throbber

`
`INFORMATION TO USERS
`
`
`
`
`
`
`
`
`
`
`
`
`This manuscript has been reproduced from the microfilm master. UMI films
`
`
`
`
`
`
`
`
`
`
`
`
`
`the text directly from the original or copy submitted. Thus. some thesis and
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`dissertation copies are in typewriter face, while others may be from any type of
`
`computer printer.
`
`
`
`
`
`
`
`
`
`
`
`
`
`The quality of this reproduction is dependent upon the quality of the
`
`
`
`
`
`
`
`
`
`
`
`copy submitted. Broken or indistinct print. colored or poor quality illustrations
`
`
`
`
`
`
`
`
`and photographs, print bleedthrough, substandard margins, and improper
`
`
`
`
`alignment can adversely affect reproduction.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`In the unlikely event that the author did not send UMI a complete manuscript
`
`
`
`
`
`
`
`
`
`
`
`
`and there are missing pages, these will be noted. Also, if unauthorized
`
`
`
`
`
`
`
`
`
`
`
`copyright material had to be removed, a note will indicate the deletion.
`
`
`
`
`
`
`
`
`
`
`Oversize materials (e.g., maps, drawings, charts) are reproduced by
`
`
`
`
`
`
`
`
`
`
`
`sectioning the original, beginning at the upper left-hand comer and continuing
`
`
`
`
`
`
`
`
`
`from left to right in equal sections with small overlaps.
`
`
`
`
`
`
`
`
`
`
`Photographs included in the original manuscript have been reproduced
`
`
`
`
`
`
`
`
`
`
`
`
`xerographically in this copy. Higher quality 6" x 9" black and white
`
`
`
`
`
`
`
`
`
`
`photographic prints are available for any photographs or illustrations appearing
`
`
`
`
`
`
`
`
`
`
`
`in this copy for an additional charge. Contact UMl directly to order.
`
`
`
`
`
`ProQuest Information and Leaming
`
`
`
`
`
`
`
`
`
`300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
`800-521-0600
`
`UMf
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 1 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 2 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`
`
`
`
`SOLID FREEFORM FABRICATION OF CONTINUOUS FIBER REINFORCED
`
`
`COMPOSITE MATERIALS
`
`
`ERJIAN MA
`
`
`
`A Dissertation
`
`
`
`Submitted to
`
`
`
`
`the Graduate F acuity
`
`
`
`
`of Auburn University
`
`
`
`
`
`in Partial Fulfillment of
`
`
`
`
`the Requirements for
`
`
`
`the Degree of
`
`
`
`Doctor of Philosophy
`
`
`
`Auburn Alabama
`
`
`
`August 6, 200 l
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 3 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`UMI Number: 3016100
`
`
`
`
`UMI Microfonn3016100
`
`
`
`
`
`
`
`
`
`
`Copyright 2001 by Bell & Howell Information and Leaming Company.
`
`
`
`
`
`
`
`
`
`All rights reserved. This microform edition is protected against
`
`
`
`
`
`
`
`unauthorized copying under Title 17, United States Code.
`
`
`
`
`
`
`
`
`Bell & Howell Information and Leaming Company
`
`
`
`
`300 North Zeeb Road
`
`
`
`P.O. Box 1346
`
`
`
`Ann Arbor, Ml 48106-1346
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 4 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`
`
`
`
`SOLID FREEFORM FABRICATION OF CONTINUOUS FIBER REINFORCED
`
`
`COMPOSITE MATERIALS
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Except where reference is made to the work of others, the work described in this
`
`
`
`
`
`
`
`
`
`
`
`
`dissertation is my own or was done in collaboration with my advisory committee
`
`
`ErjianMa
`
`..,,,
`
`
`
`Certificate of Approval:
`
`
`
`
`
`Dan B. ~ghitu
`
`Associat: Professor
`
`Mechanical Engineering
`
`
`
`
`
`Bor. Z. Jang, Chairman
`Professor
`
`Mechanical Engineering
`
`
`
`Sabit Adanur
`Professor
`
`Textile Engineering
`
`
`
`
`Stephen L. McFarland
`
`
`Acting Dean
`
`Graduate School
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 5 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`VITA
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Erjian Ma, son of Benli Ma and Ywiping Dai, was born on April 12, 1960, in
`
`
`
`
`
`
`
`
`
`
`
`
`
`MengCheng County, Anhui Province, P. R. China. He attended Hefei University of
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Technology, Hefei, P. R. China, where he graduated with a Bachelor of Science degree in
`
`
`
`
`
`
`
`
`
`
`
`
`
`Mechanical Science and Engineering in 1982. He then worked for Beijing Research
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Institute of Mechanical and Electrical Technology, Beijing, P. R. China, for 11 years,
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`with the title of engineer and department director. During this period of time, he attended
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`the graduate school at Harbin Institute of Technology, Harbin, P. R. China, where he
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`received a Master of Science degree in Materials Science and Engineering in 1987. From
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`1994 to 1996, he was a visiting scholar working at the Materials Research and Education
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Center at Auburn University. AL. He began to pursue a Doctor of Philosophy degree in
`
`
`
`
`
`
`
`
`Mechanical Engineering at Auburn University in October 1996.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`He married his wife, Hong Xu in 1985, and had their daughter Jennifer Ma in
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Beijing, P. R. China on February 4, 1993 and their son, Jeffiey Ma in Auburn, AL, on
`
`
`
`September 26, 1996.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`iii
`
`
`Page 6 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`DISSERT A T£ON ABSTRACT
`
`
`
`
`
`
`SOLID FREEFORM FABRICATION OF CONTINUOUS FIBER REINFORCED
`
`COMPOSITE MATERIALS
`
`ERJIANMA
`
`
`
`
`
`
`
`Doctor of philosophy, August 6, 2001
`
`
`
`
`
`
`
`
`(M.S. Harbin Institute of Technology, P.R. China, 1987)
`
`
`
`
`
`
`
`
`(B.S. Hefei University of Technology, P.R. China, I 982)
`
`
`
`
`240 Typed pages
`
`
`
`
`
`Directed by Bor. Z. Jang
`
`
`
`
`
`
`
`
`
`
`A novel computer-controlled composite layer manufacturing (CLM) process has
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`been proposed and investigated. The CLM process may be considered to be a new
`
`
`
`
`
`
`
`
`
`
`
`
`development direction in the field of rapid prototyping and manufacnrring (RP&M)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`technology. A traditional RP&M process is capable of producing a concept model or
`
`
`
`
`
`
`
`
`
`
`
`
`
`investment-casting pattern point by point and layer by layer by using monolithic
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`materials such as an un-reinforced resin or metal. In contrast, the presently developed
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`CLM process is capable of building a three-dimensional object of a complex shape from
`
`
`
`
`
`
`a high-strength fiber reinforced composite material.
`
`
`
`
`
`
`
`
`
`
`
`
`In the present dissertation study, the technical feasibility of the CLM
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`process has been demonstrated with a CLM machine constructed that is capable of
`
`
`
`
`
`
`
`
`
`
`
`fabricating both thermoplastic and thermosetting resin matrix composites. This automated
`
`
`
`
`
`
`
`
`
`
`
`
`manufacturing technology could potentially provide ( 1) a reduction in time from
`
`
`
`
`
`
`
`
`
`
`
`
`composite part design to production, (2) a cost-effective method of fabricating complex-
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`lV
`
`
`Page 7 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`
`
`
`
`
`
`
`
`
`
`shaped composite components, (3) an approach to the fabrication of integrated structures
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`for a reduced number of parts in a system and minimized need for part-to-part joining or
`
`
`
`
`
`
`
`welding, and (4) added capabilities for filament-winding.
`
`
`
`
`
`
`
`
`
`
`
`
`The dissertation research began with the formulation of new process concepts,
`
`
`
`
`
`
`
`
`
`
`
`
`continuing with the analysis of part forming strategies, material selection, concept
`
`
`
`
`
`
`
`
`
`
`
`
`designs for the syste~ feasibility experiments, detail designs, software and hardware
`
`
`
`
`
`
`
`
`integration, to a final construction of a prototype machine.
`
`
`
`
`
`
`
`
`
`
`
`Over ten part-forming methods were studied. Several feasibility experiments have
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`been carried out to prove these forming strategies and two main fabrication processes
`
`
`
`
`
`
`
`
`
`
`
`
`have been selected_ They are named Self-Anchoring process and Automatic Extrusion
`
`
`
`
`
`
`
`
`
`
`
`
`process, respectively. The error sources for the Self-Anchoring Forming Process were
`
`
`
`
`
`
`
`
`
`
`
`
`
`analyzed. Based on these results, the requirements of the software development have
`
`
`
`
`
`
`
`
`
`
`
`
`
`been established. To find the best parameters for both Self-anchoring and Automatic
`
`
`
`
`
`
`
`
`
`
`
`extrusion Forming Processes, related simulation models have been proposed and
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`evaluated. According to the result of this modeling study. new design plans were
`
`
`
`conceived and proposed.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Both of the two CLM fabrication methods have been studied experimentally and a
`
`
`
`
`
`
`
`
`
`
`
`
`
`system for self-anchoring forming process has been designed. and installed. The towpreg,
`
`
`
`
`
`
`
`
`
`
`
`
`a semi finished material used for the Self-Anchoring process was successfully formed.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`To compare the mechanical properties of the parts prepared by the new CLM
`
`
`
`
`
`
`
`
`
`
`
`
`
`method and by the conventional composite fabrication methods. three point bending tests
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`were carried. The results indicate that the parts fabricated. by CLM have acceptable
`
`
`mechanical properties.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`V
`
`
`Page 8 of 248
`
`
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`ACKNOWLEDGMENT
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`I would like to thank my advisor and committee chairman Dr. Bor. Z. Jang for
`
`
`
`
`
`
`
`
`
`
`
`
`providing knowledge, leadership, advice, and the opportunity to work on this project.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`I would like to offer my appreciation to Dr. Dan B. Marghitu and Dr. Sabit Adanur for
`
`
`
`
`
`
`
`
`
`
`
`
`serving on the advisory committee, support, encouragement and advice for my
`
`
`
`
`
`
`
`
`
`
`
`
`dissenation and to Dr. G. Mills for reading and correcting my dissertation.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`I would like to thank the members of our team, Dr. Leon W. Wu, Professor Jun H.
`
`
`
`
`
`
`
`
`
`
`Liu and Jessica Li, for their friendship, encouragements and help.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`vi
`
`
`Page 9 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`
`
`
`Manual or journal style used: __ P_,__ol__.ym"""""er=-------------------
`
`
`
`
`
`
`
`
`
`
`
`
`Computer software l;JSCd: Microsoft Word and Microsoft Excel for Microsoft Office 2000
`
`
`
`AndAutoCAD 14
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`vii
`
`
`Page 10 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`TABLE OF CONTENTS
`
`
`CHAPTER 1 INTRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
`
`
`1-1 FOREWORD · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
`
`
`1-1.1 Background · · · · · · · · · · · · • · · · · · • · · · · · · · · · · · · · · · • · · · · · · · · l
`
`
`
`
`
`
`1-1.2 Frequently Used SFF Processes · · · · · • · · · · · · · · · · · · · · · · · · · · 6
`
`
`
`
`
`1-1.3 Conventional Composite Fabrication Processes·············· ·9
`
`
`
`
`
`
`1-2 MOTIVATION BEHIND THE DISSERTATION RESEARCH · · · · · · · · · 13
`
`
`
`
`
`
`
`
`
`1-2. l LM Technology for the Fabrication of Continuous Fiber
`
`Composite· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14
`
`
`
`1-3 LITERATIJRE SURVEY····· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15
`
`
`
`
`
`
`1-3.l History of Commercial RP Systems······················ ·IS
`
`
`
`
`
`1-3.2 Present Profile of RP · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · l 7
`
`
`
`
`
`
`1-3.3 New Developments in RP Technologies··················· 19
`
`
`
`
`
`
`1-3.4 RP Technology with Composite Materials················· ·23
`
`
`
`
`1-4 CHALLENGES FOR FUTURE · · · · · • · · · · · · · · · · · · · · · • · · · · · · · · · · · · 27
`
`
`
`1-S RESEARCH OBJECTIVES····································· ·29
`
`
`
`
`
`
`
`
`CHAPTER 2 CONCEPT DESlGN AND ANALYSIS FOR COMPOSITE
`
`
`
`LA YER MANUFACTURING (CLM) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·30
`
`viii
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 11 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`2-1 INTRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30
`
`
`
`2-2 DEVELOPMENT METHODOLOGIES · · · · · · · · · · · · · · · · · · · · · · · · · · · · 31
`
`
`
`
`
`2-2.1 Developing a New Technology· · · · · · · · · · · · · · · · · · · · · · · · · · 31
`
`
`
`
`2-2.2 The Feasibility Experiment·· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·31
`
`
`
`
`2-2.3 The Intermediate Experiment · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34
`
`
`
`
`
`
`2-3 OBJECT FORMING THEORY FOR CLM · · · · · · · · · · · · · · · · · · · · · · · · · ·35
`
`
`
`
`
`
`2-3.l The General RPT Depositing Method····················· 35
`
`
`
`
`
`
`
`
`
`
`2-3.2 A Concept of Active Material Supplying and Passive Material
`
`Supplying · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 36
`
`
`
`
`
`
`
`
`
`
`2-4EFFECTS OF MATRIX AND FIBER lN THE CLM PROCESS········ ·40
`
`
`
`
`
`2-4.1 Selecting the Matrix Materials · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
`
`
`
`
`
`
`2-4.2 Accelerating the Phase Change Procedure · · · · · · · · · · · · · · · · · ·42
`
`
`
`
`
`
`
`
`
`
`
`2-4.3 Effects of Fibers and the Selection of Fibers for CLM · · · · · · · · ·46
`
`
`
`
`
`
`
`
`2-5 FORMING STRATEGY AND CONCEPT DESIGN FOR CLM · · · · · · · · ·47
`
`
`
`
`
`
`
`2-5.1 Concept Design for Thermosetting Matrix Materials········· ·48
`
`
`
`
`
`
`
`2-5.2 Concept Design for Thermoplastic Matrix Materials··· · · · · · · ·50
`
`
`
`2-6 CHAPTER CONCLUSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 72
`
`
`
`
`
`CHAPTER 3 PRINCIPLES OF TOOLPATH DESIGN··················· 74
`
`
`3-1 INTRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74
`
`
`
`
`
`
`
`
`
`3-2 POTENTIAL SOURCES OF ERRORS AND CONTROL METHODS FOR
`
`
`CLM PROCESS· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 75
`
`
`
`
`
`3-2.1 Potential Origins of Errors·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 75
`
`ix
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 12 of 248
`
`
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`
`3-2.2 Controlling the Errors · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·80
`
`
`
`
`
`
`
`3-3 ERRORS CAUSED BY DEPOSITION DlRECTION CHANGES· · · · · · ·82
`
`
`
`
`3-3.1 A mechanics model· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·84
`
`
`
`
`
`
`
`3-3.2 Derivation for the Towpreg Center Tracks· · · · · · · · · · · · · · · · · · 85
`
`
`
`
`
`
`3-3.3 Discussions of the Calculated Results·· · · · · · · · · · · · · · · · · · · · 86
`
`
`
`
`
`
`
`
`3-3.4 Analysis of Case 1: Obtuse Angle Tum··················· ·91
`
`
`3-3.5
`
`
`
`
`
`
`
`.1\nalysis of Case 2: Acute Angle Tum····················· 97
`
`
`
`
`
`
`
`3-4 ERRORS IN DEPOSITING AN ARC-SHAPED SEGMENT · · · · · · · · · 100
`
`
`
`
`
`
`
`
`3-4.1 Evaluation of Errors in Depositing an Arc · · · · · · · · · · · · · · · · · l 00
`
`
`
`
`
`
`
`
`3-4.2 Sources and Factors that Affect the Errors· · · · · · · · · · · · · · · · 106
`
`
`
`
`
`
`
`3-5 DESIGN AND PREDICTION OF COMPOSITE MECHANICAL
`
`
`
`
`PROPERTIES PRODUCED BY CLM · · · · · · · · · · · · · · · · · · · · · · · · · · · 107
`
`
`
`
`
`
`3-5.1 Arranging Layer Directions With LOM · · · · · · · · · · · · · · · · · · ·108
`
`
`3-5.2
`
`
`
`
`In Layer Mechanical Properties· · · · · · · · · · · · · · · · · · · · · · · · · 111
`
`
`
`
`3-6 SOFTWARE DEVELOPMENT STRATEGY· · · · · · · · · · · · · · · · · · · · · 112
`
`
`
`
`3-6.1 Software Development Considerations · · · · · · · · · · · · · · · · · · · · I 15
`
`
`
`
`
`
`
`
`3-6.2 A Method to optimize the in-Layer Toolpath· · · · · · · · · · · · · · · 11 7
`
`
`
`3-7 CHAPTER CONCLUSIONS···················· · · · · · · · · · · · · · · · 122
`
`
`
`
`
`
`
`
`CHAPTER 4 THE SIMULATION OF THE CLM PROCESS· · · · · · · · · · · · · · t 23
`
`
`4-1
`
`INTRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 123
`
`
`
`
`
`
`4-2 SIMULATION OF THE SELF-ANCHORING PROCESS············ 124
`
`
`
`4-2. l Basic Theories · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124
`
`X
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 13 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`
`
`
`
`
`4-2.2 Some Preliminary Concept About the CLM Process · · · · · · · · · · 125
`
`
`
`
`
`
`
`4-2.3 Transformations and Simplification of the Problem· · · · · · · · · · 130
`
`
`
`
`
`4-3 THE BASICS OF SIMULATION · · · · · · • · · · · · · · · · · · · · · · · · · · · · · · 133
`
`
`
`
`4-3.1 Thermal Conduction Equations·· · · · · · · · · · · · · · · · · · · · · · · ·· 133
`
`
`
`4-3.2 Basic Assumptions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 136
`
`
`
`
`4-3.3 Basic Parameters · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 136
`
`
`
`
`
`
`
`
`4-3.4 An Analytical Solution for a Single Towpreg · · · · · · · · · · · · · · 137
`
`
`
`
`
`
`
`4-4 TEMPERATURE SIMULATION FORA SINGLE TOWPREG · · · · · ·141
`
`
`4-4. l
`
`
`
`
`Introduction to the ANSYS · · · · · · · · · · · · · · · · · · · · · · · · · · · · 141
`
`
`
`
`
`4-4.2 Simulation for a Single Towpreg · · · · · · · · · · · · · · · · · · · · · · · · 141
`
`
`
`
`
`
`
`4-5 TEMPERATURE SIMULATION FOR MULTIPLE TOWPREGS · · · · 147
`
`
`
`
`
`
`4-5.1 Forming and Heat Transfer Model · · · · · · · · · · · · · · · · · · · · · · · 14 7
`
`
`
`
`4-5.2 Temperature Field Simulations· · · · · · · · · · · · · · · · · · · · · · · · · 149
`
`
`
`
`4-6 ANALYZING AUTOMATIC EXTRUSION····················· 151
`
`
`
`
`
`
`4-6.1 Principle of Automatic Extrusion Method · · · · · · · · · · · · · · · · · · 155
`
`
`
`
`
`
`
`
`4-6.2 Simplification and Estimation of the Best Parameters · · · · · · · · 161
`
`
`
`
`
`
`
`4-7 NUMERICAL SIMULATION OF THE AIDM METHOD·········· 161
`
`
`
`
`4-7.l Numerical Simulation Model··························· 161
`
`
`
`
`4-7 .2 Fluid Flow Simulation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 161
`
`
`
`4-8 CHAPTER CONCLUSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 168
`
`
`
`
`
`
`CHAPTER 5 CLM SYSTEM DEVELOPMENT AND EXPERIMENTAL
`
`ANALYSIS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 169
`
`xi
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 14 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`5-1 IN"TRODUCTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 169
`
`
`
`
`5-2 THE EXTREME EXPERIMENT······ · · · · · · · · · · · · · · · · · · · · · · · · · · · 170
`
`
`
`
`
`
`5-2. l The Concept of Extremum Experiments · · · · · · · · · · · · · · · · · · · 170
`
`
`
`
`
`
`5-2.2 Automatic Extrusions of Thermosetting Materials · · · · · · · · · · · 172
`
`
`
`
`
`
`5-2.3 Automatic Extrusions with Thermoplastic Materials········· 174
`
`
`
`
`5-3 "PISTON EFFECT" EXPERIMENT··· · · · · · · · · · · · · · · · · · · · · · · · · · · 178
`
`
`
`
`5-3.1 Experimental Set Up· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 178
`
`
`
`
`5-3.2 Results and Discussions·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 185
`
`
`
`
`
`5-4"AUTOMATIC PUSIIlNG OUT' EXPERIMENT··················· 186
`
`
`
`
`5-4.1 Experimental Set Up · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 186
`
`
`
`
`5-4.2 Results and Discussion · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 188
`
`
`
`
`
`
`5-4.3 Design Features and Further Improvements · · · · · · · · · · · · · · · · 192
`
`
`
`
`
`
`
`
`
`
`5-5 SYSTEM DEVELOPMENT OF THE CLM WITH A SELF-ANCHORING· ·
`
`· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 195
`
`
`
`
`5-5. l Towpreg Making System· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 195
`
`
`
`5-5.2 Depositing Systems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 205
`
`
`
`
`
`5-6 EVALUATION OF MECHANICAL PROPERTIES· · · · · · · · · · · · · · · · · ·205
`
`
`
`
`
`5-6.1 Three Point Bending Test· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 205
`
`
`
`
`
`5-6.2 Specimens From the CLM · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 206
`
`
`
`
`
`
`
`5-6.3 Specimens From a Compression-Molding (Hot Press) · · · · · · · 206
`
`
`
`
`
`
`
`
`
`
`5-6.4 Three-Point Bending Test for Flexural Strength and Modulus· ·210
`
`
`
`
`
`
`
`5-6.5 Transverse Bending Test for Delaminatoin Strength········· ·215
`
`
`
`
`5-6.6 Result and Discussions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 215
`
`xii
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 15 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`
`
`5-7 PROPOSED FU1UR.E WORK · · · · · · · · · · · · · · · · · · · · · · · · · · - · · · - · · · 217
`
`
`
`5-8 CHAPTER CONCLUSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 217
`
`
`CHAPTER 6 CONCLUSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · - - 218
`
`REFERENCES · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · · - · · · · - · - ·221
`
`
`APPENDIX A · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · · . · ·228
`
`
`APPENDIX B · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · · · 229
`
`
`APPENDIX C · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · · · · · · - · · - . -230
`
`
`APPENDIX D· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · - · - · .. 231
`
`xiii
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 16 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`
`CHAPTER 1 INTRODUCTION
`
`
`
`§1-1 FOREWORD
`
`
`1-1-1 Background
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`In industry, three basic factors should be considered in developing a new part or
`
`
`
`
`
`
`
`
`
`
`
`
`
`structure: cost, quality and time. The quality includes geometry and precisio~ mechanical
`
`
`
`
`
`
`
`
`
`
`
`
`
`properties, convenience for using, safety, durability etc. To obtain a desired geometry.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`various conventional methods can be employed and they can be classified into several
`
`
`
`
`
`different categories (See Table 1-1).
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`In response to the different requirements of a part. new fabrication methods are
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`emerging. During the last decade, a new technology has appeared, which is called solid
`
`
`
`
`
`
`
`
`
`
`
`freeform fabrication (SFF), layer manufacturing (LM), or rapid prototyping and
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`manufacturing technology (RP&M or, simply, RP). What is RP? What are the special
`
`
`
`
`
`
`
`
`
`
`
`
`
`features of RP? What are their advantages and shortcomings as compared with
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`traditional fabrication technologies? And how does their future hold? All these issues will
`
`
`
`
`
`
`be briefly introduced in the following.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`What is RP? So far, there has been no generally accepted definition of RP. The
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`concept of RP may be considered as a process in which a computer-aided design model
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`of a part can be converted into a physical object through some special materials additive
`
`
`
`
`
`
`
`
`
`
`
`means. A significant difference between the new RP and traditional fabrication
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 17 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`2
`
`Subtractive
`Material
`
`Additive
`Material
`
`Deform
`Material
`
`
`Typical Method
`
`Features
`
`
`Application Field
`
`
`
`
`Lathe, turning, Planing,
`Boring,
`
`General
`Precision
`
`
`
`Common Metal
`Removing
`
`
`
`
`Electric Spark Machining,
`
`
`Etching Machine,
`
`
`Welding, Casting
`
`
`
`Filament Winding,
`
`Injection Molding,
`
`
`
`CVDandPVD,
`
`RPT
`
`Forging,
`Blanking,
`Stamping
`
`
`Plastic Blow
`
`
`
`High Precision, Mold
`
`
`
`Forming Speed Manufacture,
`
`
`are Low
`Special Forming
`
`
`
`Precision is
`lower,
`
`Mass product
`
`
`
`Semi finished
`Product
`
`Plastic
`
`
`Mass Product
`
`manufacture
`
`
`
`High Precision Electric
`
`
`and small
`product
`
`Manufacture
`
`
`Few product
`
`
`
`Model Forming,
`
`Medical purpose
`
`Mass
`Product
`
`Mass
`Product
`
`
`Auto Manufacture
`
`Plastic
`
`Manufacture
`
`
`
`
`
`
`Table l- l Classification of fabrication methods.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 18 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`3
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`techniques are the fact that most of these new techniques build objects by adding material
`
`
`
`
`
`
`
`
`
`
`
`
`
`(e.g. layer by layer) instead of removing materials (such as in CNC milling).
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`What are the features of RP? The new RP methods can be used to build parts or
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`structures with an arbitrarily complex 3D geometry. Some structure simply could not be
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`formed by any other technique except RP ( e.g.. see Figure 1-l ). In a typical rapid
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`prototyping process, a 3-D object is first designed by using a computer-aided design
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`(CAD) approach with a 3-D solid model being created based on the computer data.
`
`
`
`
`
`
`
`
`
`
`
`Based on a computer-controlled system, the RP process planning begins with
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`transforming a CAD data file into a special interface such as Stereo lithography file (STL)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`to represent the geometry of the object. The STL file is then sliced into layer-wise data to
`
`
`
`
`
`
`
`
`
`
`
`
`
`define the outlines or contours of individual cross-sections (A combination of these
`
`
`
`
`
`
`
`
`
`
`
`constituent cross-sections reconstructs a geometric representation of the object). Then.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`depending upon the specific RP apparatus, this layer file is converted to generate a tool
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`path file, which can be used to control the operations of a forming apparatus to form the
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`desired object layer by layer. Since any complex shape can be sliced into constituent
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`layers or cross-sections, theoretically any object can be made layer by layer. This is why
`
`
`
`
`
`
`
`
`
`SFF is also commonly referred to as layer manufacturing.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`As another feature, a SFF process normally makes use of a generic fabrication
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`machine and does not require the utilization of a part-specific tooling (no mold, die or
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`other shape-forming tool is required). A SFF or RP apparatus requires minimal or no
`
`
`
`
`
`
`
`
`
`
`
`
`human intervention to operate. The RP technology requires integration of computer
`
`
`
`
`
`
`
`
`
`
`
`
`
`software, control, and materials and, in some cases, lasers technologies. The advances in
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 19 of 248
`
`
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`4
`
`
`(a) Snake
`
`
`
`
`Made by z™ 402
`
`
`
`
`
`3D Color Printing ofZ Corp.
`
`
`
`
`
`(b) Sculpture Models
`
`
`
`
`Made by Solidscape Modelmaker 2.
`
`
`
`
`
`
`
`(c) Complex aircraft System
`
`
`
`
`
`Produced by SLS Process DTM Corp.
`
`
`
`
`(d) Complex Wax Model
`
`
`
`
`
`
`Made by Multi Jet Modeling Process
`
`
`TNO lndustrial Technology.
`
`
`
`·-,.,. __ .........
`
`_...:; __ ~~~~
`
`!1~
`
`
`( e) Sensaos,
`
`
`
`An Egyptian Mwnmy
`
`
`
`
`Made by MJM process
`
`
`TNO Industrial Technology.
`
`
`
`
`(f) Architectural Model
`
`
`
`MIT Three Dimensional
`
`Printing Laboratory
`
`
`
`
`(g) Gearing Assembly
`
`
`
`Made by Stratasys
`
`
`FDM Process
`
`
`TNO [ndustrial Technology.
`
`
`
`
`
`Source: (a) download from http://www.zcorp.com/
`
`
`
`(b) Download from http://www.protoshape.com/
`
`
`
`(c) Download from http://www.dtm-corp.com/
`
`
`
`
`
`(d), (e), (g) download from http://www.ind.tno.nl/en/productiondevelopment/
`
`
`
`
`
`
`
`
`
`
`Figure 1-1 The Typical Models And Parts Formed By RPT.
`
`
`
`
`
`
`
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`
`Page 20 of 248
`
`Markforged Ex. 1007
`Markforged v. Continuous Composites, IPR2022-01218
`
`

`

`5
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`computer science m the last decade have made it possible to develop various RP
`
`
`
`
`
`
`
`
`
`
`
`
`technologies and have given RP various applications. The following subsections describe
`
`
`
`
`these new applications [l].
`
`
`
`
`
`
`
`
`
`
`
`Advantages and limitations Although RP techniques have only been developed
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`in recent years, the advantages that offer have quickly become obvious. Prototyping is a
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`process of building pre-production models of a product to test various aspects of its
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`design. Usually this process is slow and expensive. The RP technology offers methods
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`that allow a user to quickly produce physical prototypes with the important benefit of
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`reducing the time to market. By use of these methods, prototypes can be built in an
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`automated fashion; the skill of individual craftsmen is needed only at the completion. The
`
`
`
`
`
`
`
`
`
`
`
`
`
`resulting design cost will be decreased considerably. Another advantage of the RP
`
`
`
`
`
`
`
`
`
`
`
`
`
`technology is the capability of producing complex-shaped objects, especially for cases in
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`which only a small number of parts or structures are needed at a given time, such as for
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`aerospace and medical purposes. Objects can be formed with a co

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket