throbber
Advanced Drug Delivery Reviews 106 (2016) 277–319
`
`Contents lists available at ScienceDirect
`
`Advanced Drug Delivery Reviews
`
`j o u r na l h om e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a d d r
`
`Intestinal permeation enhancers for oral peptide delivery☆
`Sam Maher a, Randall J. Mrsny b, David J. Brayden c,⁎
`
`a RCSI School of Pharmacy, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin 2, Ireland
`b Department of Pharmacy and Pharmacology, University of Bath, UK
`c UCD School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
`
`a r t i c l e
`
`i n f o
`
`a b s t r a c t
`
`Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of
`therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that
`have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as
`components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-
`presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an
`emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms
`and lipoidal dispersions.
`
`© 2016 Elsevier B.V. All rights reserved.
`
`Article history:
`Received 29 April 2016
`Received in revised form 7 June 2016
`Accepted 9 June 2016
`Available online 16 June 2016
`
`Keywords:
`Oral peptide delivery
`Intestinal permeation enhancers
`Paracellular transport
`Transcellular
`Solid dose formulation
`Surfactants
`Emulsions
`
`Contents
`
`1.
`2.
`3.
`4.
`
`5.
`
`6.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Introduction .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Therapeutic peptides .
`.
`.
`.
`Barriers to translation of PE-based oral peptide technologies .
`.
`.
`.
`Intestinal PEs
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`4.1.
`Paracellular PEs .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`4.1.1.
`Paracellular PEs emerging from the study of toxins .
`4.1.2.
`Paracellular PEs that bind claudins
`.
`.
`.
`.
`.
`.
`.
`.
`Paracellular PEs that target E-cadherin and Ca2 + .
`.
`4.1.3.
`4.1.4.
`Paracellular PEs that target occludin .
`.
`.
`.
`.
`.
`.
`.
`4.1.5.
`Paracellular PEs and cytoskeletal reorganisation .
`.
`Trancellular PEs .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`4.2.1.
`Soluble surfactant PEs .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`4.2.2.
`Insoluble surfactants .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Peptide hydrophobisation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`4.3.
`Non-surfactant PEs
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`4.4.
`4.5. Multiple modes of enhancement action .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Safety and regulation of PEs .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`5.1.
`Transcellular enhancers and membrane perturbation .
`.
`.
`.
`5.2.
`The bystander absorption argument .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`5.3.
`Are paracellular PEs safer than transcellular PEs? .
`.
`.
`.
`.
`.
`PE developability classification system .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`4.2.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`278
`278
`279
`286
`287
`287
`288
`288
`289
`289
`289
`289
`295
`299
`301
`303
`304
`304
`305
`306
`307
`
`☆ This review is part of the Advanced Drug Delivery Reviews theme issue on “SI: Oral delivery of peptides”.
`⁎ Corresponding author. Tel.: +353 17166013; fax: +353 17166204.
`E-mail address: david.brayden@ucd.ie (D.J. Brayden).
`
`http://dx.doi.org/10.1016/j.addr.2016.06.005
`0169-409X/© 2016 Elsevier B.V. All rights reserved.
`
`Grün. Exhibit 1093
`Grünenthal v. Antecip
`PGR2017-00022
`
`

`

`278
`
`S. Maher et al. / Advanced Drug Delivery Reviews 106 (2016) 277–319
`
`.
`Conclusions
`7.
`Acknowledgements
`References
`.
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`307
`307
`307
`
`1. Introduction
`
`Growth in global peptide markets has spurred development of
`technologies that enable oral delivery of poorly permeable drugs. Initial
`delivery strategies focused on inclusion of candidate excipients that
`protected the peptide from intestinal degradation and transiently
`altered intestinal permeability [1]. The majority of oral peptide delivery
`technologies that are currently in clinical trials use formulations with
`established intestinal PEs that have a history of safe use in man [2].
`Recent clinical data suggests that inclusion of PEs in oral formulations
`can safely assist absorption of selected potent peptides with a large
`therapeutic index. For example, primary endpoints were met in a
`Phase III trial of octreotide formulated in an oily suspension with a
`medium chain fatty acid salt, sodium caprylate (C8) [3]. In parallel, a
`new generation of PEs with more specific mechanisms of action are in
`preclinical research, and may confer improved safety and efficacy over
`those currently in development. This article summarises the progress
`of ~250 PEs that have been tested in preclinical intestinal delivery
`models (Tables 1, S1). An in-depth review of pre-clinical data is present-
`ed for PEs in proprietary delivery systems that have progressed to
`clinical development. The review by Aguirre et al. (this Issue [4]) evalu-
`ates the performance of technologies in clinical trials, of which most are
`enteric-coated solid dosage forms containing PEs. We focus here on how
`PEs alter intestinal permeability and on innovations that may further
`assist translation of safety and efficacy outcomes from pre-clinical
`models to man.
`
`2. Therapeutic peptides
`
`A drug delivery system that facilitates oral peptide administration
`has long been desired. There are ~55 therapeutic peptides marketed
`as parenteral formulations (based on a ~9 kDa cut-off in molecular
`weight (MW)) (Table 2) and a further 140 in clinical development [5].
`Compared to small molecules, peptides are attractive due to their spec-
`ificity, potency, efficacy, and low toxicity. Clinical potential of unmodi-
`fied injectable peptides can be hampered by a short plasma half-life
`(t1/2) due to labile moieties and higher manufacturing costs relative to
`small molecules. A breakdown of marketed peptide products indicates
`that injection routes (61%) are the most common, followed by topical
`(11%), nasal (9%), oral (9%) and ophthalmic (4%), noting that bioavail-
`ability is typically low and variable from non-injectable routes [6].
`Injection requirements are associated with lack of adherence to dos-
`ing regimens, hence the impetus towards long acting formulations that
`are administered less often. Thus, for glucagon-like-Peptide 1 (GLP-1)
`analogues, sub-cutaneous (s.c.) injection of exenatide has shifted from
`twice-a-day administration (Byetta®; Lilly, USA) to once weekly admin-
`istration (e.g. Bydureon®, Lilly). This was achieved by development of a
`microsphere-based controlled release system [7], whereas competing
`approaches have attempted to improve stability and reduce recognition
`by the reticuloendothelial system by conjugating lipid moieties to
`amino acid residues or by fusing the analogue to albumen. Although
`needle fabrication technology has improved in the last 20 years, injec-
`tions are still inconvenient in the longer term and can delay take-up
`and adherence to regimes necessitated by chronic diseases. In the case
`of type 2 diabetes (T2D), early initiation of insulin can slow the progres-
`sive destruction of pancreatic β-cells [8], but T2D patients frequently re-
`quire dose adjustments related to peripheral hypoglycaemia [9]. Oral
`insulin may reduce such risks because it is absorbed via the portal
`vein and therefore imitates pancreatic secretion to the liver [10]. This
`
`can also reduce two other side effects attributed to s.c. insulin in the
`periphery: weight gain and lipodystrophy [11].
`An oral peptide dosage form would likely reduce costs associated
`with sterile manufacture of injectables, cold chain, needle disposal,
`and staff/patient training, but these savings would be offset against
`the requirement for higher doses compared to injection. A commercial
`driver for oral peptides is life cycle extension and increased revenue
`from branded medicines based around new patents. Development of
`oral delivery systems for approved injectable peptides has the benefit
`of known pharmacology for the active pharmaceutical ingredient
`(API), good safety profiles (at least for the injected route) and
`established analytical detection methods. The most clinically-
`advanced oral peptide formulations are being developed for diabetes
`(insulin, GLP-1 analogues), osteoporosis (salmon calcitonin, sCT;
`teriparatide (PTH 1–34)), and acromegaly (octreotide). Anti-diabetic
`peptides account for ~40% of peptides in commercial oral peptide deliv-
`ery programmes and Table S2 details selected patents filed on oral insu-
`lin over the last 30 years. Synthesis of injectable anti-diabetic peptides
`with long plasma t1/2 values is also contributing to investment in oral
`peptide delivery systems (e.g. t1/2 = 160 h for the GLP-1 analogue,
`semaglutide, Novo-Nordisk, Denmark [12]), as they may yield better
`oral pharmacokinetic (PK) data than short-acting counterparts.
`Competition between GLP-1 analogues makes oral formulation a key
`battleground [5].
`Development of non-injected dosage forms has had some commer-
`cial successes,
`including oral desmopressin (DDAVP®, Ferring,
`Switzerland), oral cyclosporin (Neoral®, Novartis, Switzerland) and
`nasal calcitonin (Miacalcin®, Novartis). The suitability of commercially
`available peptides for oral reformulation depends on their physico-
`chemical properties (MW, solubility), chemical complexity, therapeutic
`considerations (route/frequency of administration, therapeutic index)
`and cost-effectiveness. Peptides typically exhibit high aqueous solubili-
`ty and low permeability, properties that unofficially place them in the
`Biopharmaceutics Classification system (BCS) Class III. Nevertheless,
`some peptides with cationic and anionic functional groups exhibit com-
`plicated pH-dependent solubility, where solubility is high in acidic con-
`ditions at pH values below their isoelectric point (pI), and is relatively
`low at pH values at and above their pI. Many basic molecules rely on
`acid/base phenomena for dissolution within the stomach and subse-
`quent absorption across the duodenum and jejunum, so peptides with
`low intrinsic solubility are problematic. For example, insulin dissolves
`in dilute acid but not at neutral pH, which could manifest as poor disso-
`lution in the small intestine. Peptides that have a MW N6000 Da do not
`have any appreciable intestinal permeability when delivered orally, this
`makes insulin (5808 Da) especially challenging, with difficulty decreas-
`ing in the order of teriparatide (4118 Da) N exenatide (4187 Da) N sCT
`(3532 Da) N octreotide (1019 Da). In addition, there is a correlation
`between MW and susceptibility to proteolysis [13].
`An ideal oral candidate peptide should therefore have a low MW,
`high potency, enzymatic/chemical stability (e.g. cyclised peptides, D-
`substituted amino acids), a high therapeutic index and be of relatively
`low cost to synthesise. Desmopressin (MW 1069 Da) contains stable
`amino acids; it has an oral bioavailability (F) of only 0.17%, so high
`potency is its key attribute [14]. Prandial insulin is more challenging
`because it requires three relatively high mealtime doses to reach the re-
`quired plasma levels per day. The s.c. insulin dose required for manage-
`ment of Type 1 diabetes (T1D) of 0.5–0.8 IU/kg per dose (1.2–1.9 mg); if
`normalised for an oral system designed for an oral F of 10%–20%, a dose
`level of 6–20 mg would be required. A recent oral insulin clinical study
`included 8 mg (240 IU) insulin three times daily [15], whereas
`
`

`

`S. Maher et al. / Advanced Drug Delivery Reviews 106 (2016) 277–319
`
`279
`
`exenatide is injected at a dose of 10 μg and has been tested orally at
`15-fold higher doses using the same technology [16].
`
`3. Barriers to translation of PE-based oral peptide technologies
`
`Peptides have poor oral bioavailability due to peptidase sensitivity
`and low intestinal permeability. They may be sensitive to gastric pepsin
`and acid- dependent destabilisation of disulphide bridges, hydrogen
`bonding and electrostatic interactions, although stomach-related break-
`down can largely be overcome by enteric coating (e.g. Eudragit®,
`Evonik, Germany; Kollicoat® (BASF, Germany) [17]. Enteric coating ex-
`cipients exhibit pH-dependent dissolution due to deprotonation of
`weakly acidic functional groups at high pH values. Oral peptide formu-
`lations that are enterically coated must be administered pre-prandially
`to avoid premature release in the stomach when buffered by food. Gas-
`tric emptying time is therefore a consideration for peptides like insulin
`that require absorption to coincide with ingestion of a meal. In the
`fasted state, capsule dosage forms are consistently found in the small in-
`testine 1 h post administration [18]. The lag time between dose and food
`intake is an important therapeutic consideration for peptides that re-
`quire prandial administration (e.g. insulin), but less so for peptides
`like exenatide and octreotide. Requirement for pre-prandial administra-
`tion also raises concerns around adherence, when the dosage form must
`be administered in complex regimes over an indefinite period. Applica-
`tion of Eudragit® coatings without inclusion of excipients that address
`peptide degradation and poor permeability ultimately will not increase
`oral F [19,20].
`Upon leaving the stomach the peptide is vulnerable to proteolytic
`degradation in the lumen, brush border membrane, and in the cytosol
`of small intestinal enterocytes. The pancreas can produce over 40 g of
`proteolytic enzymes [21] delivered in 2.5 L of pancreatic juice per day
`[22]. Large linear peptides including insulin, sCT, glucagon and secretin
`are sensitive to human intestinal fluid (HIF), while higher stability is
`noted for short and structurally-confined peptides with stable bonds
`(e.g. octreotide, cyclosporin and desmopressin) [13]. PEs can also have
`a dual benefit in inhibiting regional proteolysis, examples being sodium
`glycocholate [23] and ethylenediaminetetraacetic acid (EDTA) [24]).
`However, any PE that is a peptide may itself be sensitive to proteolysis,
`examples being zonula occludens toxin (ZoT) and the C-terminal frag-
`ment of Clostridium perfringens enterotoxin (C-CPE).
`Many PEs are surfactants, so it is possible to protect the peptide in li-
`poidal dispersions including microemulsions (e.g. Macrulin™, Provalis,
`UK) (Section 4.2.2.3). A leading PE-based technology appears to offer
`peptidase inhibition by non-covalent complexation of the peptide
`with a carrier (e.g. sodium salcaprozate, Eligen®, Emisphere, USA)
`(Case 14: Eligen®). Inclusion of peptidase inhibitors like aprotinin can
`improve oral peptide delivery, however established excipients with
`similar properties are less risky in terms of toxicology. Acidifying organ-
`ic acids including citric acid (CA) and tartaric acid lower the optimal pH
`for proteolysis and can benefit oral peptide formulation, since if they
`reach a pH of 1–2 units below the isoelectric point, they can improve
`solubility (e.g. insulin). If however, the pH remains at the isoelectric
`point for the peptide, the solubility of the peptide will be low, and it
`may be sensitive to secreted bicarbonate. Acidifiers can also interfere
`in the dissolution and enhancement action of anionic PEs, some of
`which exhibit low dissolution and poor enhancement action at pH
`values below their pKa. For example, the pKa of another lead PE, sodium
`caprate (C10) (the sodium salt of the medium chain fatty acid, capric
`acid) is 6.5; should an acidifier decrease pH to 5.5, over 90% of the mol-
`ecule will exist as an insoluble oil. Further, the hydrophilic-lipophilic
`balance (HLB) of capric acid is 4.8, which is lower than C10 (HLB: 21.8)
`and ultimately well below the HLB considered optimal for permeation
`enhancement [2]. The reduction in luminal pH by co-encapsulated acid-
`ifiers can also decrease the dissolution of enteric-coated dosage forms,
`and efforts to overcome this include separate coating of granules prior
`to tableting to prevent such interactions. In addition, the cationic charge
`
`imparted on many therapeutic peptides (e.g. sCT, pI=10.1) in acidified
`conditions can increase entrapment in mucus by electrostatic complex-
`ation. Finally, some acidifiers chelate metals, which can reduce proteol-
`ysis due to removal of peptidase co-factors. Ca2+ is also an important
`component in epithelial tight junction (TJ) formation, and some studies
`suggested that CA can also increase intestinal permeability via chelation
`(Table 1), although this hypothesis was challenged recently in an in vitro
`insulin permeability study in rat tissue mucosae where the data sug-
`gested that the main role of CA in oral peptide formulations is to reduce
`peptidase activity [25].
`Protease inhibitors in oral peptide dosage forms include soybean
`trypsin inhibitor (SBTI)) [26], aprotinin [23], ovomucoids [27], EDTA
`[24], sodium glycocholate [28] and camostat mesilate [23]. Some im-
`proved absorption of peptides to an extent [23,28]; a combination of
`an enteric coating with aprotinin significantly improved oral peptide
`bioavailability in rats [20]. A safety argument against the use of inhibi-
`tors is that impaired dietary protein digestion may occur. However, in-
`hibitors may provide localised protection where the dosage form
`dissolves and not throughout the GI tract. Nevertheless, agents like
`aprotinin target ubiquitous biological functions, which raises concerns
`regarding suitability for oral peptides. SBTI was included in oral
`exenatide formulations at concentrations as high as 125 mg/dose in
`clinical trials [26]. Despite the GRAS status of soy protein isolate [29],
`purified SBTI can cause pancreatic hyperplasia and carcinoma in rats
`[30,31] and systemic absorption is undesirable. To this end, retention
`in the intestine has focused on conjugation to non-absorbed polymers
`(e.g. chitosan–aprotinin [32], chitosan–EDTA [33]). It is noteworthy
`that pancreatic peptidases are responsible for only 20% of the degrada-
`tion of ingested proteins, with the brush border enzymes accounting for
`the majority [34]. Therefore, inhibitors need also to access the brush
`border for optimum efficacy. One example was the protection at the
`brush border membrane achieved for metkephamid by inhibiting ami-
`nopeptidase N with puromycin, thereby improving oral F in rats from
`0.5% to 3.5% [35]. Ovomucoids also inhibit intestinal serine proteases
`and are commonly isolated from egg white of avian species [27]. Despite
`successful peptidase inhibition, the apparent permeability coefficient
`insulin across rat jejunal mucosae was decreased by
`(Papp) of
`ovomucoids, so peptidase inhibition is not predictive of improved flux
`per se [36]. Combining peptidase inhibitors with PEs may therefore
`achieve improved permeability compared to either approach alone [37].
`Mucous can decrease the rate and extent that peptides diffuse to the
`intestinal epithelium. The estimated (variable) mesh pore diameter of
`porcine jejunal mucous ranges between 200 and 2000 Å [38], much
`larger than the molecular radius of most candidate peptides for oral
`delivery (e.g. insulin b2 Å). Nevertheless, diffusivity (D) of peptides
`through mucous is affected by viscosity (ranging between 1000 and
`10,000-fold greater than water at low shear [39]) and the MW of the
`peptide (approximating the dissolved peptide as a sphere) according
`to the Stoke-Einstein equation (D = RT/6ηπrN). Poor diffusivity is di-
`rectly related to residence time in the small intestinal lumen, which de-
`pends on the peptide surface charge at a given luminal pH, the potential
`for non-covalent bonding, and susceptibility to proteolysis [40,41]. Dif-
`fusivity measurements for cyclosporine and desmopressin were compa-
`rable at selected concentrations across porcine GI mucous, although
`they have comparable MW but different lipophilicity [42]. The capacity
`of mucous to reduce diffusivity may in part account for why mucolytics
`such N-acetylcysteine (NAC), either alone or in combination with non-
`ionic surfactant PEs (e.g. polyoxyethylene octyl phenyl ether (Triton®
`X-100, Dow Chemicals, USA) improve fluorescent dextran-4kDa (FD4)
`and sCT bioavailability in rat intestinal instillations [43,44]. Despite
`NAC having established safety in man, with approvals in respiratory
`and abdominal conditions, there is little interest in combining PEs
`with NAC or other mucolytics. In part, this relates to high variability in
`mucous production, the requirement for high concentrations of muco-
`lytics in the formulation, and because disulphide bond reduction can
`also degrade certain peptides [45]. The capacity of mucous to complex
`
`

`

`280
`
`S. Maher et al. / Advanced Drug Delivery Reviews 106 (2016) 277–319
`
`Ref
`
`[209]
`[488]
`[489]
`[489]
`[211]
`[203]
`[490]
`[408]
`[208]
`[212]
`[210]
`[491]
`[283]
`[492]
`[492]
`[287]
`[284]
`[288]
`[494]
`[161]
`[495]
`[495]
`[279]
`[161]
`[497]
`[25]
`[201]
`[202]
`[227]
`[227]
`[497]
`[498]
`[498]
`[499]
`[245]
`[500]
`[501]
`[86]
`[231]
`[241]
`[504]
`[503]
`[136]
`[88]
`[504]
`[500]
`[20]
`[505]
`[265]
`[209]
`[208]
`[266]
`[185]
`[257]
`[506]
`[506]
`
`Representative peptide/metric
`In situ: flux (fosfomycin)
`In vitro: flux (FD-10)
`Ex vivo (rabbit): flux (insulin)
`In vivo (rabbit): AUC (insulin)
`In vivo: RH (insulin)
`In vivo: PK/PD (heparin)
`In situ: flux (PABA)
`In vivo: PK/PD, flux (insulin)
`In situ: PK/PD (insulin)
`In situ: PK/PD (calcitonin)
`In vivo: flux, PK/PD (insulin)
`In vivo: PK/PD (insulin)
`In vitro: TEER, flux (mannitol)
`Ex vivo: flux (LY)
`In situ: F (rhodamine123)
`In situ: F (insulin)
`In situ: AUC,F (erythropoietin)
`In situ: AUC, F (erythropoietin)
`In situ: F (lansoprazole)
`In situ: AUC (LMWH)
`In situ: F (gentamicin)
`In situ: AUC (vancomycin)
`In situ: AUC (LMWH)
`In situ: AUC (LMWH)
`In vivo: F (gentamicin)
`In vitro: flux (insulin)
`In vivo: PK/PD, F (sCT)
`Ex vivo: flux (FD-4)
`In vitro: TEER, flux (mannitol)
`In vitro: TEER, flux (FD-4)
`In vitro: flux (tiludronate)
`In vitro: flux (ranitidine)
`Ex vivo: flux (tiludronate)
`Ex vivo: flux (Phenol red)
`Ex vivo: flux (ebiratide)
`In situ: AUC(phenol red)
`In situ: F (carboxyfluorescein)
`In situ: AUC, flux (azetirelin)
`In situ: PA (hCT)
`In vivo: F (azetirelin)
`In vitro: flux (FD-4)
`In vitro: flux (FD-4)
`In vitro: flux (FD-4)
`In vitro: flux (PEG 4000)
`Ex vivo: flux (inulin)
`In situ: AUC (phenol red)
`In situ: AUC (insulin)
`In vivo: AUC,(norfloxacin)
`In vivo: flux (trypan blue)
`In vivo: flux (fosfomycin)
`In situ: PK/PD (insulin)
`In situ: F (cefmetazole)
`In situ: AUC (insulin)
`In vitro: Papp (mannitol)
`Ex vivo: S (DPH)
`In vivo: F (cefoxitin)
`
`Concentration & dose
`
`In situ: 1%
`In vitro: 0.1%
`Ex vivo: 5%
`In vivo: 1%
`In vivo: 1%
`In vivo: 500 mg/kg
`In situ: 1%
`In vivo: 3% w/w
`In situ: 5%
`In situ: 0.5%
`In vivo: 3% w/w
`In vivo: 3%
`In vitro: 1% w/v
`Ex vivo: 0.1% v/v
`In situ: 0.1% v/v
`In situ: ―
`In situ: 94 mg/kg
`In situ: 50 mg/kg
`In situ: 170 mg
`In situ: 30 mg/kg
`In situ: 1 mL/kg
`In situ: 1.06 g/kg
`In situ: 50 mg/kg
`In situ: 30 mg/kg
`In vivo: 0.6 mL
`In vitro 5 mg
`In vivo: 10 mg
`Ex vivo:
`In vitro: 0.1% w/v
`In vitro: 0.1% w/v
`In vitro: 0.025% w/v
`In vitro: 0.1% w/v
`Ex vivo: 0.025% w/v
`Ex vivo: 20 mM
`Ex vivo: 20 mM
`In situ: 20 mM
`In situ: 20 mM
`In situ: 2.5 mM
`In situ: 10 mM
`In vivo: 2.5 mM
`In vitro: 1 mM
`In vitro: 1 mM
`In vitro: 0.25%
`In vitro: 0.25%
`Ex vivo: 50 mM
`In situ: 20 mM
`In situ: 1% w/v
`In vivo: 1:1
`In vivo: ―
`In vivo: 1% w/v
`In situ: ―
`In situ: 0.25 mL/kg
`In situ: 50 mM
`In vitro: 1 mM
`Ex vivo: ―
`In vivo: ―
`
`Enhancement
`In situ: ―
`In vitro: 520-fold
`Ex vivo: ―
`In vivo: ―
`In vivo: RH = 55%
`In vivo: ―
`In situ: 19-fold
`In vivo: ―
`In situ: 3-fold
`In situ: ―
`In vivo: ―
`In vivo: 118-fold
`In vitro: 34-fold
`Ex vivo: no effect
`In situ: F = 22.82%
`In situ: F = 0.25%
`In situ: 21-fold
`In situ: 12-fold
`In situ: F = 28.1%
`In situ: 4-fold
`In situ: F = 55.3%
`In situ: ―
`In situ: ―
`In situ: ―
`In vivo: F = 22.4%
`In vitro: no effect
`In vivo: F = 1.8%
`Ex vivo: ―
`In vitro: 9-fold
`In vitro: 26-fold
`In vitro: 3-fold
`In vitro: 19-fold
`Ex vivo: 7-fold
`Ex vivo: no effect
`Ex vivo: 7-fold
`In situ: 4-fold
`In situ: F = 57%
`In situ: 9-fold
`In situ: 4-fold
`In vivo: F = 43.5%
`In vitro: 6-fold
`In vitro: 6-fold
`In vitro: 53-fold
`In vitro: 29-fold
`Ex vivo: ―
`In situ: 2-fold
`In situ: 55-fold
`In vivo: no effect
`In vivo: ―
`In vivo: ―
`In situ: 3-fold
`In situ: F = 18.2%
`In situ: 15-fold
`In vitro-
`Ex vivo: ―
`In vivo: 26-fold
`
`Table 1
`Leading PEs tested in oral delivery of poorly permeable drugs and transport markers.
`
`Enhancer
`
`Mode
`
`Actions
`
`Model
`
`C12E9
`
`Transcellular Membrane fluidity
`
`Caprylocaproyl PEG 8 glycerides
`
`Transcellular
`
`Fluidic dispersion Membrane fluidity
`
`Citric acid
`
`Paracellular
`
`Intracellular ATP
`
`Dodecyl-β-D-maltopyranoside (DDM)
`
`Multimodal Membrane fluidity
`
`EDTA
`
`Paracellular
`
`Ca2+ chelation
`PKC activation
`
`Glyceryl monocaprate
`
`Transcellular Membrane fluidity
`
`Laurylocarnitine
`
`Multimodal
`
`Membrane fluidity
`―
`
`In situ (rat): intestinal loop
`In vitro: Caco-2
`Ex vivo (rabbit): Ussing
`In vivo (rabbit):rectal instillation
`In vivo (dog): suppository
`In vivo (rat): gavage
`In situ (rat): perfusion
`In vivo (dog):suppository
`In situ (rat): rectal instillation
`In situ (rat): rectal
`In vivo (dog): suppository
`In vivo (rat): suppository
`In vitro: Caco-2
`Ex vivo (rat): ileum
`In situ (rat): closed loop
`In situ (rat): colon
`In situ (rat): jejunal patches
`In situ (rat): jejunal
`In situ (rat): duodenal
`In situ (rat): duodenal
`In situ (rat): colon
`In situ (rat): Ileal
`In situ (rat): jejunal
`In situ (rat): intraduodenal
`In vivo (Dog): oral
`In vitro: Caco-2
`In vivo (rat): oral
`Ex vivo (rat): Ussing
`In vitro: Caco-2
`In vitro: Caco-2
`In vitro: Caco-2
`In vitro: Caco-2
`Ex vivo (rat): perfusion
`Ex vivo (rat): Ussing
`Ex vivo (rat): colon
`In situ (rat,) loop
`In situ (rat): loop
`In situ (rat): colon
`In situ (rat): closed loop
`In vivo (dog): oral
`In vitro: Caco-2
`In vitro: Caco-2
`In vitro: Caco-2
`In vitro: Caco-2
`Ex vivo (rat): colon
`In situ (rat,) loop method
`In situ (rat): ligated loop, colon
`In vivo (rabbit): oral
`In vivo (rat): rectal, microenema
`In vivo (rat): jejunum
`In situ (rat): rectal
`In situ (rat): rectal
`In situ (rat): rectal loop
`In vitro: Caco-2
`Ex vivo (rat): BBM
`In vivo (rat): rectal
`
`

`

`S. Maher et al. / Advanced Drug Delivery Reviews 106 (2016) 277–319
`
`Ex vivo (rats): S-G diffusion cell
`Ex vivo (rats): S-G diffusion cell
`In vivo (rat):oral (microcapsule)
`In vivo (dog): oral (EC capsule)
`In vitro: Caco-2
`Ex vivo (rat) Ussing
`Ex vivo (rat) Ussing
`In vitro: Caco-2
`In vitro: Caco-2
`Ex vivo (rat): Ussing (jejunal)
`Ex vivo (rat): Ussing (jejunal)
`In vitro: Caco-2
`In situ (rat): instillation
`In situ (rat): intubation
`In vivo (pig): oral (EC capsule)
`Ex vivo (rat): Ussing
`Ex vivo (rat): Ussing
`Ex vivo (rat): BBM
`In vivo (rat): rectal
`Ex vivo (rats): S-G diffusion cell
`Ex vivo (rats): S-G diffusion cell
`In vitro: Caco-2
`In vitro: Caco-2
`In vivo (rat): oral (microcapsule)
`In vivo (dog): oral (capsule)
`In vitro: Caco-2
`In vitro: Caco-2
`Ex vivo (rat): Ussing
`Ex vivo (human): Ussing
`In vitro: Caco-2
`In vitro: Caco-2
`In vitro: Caco-2
`In vivo (rat): oral
`In vitro: Caco-2
`In situ (rat): perfusion
`In situ (rat): perfusion
`In vitro: Caco-2
`In vivo (rat): instillation
`In vivo (human): oral
`In vivo (human): oral
`In vitro: Caco-2
`In situ (rat): oral
`In vitro: Caco-2
`In vivo (rabbit): oral
`In vitro: Caco-2
`In vivo (rat): suppository
`In vitro: Caco-2
`In situ (rat): instillation
`In situ (rat): colon
`In vivo (rat): oral
`In vivo (dog) oral
`In vivo (rat): suppository
`In vitro: Caco-2
`In vivo (human): suppository
`In situ (rat): suppository
`In vivo: (rabbit) suppository
`Ex vivo (rat): inverted sac
`Ex vivo (rat): everted colon
`In situ (rat): colon)
`
`Ex vivo: flux (LY)
`Ex vivo: TEER
`In vivo: F (DMP 728)
`In vivo: F (DMP 728)
`In vitro: TEER, flux (FD-40)
`Ex vivo: I sc (Cl)
`Ex vivo: flux (FD-4)
`In vitro: TEER, flux (mannitol)
`In vitro: TEER, flux (FD-4)
`Ex vivo: flux (mannitol)
`Ex vivo: flux (FD-4)
`In vitro: flux (FD-4)
`In situ: F (buserelin)
`In situ: F (octreotide)
`In vivo: F (octreotide)
`Ex vivo: Isc (Cl−)
`Ex vivo: flux (FD-4)
`Ex vivo: fluorescence polarization
`In vivo: F (cefoxitin)
`Ex vivo: flux (LY)
`Ex vivo: TEER
`In vitro: TEER, flux (ruthenium red)
`In vitro: flux (PEG 4000)
`In vivo: F (DMP 728)
`In vivo: F (DMP 728)
`In vitro: TEER, flux (mannitol)
`In vitro: flux (mannitol, Ca2+)
`Ex vivo: flux (FD-4)
`Ex vivo: flux (FD-4)
`In vitro: TEER, flux (mannitol)
`In vitro: TEER, flux (FD-40)
`In vitro: TEER, flux (fluorescein)
`In vivo: PA (insulin)
`In vitro: flux (insulin)
`In situ: AUC (GLP-1)
`In situ: AUC (extendin-4)
`In vitro: flux (insulin)
`In vivo: F (insulin)
`In vivo: AUC (GLP-1)
`In vivo: AUC (PYY3−36)
`In vitro: TEER, flux (mannitol)
`In situ: PK/PD (heparin)
`In vitro: TEER, flux (insulin)
`In vivo: flux (heparin)
`In vitro: TEER, flux (mannitol)
`In vivo: AUC (sodium ampicillin)
`In vitro: flux (mannitol)
`In situ: flux (FD-4)
`In situ: AUC (cefmetazole)
`In vivo: AUC, F (DMP 728)
`In vivo: F (DMP 728)
`In vivo: AUC (sodium ampicillin)
`In vitro: flux (mannitol)
`In vivo: F (cefoxitin sodium)
`In situ: AUC (acyclovir)
`In vivo: flux (gentamicin)
`Ex vivo: flux (CsA)
`Ex vivo: flux (inulin)
`In situ: flux (inulin)
`
`Ex vivo: 10 mM
`Ex vivo: 2 mM
`In vivo: 8 mg/kg
`In vivo: 2 mg/kg
`In vitro: 100 μM
`Ex vivo: 0.5%
`Ex vivo: 0.5%
`In vitro: 0.1% w/v
`In vitro: 0.1% w/v
`In vitro: 0.1% w/v
`In vitro: 0.1% w/v
`In vitro: 2.5% w/v
`In situ: 1% w/v
`In situ: 10% w/v
`In vivo: 40% (70 mg)
`Ex vivo: 0.5%
`Ex vivo: 0.5%
`Ex vivo: ―
`In vivo: ―
`Ex vivo: 5 mM
`Ex vivo: 1 mM
`In vitro: 0.2 mM
`In vitro: 0.2 mM
`In vivo: 8 mg/kg
`In vivo: 2 mg/kg
`In vitro: 500 μM
`In vitro: 100 μM
`Ex vivo: 0.5%
`Ex vivo: 0.5%
`In vitro: 0.75 mM
`In vitro: 100 μM
`In vitro: 200 μM
`In vivo: 5 mM
`In vitro: 60 μM
`In situ: 0.5 mM
`In situ: 0.5 mM
`In vitro: ―
`In vivo: ―
`In vivo: 2 mg
`In vivo: 1 mg
`In vitro: 50 mg/mL
`In situ: 300 mg/kg
`In vitro: 55 mM
`In vivo: 120 mg/kg
`In vitro: 50 mg/mL
`In vivo: 20 μmol/kg
`In vitro: 10 mM
`In situ: 100 mM
`In situ: 0.25% w/v
`In vivo: 40.2%
`In vivo: 40.2%
`In vivo: 20 μmol/kg
`In vitro: 120 mM
`In vivo: 0.5 g
`In situ: 4%
`In vivo: 0.18 mM
`EX vivo: 1% w/v
`Ex vivo: 0.25%
`In situ: 0.25%
`
`Ex vivo: 20-fold
`Ex vivo: ―
`In vivo: F = 6.9%
`In vivo: F = 17%
`In vitro: ―
`Ex vivo: ―
`Ex vivo: ―
`In vitro: 143-fold
`In vitro: 153-fold
`Ex vivo: 9-fold
`Ex vivo: 20-fold
`In vitro: 363-fold
`In situ: 16-fold
`In vivo: 15-fold
`In vivo: F = 0.5%
`Ex vivo: ―
`Ex vivo: ―
`Ex vivo: ―
`In vivo: 34-fold
`Ex vivo: 18-fold
`Ex vivo: ―
`In vitro: 20-fold
`In vitro: no effect
`In vivo: F = 14.6% (6-fold)
`In vivo: F = 20.5% (2-fold)
`In vitro: 10-fold
`In vitro: ―
`Ex vivo: 13-fold
`Ex vivo: 8-fold
`In vitro: TEER b10%
`In vitro: ―
`In vitro: ―
`In vivo: 79-fold
`In vitro: ―
`In situ: no effect
`In situ: 2-fold
`In vitro: 3-fold
`In vivo: F = 3.1%
`In vivo: 2-fold
`In vivo: 2-fold
`In vitro: 27-fold
`In situ: ―
`In vitro: 10-fold
`In vitro: no effect
`In vitro: 2-fold
`In vivo: 6-fold
`In vitro: 8-fold
`In situ: 14-fold
`In situ: 10-fold
`In vivo: F = 6% (3-fold)
`In vivo: F = 17.7%
`In vivo: 5-fold
`In vitro: 2-fold
`In vivo: 2.5-fold
`In situ: 2-fold
`In vivo: ―
`Ex vivo: 9-fold
`Ex

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket