throbber
S65 1374 Page 1 of 55
`
`GOOGLE EXHIBIT 1009
`
`Osy
`
`HN
`
`au
`
`Page 1 of 55
`
`GOOGLE EXHIBIT 1009
`
`

`

`1996 IEEE International Conference on Acoustics,
`Speech, &Signal Processing
`
`Conference Proceedings
`
`May7 - 10, 1996
`Atlanta, Georgia USA
`
`Institute of Electrical and Electronic Engineers
`
`ICASSP- 96
`Atlanta
`
`AVYTTTTIom |
`
`Sponsored bythe
`Signal Processing Society of the
`
`Page 2 of 55
`
`Page 2 of 55
`
`

`

`LCASS#)
`
`
`The 1996 IEEE International Conference on
`Acoustics, Speech, and Signal Processing
`Conference Proceedings
`_
`

`
`Sponsored by the Signal Processing Society of the Institute of Electrical and
`Electronics Engineers
`
`May 7-10, 1996
`Marriott Marquis Hotel
`Atlanta, Georgia, USA
`
`Page 3 of 55
`
`Page 3 of 55
`
`

`

`The 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing
`Conference Proceedings
`
`Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy
`beyondthe limit of U.S. copyright law for private use of patrons those articles in this volumethat carry a codeat the bottom
`ofthe first page, provided the per-copy fee indicated in the codeis paid through Copyright Clearance Center, 222 Rosewood
`Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEEa
`Ci =
`[KIEE HY
`_
`YO
`65_T3%,
`V DIGG bE
`
`Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ
`08855-1331. All rights reserved. Copyright 1996by the Institute of Electrical and Electronics
`Engineers, Inc.
`
`96CH35903
`IEEE Catalog Number:
`ISBN 0-7803-3192-3 (softhound)
`ISBN 0-7806-3193-1 (casebound edition)
`ISBN 0-7803-3194-X (microfiche)
`ISBN 0-7803-3195-8 (CD-ROM)
`Library of Congress:
`84-645 139
`
`Additional Proceedings (hard-copy and CD-ROM)maybe ordered from:
`
`IEEE Service Center
`445 Hocs Lane
`P.O, Box 1331
`Piscataway, NJ 08855-1331
`1-800-678-IEEE
`
`i
`
`Page 4 of 55
`
`Page 4 of 55
`
`

`

`Volume 1
`
`TABLE OF CONTENTS
`
`SP1 Robust Recognition: Signals and Features
`Feature Parameter Curve Method for High Performance NN-based Speech Recognition .........scssssseersssreencseeeserenenensnsensns I-1
`D. Chen, S. Zhu, T: Huang - Chinese Academy of Sciences, China
`
`Volume I
`
`On the Use of Residual Cepstrum im Speech Recognition—.....cccsssceesscccsusesereeusereuanenseeeseueeeeeussesenseenensees sisdebesebenesexeass1-5
`J. He, L. Liu, G. Palm - University of Ulm, Germany
`
`RobustDistant Talking Speech Recognition—....sssecccessseseeesnecsenees SetueddsevaaaacerNeaaTeeae's Serer ere ress sescvccceseveseeeol-21
`Q. Lin, C. Che, D. Yuk, L. Jin - CAIP Center, Rutgers University, USA
`B. Vries, J. Pearson - David SarnoffResearch Center, USA
`J. Flanagan - Rutgers University, USA
`
`HMM.-BasedSpeech Recognition Using State-Dependent, Linear Transforms on Mel-Warped DFT Features
`C. Rathinavelu, L. Deng - University of Waterloo, Canada
`
` ...ssssccecessevseees I-9
`
`Mixed Malvar-Wavelets for Non-Stationary Signal Representation .......00sssse0e+ ibid pahdoases ddsndeetuscndaennsepasenthanasspicasssatessl-13
`J. Thripuraneni, W. Lou, V. DeBrunner - The University of Oklahoma, USA
`
`Experiments on a Parametric Nonlinear Spectral Warping for an HMM-based Speech Recognizer ...........ssscccesesccsesoveeeee I-L7
`D. Mashao - Brown University, USA
`
`Time-Frequency Representation Based Cepstral Processing For Speech Recognition .........ssssscccecesseseeesseceessevensanseeeasee I-25
`A. Fineberg, K. Yu - Motorola Lexicus, USA
`
`Knowledge-Based Parameters for Speech HMM Recognition ...........ccececsersentesee seelanes STP TTTT saaaaanesenaewesaseaieas seeeeseeed-29
`C. Espy- Wilson, N. Bitar - Boston University, USA
`oe
`
`A PhonemeSimilarity Based ASR Front-End .....sccsscesecsseeensneceeeanecerenseeeseneurssenseeeteuesnseneuaneneneceueseteeeecesssseeesseesees «I-33
`T. Applebaum, P. Morin, B. Hanson - Speech Technology Laboratory, USA
`
`A Model of Dynamic Auditory Perception andits Application to Robust Speech Recognition ....4......0..sesesssseseesreenssenseeneI-37
`B. Strope, A. Alwan - University of California at Los Angeles, USA
`
`SP2 Robust Recognition: Large Vocabulary
`Independent Calculation of Power Parameters on PMC Method............. debaeebaue haeelendbancuersdetebencis Wa tiaTeTbias te tebaeaTETeRats:[-41
`Hf. Yamamoto, M. Yamada, T. Kosaka, ¥. Komori, ¥. Ohora - Canon Inc., Japan
`
`Noisy Speech Recognition Using Variance Adapted Likelihood Measure—...csssesssecssssveneccseenscseesensesssnsseserseseeneesssenseses “G5
`J. Chien, L. Lee, H. Wang - National Tsing Hua University, ROC
`
`An Improved Noise Compensation Algorithm for Speech Recognition in Noise .....sscsssseecsseserenerersesseveenensensensserenssereneesd-AO
`R. Yang, P. Haavisto - Nokia Research Center, Finland
`
`Improved Speech Recognition via Speaker Stress Directed Classification ..cccccescsesesecsseensecnecsveceeensevenensresasseeeeeesecnaeeee1-53
`B. Womack, J. Hansen - Duke University, USA
`
`High-Accuracy Connected Digit Recognition for Mobile Applications
`S. Gupta, F Soong, R. Haimi-Cohen - AT&T Bell Labs, USA
`
`..ccccccesesecenseecuseeuceeuseseeeeeersuseseneeeeeeaeeneneaseeeaazerI-57
`
`Feature Extraction Based on Zero-Crossings with Peak Amplitudes for Robust Speech Recognition in Noisy Environments... I-61
`D. Kim, J. Jeong, J. Kim, S. Lee - Korea Advanced Institute of Science and Technology, ROK
`
`Improving Environmental Robustness in Large Vocabulary Speech Recognition .......:+s000+ sePeNvereusuevereeneneevausesereesserenens 1-65
`P. Woodland, M. Gales, D, Pye - Cambridge University, UK
`
`Noise and Room Acoustics Distorted Speech Recognition by HMM Composition ....sisscssssesseensecesssssereeeesssvessseneeesserenneedQ9
`S. Nakamura, T. Takiguchi, K. Shikano - Nara Institute of Science and Technology, Japan
`
`Developments in Continuous Speech Dictation Using the 1995 ARPA NAB News Task ....cssccssccssreeeesseeeseneneenseeeeereesseres «I-73
`J. Gauvain, L. Lamel, G. Adda, D. Matrouf - LIMSI-CNRS, France
`
`Evaluation of the Root-Normalized Front-End (RN-LFCC) for Speech Recognition in Wireless GSM Network Environments I-77
`P. Lockwood, S. Dufour, C. Glorion - MATRA Communications, France
`
`Page 5 of 55
`
`Page 5 of 55
`
`

`

`VolumeI
`[aecacoy
`
`SP3 Speaker Recognition
`Speaker Background Models for Connected Digit Password Speaker Verification—.ssssseseesssrasenssernensrerereess eaeeeeee nesI-81
`A. Rosenberg, S. Parthasarathy - AT&T Bell Laboratories, USA
`
`CohortSelection and Word GrammarEffects on Speaker Recognition .....sssccceseeeseerenenensans oad hayannaden sscuanctennen seeneeneeree el=B85
`J. Colombi, D. Ruck - AFIT/ENG, USA,
`T. Anderson - AL/CFBA, USA,
`S. Rogers - AFIT/ENG, USA,
`M. Oxley - AFIT/ENC, USA
`
`Discriminative Training of GMM for Speaker Identification .........csssesccnseeteoneesescausonscasccesssguuaqavensnssnvgsunsencsssdiiii .-. 1-89
`C. Martin Del Alamo, J. Caminero Gil, C. De La Torre, L. Hernandez Gomez - Telefonica I+D, Spain
`Subword-based Text-dependent Speaker Verification System with User-Selectable Passwords—..sssssssssseseseserersennnrnnanens veee1-93
`M. Sharma, R. Mammone - Rutgers University, USA
`
`Robust Methods of Updating Model and A Priori Threshold in Speaker Verification
`T. Matsui, T. Nishitani, S. Furui - NTT Human Interface Laboratories, Japan
`
`...sessecssesesssessaseseneenes Sewbeaensaaaewaveene1-97
`
`A FurtherInvestigation of AR-Vector Models for Text-Independent Speaker Identification ..........secccccsreseeserrenneenrenaans I-101
`I. Magrin-Chagnolleau, J. Wilke, F. Bimbot - CNRS, France
`
`Speaker Identification via Support Vector Classifiers ........sccscsssnsessesseeeetenes sesbesssaseeeresaeys ceaseeeesenceceetsenerenenseeeeeeese n=LOS
`M. Schmidt - BBN, USA
`
`Speaker Verification Using Mixture Likelihood Profiles Extracted from Speaker Independent Hidden Markov Models
`A. Setlur, R. Sukkar, M. Gandhi - AT&T Beil Laboratories, USA
`
`......1-109
`
`The Effects of Handset Variability on Speaker Recognition Performance: Experiments on the Switchboard Corpus ......... 1-113
`D. Reynolds - MIT Lincoln Laboratory, USA
`
` ......:ss0csessseesenesneees sasbesesnensceveusssusensss neseuaenageeasyyeiias sussecesecesececssoeh@117
`Speaker Recognition in Reverberant Enclosures
`P. Castellano, §. Sridharan, D. Cole - Signal Processing Research Centre, Australia
`
`Speech Recognition: Noise and Environment
`SP4
`Using a Transcription Graph for Large Vocabulary Continuous Speech Recognition ..........ssseeeeereeeneresas eeaseeeeeneesceneeees -I-121
`Z. Li, D, O'Shaughnessy - INRS-Telecommunications, Canada
`Fast and Accurate Recognition ofVery-Large-Vocabulary Continuous MandarinSpeech for Chinese Language with Improved
`Segmental Probability Modeling ........ sibaas vias bie toueks! sn WAM eR WA MeNeaNATENDAES ONaReNEMAEREET EABOcoee seceescrecescsevesscsecsccsessssecesevalLZ5
`J. Shen, S. Hwang - National Taiwan University, ROC
`L, Lin-shan - Academia Sinica, ROC
`
`Decoding Optimal State Sequence with Smooth State Likelihoods.......... es cncavecesssescaseusagsausasarecarauscererssessensntanee anaaeven 1-129
`I. Zeljkovic - AT&T Bell Laboratories, USA
`
`Improvements on the Pronunciation Prefix Tree Search Organization .......seccsccssesssssssvstsesveressseeassssseoonnssseversrrereseenes1-133
`FE. Alleva, X. Huang, M. Hwang - Microsoft Corporation, USA
`
`Minimizing Search Errors Due to Delayed Bigrams in Real-Time Speech Recognition Systems
`M. Woszczyna - University of Karlruhe, Germany, M. Finke - University of Karlsruhe, Germany
`
`......:ssscseessesssessrereess seveee 1-137
`
`Real-Time Recognition of Broadcast Radio Speech .........064 peeecaseneapecscccaesseconecesenreoonersroncssssessesceesauan songs Fiveveapyievel1-141
`G. Cook, J. Christie, P. Clarkson, S. Cooper, M. Hochberg, D. Kershaw, R. Logan, S. Renals, A. Robinson,
`C. Seymour, S. Waterhouse, P. Zolfaghari - Cambridge University, UK
`Spontaneous Dialogue Speech Recognition Using Cross-Word Context Constrained Word Graphs..... secencaavanebbeavaeba sevesed-145
`T. Shimizu, H. Yamamoto, H. Masataki, S. Matsunaga, Y. Sagisaka - ATR - ITL, Japan
`
`......... oa sadeunietaviead sisieicuasvaesswachoanaesseveeee [-149
`Efficient Evaluation of the LYVCSR Search Space Using the NOWAYDecoder
`S. Renals - University of Sheffield, UK, M. Hochberg - University of Cambridge, UK
`Developments in Large Vocabulary, Continuous Speech Recognition of German ......... aqanananpeenagnasiendiandbepanbe Sdaaacessnes . 1-153
`M. Adda-Decker, G. Adda, L. Lamel, J. Gauvain - LIMSI-CNRS, France
`
`Speech Recognition on Mandarin Call Home: A Large-Vocabulary, Conversational, and Telephone Speech Corpus_....++..1-157
`ELiu, M. Picheny, P. Srinivasa, M. Monkowski, J. Chen - IBM T.J. Watson Research Center, USA
`
`xii
`
`Page 6 of 55
`
`Page 6 of 55
`
`

`

`Volume I
`2Seolaea.
`
`Multilingual Stochastic n-Gram Class Language Models_......:.ssccsecccorsootonsnseausenansusvencceassasesseaceeesssseeeaaeeeeeegsaeenauee 1-161
`M. Jardino - LIMSI-CNRS, France
`
`SP5 Speech-Recognition: Language Modeling IIl
`
`A Variable-Length Category-Based N-Gram Language Model
`T. Niesler, P. Woodland - Cambridge University, UK
`
` ......ssscsssoscessssevecsctersescerensectsncscusteccecseseuccecescucersuanes 1-164
`
`Improving N-Gram Models by Incorporating Enhanced Distributions ............000.. orn sbesseceseceseserccencreccacsensoccess bbdaued 1-168
`P. OBoyle, J. Ming, J. McMahon, J. Smith - Queen's University of Belfast, UK
`
`A Novel Word Clustering Algorithm Based on Latent Semantic Analysis ......:sssecsesssencssccnensceteseenseenenesceenensctecescuanaaseeT-172
`J. Bellegarda, J. Butzberger, Y. Chow, N. Coccaro, D. Naik - Interactive Media Group, Apple Computer USA
`
`Statistical Natural Language Understanding.......s0ssscssseresssessecerenee Aseeeeeeeeaseneeransenunrsesenaes
`sevessscenecssceeeeasl=176
`M. Epstein, K. Papineri, S. Roukos, T. Ward - IBM TJ. Watson Research Center, USA,S.‘Della Pietra - Renaissance:Technologies,"USA
`Clustering Wordsfor Statistical Language Models Based on Contextual Word Similarity .......s.cccesssseseeseseneesee 1-180
`A. Farhat, J. Isabelle, D. O'Shaughnessy - INRS-Telecommunications, Canada
`
`Domain Word Translation By Space-Frequency Analysis of Context Length Histograms ............ seseeeneeeereneeeesecesarseseeeeel-LO4
`P. Fung - Columbia University, USA
`
`Variable-Order N-Gram Generation by Word-class Splitting and Consecutive Word Sequence Grouping ........sseseeseseres oes 1-188
`H. Masataki, Y. Sagisaka - ATR Interpreting Telecommunications Research Laboratories, Japan
`
`Back-off Method for N-Gram Smoothing Based on Binomial Posteriori Distribution ...........0ccssscostesvessscscanscens sacocccsvceee 1-192
`T. Kawabata, M. Tamoto - NTT Basic Research Labs, Japan
`
`Ergodic Multigram HMMIntegrating Word Segmentation and Class Tagging for Chinese Language Modeting oovdébersueriie 1-196
`
`H. Law, C. Chan - The University of Hong Kong, Hong Kong
`
`SP6 Low-Rate Speech Coding
`A 2.4 kbit/s MELP Coder Candidate for the New U.S. Federal Standard .........:.cccsccccseeseseeesscyecsessscsannscccsancensecasseeenes 1-200
`A, McCree - Texas Instruments, USA, K. Truong - Atlanta Signal Processors, Inc, USA, E. George -“Texas Instruments, USA
`T. Barnwell - Atlanta Signal Processors, Inc., USA, V. Viswanathan - Texas Instruments, USA
`
`Harmonic- Stochastic eXcitation (HSX) Speech Coding Below 4Kbits ...,....ss0sssseeessssueeeee acsusneecdenscsnenscerssseascesenssscccel~204
`C. Laflamme, R. Salami, R. Matmti, J. Adoul - University of Sherbrooke, Canada
`
`A High Quality MBE-LPC-FE Speech Coderat 2.4kbps and 1.2kbps_.....s.sseeeseee dae igavsasedavaceeswonssaccrsncasscossesersceaerssensl-20S
`T. Wang, K. Tang, C. Feng - Tsinghua University, China
`
`A Low-Complexity Waveform Interpolation Coder .......scessccserseressesenanes cannes TURPEAEENUG DOR eEHugNarNReAeKancrdesesanenveqeenqayarenel-212
`W. Kleijn, ¥. Shoham, D. Sen, R. Hagen - AT&T Bell Laboratories, USA
`
`Mixed-Domain Codingof Speech at 3 KDpS ...csssssseeseseereeess Sbencen head enadseadeeaveccaadvensdaansbbasascieebeacdiebedidudbedeacstebedss eeel-216
`J. De Martin - Politecnico di Torino, Italy
`A. Gersho - University of California at Santa Barbara, USA
`
`Source Driven/Variable Bit Rate Protoype Interpolation Coding ......ssscssserevesssenessoneeenens deneteveuensanteennsveasennoaretesttensel-220
`C. Xydeas, B. Cao - University ofManchester, UK
`
`A New Approachto Very Low-Rate Speech Coding Using Temporal Decomposition ..........cssssssceeeecsessceneeerneseeseesssesees1-224
`S. Ghaemmaghami, M. Deriche - Queensland University of Technology, Australia
`
`A Variable Frame Pitch Estimator and Test Results ....,......scscvessossscsesenercsnecceceecseecnenseeceseanercessssdeesenseeeseaneretesseecees1-228
`X. Qian, R. Kumaresan - University ofRhede Island, USA
`
`Robust Method of Measurement of Fundamental Frequency by ACLOS - AutoCorrelation of Log Spectrum -
`N. Kunieda, T. Shimamura, J. Suzuki - Satiama University, Japan
`
`........ssseesee0J-232
`
`...........sccessseseeessneeesensreenensnneverensrepapereeenencvaneusnaenenenetstanseeseeeseereneneneene1-236
`Lag-Indexed VQ for Pitch Filter Coding
`5. McClellan - University ofAlabama-Birmingham, USA
`J. Gibson - Texas A&M University, USA
`
`xii
`
`Page 7 of 55
`
`Page 7 of 55
`
`

`

`Volume I
`[aneeeaeee
`SP7 Wideband Coding and Emerging Techniques
`Embedded Algebraic Vector Quantizer (EAVQ) with Application to Wideband Speech Coding «......ccssssseeseseeeseeseetsecsees 1-240
`M. Xie, J. Adoul - University of Sherbrooke, Canada
`
`The Two-Dimensional Discrete Cosine Transform Applied to Speech Data ..........ccseccecseenseerennterstenessesssssussesenessceweneos 1-244
`L. Baghai-Ravary, S. Beet, M. Tokhi - University of Sheffield, UK
`
`Real-Time High Accurate Cell Loss Recovery Technique For Speech Over ATM Networks
`K. Matsumoto - NTT LSI Laboratories, Japan
`
`.....sssssssecsessseseeesssesssneeeeeesees1-248
`
`Predictive Fractal Interpolation Mapping: Differential Speech Coding at Low Bit Rates ........csssccssssesssseessssssreorssonsaeses1-251
`Z. Wang - University of Waterloo, Canada
`
` ..........:scsecessrseenensneeesasacessessccensscreneeesusseseuseeesanaaes1-255
`16kbit/s Wideband Speech Coding Based on Unequal Subbands
`J. Paulus, J. Schmitzler - IND, Aachen University of Technology, Germany
`
`Low Delay IIR QMFBankswith High Perceptive Quality for Speech Processing
`T. Kleinmann, A. Lacroix - University of Frankfurt, Germany
`
` .......sseressssssesssessessterescescssnensececeeeaaen1-259
`
`Demodulators for AM-FM Models of Speech Signals: A Comparison—...ssscserssesscceeerseensssseneneseseneaeenccesansaneunensaucunnsens 1-263
`S. Lu, P. Doerschuk - Purdue University, USA
`
`Synthesis and Coding of Continuous Speech with the Nonlinear Oscillator Model
`G. Kubin - Vienna University of Technology, Austria
`
`........-.ccsssescsssssssersessensessseennsnenenenseas1-267
`
`Variable Frame Rate Parameter Encoding via Adaptive Frame Selection Using Dynamic Programming—..ssssssrsssseseeessnees I-271
`E. George, A. McCree, V. Viswanathan - Texas Instruments, Inc., USA
`
`Transform Predictive Coding of Wideband Speech Signals ............sssccccsssscssssersscaserseccessesecsarsveasareceseasssensassseeseneaee-275
`J. Chen - AT&T Bell Labs, USA
`D. Wang - Georgia Institute af Technology, USA
`
`SP8__Topic Identification and Spoken Information Retrieval
`A System for Unrestricted Topic Retrieval From Radio News Broadcasts—....sssssesssereseeevsnnsssnerseeserensoecsscsooeasenseeeas eres1-279
`D. James - Union Bank of Switzerland, Switzerland
`
`Automated Generation of N-Best Pronunciations of Proper NOUNS—...ssecccerereeceensssceeeenseeeesseeveeeasseeaenererensmenreenennseanee1-283
`N. Deshmukh, M. Weber, J. Picone - Mississippi State University, USA
`
`An Efficient Voice Retrieval System for Very-Large-Vocabulary Chinese Textual Databases with a Clustered Language Model «1-287
`S. Lin - National Taiwan University, ROC
`L. Chien, K. Chen, L. Lee - Academia Sinica, ROC
`
`Concept-based Phrase Spotting Approach for Spontaneous Speech Understanding—.......sssecereeereressreeneeeeeeeesereeaenenenens1-291
`T. Kawahara, N. Kitaoka, S. Doshita - Kyoto University, Japan
`
`A Dictionary-Based Method for Determining Topics in Text and Transcribed Speech I-295
`P. Schone, D. Nelson - DepartmentofDefense, USA
`
`Keyword Spotting for Video Soundtrack Indexing ....ccssssseesersrrovserserssnrvenssecenttcenenseseaanensgeenseseenaaceseceusequcacauseaenees1-299
`P. Gelin, C. Wellekens - Institut Eurecom, France
`
`Improvements in Switchboard Recognition and Topic Identification ..........1..:ssccrereessenenesneseanensnseemneserenenassauamaannns sree1-303
`B. Peskin, S, Connolly, L. Gillick, 5. Lowe, D. McAllaster, V. Nagesha, P. van Mulbregt, S. Wegmann - Dragon Systems, Inc., USA
`
`Statistical Models for Topic Identification Using Phoneme Substrimgs
`J. Wright - University of Bristol, UK
`M. Carey, E. Parris - ENSIGMA Limited, UK
`
`..........scccosessesesseeeresesenneeseeanaaaesenueaaeeeeaneanens +«+.1-307
`
`.....1.:.seesseuee
`Robust Talker-Independent Audio Document Retrieval
`G. Jones, J. Foote, K. Spark Jones, S. Young - Cambridge University, UK
`
`seeeeeneneneceeeeeeaeeeanerauausesueneaaesrenanesten tans sedeessenee I-311
`
`Unsupervised Topic Clustering of Switchboard Speech Messages ......ssscccscosocosecossonsestsensesenensserennsarenenanaveneemsnnsnmacree1-315
`B. Carlson - MIT Lincoin Laboratory, USA
`
`xiv
`
`Page 8 of 55
`
`Page 8 of 55
`
`

`

`Volume I
`SSSeSenee
`SP9 Robust Recognition: Compensation and Normalization
`Speaker Recognition and Speaker Normalization by Projection to Speaker Subspace
`........... sists WeacetenstiatanycerangaiepenTe 1-319
`¥. Ariki, S. Tagashira, M. Nishijima - Ryukoku University, Japan
`
`...cccccccsccenscccnnccssccecesaccceresseseneneeesicddeceucsaudeeuvcvnbsevssagseceersvouscl=aaed
`Compensated Mel Frequency Cepstrum Coefficients
`R. Vergin, D. O'Shaughnessy, V. Gupia - IWRS-Telecommunications, Canada
`
`Adaptation Method Based on HMM Composition and EM Algorithm ....... sid suanesdsyeqedsasyererere paces sesasscesseasssnenenseesnssd@Gol
`Y, Minami, S. Furui - NTT Human Interface Laboratories, Japan
`
`SNR-Normalisation for Robust Speech Recognition ......cscssscsecssssesevenscseeenencseeeaeseceeesscceaeeesecsuasshesuanenecuenenseaeeseeenene T-331
`T. Claes, D, Van Compernolle - KU Leuven, Belgium
`
`Towards Robustness to Fast Speech in ASR vissessssscsessseseassesscnecseesssesecseeseaae db wev areas uebaenvoasaatae renee T YET 1-335
`N. Mirghafori, E. Foster, N. Morgan - International Computer Science Institute, USA
`
`Speaker Normalization on Conversational Telephone Speech ......cccsscscscscseccecsscessecsecsnccconanseeeensescsnsserereneesteceeeseeeesseL=339
`S. Wegmann, D. McAllaster, J. Orloff, B. Peskin - Dragon Systems, USA
`
`Speaker and Gender Normalization for Continuous-Density Hidden Markov Models_
`A. Acero, X. Huang - Microsoft Corporation, USA
`
`....... eeaseuspensyense pens ssensecesusecsesgensdtae.
`
`A Parametric Approach to Vocal Tract Length Normalization
`E. Eide, H. Gish - BBN Systems and Technologies, USA
`
`...ccccccccsseccecsescsueescsnsenessesenesesseasseeereaeseueee Wiss enecssves «1-346
`
`A Study on Speech Recognition for Children and the Elderly ...............0ssssse0 Spossscecesuateusttss Se oosesccdadassdauas Keaweaspaadel*QO
`J. Wilpon - AT&T Bell Labs, USA
`C. Jacobsen - TeleDanmark/Jydsk Telefon, Denmark
`
`Speaker Normalization Using Efficient Frequency Warping Procedures
`L. Lee - Massachusetts Institute of Technology, USA
`R. Rose - AT&T Bell Laboratories, USA
`
`seesaneneneceeenssaseneneesennsseeeaseessenaseaiensensesgas seve353
`
`Speech Synthesis
`SP10
`A Fast Stochastic Parser for Determining Phrase Boundaries for Text-to-Speech Synthesis
`R. Sharman - IBM Laboratories, U.K.
`J. Wright - University of Bristol, U_K,
`
`.
`...scsssesecescscsssessceececseseessceseesdG57
`
`Speech Concatenation and Synthesis Using an Overlap-add Sinusoidal Model
`M. Macon, M. Clements - Georgia Institute of Technology, USA
`
`......+ sssveuveresssersessseessserssessserssesscesssessanl-GOd
`
`Voice Conversion Using Partitions of Spectral Feature Space ....sse0s000 seb beds UediexedkeatedeweatetsiadebadanteaNatevead vecdvaaeversvecenvil-3O65
`W. Verhelst, J. Mertens - Vrije Universiteit Brussel, Belgium
`
`Determination of Vocal-Tract Shapes from Formant Frequencies Based on Perturbation Theory and Interpolation Method 1-369
`Z. Yu, P. Ching - Chinese University of Hong Kong, Hong Kong
`
`Unit Selection in a Concatenative Speech Synthesis System Using a Large Speech Database ......ssssssssscssssseccsssscesscessesessel373
`A. Hunt, A. Black - ATR Interpreting Telecommunications Research Laboratories, Japan
`
`Parametric Hybrid Source Models for Voiced and Voiceless Fricative Consonants ...ssssssssssssseessscseeessssssessavecsensasansessceel-O77
`5. Narayanan - AT&T Bell Laboratories, USA
`A. Alwan - University of California at Los Angeles, USA
`
`High Quality Speech Synthesis Using Context-Dependent Syllabic Units .......cessssesesscesseseneeeaes eee tereseraeeeereeneeererelOO
`T. Saito, Y. Hashimoto, M. Sakamoto - IBM, Japan
`
`Articulatory Copy Synthesis Using a Nine Parameter Vocal Tract Model .........c0ssesessecseeeseeeees isd esteancastiscewicereswesaeeiensel-3O5S
`C. Goodyear, D. Wei - University ofLiverpool, UK
`
`Speech Synthesis Using HMMswith Dynamic Features ...........csscsscsssscecscessenscnensnsvscntenetasuensenenensestersesepersesenanaeee 1-389
`T. Masuko, K. Tokuda, T. Kobayashi, S. Imai - Tokyo Institute of Technology, Japan
`
`Interpolating V/UV Mixture Functions of a Harmonic Model for Concatenative Speech Synthesis .......... seesserseeesnserenrssed#SOS
`K. Lam, C. Chan - City University of Hong Kong, Hong Kong
`
`xv
`
`Page 9 of 55
`
`Page 9 of 55
`
`

`

`Volume I
`Sea|
`SP11
`Speech Recognition: Language Modelling I
`An Efficient Top-Down Parsing Algorithm for Understanding Speech by Using Stochastic Syntactic and Semantic Models ...1-397
`H. Stahl, J. Muller, M. Lang - Munich University of Technology, Germany
`
`..... oc eantenbaanas dbendveeaesdadeensenens se neueeaneeesenseasenenerenensceses 1-401
`Data-Driven Discourse Modeling for Semantic Interpretation
`F. Caminero-Gil, J. Alvarez-Cercadillo, C. Crespo-Casas, D. Tapias-Merino - Telefonica 1+D, Spain
`
`Statistical Language Modeling for Speech Disfluencies
`A. Stolcke, E. Shriberg - SRI International, USA
`
`...secescsserceeeseerensnereeanseenee sabe Ute Uae beaaaTCeRe Cece TaRET ELE oer seveeeeeee1-405
`
`savesensesceseccscorsovccnsvecctsavenccsceracees eed409
`JANUSII-Translation of Spontaneous Conversational Speech ..ssesssseereeenseees
`A. Weibel, M. Finke, D. Gates, M. Wosczyna, M. Gavalda, T. Kemp, A. Lavie, L Levin, M."Maier- University ofKarlsruhe,“Germany
`
`Language Model Acquisition From a Text Corpus for Speech Understanding ..+ssss+eessrereerssenees seeeeensensenanenseeneeeseetensersod@413
`T. Matsuoka - NTT Human Interface Laboratories, Japan
`R. Hasson - Eurecom Institute, France
`M.Barlow, S. Furui - NTT Human Interface Laboratories, Japan
`
`A Class Based Language Modelfor Speech Recognition .........:ssesceesseeee et ecvesescees anna ReaaeeasewaebE scesdienerwenienedeneiernene1-416
`W. Ward, S. Issar - Carnegie Mellon University, USA
`
` ........cessrsesrersnveseesaccueseuasturreusiees1-419
`AnIntegrated Model of Acoustics and Language Using Semantic Classification Trees
`E. Noth, R. DeMori, J. Fischer, A. Gebhard, S. Harbeck, R. Kompe - Universitat Erlangen-Nurnberg, Germany
`R. Kuhn, H. Niemann, M. Mast - Centre de Recherche Informatique de Montreal, Canada
`
`Combining Stochastic and Linguistic Language Models for Recognition of Spontaneous Speech ............++ Ras MaDvieTesaeraese AALS
`W. Eckert, F Gallwitz, H. Niemann - Universitat Erlangen-Nurnberg, Germany
`
`Error Correction via a Post-Processor for Continuous Speech Recognition ......:..ccessecseeessevee savscebecsdsonsdivstusessessasacess 1-427
`E. Ringger, J. Allen - University ofRochester, USA
`
`Integration of Concept-Driven Semantic Interpretation with Speech Recognition ............ co eeensenane sscesonneenensecscnnesessssins1-431
`A. Nogai, ¥. Ishikawa, K. Nakajima - Mitsubishi Electric Corporation, Japan
`
`Speech Recognition Acoustic Modeling
`SP12
`A Second-Order HMM for High Performance Word and Phoneme-Based Continuous Speech Recognition ......1...ceeesereee . 1-435
`J.-F. Mari, D. Fohr, J.-C. Junqua - CRIN-CNRS & INRIA, France
`
`Evaluation of Segmental Unit Input HMM ....... sonvesestoscessensecesodhpeeneasanse seacevsceaeiisisie ersten sescacceenserevenel-4]39
`S. Nakagawa, K. Yamamoto - Toyohashi University of Technology, Japan
`
`Design of a Speech Recognition System Based on Non-Uniform Segmental Units
`M. Bacchiani - ATR Interpreting Telecommunications Research Laboratories, Japan
`M. Ostendorf - Boston University, USA
`Y. Sagisaka - ATR Interpreting Telecommunications Research Laboratories, Japan
`K. Paliwal - Griffith University, Australia
`
`..........+sidinada seibaadp iasuadsadeiniaecies sasseeenel-443
`
`Modeling Speech Variability with Segmental HMMS_........+seceeseeeeeeeeeseene SaaaaSaesiee cae NdaviaddenteedidedveseteusdthcteevsevsteteiasI-447
`W. Holmes, M. Russell - DRA Malvern, UK
`
`Context-Dependent Units for Vocabulary-Independent Spanish Speech Recognition .......+ssssssressserenensssereearerenensees vesee 16451
`L, Villarrubia, L. Gomez, J. Elvira, J. Torrecilla - Telefonica I+D, Spain
`
`Context-Dependent Acoustic Models For Chinese Speech Recognition ........... pee ececeercosseves ots creoceneseesen ditserederseoeseeseres- 1455
`B. Ma,T. Huang, B. Xu, X. Zhang, F. Qu - Chinese Academy of Sciences, China
`
`Automatic Recognition of Danish Natural Numbers for Telephone Applications ............ ssveaaceeree cee cvecec ctslasauesy saveseeeeeesebA59
`C. Jacobsen - TeleDanmark/Jydsk Telefon, Denmark
`J. Wilpon - AT&T Bell Laboratories, USA
`
`Explicit Modeling of Coarticulation in a Statistical Speech Recognizer ......cssssssssscssessecenenseceenseeeeeneeeesrsensenssaseseserens sed463
`R. Chen, L. Jamieson - Purdue University, USA
`
`Tied-Structure HMM Based on Parameter Correlation for Efficient Model Training .............+e1esseeseeeeeus pseaenaenseuaceencan® 1-467
`S. Takahashi, S. Sagayama - NTT Human Interface Laboratories, Japan
`A Semi-Continuous Stochastic Trajectory Model for Phoneme-Based Continuous Speech Recognition
`O. Siohan, ¥. Gong - CRIN-CNRS & INRIA Lorraine, France
`
`........0 sssnensevessseseel-471
`
`xvi
`
`Page 10 of 55
`
`Page 10 of 55
`
`

`

`Volume I
`|ieeee
`SP13
`Speech Coding Quality Assessment
`Automatic Evaluation of Speaker Recognizability of Coded Speech ........cccesseeeessceseceseneeeeeees steneeaeenencescereerenens soserenel=475
`K. Assaleh - Motorola, USA
`
`A Perceptually-Based Objective Measure for Speech Coders Using Abductive Network—......ec..seeeees0e édevedsensensensaasanieesd-479
`M. Meky, T. Saadawi - City University of New York, USA
`
`Objectively Measured Descriptors Applied to Speaker Characterization ......:ss:eesesssseneesTT Ter ery Te steseseeeseseeel483
`B. Necioglu, M. Clements, T. Barnwell - Georgia Institute of Technology, USA
`
`_........ diedeve teen caearaiTleineene eee se pdseesaeueecscsvecsusescucscsasseceseseel=497
`Objective Speech Quality Measure for Cellular Phone
`K. Lam, O. Au, C. Chan, K. Hui, S. Lau - Hong Kong University ofScience and Technology, Hong one
`
`Vector Quantization Techniques for Output-Based Objective Speech Quality ......css:sscneess Tbeaeueobechecneseneneses aeanecesenceesesl-491
`C. Jin, R. Kubichek - University of Wyoming, USA
`
`Objective Measures for Speech Quality Assessment in Wireless Communication’s ......:sesssvssecseceseneseccscnscscesecanscssecseecesd-495
`A. Bayya, M. Vis - US West Advanced Technologies, USA
`
`Performance Assessmentof4.8 kbit/s AMBE Coding Under Aeronautical Environmental Conditions.......ssssecsseceeseseaessses 1-499
`S. Campos Neto, F. Corcoran, J. Phipps, S. Dimolitsas - COMSAT, USA
`
`Normalization of Cellular Telephone Speech for Recognition by Adaptive Vector Quantization —.....csesssssssseesecasesececeeesseeel-SO3
`R. Rajasekaran, M. Sonmez - Texas Instruments, Inc., USA
`J. Baras - University ofMaryland at College Park, USA
`
`Speech Recognition Out-of-Vocabulary Modeling and Rejection
`SP14
`Efficient Decoding and Training Procedures for Utterance Verification in Continuous Speech Recognition| sevceneseecesoevceeerL-SO7
`E. Lleida, R. Rose - ATT Bell Laboratories, USA
`
`Confidence Measures for the SWITCHBOARD Database ........... sisbeedacedacseceedevusteacsuaes Fiipenebedspecasaaseceenpserenesserersers I-511
`S. Cox, R. Rose - AT&T Bell Labs, USA
`x
`
`A Phone-Dependent Confidence Measure for Utterance Rejection............+s0scse0e+ neg evi gesunyeNstevasdeesseeneusvesshervess socesereee T-515
`Z. Rivlin, M. Cohen, V. Abrash, T. Chung - SRI International, USA
`
`Utterance Verification of Keyword Strings Using Word-Based Minimum Verification Error (WB-MVE)Training_............1-516
`R. Sukkar, A. Setlur M. Rahim, C. Lee - AT&T Bell Laboratories, USA
`
`...........6 teveoceceveens WI-3585
`Discriminative Utterance Verification Using MinimumString Verification Error (MSVE) Training
`M. Rahim, C. Lee, B. Juang, W. Chou - AT&T Bell Laboratories, USA (at time ofprinting this paper wasplaced in Volume 6)
`Murray Hill, NJ, USA
`
`Fast Implementation Methods for Viterbi-based Word-Spotting
`K. Knill, S. Young - Cambridge University, UK
`
`..sccsccssessessssceaneueeee subiseadsde seanesdenarenneaieNcieaae ssesesenesD-522
`
`Improving Wordspotting Performance with Artificially Generated Data ......::cseeeccseeesecseeeneeseceeeeceeeeeets siuesvaectestssniee-I-526
`E. Chang, R. Lippmann- Corona Corporation, USA
`
`Modelling Unknown Wordsin Spontaneous Speechi......cc:sssccsssesernee ed euesvacaVonsucdabsesusecetqauevacss isagecsqansaunasacanepagersbsass 1-530
`T. Kemp - University of Karlsruhe, Germany
`A. Jusek - University of Bielefeld, Germany
`
`..........ccesscceeceesseeeeseveeaseres iSaeadkvaedcRuaceagesegeecdeespueceatetas 1-534
`Improved Modeling of OOV Wordsin Spontaneous Speech.
`P. Fetter, A. Kaltenmeier, T. Kuhn, P. Regel-Brietzmann- Research Center Daimler-Benz, Germany
`
`Two-Pass Strategy for Continuous Speech Recognition with Detection and Transcription of Unknown Words
`S. Matsunaga, H. Sakamoto - ATR Interpreting Telecommunications Research Laboratories, USA
`
` ...sssesssesseeeee-538
`
`SP15_ Topics in Speech Coding
`A Modified Generalised Lloyd Algorithm for VQ Codebook Design ..........c0ssssseecsscvescereoe oo cneNakenanes senessestenseneeneetsevens 1-542
`C. Chen, S. Koh, P. Sivaprakasapillai - Nanyang Technological University, Singapore
`
`RobustClassification of Speech Based on the Dyadic Wavelet Transform with Application to CELP Coding .....:0000seses00001-546
`J. Stegmann, G. Shroeder, K. Fischer - Deutsche Telekom, Germany
`
`xvii
`
`Page 11 of 55
`
`Page 11 of 55
`
`

`

`VolumeI
`eeePy|
`Optimal Wavelet Packets for Low-Delay Audio Coding ....++--+s--sss+seseeeeeseee svisbedaverevealaevacascuke ican 1-550
`P. Philippe, F. Mo

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket