`
`Notice:
`
`1)
`y
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`
`(21)
`
`Appl. No.:
`
`17/719,541
`
`(22)
`
`Filed:
`
`Apr. 13, 2022
`
`Prior Publication Data
`
`(65)
`
`(63)
`
`(51)
`
`Related U.S. Application Data
`
`Continuation of application No. 17/374,656, filed on
`Jul. 13, 2021, which is a continuation of application
`(Continued)
`
`Int. Cl.
`B6OW 50/12
`GOSD 1/00
`
`(52)
`
`USS. Cl.
`
`(2012.01)
`(2006.01)
`(Continued)
`
`CPC wee B6OW 50/12 (2013.01); BOOW 40/06
`(2013.01); B6OW 40/08 (2013.01); BoOW
`40/10 (2013.01);
`
`Model S Software Update 6.2.
`(Continued)
`
`Primary Examiner — Todd Melton
`(74) Attorney, Agent, or Firm — Kinney & Lange, P.A.
`
`A computer-implemented method, system, and/or computer
`program product controls a driving mode ofa self-driving
`vehicle (SDV). One or more processors compare a control
`processor competence level of an on-board SDV control
`processor in controlling the SDV to a human driver com-
`petence level of a human driver in controlling the SDV while
`the SDV encounters a current roadway condition which is a
`result of current weather conditions of the roadway on which
`the SDV is currently traveling. One or more processors then
`selectively assign control of the SDV to the SDV control
`processoror to the human driver while the SDV encounters
`the current roadway condition based on which ofthe control
`processor competence level and the human driver compe-
`tence level is relatively higher to one another.
`
`US011597402B2
`
`a2) United States Patent
`US 11,597,402 B2
`(0) Patent No.:
`Mar.7, 2023
`(45) Date of Patent:
`Gordonet al.
`
`(54) CONTROLLING DRIVING MODES OF
`SELF-DRIVING VEHICLES
`
`(58) Field of Classification Search
`None
`See application file for complete search history.
`
`(71) Applicant: Slingshot IOT LLC, Baltimore, MD
`(US)
`
`(56)
`
`(72)
`
`Inventors:
`
`Michael S. Gordon, Yorktown Heights,
`NY (US); James R. Kozloski, New
`Fairfield, CT (US); Ashish Kundu,
`New York, NY (US); Peter K. Malkin,
`Ardsley, NY (US); Clifford A.
`Pickover, Yorktown Heights, NY (US)
`
`(73) Assignee: Slingshot IOT LLC, Baltimore, MD
`(US)
`
`CA
`CA
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`4,665,395 A
`4,908,988 A
`
`5/1987 Van
`3/1990 Yamamuraet al.
`(Continued)
`
`FOREIGN PATENT DOCUMENTS
`
`2392578 Al
`2392652 Al
`
`$/2001
`$/2001
`
`(Continued)
`
`OTHER PUBLICATIONS
`
`US 2022/0242431 Al
`
`Aug. 4, 2022
`
`(57)
`
`ABSTRACT
`
`(Continued)
`
`24 Claims, 8 Drawing Sheets
`
`
`
`DETERMINE A CONTROL PROCESSOR COMPETENCE LEVEL
`{CPCL} OF AN ON-BOARD SDY CONTROL PROCESSOR OF THE SDV
`
`
`UNDER THE CURRENT OPERATIONAL ANOMALY OF THE SDV
`
`
`RECEIVE A DRIVER PROFILE THAT INCLUDES A HUMAN DRIVER
` 508
`COMPETENCE LEVEL (HOCL) OF THE HUMANDRIVER OF THE SDV
`
`
`UNDER THE CURRENT OPERATIONAL ANOMALY OF THE SDV
`
`
`--510
`‘COMPARE THE CONTROL PROCESSOR COMPETENCELEVEL]
`(CPCL) TO A HUMAN DRIVER COMPETENCE LEVEL (HDCL}
`
`
`
`
`
`
`
`ASSIGN CONTROL OF THE SDV TO
`AN ON-BOARD SDV CONTROL
`
`PROCESSOR ON THE SDV WHILE
`
`THE SDVIS UNDER THE CURRENT
`OPERATIONAL ANOMALY
`
`
`ASSIGN CONTROLOF THE
`SDY 0 THE HUMAN
`
`
`DRIVER OF THE SDV WHILE
`
`THE SDV 1S UNDER THE
`CURRENT OPERATIONAL ANOMALY
`
`
`BIG
`
`IPR2025-00943
`Tesla EX1001 Page1
`
`IPR2025-00943
`Tesla EX1001 Page 1
`
`
`
`US 11,597,402 B2
`
`Page 2
`
`Related U.S. Application Data
`
`No. 16/997,202,filed on Aug. 19, 2020, now Pat. No.
`11,091,171, which is a continuation of application
`No. 16/899,407, filed on Jun. 11, 2020, now aban-
`doned, and a continuation of application No. 15/955,
`874, filed on Apr. 18, 2018, now Pat. No. 10,717,446,
`which is a continuation of application No. 15/341,
`225, filed on Nov. 2, 2016, now Pat. No. 10,029,701,
`which is a continuation of application No. 14/865,
`393, filed on Sep. 25, 2015, now Pat. No. 9,566,986.
`
`(51)
`
`(2006.01)
`(2012.01)
`(2012.01)
`(2012.01)
`(2006.01)
`(2006.01)
`
`Int. CL
`Boow 50/00
`BooW 40/06
`Boow 40/08
`Boow 40/10
`B62D 1/28
`B62D 6/00
`(52) U.S. Cl.
`CPC....... BooW 50/0098 (2013.01); GO5D 1/0061
`(2013.01); B6OW 2040/0809 (2013.01); BOOW
`2050/0095 (2013.01); BOOW 2510/30
`(2013.01); B6OW 2540/22 (2013.01); B6OW
`2552/00 (2020.02); B6OW 2555/20 (2020.02);
`BOoOW 2756/10 (2020.02); B62D 1/286
`(2013.01); B62D 6/007 (2013.01); GOS5D
`2201/0213 (2013.01)
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`5,975,791 A
`6,064,970 A
`6,201,318 Bl
`6,326,903 Bl
`6,393,362 Bl
`6,502,035 B2
`6,587,043 Bl
`6,622,082 Bl
`6,704,621 Bl
`6,731,202 Bl
`6,810,312 B2
`7,113,867 Bl
`7,124,088 B2
`7,151,996 B2
`7,580,782 B2
`7,769,544 B2
`7,877,269 B2
`7,894,951 B2
`7,979,173 B2
`3,031,062 Al
`8,045,455 Bl
`8,078,349 Bl
`8,090,598 B2
`8,139,109 B2
`8,140,358 Bl
`8,146,703 B2
`8,152,325 B2
`8,180,322 B2
`8,346,480 B2
`8,352,112 B2
`8,442,854 B2
`8,466,807 B2
`8,489,434 Bl
`8,509,982 B2
`8,583,365 B2
`8,660,734 B2
`8,676,466 B2
`8,678,701 Bl
`8,786,461 Bl
`8,793,046 B2
`
`11/1999 McCulloch
`5/2000 McMillan etal.
`3/2001 Guillory
`12/2001 Grossetal.
`5/2002 Burns
`12/2002 Levine
`7/2003 Kramer
`9/2003 Schmidt et al.
`3/2004 Stein et al.
`5/2004 Klaus
`10/2004 Jammuet al.
`9/2006 Stein
`10/2006 Baueretal.
`12/2006 Stein
`8/2009 Breedetal.
`8/2010 Bleseneret al.
`1/2011 Baueretal.
`2/2011 Norris et al.
`7/2011 Breed
`10/2011 Smith
`10/2011 Agronowetal.
`12/2011 Pradaet al.
`1/2012 Baueretal.
`3/2012 Schmiedel et al.
`3/2012 Ling et al.
`4/2012 Baumannet al.
`4/2012 McDermott
`5/2012 Nakaeetal.
`1/2013 Trepagnieret al.
`1/2013 Mudalige
`5/2013 Lawtonetal.
`6/2013 Mudalige
`7/2013 Otis et al.
`8/2013 Montemerlo et al.
`11/2013 Jang et al.
`2/2014 Zhuet al.
`3/2014 Mudalige
`3/2014 Aldasem
`7/2014 Daudelin
`7/2014 Lombrozoetal.
`
`8,810,392
`8,816,857
`8,825,258
`8,849,494
`8,874,305
`8,880,270
`8,903,591
`8,923,890
`8,924,150
`8,948,955
`8,949,016
`8,954,217
`8,954,252
`8,954,261
`8,958,943
`8,965,621
`8,970,362
`8,983,705
`8,996,224
`9,014,905
`9,020,697
`9,024,787
`9,082,239
`9,090,260
`9,120,484
`9,123,049
`9,145,116
`9,150,220
`9,156,473
`9,170,327
`9,189,897
`9,194,168
`9,195,895
`9,205,835
`9,207,323
`9,216,745
`9,218,698
`9,233,688
`9,248,832
`9,272,709
`9,286,520
`9,297,641
`9,305,411
`9,317,033
`9,342,074
`9,365,213
`9,365,214
`9,381,915
`9,390,451
`9,393,998
`9,399,472
`9,415,777
`9,443,163
`9,446,765
`9,452,754
`9,454,152
`9,463,805
`9,483,948
`9,552,735
`9,566,958
`9,566,986
`9,628,975
`9,646,496
`9,650,025
`9,650,058
`9,656,673
`9,664,789
`9,671,243
`9,676,389
`9,718,468
`9,834,224
`9,881,427
`10,101,742
`10,150,473
`10,173,673
`10,293,826
`10,317,231
`10,318,823
`10,449,957
`
`8/2014
`8/2014
`9/2014
`9/2014
`10/2014
`11/2014
`12/2014
`12/2014
`12/2014
`2/2015
`2/2015
`2/2015
`2/2015
`2/2015
`2/2015
`2/2015
`3/2015
`3/2015
`3/2015
`4/2015
`4/2015
`5/2015
`7/2015
`7/2015
`9/2015
`9/2015
`9/2015
`10/2015
`10/2015
`10/2015
`11/2015
`11/2015
`11/2015
`12/2015
`12/2015
`12/2015
`12/2015
`1/2016
`2/2016
`3/2016
`3/2016
`3/2016
`4/2016
`4/2016
`5/2016
`6/2016
`6/2016
`7/2016
`7/2016
`7/2016
`7/2016
`8/2016
`9/2016
`9/2016
`9/2016
`9/2016
`10/2016
`11/2016
`1/2017
`2/2017
`2/2017
`4/2017
`5/2017
`5/2017
`5/2017
`5/2017
`5/2017
`6/2017
`6/2017
`8/2017
`12/2017
`1/2018
`10/2018
`12/2018
`1/2019
`5/2019
`6/2019
`6/2019
`10/2019
`
`Teller et al.
`Nordin et al.
`Cullinaneet al.
`Herbachetal.
`Dolgovet al.
`Ferguson etal.
`Ferguson etal.
`White et al.
`Tsimhonietal.
`Zhuetal.
`Ferguson etal.
`Montemerlo etal.
`Urmson etal.
`Daset al.
`Bertosa etal.
`Urmson etal.
`Morley et al.
`Zhuetal.
`Herbachetal.
`Kretzschmar etal.
`Ricciet al.
`Alshinnawiet al.
`Ricci
`Clarke et al.
`Ferguson etal.
`Hydeetal.
`Clarke et al.
`Clarke et al.
`Clarke et al.
`Choeet al.
`Stenneth
`Lu etal.
`Kapachetal.
`Stein et al.
`Zhuetal.
`Beardsley et al.
`Ricci
`Clarke et al.
`Huberman
`Ben Shalom
`Lo etal.
`Stein
`Ricci
`Tbanez-Guzman et al.
`Dolgov ......... B60W 60/0054
`Stenneth 0.0... B60W 30/182
`Ben Shalom etal.
`Crombezetal.
`Slusar
`Clarke et al.
`Minoiu-Enache
`Clarke et al.
`Springer
`Ben Shalom etal.
`Clarke et al.
`Kopetz
`Kirsch et al.
`Gordonet al.
`Pilutti et al.
`Waldmann
`Gordonet al.
`Watkinset al.
`Miller
`Dagan
`Schiek et al.
`Clarke et al.
`Rosenblum et al.
`Stein
`Clarke et al.
`Barfield et al.
`Gordonet al.
`Barajas Gonzalez etal.
`Prokhorov
`Aharonyetal.
`Ferguson etal.
`Clarke et al.
`Ferencz etal.
`Shashuaet al.
`Nagy et al.
`
`*
`
`IPR2025-00943
`Tesla EX1001 Page 2
`
`IPR2025-00943
`Tesla EX1001 Page 2
`
`
`
`US 11,597,402 B2
`
`Page 3
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`
`10/2014 Montemerlo etal.
`2014/0324268 Al
`11/2014 Dolgovetal.
`2014/0330479 Al
`12/2014 Radaetal.
`2014/0358331 Al
`12/2014 Ibanez-Guzman etal.
`2014/0358353 Al
`1/2015 Yu et al.
`2015/0006005 Al
`2/2020 Shashuaetal.
`10,572,744 B2
`1/2015 Wimmer etal.
`2015/0006014 Al
`3/2002 Svendsen
`2002/0026841 Al
`1/2015 Abboudet al.
`2015/0026092 Al
`9/2002 Takezaki et al.
`2002/0128774 Al
`2/2015 Stricklandetal.
`2015/0035685 Al
`2/2003 Stein
`2003/0040864 Al
`2/2015 Mueller
`2015/0051778 Al
`4/2003. McNeeetal.
`2003/0065572 Al
`2/2015 Mudalige et al.
`2015/0057891 Al
`4/2003 Smith et al.
`2003/0076981 Al
`3/2015 Datta et al.
`2015/0062340 Al
`4/2004 Milleretal.
`2004/0078133 Al
`3/2015 Fleury
`2015/0062469 Al
`6/2004 Raoetal.
`2004/0117086 Al
`3/2015 Yopp
`2015/0066282 Al
`10/2004 Heilmannetal.
`2004/0199306 Al
`
`
`2005/0021227 Al 2015/0066284 Al—3/2015 Yopp1/2005 Matsumoto etal.
`2005/0104745 Al
`5/2005 Bachelderetal.
`2015/0070178 Al
`3/2015 Kline
`2006/0106671 Al
`5/2006 Biet
`2015/0088358 Al
`3/2015 Yopp
`2006/0163939 Al
`7/2006 Kuramochietal.
`2015/0095190 Al
`4/2015 Hammadetal.
`2006/0200379 Al
`9/2006 Biet
`2015/0103159 Al
`4/2015 Shashuaetal.
`2006/0241855 Al
`10/2006 Joeet al.
`2015/0120331 Al
`4/2015 Russoetal.
`2007/0100687 Al
`5/2007 Koshikawa
`2015/0134178 Al
`§/2015 Minoiu-Enache
`2007/0124027 Al
`5/2007 Betzitzaetal.
`2015/0137985 Al
`5/2015 Zafiroglu et al.
`2008/0048850 Al
`2/2008 Kamada
`2015/0141043 Al
`5/2015 Abramsonetal.
`2008/0065293 Al
`3/2008 Plackeetal.
`2015/0149018 Al
`5/2015 Attardet al.
`2008/0114663 Al
`5/2008 Watkinset al.
`2015/0149021 Al
`5/2015 Duncan et al.
`2008/0129475 Al
`6/2008 Breedet al.
`2015/0151725 Al
`6/2015 Clarke et al.
`2008/0201217 Al
`8/2008 Bader et al.
`2015/0151742 Al
`6/2015 Clarke et al.
`2008/0288406 Al
`11/2008 Seguin etal.
`2015/0151751 Al
`6/2015 Clarke et al.
`2009/0094109 Al
`4/2009 Aaronsonetal.
`2015/0151753 Al
`6/2015 Clarke et al.
`2009/0114663 Al
`5/2009 Alvares et al.
`2015/0153735 Al
`6/2015 Clarke et al.
`2009/0138168 Al
`5/2009 Labuhnet al.
`2015/0160019 Al
`6/2015 Biswalet al.
`
`2009/0248231 Al 2015/0166059 AL—6/2015 Ko10/2009 Kamiya
`
`2009/0313096 Al
`12/2009 Kaga
`2015/0175070 Al
`6/2015 Attard et al.
`2010/0057511 Al
`3/2010 Mansouri etal.
`2015/0178998 Al
`6/2015 Attard et al.
`2010/0156672 Al
`6/2010 Yoo et al.
`2015/0196256 Al
`7/2015 Venkatraman et al.
`2010/0179720 Al
`7/2010 Lin et al.
`2015/0210274 Al
`7/2015 Clarke et al.
`2010/0228427 Al
`9/2010 Andersonetal.
`2015/0210275 Al
`7/2015 Huberman
`2010/0256852 Al
`10/2010 Mudalige
`2015/0210276 Al
`7/2015 Ben Shalom etal.
`2011/0029173 Al
`2/2011 Hyde et al.
`2015/0210277 Al
`7/2015 Ben Shalom
`2011/0035250 Al
`2/2011 Finucan
`2015/0210278 Al
`7/2015 Ben Shalom etal.
`2011/0077807 Al
`3/2011 _Hydeetal.
`2015/0210280 Al
`7/2015 Agnewetal.
`2011/0077808 Al
`3/2011 Hydeet al.
`2015/0210312 Al
`7/2015 Stein et al.
`2011/0137699 Al
`6/2011 Ben-Ari et al.
`2015/0232065 Al
`8/2015 Riccietal.
`2011/0264521 Al
`10/2011 Straka
`2015/0234045 Al
`8/2015 Rosenblum et al.
`2012/0072243 Al
`3/2012 Collinset al.
`2015/0242953 Al
`8/2015 Suiter
`2012/0139756 Al
`6/2012 Djurkovic
`2015/0293994 Al
`10/2015 Kelly
`2012/0277947 Al
`11/2012 Boehringeretal.
`2015/0332104 Al
`11/2015 Kapach et al.
`2012/0293341 Al
`11/2012 Lin
`2015/0332114 Al
`11/2015 Springer
`2013/0030657 Al
`1/2013 Chatterjee etal.
`2015/0336547 Al
`11/2015 Dagan
`2013/0113634 Al
`5/2013 Hutchinsonet al.
`2015/0338226 AL
`11/2015 Masonetal.
`2013/0131949 Al
`5/2013. Shida
`2015/0339639 Al
`11/2015 Choe
`2013/0144502 Al
`6/2013 Shida
`2015/0354976 Al
`12/2015 Ferenczet al.
`2013/0147957 Al
`6/2013 Stein
`2015/0367850 Al
`12/2015 Clarkeet al.
`
`2013/0231824 Al 2016/0001781 Al=1/2016 Fungetal.9/2013 Wilson etal.
`
`2013/0261871 Al
`10/2013 Hobbset al.
`2016/0026182 Al
`1/2016 Boroditsky etal.
`2014/0019259 Al
`1/2014 Dungetal.
`2016/0046290 Al
`2/2016 Aharonyet al.
`2014/0032049 Al
`1/2014 Moshchuket al.
`2016/0052514 Al
`2/2016 Clarke et al.
`2014/0092332 Al
`4/2014 Price
`2016/0063761 Al
`3/2016 Sisbot et al.
`2014/0095214 Al
`4/2014 Matheet al.
`2016/0075512 Al
`3/2016 Lert
`2014/0129073 Al
`5/2014 Ferguson
`2016/0078695 Al
`3/2016 McClintic et al.
`2014/0136045 Al
`5/2014 Zhu et al.
`2016/0078758 Al
`3/2016 Basalamah
`2014/0136414 Al
`5/2014. Abhyanker
`2016/0090100 Al
`3/2016 Oyamaetal.
`2014/0164126 Al
`6/2014 Nicholasetal.
`2016/0139594 Al
`5/2016 Okumura et al.
`2014/0188999 Al
`7/2014 Leonard etal.
`2016/0140507 Al
`5/2016 Stevensetal.
`2014/0195213 Al
`7/2014 Kozloskiet al.
`2016/0167650 Al
`6/2016 Clarkeetal.
`2014/0201037 Al
`7/2014 Mallawarachchietal.
`2016/0176409 Al
`6/2016 Kirsch et al.
`2014/0201126 Al
`7/2014 Zadehetal.
`2016/0202700 Al
`7/2016 Sprigg
`2014/0214255 Al
`7/2014 Dolgovetal.
`2016/0205146 Al
`7/2016 Sugioka et al.
`2014/0214260 Al
`7/2014 Eckert et al.
`2016/0229410 Al
`8/2016 Clarke etal.
`2014/0222277 Al
`8/2014 Tsimhonietal.
`2016/0303969 Al
`10/2016 Akula
`2014/0222577 Al
`8/2014 Abhyanker
`2016/0304122 Al
`10/2016 Herzogetal.
`2014/0282967 Al
`9/2014 Maguireet al.
`2016/0334797 Al
`11/2016 Rosset al.
`2014/0297116 Al
`10/2014 Andersonet al.
`2016/0344737 Al
`11/2016 Antonetal.
`2014/0306833 Al
`10/2014 Ricci
`2016/0347322 Al
`12/2016 Clarke et al.
`2014/0309789 Al
`10/2014 Ricci
`2016/0355192 Al
`12/2016 Jameset al.
`2014/0309806 Al
`10/2014 Ricci
`2016/0358477 Al
`12/2016 Ansari
`2014/0309864 Al
`10/2014 Ricci
`2016/0364823 Al
`12/2016 Cao
`2014/0309891 Al
`10/2014 Ricci
`2017/0001650 Al
`1/2017 Park
`2014/0310186 Al
`10/2014 Ricci
`2017/0010613 Al
`1/2017 Fukumoto
`2014/0316671 Al
`10/2014 Okamoto
`2017/0021837 Al
`1/2017 Ebina
`
`IPR2025-00943
`Tesla EX1001 Page 3
`
`IPR2025-00943
`Tesla EX1001 Page 3
`
`
`
`US 11,597,402 B2
`Page 4
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`2017/0057542 Al
`2017/0088143 Al
`2017/0098131 Al
`2017/0106876 Al
`2017/0123428 Al
`2017/0129487 Al
`2017/0137023 Al
`2017/0151958 Al
`2017/0168689 Al
`2017/0200449 Al
`2017/0248949 Al
`2018/0075309 Al
`2018/0093631 Al
`
`FOREIGN PATENT DOCUMENTS
`
`3/2017 Kim etal.
`3/2017 Goldman-Shenhar etal.
`4/2017 Shashuaetal.
`4/2017 Gordonetal.
`5/2017 Levinsonet al.
`5/2017 Wulf
`5/2017 Andersonetal.
`6/2017 Sakuma
`6/2017 Goldman-Shenhar etal.
`7/2017 Penilla et al.
`8/2017 Moran etal.
`3/2018 Sathyanarayanaet al.
`4/2018 Leeetal.
`
`Insurers?,” Bloomberg L.P., Sep. 10, 2014, pp. 1-2, Sep. 2014.
`Anonymous , Avoiding Crashes With Self-Driving Cars: Today’s
`Crash-Avoidance Systems Are the Mile Markers To Tomorrow’s
`AutonomousVehicles. Consumer Reports Magazine, Feb. 2014www.
`consumerreports.org/cro/magazine/2014/04/the-road-to-self-driving-
`cars/index.htm.
`in Mechanism to Enforce Mandatory
`Anonymous , “Car Built
`Self-Driving Mode”, Anonymous, “Car Built-In Mechanism To
`Enforce Mandatory Self-Driving Mode”, IP.com, No. 000234916,
`Feb. 14, 2014, p. 1-3., Feb. 2014.
`Anonymous , “Diagnostics Mechanism For Self-Driving Cars to
`Validate Self-Driving Capabilities”, Anonymous, “Diagnostics Mecha-
`nism For Self-Driving Cars to Validate Self-Driving Capabilities”,
`IP.com, Jun. 6, 2014, pp. 1-5 IP.com, Jun. 2014.
`Anonymous , “Google Files Patent for Second-Gen Autonomous
`Vehicle Without a Steering Wheel, Brake Pedal & More”, Anony-
`mous, “Google Files Patent for Second-Gen AutonomousVehicle
`Without a Steering Wheel, Brake Pedal & More”. Patentlymobile.
`11/1996
`1135063 A
`CN
`com, Nov. 27, 2015. Web. Sep. 22, 2016., Nov. 2015.
`11/1999
`2349068 Y
`CN
`Anonymous , “Self-Driving Cars and Insurance”, Anonymous,
`1/2008
`201004265 Y
`CN
`“Self-Driving Cars and Insurance,” Insurance Information Institute,
`10/2011
`202012052 U
`CN
`Inc., Feb. 2015, pp. 1-3.
`11/2011
`202038228 U
`CN
`Anonymous, “System and Method to Target Advertisement for the
`8/2012
`102650882 A
`CN
`Right Focus Group”, Anonymous, System and Method To Target
`3/2013
`202772924 U
`CN
`9/2015
`104900018 A
`CN
`Advertisements for the Right Focus Group. IP.com, No. 000218285,
`10/2016
`106030609 A
`CN
`May 31, 2012, pp. 1-2., May 2012.
`2/2017
`106462727 A
`CN
`Berger, C , et al., “Cots-Architecture With a Real-Time Os for a
`8/2017
`107111742 A
`CN
`Self-Driving Miniature Vehicle”, C. Berger et al., “Cots-
`3/2020
`110920609 A
`CN
`Architecture With a Real-Time OS for a Self-Driving Miniature
`4/2020
`111027420 A
`CN
`Vehicle”, SAFECOMP 2013—-Workshop ASCOMSofthe 32nd
`6/1998
`0582236 Bl
`EP
`International Conference On Computer Safety, Reliability and Secu-
`9/2002
`1236126 Al
`EP
`rity, Sep. 2013, Toulouse, France, pp. 1-13., Sep. 2013.
`11/2002
`1257971 A2
`EP
`Brownell , “Shared Autonomous Taxi Networks: An Analysis of
`7/2005
`1257971 A4
`EP
`Transportation Demand in NJ and A 21st Century Solution for
`
`EP 1727089 A2—11/2006
`Congestion”, Brownell, “Shared Autonomous Taxi Networks: An
`EP
`1727089 A3
`9/2007
`EP
`1622072 Bl
`7/2010
`Analysis of Transportation Demand in NJ and A 21st Century
`EP
`2605185 A2
`6/2013
`Solution for Congestion”, Dissertation, Princeton University, 2013,
`EP
`2605185 A3
`7/2014
`pp. 1-122.
`EP
`3092599 Al
`11/2016
`Chen,S , et al., “A Crash Risk Assessment Model for Roas Curves”,
`
`EP 3100206 Al=12/2016
`Chen §S, et al., A Crash Risk Assessment Model for Roas Curves. In
`
`EP 3108264 A2=12/2016
`Proceedings 20th International Technical Conference On the Enhanced
`EP
`3143607 Al
`3/2017
`Saftey of Vehicles., 2007. Lyon, France.
`EP
`3146506 A2
`3/2017
`Crothers, Brooke , “Google Now Reporting Self-Driving Car Acci-
`EP
`3152704 A2
`4/2017
`dents: Her, it’s Not the Car’s Fault”, Crothers, Brooke. “Google
`EP
`3154835 Al
`4/2017
`Now Reporting Self-Driving Car Accidents: Her, It’s Not the Car’s
`EP
`3183688 Al
`6/2017
`EP
`3092599 Bl
`3/2019
`Fault”. Forbes.com, Jun. 8, 2015. Http://www.forbes.com/sites/
`EP
`3514032 Al
`7/2019
`brookecrothers/2015/06/08/google-now-reportibg-driverless-car-
`
`EP 3146506 B1=12/2019
`accidents/, Jun. 2015.
`EP
`3640890 Al
`4/2020
`Farrier , “Airlines Infuse Their Planes With Smells To Calm You
`EP
`3680818 Al
`7/2020
`Down”, Farrier, “Airlines Infuse Their Planes With Smells To Calm
`WO
`2014058263 Al
`4/2014
`You Down”, Neatorama, Neatorama.com, Mar. 29, 2015, 1 Page,
`WO
`2014066721 A2
`5/2014
`Mar. 2015.
`WO
`2014066721 A3
`5/2014
`Fox, M, “Self-driving cars safer than those drive by humans: Bob
`WO
`2014066721 A3
`6/2014
`Lutz”, M. Fox, “Self-driving cars safer than those drive by humans:
`WO
`2014147361 Al
`9/2014
`Bob Lutz,” CNBC, www.cnbe.com, Sep. 8, 2014,
`1 page., Sep.
`WO
`2014148975 Al
`9/2014
`2014.
`WO
`2014148976 Al
`9/2014
`Gomes, Lee , “Google’s Self-Driving CarsStill Face Many Obstacles/
`WO
`2015024616 Al
`2/2015
`WO
`2015056105 Al
`4/2015
`MIT Technology Review”, Gomes, Lee. “Google’s Self-Driving
`WO
`2015083009 Al
`6/2015
`Cars Still Face Many Obstacles/ MIT Technology Review” MIT
`WO
`2015125022 A2
`8/2015
`Technology Review. Aug. 28, 2014. Web www.technologyreview.
`WO
`2015156146 Al
`10/2015
`co/news/530276/hidden-obstacles-for-googles-self-driving-cars, Aug.
`WO
`2015125022 A3
`11/2015
`2014.
`
`WO 2015186002 A2=12/2015
`Hars, A, “Self-Driving Cars: The Digital Transformation of Mobil-
`WO
`2015189847 Al
`12/2015
`ity”, A. Hars, “Self-Driving Gars: The Digital Transformation of
`WO
`2016027270 Al
`2/2016
`Mobility”, Marktplatze Im Umbruch, Springer Berlin Heidelberg,
`WO
`2015186002 A3
`3/2016
`2015, pp. 539-549.
`Horberry, T , et al., “Driver Distraction: The Effects of Concurrent
`In-Vehicle Tasks, Road. Environment Complexity and Age on Driv-
`ing Performance”, T. Horberry et al. “Driver Distraction: The
`Effects of Concurrent In-Vehicle Tasks, Road Environment Com-
`plexity and Age on Driving Performance,” Elsevier LTD., Accident
`analysis and prevention, 38, 2006, pp. 185-191.
`
`OTHER PUBLICATIONS
`
`Tesla Model “S” Manual and Overview, 2015.
`Abkowitz, A., “Do Self-Driving Cars Spell Doom for Auto Insurers?
`”. A. Abkowitz, “Do Self-Driving Cars Spell Doom for Auto
`
`IPR2025-00943
`Tesla EX1001 Page 4
`
`IPR2025-00943
`Tesla EX1001 Page 4
`
`
`
`US 11,597,402 B2
`Page 5
`
`(56)
`
`References Cited
`OTHER PUBLICATIONS
`
`Jardin, X., “Terrifying dashcam video captures distracted teen
`derivers crashing while goofing off’, X. Jardin, “Terrifying dashcam
`video captures distracted teen drivers crashing while goofing off,”
`Boing Boing, www.boingboing.net, Mar. 26, 2015,
`1 page, Mar.
`2015.
`Jimenez , et al., “Autonomouscollision avoidance system based on
`accurate knowledge of the vehicle surroundings”, Jimenez et al.
`“Autonomouscollision avoidance system based on accurate knowl-
`edge of the vehicle surroundings” Inst Engineering Technology-
`IET; IET Intelligent Transport Systems vol. 9, No. 1, pp. 105-117;
`2015, England.
`Lawler, R , “Riding shotgun in Tesla’s fastest car ever”, Lawler, R.
`“Riding shotgun in Tesla’s fastest car ever,” Engadget, Oct. 9,
`2018., Oct. 2018.
`Lehrer, E , “The Insurance Implications of Google’s Self-Driving
`Car’, E. Lehrer, “The Insurance Implications of Google’s Self-
`Driving Car’, Insurance Journal, Right Street Blog, May 28, 2014,
`pp. 1-2, May 2014.
`Lutin , et al., “The Revolutionary Development of Self-Driving
`Vehicles and Implications for the Transportation Engineering Pro-
`fession”, Lutin et al., “The Revolutionary Development of Self-
`Driving Vehicles and Implications for the Transportation Engineer-
`ing Profession”, ITE Journal 83.7, 2013, pp. 28-32.
`Mell, P, et al., “The Nist Definition of Cloud Computing”, P. Mell
`et al., “The Nist Definition of Cloud Computing,” National Institute
`of Standards and Technology, Information Technology Laboratory,
`Sep. 2011, pp. 1-7, Sep. 2011.
`
`
`
`Miller, J , “Self-Driving Car Technologu’s Benefits, Potential Risks,
`and Solutions”, J. Miller, “Self-Driving Car Technologu’s Benefits,
`Potential Risks, and Solutions”, The Energy Collective, Theenergycol-
`lective.com, Aug. 19, 2014, pp. 1-7., Aug. 2014.
`Nelson, G , “Tesla beams down ‘autopilot? mode to Model 8S”,
`Nelson, G.: “Tesla beams down ‘autopilot’ mode to Model S,”
`Automotive News, Oct. 14, 2015., Oct. 2015.
`O’Callahan , “Inside the Mercedes Self-Guidubg Car That’s Built
`for Luxurious Living In, Mot Driving”, O’Callaghan, “Inside the
`Mercedes Self-Guidubg Car That’s Built for Luxurious-Iving In,
`Not Driving”, Associated Newspapers Ltd., Daily Mail, Dailymail.
`com.uk, Jan. 6, 2015, pp. 1-13., Jan. 2015.
`Sessa, et al., “Blueprint of Alternative City Cyber-Mobility Take-U
`Scenarios”, Sessa et al., “Blueprint of Alternative City Cyber-
`Mobility Take-U Scenarios”, Seventh Framework Programme Theme
`SST.2012.3.1-4, Automated Urban Vehici FS Collaborative Project—
`Grant Agreement No. 314190, 2013, pp. 1-63.
`Smith, Mark , “Innovations: Emerging Trends in the Wheelchair
`Market”, Smith, Mark. “Inovations: Emerging Trends in the Wheel-
`chair Market.” New Mobility Magazine, Aug. 1, 2014. Web. http://
`www.newmobility.com/2014/08/emerging-trends/, Aug. 2014.
`Vanderbilt, T , “Let the Robot Drive: The Autonomous Car of the
`Future is Here”, T. Vanderbilt, “Let the Robot Drive: The Autono-
`mous Car of the Future is Here”, Wired Magazine, Conde Nast,
`www.wired.com, Jan. 20, 2012. pp. 1-34., Jan. 2012.
`Wei
`, et al., “Towards a Viable Autonomous Driving Research
`Platform”, Wei et al., “Towards a Viable Autonomous Driving
`Research Platform’, IEEE, Intelegent Vehicles Symposium (IV),
`2013, pp. 1-8.
`
`* cited by examiner
`
`IPR2025-00943
`Tesla EX1001 Page 5
`
`IPR2025-00943
`Tesla EX1001 Page 5
`
`
`
`|[rlTENM
`ONINOILISOdsngSvl_ma
`
`vaLMdNO)!=CelOl!INNGaVHAMONGWELSAS
`
`IGLLSlonyonday
`
`WGLSASWalug—
`
`LOlJNa0CHWGISASONILWY3d0
`
`oe,Vv61TEHS
`OVIMAINITcSeeee
`6ZIZIof
`
`OMENTOVRGIN
`}SwOsNES||aBABOSNVAL]|Avevice||_asnoN_||aavoekay||_Avsia_)
`CzZ\ZIGILLiLGOL
`<aseoTHIfain(Aasw)
`
`
`L.
`Igee1belase||yoss300udZEl
`GOTSMaWAISAS—
`
`
`
`
`oan|“40!ONIOWNVINHO491907
`
`0/|
`
`SIWUDONA
`
`
`
`STTOIIADNIANC-313S
`
`U.S. Patent
`
`Mar.7, 2023
`
`Sheet 1 of 8
`
`US 11,597,402 B2
`
`YSAuRS
`
`|“Old
`
`“||||||||||||||||||||||||I|||||I|||I||||||||
`
`IPR2025-00943
`Tesla EX1001 Page 6
`
`IPR2025-00943
`Tesla EX1001 Page 6
`
`
`
`
`
`U.S. Patent
`
`Mar.7, 2023
`
`Sheet 2 of 8
`
`US 11,597,402 B2
`
`AYMGYOY YSAYSS
`
`lO?
`
`ONLLYNIGYOOD
`
`(S)JYOSNAS
`
`
`
`ONIYOLINOWAYMAYOd
`
`WALSAS
`
`coOld
`
`IPR2025-00943
`Tesla EX1001 Page 7
`
`IPR2025-00943
`Tesla EX1001 Page 7
`
`
`
`
`U.S. Patent
`
`Mar.7, 2023
`
`Sheet 3 of 8
`
`US 11,597,402 B2
`
`C2ove CO?
`
`
`FJINGOWJCOWONIAIYCYSAISOSNVUL
`
`
`
`4OSSIOOUdTOULNODACS
`
`YaLNdAOD
`
`CNYNOILYOIAWN
`
`
`
`SYOSNSTOULNOD
`
`
`
`
`
`SISINVHOAWTOLNODTWOISAHdSYTNOIHSAACS
`
`GOld
`
`IPR2025-00943
`Tesla EX1001 Page 8
`
`IPR2025-00943
`Tesla EX1001 Page 8
`
`
`
`U.S. Patent
`
`Mar.7, 2023
`
`Sheet 4 of 8
`
`US 11,597,402 B2
`
`AYM(VOu
`
`ONIYOLINON
`
`YSAdAS
`
`90%
`
`WALSAS
`
`ONILYNIGYOOD lOV
`
`AYMQVOu
`
`(S)YOSNAS
`
`vOld
`
`IPR2025-00943
`Tesla EX1001 Page 9
`
`IPR2025-00943
`Tesla EX1001 Page 9
`
`
`
`
`
`U.S. Patent
`
`Mar.7, 2023
`
`Sheet 5 of8
`
`US 11,597,402 B2
`
`START
`
`yO
`
`RECEIVE SENSOR READINGS THAT DESCRIBE
`A CURRENT OPERATIONAL ANOMALY IN AN SDV
`
`5O4
`
`DETERMINE A CONTROL PROCESSOR COMPETENCE LEVEL
`(CPCL) OF AN ON-BOARD SDV CONTROL PROCESSOR OF THE SDV
`UNDER THE CURRENT OPERATIONAL ANOMALY OF THE SDV
`
`906
`
`RECEIVE A DRIVER PROFILE THAT INCLUDES A HUMAN DRIVER
`COMPETENCE LEVEL (HDCL) OF THE HUMAN DRIVER OF THE SDV
`UNDER THE CURRENT OPERATIONAL ANOMALY OF THE SDV
`
`508
`
`COMPARE THE CONTROL PROCESSOR COMPETENCE LEVEL]
`(CPCL) TO A HUMAN DRIVER COMPETENCE LEVEL (HDCL)
`
`510
`
`YES
`
`512
`
`NOeS
`
`
`
`ASSIGN CONTROL OF THE
`ASSIGN CONTROL OF THE SDV TO
`
`AN ON-BOARD SDV CONTROL
`SDV TO THE HUMAN
`
`
`
`DRIVER OF THE SDV WHILE
`PROCESSOR ON THE SDV WHILE
`
`
`THE SDV IS UNDER THE CURRENT
`THE SDV IS UNDER THE
`
`OPERATIONAL ANOMALY
`
`
`
`
`IPR2025-00943
`Tesla EX1001 Page 10
`
`IPR2025-00943
`Tesla EX1001 Page 10
`
`
`
`U.S. Patent
`
`Mar.7, 2023
`
`Sheet 6 of 8
`
`US 11,597,402 B2
`
`WALSAS
`
`9Old
`
`aldVvYYOMLAN0/|
`
`UIAYAS/NALSASYaLAWOO|~¢!
`
`AMON
`
`FVYOLSQl
`
`
`
`ONISSIOQOUd
`
`LINN
`
`Sl
`
`oS
`
`(SJSOVIULNI
`
`TWNYSLXS
`
`SEMEC
`
`AV1dSId
`
`IPR2025-00943
`Tesla EX1001 Page 11
`
`IPR2025-00943
`Tesla EX1001 Page 11
`
`
`
`
`
`U.S. Patent
`
`Mar.7, 2023
`
`Sheet 7 of8
`
`US 11,597,402 B2
`
`
`on =24a
`=\4Nn\~sA/\ \\ \ \\4oy
`
`faann
`a““
`o
`a,
`
`5AC
`
`on
`
`
`
`
`FIG.7
`
`IPR2025-00943
`Tesla EX1001 Page 12
`
`IPR2025-00943
`Tesla EX1001 Page 12
`
`
`
`U.S. Patent
`
`Mar.7, 2023
`
`Sheet 8 of 8
`
`US 11,597,402 B2
`
`SaVOTHYOM
`LesLtip*/
`50SeoO
`
`JUVMLA0SONYFavMavii(ik
`
`NOLLWZITWALUIA
`
`LNANZOVNVN
`
`SOld
`
`OF
`
`IPR2025-00943
`Tesla EX1001 Page 13
`
`IPR2025-00943
`Tesla EX1001 Page 13
`
`
`
`
`US 11,597,402 B2
`
`1
`CONTROLLING DRIVING MODES OF
`SELF-DRIVING VEHICLES
`
`CROSS-REFERENCE TO RELATED
`APPLICATIONS
`
`This application is a continuation of U.S. application Ser.
`No. 17/374,656 filed Jul. 13, 2021, which in turn claims the
`benefit of continuation of U.S. patent application Ser. No.
`16/997,202, filed Aug. 19, 2020, now U.S. Pat. No. 11,091,
`171 on Aug. 17, 2021, which in turn claims the benefit of
`continuation of U.S. application Ser. No. 16/899,407 filed
`Jun. 11, 2020, which in turn claims the benefit of which is
`a continuation of U.S. application Ser. No. 15/955,874 filed
`Apr. 18, 2018, now U.S. Pat. No. 10,717,446 on Jul. 21,
`2020, which in turn claims the benefit of continuation Ser.
`No. 15/341,225 filed Nov. 2, 2016, now U.S. Pat. No.
`10,029,701 on Jul. 24, 2018, which in turn claimsthe benefit
`of continuation Ser. No. 14/865,393, Filed Sep. 25, 2015,
`now USS. Pat. No. 9,566,986 on Feb. 14, 2017, are hereby
`incorporated by reference in their entirety.
`
`BACKGROUND
`
`The present disclosure relates to the field of vehicles, and
`specifically to the field of self-driving vehicles. Still more
`specifically,
`the present disclosure relates to the field of
`controlling whether self-driving vehicles operate in autono-
`mous mode or manual mode.
`Self-driving vehicles (SDVs) are vehicles that are able to
`autonomously drive themselves through private and/or pub-
`lic spaces. Using a system of sensors that detect the location
`and/or surroundings of the SDV, logic within or associated
`with the SDV controls the speed, propulsion, braking, and
`steering of the SDV based on the sensor-detected location
`and surroundings of the SDV.
`
`SUMMARY
`
`A computer-implemented method, system, and/or com-
`puter program product controls a driving mode ofa self-
`driving vehicle (SDV). One or more processors determine a
`control processor competencelevel of a self-driving vehicle
`(SDV) control processor. The control processor competence
`level describes a competence level of the SDV control
`processorin controlling the SDV while the SDV experiences
`the current operational anomaly. One or more processors
`receive a driverprofile of the human driver of the SDV. The
`driver profile describes a humandriver competencelevel of
`the human driver in controlling the SDV while the SDV
`experiences the current operational anomaly. One or more
`processors compare the control processor competencelevel
`to the human driver competence level. One or more proces-
`sors then selectively assign control of the SDV to the SDV
`control processor or to the human driver while the SDV
`experiences the current operational anomaly based on which
`of the control processor competence level and the human
`driver competencelevel is relatively higher to one another.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`FIG. 1 depicts an exemplary system and network in which
`the present disclosure may be implemented;
`FIG. 2 illustrates an exemplary self-driving vehicle
`(SDV) traveling on a roadway in accordance with one or
`more embodiments of the present invention;
`
`25
`
`30
`
`40
`
`45
`
`55
`
`60
`
`2
`FIG.3 depicts additional detail of control hardware within
`an SDV;
`FIG. 4 depicts communication linkages among SDVs,
`roadway sensor(s), a roadway monitoring system, and/or a
`coordinating server;
`FIG. 5 is a high-level flow chart of one or more steps
`performed by one or more processors to control a driving
`mode of an SDV in accordance with one or more embodi-
`
`ments of the present invention;
`FIG. 6 depicts a cloud computing node according to an
`embodimentof the present disclosure;
`FIG. 7 depicts a cloud computing environmentaccording
`to an embodimentof the present disclosure; and
`FIG. 8 depicts abstraction model layers according to an
`embodimentof the present disclosure.
`
`DETAILED DESCRIPTION
`
`The present invention may be a system, a method, and/or
`a computer program product. The computer program prod-
`uct may include a computer readable storage medium (or
`media) having computer readable program instructions
`thereon for causing a processor to carry out aspects of the
`present invention.
`The computer readable storage medium can be a tangible
`device that can retain and store instructions for use by an
`instruction execution device. The computer readable storage
`medium may be, for example, but is not limited to, an
`electronic storage device, a magnetic storage device, an
`optical storage device, an electromagnetic storage device, a
`semiconductor storage device, or any suitable combination
`of the foregoing. A non-exhaustive list of more specific
`examples of the computer readable storage medium includes
`the following: a portable computer diskette, a hard disk, a
`random access memory (RAM), a read-only memory
`(ROM), an erasable programmable read-only memory
`(EPROMor Flash memory), a static random access memory
`(SRAM), a portable compact disc read-only memory (CD-
`ROM), a digital versatile disk (DVD), a memory stick, a
`floppy disk, a mechanically encoded device such as punch-
`cards or raised structures in a groove having instructions
`recorded thereon, and any suitable combination of the fore-
`going. A computer readable storage medium,as used herein,
`is not to be construed as being transitory signals per se, such
`as radio wavesor other freely propagating electromagnetic
`waves, electromagnetic waves propagating through a wave-
`guide or other transmission media(e.g., light pulses passing
`through a fiber-optic cable), or electrical signals transmitted
`through a wire.
`Computer readable program instructions described herein
`can be downloaded to respective computing/processing
`devices from a computer readable storage medium orto an
`external computer or external storage device via a network,
`for example, the Internet, a local area network, a wide area
`network and/or a wireless network. The network may com-
`prise copper transmission cables, optical transmissionfibers,
`wireless transmission, routers, firewalls, switches, gateway
`computers and/or edge servers. A network adapter card or
`network interface in each computing/processing device
`receives computer readable program instructions from the
`network and forwards the computer readable program
`instructions for storage in a computer readable storage
`medium within the respective computing/processing device.
`Computer readable program instructions for carrying out
`operations of the present
`invention may be assembler
`instructions, instruction-set-architecture (ISA) instructions,
`machine instructions, machine dependent
`instructions,
`
`IPR2025-00943
`Tesla EX1001 Page 14
`
`IPR2025-00943
`Tesla EX1001 Page 14
`
`
`
`US 11,597,402 B2
`
`3
`state-setting data, or
`firmware instructions,
`microcode,
`either source code or object code written in any combination
`of one or more programming languages, including an object
`oriented programming language such as Java, Smalltalk,
`C++ or the like, and conventional procedural programming
`languages, such as the “C” programming languageor similar
`programming languages.