throbber
New Metal/Polymer Composites for
`
`Fused Deposition Modelling
`
`Applications
`
`By
`
`
`Mostafa Nikzad
`
`BSc & MSc (Eng)
`
`
`
`
`
`
`
`
`
`
`
`
`A thesis submitted in fulfilment of the requirements for
`the degree of
`
`Doctor of Philosophy
`
`
`Faculty of Engineering & Industrial Sciences
`
`Swinburne University of Technology
`
`Hawthorn, Melbourne
`
`Australia
`
`May 2011
`
`
`
`
`
`
`
`
`
`Page 1 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Abstract
`
`
`
`Fused Deposition Modelling (FDM) has been a leading rapid prototyping
`
`process but it has been mostly limited to use in making prototypes for design
`
`verification and functional testing applications. The commercial process can
`
`currently fabricate parts only in limited types of thermoplastics such as ABS
`
`and Polycarbonate. Very little efforts have been made to increase the range of
`
`FDM materials to include metals or metal based composites for wider
`
`application domain beyond just design and verification. This thesis presents
`
`new research in this direction by developing novel metal based composites for
`
`use in FDM technology.
`
`The principal objective of this research is to develop new metal/polymer
`
`composite materials for direct use in the current Fused Deposition Modelling
`
`rapid prototyping platform with long term aim of developing direct rapid
`
`tooling on the FDM system. Using such composites, the direct rapid tooling will
`
`allow fabrication of injection moulding dies and inserts with desired thermal
`
`and mechanical properties suitable for using directly in injection moulding
`
`machines for short term or long term production runs. The new metal/polymer
`
`composite material developed in this research work involves use of iron
`
`particles and copper particles in a polymer matrix of ABS material, which offers
`
`much improved thermal, electrical and mechanical properties enabling current
`
`Fused Deposition Modelling technique to produce rapid functional parts and
`
`tooling. Higher thermal conductivity of the new metal/polymer composite
`
`material coupled with implementation of conformal cooling channels enabled
`
`by layer-by layer fabrication technology of the Fused Deposition Modelling will
`
`result in tremendously improved injection cycles times, and thereby reducing
`
`the cost and lead time of injection moulding tooling.
`
`
`
`I
`
`
`Page 2 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`
`Due to highly metal-particulate filled matrix of the new composite material,
`
`injection tools and inserts made using this material on Fused Deposition
`
`Modelling, demonstrate a higher stiffness comparing to those made out of pure
`
`polymeric material resulting in withstanding higher injection moulding
`
`pressures. Moreover, metallic filler content of the new composite allows
`
`processing of functional parts with electrical conductivity and in case of using
`
`ferromagnetic fillers, namely as fine iron powders, it introduces magnetic
`
`properties, which will make FDM-built components suitable for electronic
`
`applications specifically whereby electro-magnetic shielding is of high interest.
`
`In this research project, a full characterization of the newly developed
`
`metal/polymer composites including rheological, thermal, mechanical and
`
`electrical properties has been investigated. Mathematical models have been
`
`employed in order to predict and optimize the viscous behaviour of
`
`metal/polymer composite during the course of deposition through the FDM
`
`nozzle.
`
`In order to predict the main flow parameters of the metal/polymer composites
`
`including pressure, temperature, and velocity fields through the FDM liquefier
`
`head, 2-D and 3-D numerical analysis of melt flow behaviour of acrylonitrile-
`
`butadiene-styrene (ABS) and Iron composite as a representative metal/polymer
`
`material has been carried out using ANSYS FLOTRAN and ANSYS CFX
`
`commercial codes. Results of numerical analysis have been verified by the
`
`developed empirical mathematical models.
`
`A variety of advanced techniques have been employed to fully characterize the
`
`newly developed metal/polymer composites in order to successfully process
`
`filaments for fabrication of injection mould tooling inserts. Morphological
`
`effects of metallic fillers and surfactants as well as variation of volume fractions
`
`of constituents on the viscoelastic properties of the new composite material
`
`
`
`II
`
`
`Page 3 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`have also been investigated. Filaments of the filled ABS has been fabricated
`
`and characterized to verify the possibility of prototyping and direct tooling
`
`using the new material on the current FDM machine.
`
`Major contributions of the thesis include:
`
`• Development of a new metal/polymer composite material for functional
`
`parts and rapid tooling solutions on Fused Deposition Modeling
`
`platform.
`• Development of mathematical models for predicting viscous behavior of
`
`three-component composite flow through capillary extrusion process.
`• Full rheological, thermal, mechanical and electrical characterization of
`
`the new metal/polymer composites.
`• Combining experimental and numerical methodology (tools) to predict
`
`melt flow behavior of metal/polymer composite through Fused
`
`Deposition Modeling.
`• Fabrication of stiff and flexible filaments of the metal-polymer
`
`composites as feedstock material for direct rapid tooling via Fused
`
`Deposition Modeling.
`• Fabrication of functional parts and inserts of new metal/polymer
`
`composites successfully and directly on the FDM3000 system.
`• Production of plastic parts using injection moulding tools made by
`
`Direct FDM-based Rapid Tooling Process.
`
`
`
`III
`
`
`Page 4 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Acknowledgment
`
`First of all, I would like to express my deepest gratitude to my principal
`
`supervisor Professor S.H. Masood for his continuous support and valuable
`
`guidance throughout my research work. I would like to also thank my second
`
`supervisor, Dr. Igor Sbarski, for his valuable inputs especially on rheological
`
`studies, and overall arrangement of experimental works. Initial support of my
`
`external supervisor, Dr. Andrew Groth from CSIRO, is also highly appreciated.
`
`I acknowledge the financial support in the form of scholarship provided by
`
`Swinburne University of Technology and the Commonwealth Scientific and
`
`Industrial Research Organisation (CSIRO).
`
`My thanks are extended to the people for their help at various stages of my PhD
`
`work. Assistance of John Thomas, Adam Webb from Autodesk Moldflow; Dr.
`
`Ruether and Dr. Shekibi from CSIRO Energy Technology division; Mike
`
`Dundan from Chisholm TAFE; Pejman Hojati from Monash University; Brian
`
`Dempster, Mehdi Miri, Girish Thipperudrappa, Dr. Ismet Ilyas, Dr. Wei Song,
`
`and Dr. James Wang, from Swinburne University of Technology is highly
`
`appreciated.
`
` I wish to express my eternal gratitude to my Mum, Dad and Siblings for their
`
`endless support, love and encouragement throughout my entire schooling.
`
`Last but not least, I would like to thank all my friends and fellow postgraduate
`
`students, especially A.B.M. Saifullah and Barbara, whose sincere friendship
`
`made the course of my PhD studies fun and enjoyable.
`
`Thank You!
`
`
`
`
`
`
`
`
`
`IV
`
`
`Page 5 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`DECLARATION
`
`
`
`
`
`
`This thesis contains no material which has been accepted for the award of any
`
`other degree or diploma at any university and to the best of my knowledge and
`
`belief contains no materials previously published or written by another person
`
`or persons except where reference is made.
`
`
`
`
`
`
`
`Mostafa Nikzad
`
`May 2011
`
`
`
`
`
`
`
`V
`
`
`Page 6 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Table of Contents
`
`Chapter 1 Introduction .................................................................................................. 1
`
`1.1. General Background ....................................................................................... 1
`
`1.2. Outline of Research Project ............................................................................ 8
`
`1.3. Outline of thesis ............................................................................................. 12
`
`Chapter 2 RP/RT/RM and Materials Development .............................................. 14
`
`2.1.
`
`Introduction .................................................................................................... 14
`
`2.2. Overview of the Traditional RP Processes ................................................. 17
`
`2.2.1. Stereolithography ................................................................................... 17
`
`2.2.2. Selective Laser Sintering ....................................................................... 21
`
`2.2.3. Three Dimensional Printing ................................................................. 23
`
`2.2.4. Laminated Object Manufacturing ........................................................ 24
`
`2.2.5. Fused Deposition Modelling Process .................................................. 25
`
`2.3. Overview of Emerging Rapid Manufacturing Processes ........................ 29
`
`2.3.1. Liquid-based RM Processes .................................................................. 30
`
`2.3.1.1.
`
`Stereolithography ....................................................................................... 30
`
`2.3.2. Powder-based RM Processes ................................................................ 32
`
`2.3.2.1.
`
`Direct Metal Laser Sintering ........................................................................ 33
`
`2.3.2.2.
`
`Selected Laser Melting ................................................................................ 34
`
`2.3.2.3.
`
`Direct Metal Deposition .............................................................................. 35
`
`VI
`
`
`
`
`Page 7 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`2.3.2.4.
`
`Electron Beam Melting................................................................................ 36
`
`2.3.3. Solid based RM Processes ..................................................................... 37
`
`2.3.3.1.
`
`Laminated Object Manufacturing ............................................................... 37
`
`2.3.3.2.
`
`Fused Deposition Systems .......................................................................... 38
`
`2.4. Material Issues in RP & RM ......................................................................... 40
`
`2.5. Research Direction in Fused Deposition Modelling ................................. 47
`
`2.5.1. New Materials & Process Improvements in FDM ............................. 48
`
`2.5.2. Metal-Polymer Composites in FDM .................................................... 55
`
`2.5.3. Medical Applications & Rapid Tooling in FDM ................................ 56
`
`2.6. Summary ......................................................................................................... 57
`
`Chapter 3 New Metal/polymer Composites for FDM ........................................... 59
`
`3.1
`
`Introduction .................................................................................................... 59
`
`3.2 Composite Materials ..................................................................................... 60
`
`3.3 Metal/Polymer Composites......................................................................... 62
`
`3.3.1
`
`Thermoplastic Polymeric Matrices ...................................................... 63
`
`3.3.2
`
`Particle-reinforced Polymer Composites ............................................ 65
`
`3.4
`
`Processing of a New Metal/Polymer Composite ..................................... 68
`
`3.4.1
`
`Preparation of Iron-particulate filled ABS Composite ..................... 68
`
`3.4.2
`
`Extrusion of the Metal-polymer Composite and Die Swell
`
`Phenomenon ......................................................................................................... 73
`VII
`
`
`
`
`Page 8 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`3.5
`
`Fabrication of FDM filament and test samples ......................................... 76
`
`Chapter 4 Rheological Properties of Fe/ABS Composites for Fused Deposition
`
`Process ........................................................................................................................... 78
`
`4.1.
`
`Introduction .................................................................................................... 78
`
`4.2. Classification of Fluids and Rheological Properties ................................. 79
`
`4.3. Rheological Behaviour of Polymer Melts ................................................... 82
`
`4.3.1. Steady Simple Shear Flows ................................................................... 82
`
`4.3.2. Dynamic Drag Simple Shear Flows ..................................................... 84
`
`4.3.3. Shear Free Flows ..................................................................................... 84
`
`4.4. Filled Polymer Melts ..................................................................................... 84
`
`4.4.1. Metal-Polymer Composite Melt ........................................................... 85
`
`4.5. Experimental .................................................................................................. 86
`
`4.5.1. Capillary Rheometry.............................................................................. 86
`
`4.5.2. Parallel Plate Rheometry ....................................................................... 88
`
`4.5.3. Melt Flow Index ...................................................................................... 88
`
`4.6. Results ............................................................................................................. 89
`
`4.6.1. Discussion................................................................................................ 90
`
`4.6.2. Normal Stresses and Die Swell Phenomenon .................................. 114
`
`4.7. Viscosity Models for the Composites ....................................................... 115
`VIII
`
`
`
`
`Page 9 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`4.8. Summary ....................................................................................................... 117
`
`Chapter 5 Mechanical & Electro thermal Properties of Metal/Polymer
`
`Composites .................................................................................................................. 121
`
`5.1.
`
`Introduction .................................................................................................. 121
`
`5.2. Micro/nano metal-polymer composites .................................................. 122
`
`5.3. Experimental ................................................................................................ 129
`
`5.3.1. Stress-Strain behaviour of Iron/ABS composites ............................ 129
`
`5.3.2. Morphological properties of ABS-Iron Interface ............................. 133
`
`5.3.3. Dynamic Mechanical Analysis ........................................................... 141
`
`5.3.4. Thermal Properties of ABS-Iron composites .................................... 151
`
`5.3.4.1.
`
`Thermal Conductivity ................................................................................ 151
`
`5.3.4.2.
`
`Heat Capacity ............................................................................................ 155
`
`5.3.5. Electrical Conductivity of Iron/ABS composites ............................ 156
`
`5.4. Summary ....................................................................................................... 163
`
`Chapter 6 A Melt Flow Analysis of Iron/ABS Composites in FDM Process .... 165
`
`6.1.
`
`Introduction .................................................................................................. 165
`
`6.2. Material Characterisation for Boundary Condition Setup .................... 169
`
`6.2.1. General Flow Behaviour ...................................................................... 174
`
`6.3. Finite Element Analysis .............................................................................. 176
`
`
`
`IX
`
`
`Page 10 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`6.3.1. Geometry development ....................................................................... 176
`
`6.3.2. Problem domain and flow regime definition ................................... 177
`
`6.3.3. Meshing ................................................................................................. 178
`
`6.3.4. Boundary conditions............................................................................ 180
`
`6.4. Results and Discussion ............................................................................... 181
`
`6.5. Summary ....................................................................................................... 187
`
`Chapter 7 Experimental Trials of Iron/ABS in Fused Deposition Modelling .. 188
`
`7.1.
`
`Introduction .................................................................................................. 188
`
`7.2. Fused Deposition Modelling of Metal/Polymer Composites .............. 189
`
`7.3.
`
`Industrial Implementation ......................................................................... 199
`
`7.4. Summary ....................................................................................................... 207
`
`Chapter 8 Conclusions and Recommendations ..................................................... 209
`
`8.1.
`
`Introduction .................................................................................................. 209
`
`8.2. Major Findings & Original Contributions ............................................... 209
`
`8.3. Recommendation for Future Work ........................................................... 212
`
`References .................................................................................................................... 214
`
`Appendix A ................................................................................................................. 237
`
`Morphology of Metal/Polymer Composites ......................................................... 237
`
`
`
`X
`
`
`Page 11 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`A.1: EDS Result of ABS and Iron (6-9 µm) Composites .................................... 238
`
`A.2: EDS Result of ABS and Copper (45 µm) Composites ............................... 239
`
`A.3: EDS Result of ABS and Copper (10 µm) Composites ............................... 240
`
`A.4: SEM Images of ABS and Iron (6-9 µm) Composites ................................. 242
`
`A.5: SEM Images of ABS and Copper (45 µm) Composites ............................. 244
`
`A.6: SEM Images of ABS and Copper (10 µm) Composites ............................. 246
`
`Appendix B ................................................................................................................. 248
`
`Publications from This Research .............................................................................. 248
`
`B1: Refereed Journal Papers .................................................................................. 248
`
`B2: Refereed Conference Papers .......................................................................... 248
`
`
`
`XI
`
`
`Page 12 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`List of Figures
`
`Figure 1-1: Generic Flow of RP Process ( Kamrani & Nasr 2006) ........................... 2
`
`Figure 1-2: Schematic of Stratasys FDM Process ....................................................... 7
`
`Figure 2-1: Classification of the current RP-based Tooling .................................... 15
`
`Figure 2-2: Material-dependent Rapid manufacturing and Tooling (reproduced
`
`from Levy, Schindel & Kruth 2003) ........................................................................... 16
`
`Figure 2-3: Schematic of Stereolithography process (Source: Ultra Violet
`
`Products, Inc) ................................................................................................................ 18
`
`Figure 2-4: Illustration of Direct AIM “Shelling” backfilled with Al-filled Epoxy
`
`(Jacobs 2000) .................................................................................................................. 19
`
`Figure 2-5: Illustration of Silicon RTV moulding process (Grenda 2006) ............ 21
`
`Figure 2-6: Illustration of the SLS process (Subramanian et al. 1995)................... 22
`
`Figure 2-7: Illustration of 3DP process (Source: after E.Sachs and E.Cima) ........ 23
`
`Figure 2-8: Illustration of the LOM process (Source: Helisys, Inc) ....................... 25
`
`Figure 2-9: Fused Deposition Modelling process .................................................... 26
`
`Figure 2-10: FDM Liquefier Straight Nozzle ............................................................ 28
`
`Figure 2-11: Production of Jewellery and Hearing Aid by Envisiontec
`
`Perfactory© ................................................................................................................... 31
`
`Figure 2-12: Powder-based RM Processes and the Current Commercial ............ 32
`
`
`
`XII
`
`
`Page 13 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Figure 2-13: Rapid Manufactured Parts by DMLS (Source: Morris Technologies
`
`Retrieved 2010) ............................................................................................................. 34
`
`Figure 2-14: Direct Metal Deposition (Courtesy of the POM Group Inc.) ........... 35
`
`Figure 2-15: Arcam Electron Beam Melting Process (Thundal 2008) ................... 36
`
`Figure 2-16: Ultrasonic Consolidation of Metal-Matrix Composites (Kong, Soar
`
`& Dickens 2004) ............................................................................................................ 38
`
`Figure 2-17: Contour Crafting of Structural Ceramic (Khoshnevis et al. 2001) .. 39
`
`Figure 2-18: A hierarchy of homogeneous materials system for additive
`
`manufacturing .............................................................................................................. 41
`
`Figure 2-19: A hierarchy of heterogeneous materials system for additive
`
`manufacturing (Bourell, Leu & Rosen 2009) ............................................................ 41
`
`Figure 3-1: A simple classification of various types of composites ...................... 62
`
`Figure 3-2: Monomers used in thermoplastic ABS .................................................. 69
`
`Figure 3-3: Cryogenic grinding of ABS polymer ..................................................... 71
`
`Figure 3-4: Single screw extrusion of the ABS-Fe filaments .................................. 74
`
`Figure 3-5: Schematic of Polymer Melt Swell ........................................................... 74
`
`Figure 3-6: Parallel Plate Rheometry ......................................................................... 74
`
`Figure 3-7: Long land length die for suppressing extrusion swell ....................... 75
`
`Figure 3-8: FDM filament produced from Iron/ABS composite material. .......... 77
`
`
`
`XIII
`
`
`Page 14 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Figure 3-9: Test samples produced on FDM3000 from the new Iron/ABS
`
`composite and unfilled ABS material (white). ......................................................... 77
`
`Figure 4-1: Simple Shear Flow .................................................................................... 79
`
`Figure 4-2: Pure viscous non-Newtonian fluids (Yamaguchi 1952) ..................... 81
`
`Figure 4-3: Capillary Viscometer ............................................................................... 83
`
`Figure 4-4: Rotational Viscometer .............................................................................. 83
`
`Figure 4-5: Parallel Plate Rheometry ........................................................................ 88
`
`Figure 4-6: Schematic of Polymer Melt Swell ........................................................... 88
`
`Figure 4-7: CEAST Melt Flow Indexer ...................................................................... 89
`
`Figure 4-8: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. .............................................................................................................................. 91
`
`Figure 4-9: Effect of shear rate on the viscosity of various composites of ABS
`
`and Ca.St ........................................................................................................................ 92
`
`Figure 4-10: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St. at different shear rates ................................................................. 92
`
`Figure 4-11: Relative viscosity of composites of ABS and varying volume
`
`fractions of 45 µm iron ................................................................................................. 93
`
`Figure 4-12: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 10% filled iron with particle size <10um ................................................... 95
`
`Figure 4-13: Shear rate versus viscosity of various composites of ABS and Ca.St
`
`in 10% filled iron with particle size <10um .............................................................. 96
`
`
`
`XIV
`
`
`Page 15 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Figure 4-14: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 20% filled iron with particle size <10um ................................................... 97
`
`Figure 4-15: Viscosity vs. shear rate for various composites of ABS and Ca.St in
`
`20% filled iron with particle size <10um .................................................................. 97
`
`Figure 4-16: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 30% filled iron with particle size <10um ................................................... 98
`
`Figure 4-17: Shear rate versus viscosity of various compounds of ABS and Ca.St
`
`in 30% filled iron with particle size <10um .............................................................. 99
`
`Figure 4-18: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 10% filled iron with particle size <45um ................................................... 99
`
`Figure 4-19: Shear rate versus viscosity of various composites of ABS and Ca.St
`
`in 10% filled iron with particle size <45um ............................................................ 100
`
`Figure 4-20: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 20% filled iron with particle size <45um ................................................. 101
`
`Figure 4-21: Effect of shear rate on the viscosity of various composites of ABS
`
`and Ca.St in 20% filled iron with particle size <45um .......................................... 101
`
`Figure 4-22: Flow curves of composites of ABS and varying volume fractions of
`
`Ca.St. in 30% filled iron with particle size <45um ................................................. 102
`
`Figure 4-23: Viscosity vs. shear rate for various composites of ABS and Ca.St in
`
`30% filled iron with particle size <45um ................................................................ 103
`
`Figure 4-24: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe of 45 µm and 5%Ca.St. ..................................................................... 104
`
`
`
`XV
`
`
`Page 16 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Figure 4-25: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe of 45 µm and 7.5%Ca.St. .................................................................. 105
`
`Figure 4-26: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe of 45 µm and 10%Ca.St. ................................................................... 106
`
`Figure 4-27: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe for 5% Ca.St. ...................................................................................... 107
`
`Figure 4-28: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe for 7.5 % Ca.St. .................................................................................. 108
`
`Figure 4-29: Relative viscosity of composites of ABS and varying volume
`
`fractions of Fe for 10% Ca.St. .................................................................................... 109
`
`Figure 4-30: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St for low shear rate with iron particle size of 45 µm ................. 110
`
`Figure 4-31: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St for high shear rate with iron particle size of 45 µm ............... 110
`
`Figure 4-32: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St for low shear rate and iron particle size of <10 µm ................ 111
`
`Figure 4-33: Relative viscosity of composites of ABS and varying volume
`
`fractions of Ca.St for high shear rate and iron particle size of <10 µm .............. 111
`
`Figure 4-34: Effect of processing temperature on the viscosity of Fe/ABS
`
`composites ................................................................................................................... 113
`
`Figure 4-35: Effect of processing temperature on the viscosity of ABS P400 .... 113
`
`
`
`XVI
`
`
`Page 17 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Figure 4-36: Normal Stress versus Shear Rate for ABS with varying %vol of
`
`Ca.St. ............................................................................................................................ 115
`
`Figure 4-37: Relative viscosity of compounds of ABS and varying volume
`
`fractions of Ca.St. ........................................................................................................ 118
`
`Figure 5-1: Typical tensile stress vs. concentration curves for filled polymers
`
`showing upper bound and lower bound responses (Bigg 1987b) ...................... 124
`
`Figure 5-2: Stress–strain curves for HDPE/zinc composites with different
`
`concentrations of zinc powder: 0% vol (1); 4% vol (2); 8% vol (3); 12% vol (4);
`
`16% vol (5); 20% vol (6) (Sofian & Rusu 2001) ....................................................... 124
`
`Figure 5-3: Storage Modulus of copper reinforced (a) LDPE, (b) LLDPE, (c
`
`)HDPE (Molefi, Luyt & Krupa 2010) ....................................................................... 126
`
`Figure 5-4: Loss Modulus of copper reinforced (a) LDPE, (b) LLDPE, (c
`
`)HDPE(Molefi, Luyt & Krupa 2010) ........................................................................ 127
`
`Figure 5-5: Load vs deformation behaviour of Iron/ABS composites prepared
`
`by centrifugal mixing with various volume fractions of Iron powder............... 131
`
`Figure 5-6: Stress-strain behaviour of 10wt% Iron filled ABS and virgin ABS
`
`used in FDM ................................................................................................................ 132
`
`Figure 5-7: Load vs deformation behaviour of ABS-Iron Composites prepared
`
`by melt compounding on a twin screw extruder for various volume fraction of
`
`Iron powder ................................................................................................................ 133
`
`Figure 5-8: (a) Fractured tensile specimen (b) Samples prepared for SEM ....... 134
`
`Figure 5-9: Fracture surface of re-processed FDM ABS P400 .............................. 134
`
`
`
`XVII
`
`
`Page 18 of 274
`
`
`
`
`
`
`
`Markforged Ex. 1009
`Markforged v. Continuous Composites, IPR2022-01220
`
`

`

`Figure 5-10: SEM image of fracture surface ABS-Fe(10 vol%)prepared via
`
`centrifugal mixing ..........................................................................

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket