`
`Fused Deposition Modelling
`
`Applications
`
`By
`
`
`Mostafa Nikzad
`
`BSc & MSc (Eng)
`
`
`
`
`
`
`
`
`
`
`
`
`A thesis submitted in fulfilment of the requirements for
`the degree of
`
`Doctor of Philosophy
`
`
`Faculty of Engineering & Industrial Sciences
`
`Swinburne University of Technology
`
`Hawthorn, Melbourne
`
`Australia
`
`May 2011
`
`
`
`
`
`
`
`
`
`Page 1 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Abstract
`
`
`
`Fused Deposition Modelling (FDM) has been a leading rapid prototyping
`
`process but it has been mostly limited to use in making prototypes for design
`
`verification and functional testing applications. The commercial process can
`
`currently fabricate parts only in limited types of thermoplastics such as ABS
`
`and Polycarbonate. Very little efforts have been made to increase the range of
`
`FDM materials to include metals or metal based composites for wider
`
`application domain beyond just design and verification. This thesis presents
`
`new research in this direction by developing novel metal based composites for
`
`use in FDM technology.
`
`The principal objective of this research is to develop new metal/polymer
`
`composite materials for direct use in the current Fused Deposition Modelling
`
`rapid prototyping platform with long term aim of developing direct rapid
`
`tooling on the FDM system. Using such composites, the direct rapid tooling will
`
`allow fabrication of injection moulding dies and inserts with desired thermal
`
`and mechanical properties suitable for using directly in injection moulding
`
`machines for short term or long term production runs. The new metal/polymer
`
`composite material developed in this research work involves use of iron
`
`particles and copper particles in a polymer matrix of ABS material, which offers
`
`much improved thermal, electrical and mechanical properties enabling current
`
`Fused Deposition Modelling technique to produce rapid functional parts and
`
`tooling. Higher thermal conductivity of the new metal/polymer composite
`
`material coupled with implementation of conformal cooling channels enabled
`
`by layer-by layer fabrication technology of the Fused Deposition Modelling will
`
`result in tremendously improved injection cycles times, and thereby reducing
`
`the cost and lead time of injection moulding tooling.
`
`
`
`I
`
`
`Page 2 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`
`Due to highly metal-particulate filled matrix of the new composite material,
`
`injection tools and inserts made using this material on Fused Deposition
`
`Modelling, demonstrate a higher stiffness comparing to those made out of pure
`
`polymeric material resulting in withstanding higher injection moulding
`
`pressures. Moreover, metallic filler content of the new composite allows
`
`processing of functional parts with electrical conductivity and in case of using
`
`ferromagnetic fillers, namely as fine iron powders, it introduces magnetic
`
`properties, which will make FDM-built components suitable for electronic
`
`applications specifically whereby electro-magnetic shielding is of high interest.
`
`In this research project, a full characterization of the newly developed
`
`metal/polymer composites including rheological, thermal, mechanical and
`
`electrical properties has been investigated. Mathematical models have been
`
`employed in order to predict and optimize the viscous behaviour of
`
`metal/polymer composite during the course of deposition through the FDM
`
`nozzle.
`
`In order to predict the main flow parameters of the metal/polymer composites
`
`including pressure, temperature, and velocity fields through the FDM liquefier
`
`head, 2-D and 3-D numerical analysis of melt flow behaviour of acrylonitrile-
`
`butadiene-styrene (ABS) and Iron composite as a representative metal/polymer
`
`material has been carried out using ANSYS FLOTRAN and ANSYS CFX
`
`commercial codes. Results of numerical analysis have been verified by the
`
`developed empirical mathematical models.
`
`A variety of advanced techniques have been employed to fully characterize the
`
`newly developed metal/polymer composites in order to successfully process
`
`filaments for fabrication of injection mould tooling inserts. Morphological
`
`effects of metallic fillers and surfactants as well as variation of volume fractions
`
`of constituents on the viscoelastic properties of the new composite material
`
`
`
`II
`
`
`Page 3 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`have also been investigated. Filaments of the filled ABS has been fabricated
`
`and characterized to verify the possibility of prototyping and direct tooling
`
`using the new material on the current FDM machine.
`
`Major contributions of the thesis include:
`
`• Development of a new metal/polymer composite material for functional
`
`parts and rapid tooling solutions on Fused Deposition Modeling
`
`platform.
`• Development of mathematical models for predicting viscous behavior of
`
`three-component composite flow through capillary extrusion process.
`• Full rheological, thermal, mechanical and electrical characterization of
`
`the new metal/polymer composites.
`• Combining experimental and numerical methodology (tools) to predict
`
`melt flow behavior of metal/polymer composite through Fused
`
`Deposition Modeling.
`• Fabrication of stiff and flexible filaments of the metal-polymer
`
`composites as feedstock material for direct rapid tooling via Fused
`
`Deposition Modeling.
`• Fabrication of functional parts and inserts of new metal/polymer
`
`composites successfully and directly on the FDM3000 system.
`• Production of plastic parts using injection moulding tools made by
`
`Direct FDM-based Rapid Tooling Process.
`
`
`
`III
`
`
`Page 4 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Acknowledgment
`
`First of all, I would like to express my deepest gratitude to my principal
`
`supervisor Professor S.H. Masood for his continuous support and valuable
`
`guidance throughout my research work. I would like to also thank my second
`
`supervisor, Dr. Igor Sbarski, for his valuable inputs especially on rheological
`
`studies, and overall arrangement of experimental works. Initial support of my
`
`external supervisor, Dr. Andrew Groth from CSIRO, is also highly appreciated.
`
`I acknowledge the financial support in the form of scholarship provided by
`
`Swinburne University of Technology and the Commonwealth Scientific and
`
`Industrial Research Organisation (CSIRO).
`
`My thanks are extended to the people for their help at various stages of my PhD
`
`work. Assistance of John Thomas, Adam Webb from Autodesk Moldflow; Dr.
`
`Ruether and Dr. Shekibi from CSIRO Energy Technology division; Mike
`
`Dundan from Chisholm TAFE; Pejman Hojati from Monash University; Brian
`
`Dempster, Mehdi Miri, Girish Thipperudrappa, Dr. Ismet Ilyas, Dr. Wei Song,
`
`and Dr. James Wang, from Swinburne University of Technology is highly
`
`appreciated.
`
` I wish to express my eternal gratitude to my Mum, Dad and Siblings for their
`
`endless support, love and encouragement throughout my entire schooling.
`
`Last but not least, I would like to thank all my friends and fellow postgraduate
`
`students, especially A.B.M. Saifullah and Barbara, whose sincere friendship
`
`made the course of my PhD studies fun and enjoyable.
`
`Thank You!
`
`
`
`
`
`
`
`
`
`IV
`
`
`Page 5 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`DECLARATION
`
`
`
`
`
`
`This thesis contains no material which has been accepted for the award of any
`
`other degree or diploma at any university and to the best of my knowledge and
`
`belief contains no materials previously published or written by another person
`
`or persons except where reference is made.
`
`
`
`
`
`
`
`Mostafa Nikzad
`
`May 2011
`
`
`
`
`
`
`
`V
`
`
`Page 6 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Table of Contents
`
`Chapter 1 Introduction .................................................................................................. 1
`
`1.1. General Background ....................................................................................... 1
`
`1.2. Outline of Research Project ............................................................................ 8
`
`1.3. Outline of thesis ............................................................................................. 12
`
`Chapter 2 RP/RT/RM and Materials Development .............................................. 14
`
`2.1.
`
`Introduction .................................................................................................... 14
`
`2.2. Overview of the Traditional RP Processes ................................................. 17
`
`2.2.1. Stereolithography ................................................................................... 17
`
`2.2.2. Selective Laser Sintering ....................................................................... 21
`
`2.2.3. Three Dimensional Printing ................................................................. 23
`
`2.2.4. Laminated Object Manufacturing ........................................................ 24
`
`2.2.5. Fused Deposition Modelling Process .................................................. 25
`
`2.3. Overview of Emerging Rapid Manufacturing Processes ........................ 29
`
`2.3.1. Liquid-based RM Processes .................................................................. 30
`
`2.3.1.1.
`
`Stereolithography ....................................................................................... 30
`
`2.3.2. Powder-based RM Processes ................................................................ 32
`
`2.3.2.1.
`
`Direct Metal Laser Sintering ........................................................................ 33
`
`2.3.2.2.
`
`Selected Laser Melting ................................................................................ 34
`
`2.3.2.3.
`
`Direct Metal Deposition .............................................................................. 35
`
`VI
`
`
`
`
`Page 7 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`2.3.2.4.
`
`Electron Beam Melting................................................................................ 36
`
`2.3.3. Solid based RM Processes ..................................................................... 37
`
`2.3.3.1.
`
`Laminated Object Manufacturing ............................................................... 37
`
`2.3.3.2.
`
`Fused Deposition Systems .......................................................................... 38
`
`2.4. Material Issues in RP & RM ......................................................................... 40
`
`2.5. Research Direction in Fused Deposition Modelling ................................. 47
`
`2.5.1. New Materials & Process Improvements in FDM ............................. 48
`
`2.5.2. Metal-Polymer Composites in FDM .................................................... 55
`
`2.5.3. Medical Applications & Rapid Tooling in FDM ................................ 56
`
`2.6. Summary ......................................................................................................... 57
`
`Chapter 3 New Metal/polymer Composites for FDM ........................................... 59
`
`3.1
`
`Introduction .................................................................................................... 59
`
`3.2 Composite Materials ..................................................................................... 60
`
`3.3 Metal/Polymer Composites......................................................................... 62
`
`3.3.1
`
`Thermoplastic Polymeric Matrices ...................................................... 63
`
`3.3.2
`
`Particle-reinforced Polymer Composites ............................................ 65
`
`3.4
`
`Processing of a New Metal/Polymer Composite ..................................... 68
`
`3.4.1
`
`Preparation of Iron-particulate filled ABS Composite ..................... 68
`
`3.4.2
`
`Extrusion of the Metal-polymer Composite and Die Swell
`
`Phenomenon ......................................................................................................... 73
`VII
`
`
`
`
`Page 8 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`3.5
`
`Fabrication of FDM filament and test samples ......................................... 76
`
`Chapter 4 Rheological Properties of Fe/ABS Composites for Fused Deposition
`
`Process ........................................................................................................................... 78
`
`4.1.
`
`Introduction .................................................................................................... 78
`
`4.2. Classification of Fluids and Rheological Properties ................................. 79
`
`4.3. Rheological Behaviour of Polymer Melts ................................................... 82
`
`4.3.1. Steady Simple Shear Flows ................................................................... 82
`
`4.3.2. Dynamic Drag Simple Shear Flows ..................................................... 84
`
`4.3.3. Shear Free Flows ..................................................................................... 84
`
`4.4. Filled Polymer Melts ..................................................................................... 84
`
`4.4.1. Metal-Polymer Composite Melt ........................................................... 85
`
`4.5. Experimental .................................................................................................. 86
`
`4.5.1. Capillary Rheometry.............................................................................. 86
`
`4.5.2. Parallel Plate Rheometry ....................................................................... 88
`
`4.5.3. Melt Flow Index ...................................................................................... 88
`
`4.6. Results ............................................................................................................. 89
`
`4.6.1. Discussion................................................................................................ 90
`
`4.6.2. Normal Stresses and Die Swell Phenomenon .................................. 114
`
`4.7. Viscosity Models for the Composites ....................................................... 115
`VIII
`
`
`
`
`Page 9 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`4.8. Summary ....................................................................................................... 117
`
`Chapter 5 Mechanical & Electro thermal Properties of Metal/Polymer
`
`Composites .................................................................................................................. 121
`
`5.1.
`
`Introduction .................................................................................................. 121
`
`5.2. Micro/nano metal-polymer composites .................................................. 122
`
`5.3. Experimental ................................................................................................ 129
`
`5.3.1. Stress-Strain behaviour of Iron/ABS composites ............................ 129
`
`5.3.2. Morphological properties of ABS-Iron Interface ............................. 133
`
`5.3.3. Dynamic Mechanical Analysis ........................................................... 141
`
`5.3.4. Thermal Properties of ABS-Iron composites .................................... 151
`
`5.3.4.1.
`
`Thermal Conductivity ................................................................................ 151
`
`5.3.4.2.
`
`Heat Capacity ............................................................................................ 155
`
`5.3.5. Electrical Conductivity of Iron/ABS composites ............................ 156
`
`5.4. Summary ....................................................................................................... 163
`
`Chapter 6 A Melt Flow Analysis of Iron/ABS Composites in FDM Process .... 165
`
`6.1.
`
`Introduction .................................................................................................. 165
`
`6.2. Material Characterisation for Boundary Condition Setup .................... 169
`
`6.2.1. General Flow Behaviour ...................................................................... 174
`
`6.3. Finite Element Analysis .............................................................................. 176
`
`
`
`IX
`
`
`Page 10 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`6.3.1. Geometry development ....................................................................... 176
`
`6.3.2. Problem domain and flow regime definition ................................... 177
`
`6.3.3. Meshing ................................................................................................. 178
`
`6.3.4. Boundary conditions............................................................................ 180
`
`6.4. Results and Discussion ............................................................................... 181
`
`6.5. Summary ....................................................................................................... 187
`
`Chapter 7 Experimental Trials of Iron/ABS in Fused Deposition Modelling .. 188
`
`7.1.
`
`Introduction .................................................................................................. 188
`
`7.2. Fused Deposition Modelling of Metal/Polymer Composites .............. 189
`
`7.3.
`
`Industrial Implementation ......................................................................... 199
`
`7.4. Summary ....................................................................................................... 207
`
`Chapter 8 Conclusions and Recommendations ..................................................... 209
`
`8.1.
`
`Introduction .................................................................................................. 209
`
`8.2. Major Findings & Original Contributions ............................................... 209
`
`8.3. Recommendation for Future Work ........................................................... 212
`
`References .................................................................................................................... 214
`
`Appendix A ................................................................................................................. 237
`
`Morphology of Metal/Polymer Composites ......................................................... 237
`
`
`
`X
`
`
`Page 11 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`A.1: EDS Result of ABS and Iron (6-9 µm) Composites .................................... 238
`
`A.2: EDS Result of ABS and Copper (45 µm) Composites ............................... 239
`
`A.3: EDS Result of ABS and Copper (10 µm) Composites ............................... 240
`
`A.4: SEM Images of ABS and Iron (6-9 µm) Composites ................................. 242
`
`A.5: SEM Images of ABS and Copper (45 µm) Composites ............................. 244
`
`A.6: SEM Images of ABS and Copper (10 µm) Composites ............................. 246
`
`Appendix B ................................................................................................................. 248
`
`Publications from This Research .............................................................................. 248
`
`B1: Refereed Journal Papers .................................................................................. 248
`
`B2: Refereed Conference Papers .......................................................................... 248
`
`
`
`XI
`
`
`Page 12 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`List of Figures
`
`Figure 1-1: Generic Flow of RP Process ( Kamrani & Nasr 2006) ........................... 2
`
`Figure 1-2: Schematic of Stratasys FDM Process ....................................................... 7
`
`Figure 2-1: Classification of the current RP-based Tooling .................................... 15
`
`Figure 2-2: Material-dependent Rapid manufacturing and Tooling (reproduced
`
`from Levy, Schindel & Kruth 2003) ........................................................................... 16
`
`Figure 2-3: Schematic of Stereolithography process (Source: Ultra Violet
`
`Products, Inc) ................................................................................................................ 18
`
`Figure 2-4: Illustration of Direct AIM “Shelling” backfilled with Al-filled Epoxy
`
`(Jacobs 2000) .................................................................................................................. 19
`
`Figure 2-5: Illustration of Silicon RTV moulding process (Grenda 2006) ............ 21
`
`Figure 2-6: Illustration of the SLS process (Subramanian et al. 1995)................... 22
`
`Figure 2-7: Illustration of 3DP process (Source: after E.Sachs and E.Cima) ........ 23
`
`Figure 2-8: Illustration of the LOM process (Source: Helisys, Inc) ....................... 25
`
`Figure 2-9: Fused Deposition Modelling process .................................................... 26
`
`Figure 2-10: FDM Liquefier Straight Nozzle ............................................................ 28
`
`Figure 2-11: Production of Jewellery and Hearing Aid by Envisiontec
`
`Perfactory© ................................................................................................................... 31
`
`Figure 2-12: Powder-based RM Processes and the Current Commercial ............ 32
`
`
`
`XII
`
`
`Page 13 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Figure 2-13: Rapid Manufactured Parts by DMLS (Source: Morris Technologies
`
`Retrieved 2010) ............................................................................................................. 34
`
`Figure 2-14: Direct Metal Deposition (Courtesy of the POM Group Inc.) ........... 35
`
`Figure 2-15: Arcam Electron Beam Melting Process (Thundal 2008) ................... 36
`
`Figure 2-16: Ultrasonic Consolidation of Metal-Matrix Composites (Kong, Soar
`
`& Dickens 2004) ............................................................................................................ 38
`
`Figure 2-17: Contour Crafting of Structural Ceramic (Khoshnevis et al. 2001) .. 39
`
`Figure 2-18: A hierarchy of homogeneous materials system for additive
`
`manufacturing .............................................................................................................. 41
`
`Figure 2-19: A hierarchy of heterogeneous materials system for additive
`
`manufacturing (Bourell, Leu & Rosen 2009) ............................................................ 41
`
`Figure 3-1: A simple classification of various types of composites ...................... 62
`
`Figure 3-2: Monomers used in thermoplastic ABS .................................................. 69
`
`Figure 3-3: Cryogenic grinding of ABS polymer ..................................................... 71
`
`Figure 3-4: Single screw extrusion of the ABS-Fe filaments .................................. 74
`
`Figure 3-5: Schematic of Polymer Melt Swell ........................................................... 74
`
`Figure 3-6: Parallel Plate Rheometry ......................................................................... 74
`
`Figure 3-7: Long land length die for suppressing extrusion swell ....................... 75
`
`Figure 3-8: FDM filament produced from Iron/ABS composite material. .......... 77
`
`
`
`XIII
`
`
`Page 14 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Figure 3-9: Test samples produced on FDM3000 from the new Iron/ABS
`
`composite and unfilled ABS material (white). ......................................................... 77
`
`Figure 4-1: Simple Shear Flow .................................................................................... 79
`
`Figure 4-2: Pure viscous non-Newtonian fluids (Yamaguchi 1952) ..................... 81
`
`Figure 4-3: Capillary Viscometer ............................................................................... 83
`
`Figure 4-4: Rotational Viscometer .............................................................................. 83
`
`Figure 4-5: Parallel Plate Rheometry ........................................................................ 88
`
`Figure 4-6: Schematic of Polymer Melt Swell ........................................................... 88
`
`Figure 4-7: CEAST Melt Flow Indexer ...................................................................... 89
`
`Figure 4-8: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. .............................................................................................................................. 91
`
`Figure 4-9: Effect of shear rate on the viscosity of various composites of ABS
`
`and Ca.St ........................................................................................................................ 92
`
`Figure 4-10: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St. at different shear rates ................................................................. 92
`
`Figure 4-11: Relative viscosity of composites of ABS and varying volume
`
`fractions of 45 µm iron ................................................................................................. 93
`
`Figure 4-12: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 10% filled iron with particle size <10um ................................................... 95
`
`Figure 4-13: Shear rate versus viscosity of various composites of ABS and Ca.St
`
`in 10% filled iron with particle size <10um .............................................................. 96
`
`
`
`XIV
`
`
`Page 15 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Figure 4-14: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 20% filled iron with particle size <10um ................................................... 97
`
`Figure 4-15: Viscosity vs. shear rate for various composites of ABS and Ca.St in
`
`20% filled iron with particle size <10um .................................................................. 97
`
`Figure 4-16: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 30% filled iron with particle size <10um ................................................... 98
`
`Figure 4-17: Shear rate versus viscosity of various compounds of ABS and Ca.St
`
`in 30% filled iron with particle size <10um .............................................................. 99
`
`Figure 4-18: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 10% filled iron with particle size <45um ................................................... 99
`
`Figure 4-19: Shear rate versus viscosity of various composites of ABS and Ca.St
`
`in 10% filled iron with particle size <45um ............................................................ 100
`
`Figure 4-20: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 20% filled iron with particle size <45um ................................................. 101
`
`Figure 4-21: Effect of shear rate on the viscosity of various composites of ABS
`
`and Ca.St in 20% filled iron with particle size <45um .......................................... 101
`
`Figure 4-22: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 30% filled iron with particle size <45um ................................................. 102
`
`Figure 4-23: Viscosity vs. shear rate for various composites of ABS and Ca.St in
`
`30% filled iron with particle size <45um ................................................................ 103
`
`Figure 4-24: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe of 45 µm and 5%Ca.St. ..................................................................... 104
`
`
`
`XV
`
`
`Page 16 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Figure 4-25: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe of 45 µm and 7.5%Ca.St. .................................................................. 105
`
`Figure 4-26: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe of 45 µm and 10%Ca.St. ................................................................... 106
`
`Figure 4-27: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe for 5% Ca.St. ...................................................................................... 107
`
`Figure 4-28: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe for 7.5 % Ca.St. .................................................................................. 108
`
`Figure 4-29: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe for 10% Ca.St. .................................................................................... 109
`
`Figure 4-30: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St for low shear rate with iron particle size of 45 µm ................. 110
`
`Figure 4-31: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St for high shear rate with iron particle size of 45 µm ............... 110
`
`Figure 4-32: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St for low shear rate and iron particle size of <10 µm ................ 111
`
`Figure 4-33: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St for high shear rate and iron particle size of <10 µm .............. 111
`
`Figure 4-34: Effect of processing temperature on the viscosity of Fe/ABS
`
`composites ................................................................................................................... 113
`
`Figure 4-35: Effect of processing temperature on the viscosity of ABS P400 .... 113
`
`
`
`XVI
`
`
`Page 17 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Figure 4-36: Normal Stress versus Shear Rate for ABS with varying %vol of
`
`Ca.St. ............................................................................................................................ 115
`
`Figure 4-37: Relative viscosity of compounds of ABS and varying volume
`
`fractions of Ca.St. ........................................................................................................ 118
`
`Figure 5-1: Typical tensile stress vs. concentration curves for filled polymers
`
`showing upper bound and lower bound responses (Bigg 1987b) ...................... 124
`
`Figure 5-2: Stress–strain curves for HDPE/zinc composites with different
`
`concentrations of zinc powder: 0% vol (1); 4% vol (2); 8% vol (3); 12% vol (4);
`
`16% vol (5); 20% vol (6) (Sofian & Rusu 2001) ....................................................... 124
`
`Figure 5-3: Storage Modulus of copper reinforced (a) LDPE, (b) LLDPE, (c
`
`)HDPE (Molefi, Luyt & Krupa 2010) ....................................................................... 126
`
`Figure 5-4: Loss Modulus of copper reinforced (a) LDPE, (b) LLDPE, (c
`
`)HDPE(Molefi, Luyt & Krupa 2010) ........................................................................ 127
`
`Figure 5-5: Load vs deformation behaviour of Iron/ABS composites prepared
`
`by centrifugal mixing with various volume fractions of Iron powder............... 131
`
`Figure 5-6: Stress-strain behaviour of 10wt% Iron filled ABS and virgin ABS
`
`used in FDM ................................................................................................................ 132
`
`Figure 5-7: Load vs deformation behaviour of ABS-Iron Composites prepared
`
`by melt compounding on a twin screw extruder for various volume fraction of
`
`Iron powder ................................................................................................................ 133
`
`Figure 5-8: (a) Fractured tensile specimen (b) Samples prepared for SEM ....... 134
`
`Figure 5-9: Fracture surface of re-processed FDM ABS P400 .............................. 134
`
`
`
`XVII
`
`
`Page 18 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`
`
`Figure 5-10: SEM image of fracture surface ABS-Fe(10 vol%)prepared via
`
`centrifugal mixing ..........................................................................



