · · · · · · · · · · · · 11 7
`
`
`
`3-7 CHAPTER CONCLUSIONS···················· · · · · · · · · · · · · · · · 122
`
`
`
`
`
`
`
`
`CHAPTER 4 THE SIMULATION OF THE CLM PROCESS· · · · · · · · · · · · · · t 23
`
`
`4-1
`
`INTRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 123
`
`
`
`
`
`
`4-2 SIMULATION OF THE SELF-ANCHORING PROCESS············ 124
`
`
`
`4-2. l Basic Theories · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124
`
`X
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 13 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`
`
`
`
`
`4-2.2 Some Preliminary Concept About the CLM Process · · · · · · · · · · 125
`
`
`
`
`
`
`
`4-2.3 Transformations and Simplification of the Problem· · · · · · · · · · 130
`
`
`
`
`
`4-3 THE BASICS OF SIMULATION · · · · · · • · · · · · · · · · · · · · · · · · · · · · · · 133
`
`
`
`
`4-3.1 Thermal Conduction Equations·· · · · · · · · · · · · · · · · · · · · · · · ·· 133
`
`
`
`4-3.2 Basic Assumptions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 136
`
`
`
`
`4-3.3 Basic Parameters · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 136
`
`
`
`
`
`
`
`
`4-3.4 An Analytical Solution for a Single Towpreg · · · · · · · · · · · · · · 137
`
`
`
`
`
`
`
`4-4 TEMPERATURE SIMULATION FORA SINGLE TOWPREG · · · · · ·141
`
`
`4-4. l
`
`
`
`
`Introduction to the ANSYS · · · · · · · · · · · · · · · · · · · · · · · · · · · · 141
`
`
`
`
`
`4-4.2 Simulation for a Single Towpreg · · · · · · · · · · · · · · · · · · · · · · · · 141
`
`
`
`
`
`
`
`4-5 TEMPERATURE SIMULATION FOR MULTIPLE TOWPREGS · · · · 147
`
`
`
`
`
`
`4-5.1 Forming and Heat Transfer Model · · · · · · · · · · · · · · · · · · · · · · · 14 7
`
`
`
`
`4-5.2 Temperature Field Simulations· · · · · · · · · · · · · · · · · · · · · · · · · 149
`
`
`
`
`4-6 ANALYZING AUTOMATIC EXTRUSION····················· 151
`
`
`
`
`
`
`4-6.1 Principle of Automatic Extrusion Method · · · · · · · · · · · · · · · · · · 155
`
`
`
`
`
`
`
`
`4-6.2 Simplification and Estimation of the Best Parameters · · · · · · · · 161
`
`
`
`
`
`
`
`4-7 NUMERICAL SIMULATION OF THE AIDM METHOD·········· 161
`
`
`
`
`4-7.l Numerical Simulation Model··························· 161
`
`
`
`
`4-7 .2 Fluid Flow Simulation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 161
`
`
`
`4-8 CHAPTER CONCLUSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 168
`
`
`
`
`
`
`CHAPTER 5 CLM SYSTEM DEVELOPMENT AND EXPERIMENTAL
`
`ANALYSIS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 169
`
`xi
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 14 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`5-1 IN"TRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 169
`
`
`
`
`5-2 THE EXTREME EXPERIMENT······ · · · · · · · · · · · · · · · · · · · · · · · · · · · 170
`
`
`
`
`
`
`5-2. l The Concept of Extremum Experiments · · · · · · · · · · · · · · · · · · · 170
`
`
`
`
`
`
`5-2.2 Automatic Extrusions of Thermosetting Materials · · · · · · · · · · · 172
`
`
`
`
`
`
`5-2.3 Automatic Extrusions with Thermoplastic Materials········· 174
`
`
`
`
`5-3 "PISTON EFFECT" EXPERIMENT··· · · · · · · · · · · · · · · · · · · · · · · · · · · 178
`
`
`
`
`5-3.1 Experimental Set Up· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 178
`
`
`
`
`5-3.2 Results and Discussions·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 185
`
`
`
`
`
`5-4"AUTOMATIC PUSIIlNG OUT' EXPERIMENT··················· 186
`
`
`
`
`5-4.1 Experimental Set Up · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 186
`
`
`
`
`5-4.2 Results and Discussion · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 188
`
`
`
`
`
`
`5-4.3 Design Features and Further Improvements · · · · · · · · · · · · · · · · 192
`
`
`
`
`
`
`
`
`
`
`5-5 SYSTEM DEVELOPMENT OF THE CLM WITH A SELF-ANCHORING· ·
`
`· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 195
`
`
`
`
`5-5. l Towpreg Making System· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 195
`
`
`
`5-5.2 Depositing Systems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 205
`
`
`
`
`
`5-6 EVALUATION OF MECHANICAL PROPERTIES· · · · · · · · · · · · · · · · · ·205
`
`
`
`
`
`5-6.1 Three Point Bending Test· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 205
`
`
`
`
`
`5-6.2 Specimens From the CLM · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 206
`
`
`
`
`
`
`
`5-6.3 Specimens From a Compression-Molding (Hot Press) · · · · · · · 206
`
`
`
`
`
`
`
`
`
`
`5-6.4 Three-Point Bending Test for Flexural Strength and Modulus· ·210
`
`
`
`
`
`
`
`5-6.5 Transverse Bending Test for Delaminatoin Strength········· ·215
`
`
`
`
`5-6.6 Result and Discussions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 215
`
`xii
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 15 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`
`
`5-7 PROPOSED FU1UR.E WORK · · · · · · · · · · · · · · · · · · · · · · · · · · - · · · - · · · 217
`
`
`
`5-8 CHAPTER CONCLUSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 217
`
`
`CHAPTER 6 CONCLUSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · - - 218
`
`REFERENCES · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · · - · · · · - · - ·221
`
`
`APPENDIX A · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · · . · ·228
`
`
`APPENDIX B · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · · · 229
`
`
`APPENDIX C · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · · · · · · - · · - . -230
`
`
`APPENDIX D· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · - · .. 231
`
`xiii
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 16 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`
`CHAPTER 1 INTRODUCTION
`
`
`
`§1-1 FOREWORD
`
`
`1-1-1 Background
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`In industry, three basic factors should be considered in developing a new part or
`
`
`
`
`
`
`
`
`
`
`
`
`
`structure: cost, quality and time. The quality includes geometry and precisio~ mechanical
`
`
`
`
`
`
`
`
`
`
`
`
`
`properties, convenience for using, safety, durability etc. To obtain a desired geometry.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`various conventional methods can be employed and they can be classified into several
`
`
`
`
`
`different categories (See Table 1-1).
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`In response to the different requirements of a part. new fabrication methods are
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`emerging. During the last decade, a new technology has appeared, which is called solid
`
`
`
`
`
`
`
`
`
`
`
`freeform fabrication (SFF), layer manufacturing (LM), or rapid prototyping and
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`manufacturing technology (RP&M or, simply, RP). What is RP? What are the special
`
`
`
`
`
`
`
`
`
`
`
`
`
`features of RP? What are their advantages and shortcomings as compared with
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`traditional fabrication technologies? And how does their future hold? All these issues will
`
`
`
`
`
`
`be briefly introduced in the following.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`What is RP? So far, there has been no generally accepted definition of RP. The
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`concept of RP may be considered as a process in which a computer-aided design model
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`of a part can be converted into a physical object through some special materials additive
`
`
`
`
`
`
`
`
`
`
`
`means. A significant difference between the new RP and traditional fabrication
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 17 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`2
`
`Subtractive
`Material
`
`Additive
`Material
`
`Deform
`Material
`
`
`Typical Method
`
`Features
`
`
`Application Field
`
`
`
`
`Lathe, turning, Planing,
`Boring,
`
`General
`Precision
`
`
`
`Common Metal
`Removing
`
`
`
`
`Electric Spark Machining,
`
`
`Etching Machine,
`
`
`Welding, Casting
`
`
`
`Filament Winding,
`
`Injection Molding,
`
`
`
`CVDandPVD,
`
`RPT
`
`Forging,
`Blanking,
`Stamping
`
`
`Plastic Blow
`
`
`
`High Precision, Mold
`
`
`
`Forming Speed Manufacture,
`
`
`are Low
`Special Forming
`
`
`
`Precision is
`lower,
`
`Mass product
`
`
`
`Semi finished
`Product
`
`Plastic
`
`
`Mass Product
`
`manufacture
`
`
`
`High Precision Electric
`
`
`and small
`product
`
`Manufacture
`
`
`Few product
`
`
`
`Model Forming,
`
`Medical purpose
`
`Mass
`Product
`
`Mass
`Product
`
`
`Auto Manufacture
`
`Plastic
`
`Manufacture
`
`
`
`
`
`
`Table l- l Classification of fabrication methods.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 18 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`3
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`techniques are the fact that most of these new techniques build objects by adding material
`
`
`
`
`
`
`
`
`
`
`
`
`
`(e.g. layer by layer) instead of removing materials (such as in CNC milling).
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`What are the features of RP? The new RP methods can be used to build parts or
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`structures with an arbitrarily complex 3D geometry. Some structure simply could not be
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`formed by any other technique except RP ( e.g.. see Figure 1-l ). In a typical rapid
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`prototyping process, a 3-D object is first designed by using a computer-aided design
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`(CAD) approach with a 3-D solid model being created based on the computer data.
`
`
`
`
`
`
`
`
`
`
`
`Based on a computer-controlled system, the RP process planning begins with
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`transforming a CAD data file into a special interface such as Stereo lithography file (STL)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`to represent the geometry of the object. The STL file is then sliced into layer-wise data to
`
`
`
`
`
`
`
`
`
`
`
`
`
`define the outlines or contours of individual cross-sections (A combination of these
`
`
`
`
`
`
`
`
`
`
`
`constituent cross-sections reconstructs a geometric representation of the object). Then.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`depending upon the specific RP apparatus, this layer file is converted to generate a tool
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`path file, which can be used to control the operations of a forming apparatus to form the
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`desired object layer by layer. Since any complex shape can be sliced into constituent
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`layers or cross-sections, theoretically any object can be made layer by layer. This is why
`
`
`
`
`
`
`
`
`
`SFF is also commonly referred to as layer manufacturing.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`As another feature, a SFF process normally makes use of a generic fabrication
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`machine and does not require the utilization of a part-specific tooling (no mold, die or
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`other shape-forming tool is required). A SFF or RP apparatus requires minimal or no
`
`
`
`
`
`
`
`
`
`
`
`
`human intervention to operate. The RP technology requires integration of computer
`
`
`
`
`
`
`
`
`
`
`
`
`
`software, control, and materials and, in some cases, lasers technologies. The advances in
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 19 of 248
`
`
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`4
`
`
`(a) Snake
`
`
`
`
`Made by z™ 402
`
`
`
`
`
`3D Color Printing ofZ Corp.
`
`
`
`
`
`(b) Sculpture Models
`
`
`
`
`Made by Solidscape Modelmaker 2.
`
`
`
`
`
`
`
`(c) Complex aircraft System
`
`
`
`
`
`Produced by SLS Process DTM Corp.
`
`
`
`
`(d) Complex Wax Model
`
`
`
`
`
`
`Made by Multi Jet Modeling Process
`
`
`TNO lndustrial Technology.
`
`
`
`·-,.,. __ .........
`
`_...:; __ ~~~~
`
`!1~
`
`
`( e) Sensaos,
`
`
`
`An Egyptian Mwnmy
`
`
`
`
`Made by MJM process
`
`
`TNO Industrial Technology.
`
`
`
`
`(f) Architectural Model
`
`
`
`MIT Three Dimensional
`
`Printing Laboratory
`
`
`
`
`(g) Gearing Assembly
`
`
`
`Made by Stratasys
`
`
`FDM Process
`
`
`TNO [ndustrial Technology.
`
`
`
`
`
`Source: (a) download from http://www.zcorp.com/
`
`
`
`(b) Download from http://www.protoshape.com/
`
`
`
`(c) Download from http://www.dtm-corp.com/
`
`
`
`
`
`(d), (e), (g) download from http://www.ind.tno.nl/en/productiondevelopment/
`
`
`
`
`
`
`
`
`
`
`Figure 1-1 The Typical Models And Parts Formed By RPT.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 20 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`
`
`5
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`computer science m the last decade have made it possible to develop various RP
`
`
`
`
`
`
`
`
`
`
`
`
`technologies and have given RP various applications. The following subsections describe
`
`
`
`
`these new applications [l].
`
`
`
`
`
`
`
`
`
`
`
`Advantages and limitations Although RP techniques have only been developed
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`in recent years, the advantages that offer have quickly become obvious. Prototyping is a
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`process of building pre-production models of a product to test various aspects of its
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`design. Usually this process is slow and expensive. The RP technology offers methods
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`that allow a user to quickly produce physical prototypes with the important benefit of
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`reducing the time to market. By use of these methods, prototypes can be built in an
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`automated fashion; the skill of individual craftsmen is needed only at the completion. The
`
`
`
`
`
`
`
`
`
`
`
`
`
`resulting design cost will be decreased considerably. Another advantage of the RP
`
`
`
`
`
`
`
`
`
`
`
`
`
`technology is the capability of producing complex-shaped objects, especially for cases in
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`which only a small number of parts or structures are needed at a given time, such as for
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`aerospace and medical purposes. Objects can be formed with a co



