`
`1111111111111111111111111111111111111111111111111111111111111111111111111111
`US 20120059246Al
`
`(19) United States
`c12) Patent Application Publication
`Taylor
`
`(10) Pub. No.: US 2012/0059246 A1
`Mar. 8, 2012
`(43) Pub. Date:
`
`(54) METHOD AND SYSTEM FOR
`PATIENT-SPECIFIC MODELING OF BLOOD
`FLOW
`
`(75)
`
`Inventor:
`
`Charles A. Taylor, Menlo Park, CA
`(US)
`
`Publication Classification
`
`(51)
`
`Int. Cl.
`A61B 51026
`(2006.01)
`A61B 51055
`(2006.01)
`A61B 6100
`(2006.01)
`(52) U.S. Cl. .......................... 600/419; 600/504; 600/407
`
`(73) Assignee:
`
`HeartFlow, Inc.
`
`(57)
`
`ABSTRACT
`
`(21) Appl. No.:
`
`13/290,641
`
`(22) Filed:
`
`Nov. 7, 2011
`
`Related U.S. Application Data
`
`(63) Continuation of application No. 13/013,561, filed on
`Jan. 25, 2011.
`
`(60) Provisional application No. 61/401,462, filed on Aug.
`12, 2010, provisional application No. 61/401,915,
`filed on Aug. 20, 2010, provisional application No.
`61/402,308, filed on Aug. 26,2010, provisional appli(cid:173)
`cation No. 61/402,345, filed on Aug. 27, 2010, provi(cid:173)
`sional application No. 61/404,429, filed on Oct. 1,
`2010.
`
`Embodiments include a system for determining cardiovascu(cid:173)
`lar information for a patient. The system may include at least
`one computer system configured to receive patient-specific
`data regarding a geometry of at least a portion of an anatomi(cid:173)
`cal structure of the patient. The portion of the anatomical
`structure may include at least a portion of the patient's aorta
`and at least a portion of a plurality of coronary arteries ema(cid:173)
`nating from the portion of the aorta. The at least one computer
`system may also be configured to create a three-dimensional
`model representing the portion of the anatomical structure
`based on the patient-specific data, create a physics-based
`model relating to a blood flow characteristic within the por(cid:173)
`tion of the anatomical structure, and determine a fractional
`flow reserve within the portion of the anatomical structure
`based on the three-dimensional model and the physics-based
`model.
`
`CATHWORKS EXHIBIT 1008
`Page 1 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 1 of 31
`
`US 2012/0059246 A1
`
`"'
`
`0')
`
`~ ~••wr,~:&k\'%.=:W:kt /7',' :t•:;;
`
`co
`
`.
`• 0)
`u..
`
`0
`
`CATHWORKS EXHIBIT 1008
`Page 2 of 65
`
`
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = "= = 0" -....
`~ 'e -....
`('D = .....
`"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`....
`0 .....
`N
`.....
`rFJ =(cid:173)
`0 ....
`
`(.H
`
`('D
`('D
`
`N
`
`500
`
`400
`
`300
`
`200
`
`·1 00
`
`Fig. 2
`
`Provide Patient-Specific Treatment Planning
`
`l
`
`Output Results
`
`Perform Computational Analysis And
`
`l
`
`Determine Boundary Conditions
`Prepare Model For Analysis And
`
`l
`
`Based On Obtained Anatomical Data
`
`Create Three-Dimensional Model
`
`l
`
`Anatomical Data
`
`Obtain And Preprocess Patient-Specific
`
`CATHWORKS EXHIBIT 1008
`Page 3 of 65
`
`
`
`N
`~CIO
`~ :-:
`~
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`....
`0 .....
`
`(.H
`
`(.H
`
`('D
`('D
`
`N
`
`.....
`rFJ =(cid:173)
`0 ....
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`•... ·.·.400
`
`~ f~n.at r tz~::.uJt5
`,,.nV~f,fiHtJJt1tx~ tJf
`
`~~ ~~..l~f}'Y.i~ ~\J"Zt~~
`
`Hi?P<:>ft
`Fkw'hzm
`
`4DS·Tj
`
`re~.:.~1Hs
`~~J1ubtH1
`\ff1a-Hy
`
`skn~,.~l;:;tk~n
`
`!*""""""
`
`fkJY:J
`
`Hyp<mzrni<.l
`
`404·:
`
`402"1
`
`Sotutkm
`
`flow
`
`Fig, 3
`
`t:t;r:~d~Hons
`
`......... ,100
`
`}""""'";~~};0d f.UlUHd~~f"'(}""'~
`
`"'J~xHv rn.:::.:~h
`
`314 ·z:
`
`§;.ft:lOCat b to~ kJ~
`o~;t.put :~nd
`
`rnofi<!l
`
`...
`
`+--100
`
`find mt:sh
`
`Trlrn nw:nk1 ::J.;~~£0l: t).en~r~H~
`
`{JintfftiOt1t
`
`306 (
`
`aHt::?~:
`
`iiXti<:JfW!
`
`t.:r'~)$.$~
`
`Cak.:tdate
`
`~:UJ4 ·f
`
`Sirnulath.'ln
`Model for
`P'r"1lpare
`
`no~;J1Jded
`C<>rY~?;l;t d
`m<JtdiliiV
`~u~nen <~nd
`
`:~};:;~;;·~~=~ Re~Aev:t
`
`!•.HrHzn
`
`ne~d:f2:d
`O..JTN~:Ct ~f
`· rr~~nu.~Hy
`rYhJtQt.H?. ~nd.
`
`Hl2dew
`
`'"""""'"*'
`
`nt:ede-d
`
`ff!i=l$.~
`
`mvon:mlia~
`C.<ltrUbte
`
`' · i :md rn¥nm1ly '
`L~Jse.g.rnt7nt~t~?r~ ~mnm
`
`ne~~tt<~d
`oJrrfx<::t if
`
`r~·t}(jt{;4·r.:! !~t
`Revb:v;
`
`zog
`
`j)(.h!h
`
`Brt>tr-t rtYvt
`CCfO{!<Jty
`
`S.e~·e-ct
`
`!
`
`lr~;;~J/~j·~~~:N ~-7.-IAu;~;:.~~:~:~~v ~"J tw!~~~j~!i~~l!v ; .. +
`
`1 ; IWtoKardiwn '
`
`i!Oita
`
`'
`
`·
`
`..
`
`204
`
`"}m
`201
`
`.;)
`102
`
`2{;l()
`
`~
`.. t.
`
`Segmtmtlltion
`
`H~art
`
`Artery and
`
`Hill--..... ._
`
`CATHWORKS EXHIBIT 1008
`Page 4 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 4 of 31
`
`US 2012/0059246 A1
`
`.
`• Ol
`u.
`
`CATHWORKS EXHIBIT 1008
`Page 5 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 5 of 31
`
`US 2012/0059246 A1
`
`CATHWORKS EXHIBIT 1008
`Page 6 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 6 of 31
`
`US 2012/0059246 A1
`
`c:o .
`C) u::
`
`CATHWORKS EXHIBIT 1008
`Page 7 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 7 of 31
`
`US 2012/0059246 A1
`
`().)
`
`().)
`
`U) ·u !.-
`><
`lU
`E
`•::J
`E
`X rn
`:E
`
`~
`E
`
`(1)
`~
`
`()) a.
`""'
`I
`E
`::J
`E
`')(
`rn
`~
`
`......
`~ .
`. 2>
`LL
`
`0
`......
`.
`C)
`LL
`
`.
`0)
`LL
`
`CATHWORKS EXHIBIT 1008
`Page 8 of 65
`
`
`
`Patent Application Publication
`
`Mar. 8, 2012 Sheet 8 of 31
`
`US 2012/0059246 A1
`
`.
`C) ·-LL
`
`.
`t» u:
`
`.
`t7l u:
`
`CATHWORKS EXHIBIT 1008
`Page 9 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 9 of 31
`
`US 2012/0059246 A1
`
`.
`0)
`LL.
`
`a '"M
`
`rl
`0:::
`
`CATHWORKS EXHIBIT 1008
`Page 10 of 65
`
`
`
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`(.H
`
`('D
`('D
`
`N
`
`....
`0 .....
`0
`....
`.....
`rFJ =(cid:173)
`0 ....
`
`~ c.I ~"llRv a
`
`Fig. 16
`
`e
`
`-
`-
`
`-
`-
`
`l
`
`350
`
`RaNmicro
`
`Ra
`
`i 360
`
`I*
`
`Rd
`
`RP
`
`8: Wi ndkessel mode I
`
`a-m: Lumped-parameter coronary model
`
`340
`
`\
`
`~
`
`-
`
`L I
`p A ;:::::..,
`
`"
`
`-"
`
`RAv LAv
`
`A: Lumped-parameter heart model
`
`CATHWORKS EXHIBIT 1008
`Page 11 of 65
`
`
`
`Patent Application Publication
`
`Mar. 8, 2012 Sheet 11 of 31
`
`US 2012/0059246 A1
`
`.
`C) ·-ll..
`
`0 co
`
`(")
`
`i
`
`.
`C) ·-ll..
`
`CATHWORKS EXHIBIT 1008
`Page 12 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 12 of 31
`
`US 2012/0059246 A1
`
`0
`C\1
`
`.OJ
`LL
`
`N
`N
`-~ lJ...
`
`CATHWORKS EXHIBIT 1008
`Page 13 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 13 of 31
`
`US 2012/0059246 A1
`
`{)
`$$.,_~
`d
`~
`•... \,~.W~''
`~~.~.: ... J 1.11.11 k~~i .•. ·.•.·•.· ' .•. ' ...•. '.·~.;.t):"' .• ~,~-~.:·:.\.·.:.•.·.••.·.•'.'.: ... '.'.·'.·.\.·.·.'.'.: ' i
`
`..
`., __ ,,,,; __ ,,,; __ . .._..
`••••••••••m·~'='d
`~''l"''L--.
`
`t~-
`b
`
`\,£) ,... I»
`liD N 0
`•
`•· 0
`0 Q
`II
`II
`II
`fX a::.
`tX
`u.. u.. u..
`u.. u.., Ui.,
`u
`\.J' u
`)(' <(
`0
`:3 u u
`..... 0::
`
`CATHWORKS EXHIBIT 1008
`Page 14 of 65
`
`
`
`641
`
`.--...-',
`
`to the patient.
`flow and resistance conditions customized
`geometric model using population-derived
`Solve blood flow models in patient-specific
`
`"-;~.1
`
`___.
`
`6
`
`SOLUTION:
`
`...---' physicalcondi~ions: hyperemia,
`Adapt model conditions based on
`
`635
`
`1
`
`exercrse, rned1catron, etc.
`
`· vessel sizes using population-derived
`
`\V
`634...---' relationship (H=R0d~)
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`= .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`('D
`
`~ .....
`
`(')
`
`L-------=,y ______ __J
`
`(Q=OoM").
`
`ventricular mass dala using
`Calculate resting coronary flow from
`
`-------------, 631
`CONDITIONS: Calculate p~tien_t-specificventricular
`
`mass from 1magmgdata.
`
`·,¥
`
`~
`i
`
`600
`
`I
`
`610
`
`---------~-~--~-----_
`
`.__m_e_a_s_u_r_e_m_e_n_t_. ______ ____,
`
`I Patient's brachial blood pressure
`
`Patient's medical imaging data I
`
`of coronary arteries and heart.
`
`611
`INPUTS:
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`N
`
`N
`~CIO
`~ :-:
`~
`
`....
`0 .....
`....
`.....
`rFJ =- ('D
`0 ....
`
`(.H
`
`.j;o.
`
`('D
`
`ig. 24
`
`30
`
`•
`
`<£-
`
`individual arteries based on distal
`Dislribule Lolalcoronary resistance Lo
`
`v
`,
`
`blood pressure.
`
`..---' resistance from coronary flow and
`
`Calculate total restingcoronary
`
`1
`
`3.
`
`f .................... ':>
`!
`i
`i
`i
`! 633
`i
`i
`!
`1 63~ population-derived relationship
`!
`I
`!
`
`----
`
`-Distal coronary circulation.
`circulation.
`-Heart and aort1c
`
`62~ coronary geometry.
`
`-Flow in patient-specific
`
`models:
`Physics-based blood flow
`
`62
`
`621___, imaging data.
`
`____
`
`coronary artenes from
`geometric mo~el of
`
`MODELS: Generate patient-specific
`
`v
`
`CATHWORKS EXHIBIT 1008
`Page 15 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 15 of 31
`
`US 2012/0059246 A1
`
`co
`~
`0
`0
`lj
`~ ~ __ ·.' .,~:: ::):;~it~~id: \)'.,' '\:!:·~:;;
`r,.__ ' ' ' ' ' . :
`
`•
`
`'
`
`•
`
`'
`
`00
`00
`
`.
`C) u::
`
`00
`I '
`0
`
`co
`1'--
`0
`II
`0::
`LLm
`LL~'--
`) (0
`0
`II
`..JO:::
`• ~ LL
`
`COLL 6<
`
`II 0
`0::0:::
`LL
`LL
`c
`c(
`..J
`
`CATHWORKS EXHIBIT 1008
`Page 16 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 16 of 31
`
`US 2012/0059246 A1
`
`0
`:;,"3
`"';'
`:/tk•!!ttit~a~s!li'o
`
`'"'
`
`CATHWORKS EXHIBIT 1008
`Page 17 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 17 of 31
`
`US 2012/0059246 A1
`
`...................... ···········--·:,_:~~
`.•···
`
`,._.;,
`
`_;~\
`
`!
`~
`I
`
`·~· ---·~· ~___,
`
`,, . .;
`... ,
`-tU
`c
`""'
`~ 0
`,_
`·_;:;
`G.> v Ck
`{I"~
`>))
`tJ>i '"0 :t'
`''P c: -.._
`c C;
`LO
`m
`s::
`0 r-
`..c "tl'
`''V
`v
`ftj
`'-' ·~
`<!J
`;:;:
`.!-.·';.
`·--~~
`·,;.> 0
`<ll
`...-:.••
`<i.i E
`... <':
`
`(.)
`
`~
`
`().)
`£~
`f~1
`, ..
`i;[..l
`... .......
`
`)...
`
`. ,
`.,:: ........ ,,,,,,,,,,,,,,,,,, .. >>::.);..,
`
`>,, .
`<l.l
`E { )
`<l.l
`'-
`0
`0
`~-· ~
`~..= n
`•:. .. ) w
`)~)
`!:l.
`~ v
`{U
`,,.,
`·:J:
`··-·
`:-:~
`'"t;!
`~-· .~"":
`Q,.>
`<l)
`W..J
`>.¥
`'-
`
`~v
`tY)
`
`'!';) -·it,(
`
`'fij
`
`"0 -....__
`i)
`~ '\-, ..
`
`··t~
`0
`E
`
`,......
`N
`·-LL
`
`C)
`
`.q-
`0 r-
`
`CATHWORKS EXHIBIT 1008
`Page 18 of 65
`
`
`
`> .....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 .....
`N
`rFJ
`c
`
`.....
`0 .....
`CIO
`.....
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`(.H
`
`N
`0 .....
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = "'= = 0" -....
`~ 'e -....
`('D = .....
`"'= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`·~ L
`
`71 5
`\
`
`r716
`
`dlst:.a~>0d area~:.
`Sk:nosfs cr
`
`-~ !
`714~--;;~;.;;;:;;~;-----------------l
`
`710
`
`I
`
`f----713
`
`f---712
`
`>
`
`r······························.···············rmnnnni..
`
`Divide th~ 3D r::ocle! ir:to segrner:ts based on m:aton1ic featv.res.
`
`\£.1
`
`T3V10f /Kirn: T~v~or/Fonte~
`Perforrn 30 bloo.:j f!81N sirntdatlan {:.e. n:ethods zs described in
`
`·.~:,·
`
`f---711
`
`frorn ~maging d~ta.
`Gen.er3)te pe~hen!~?;pecinc w:on-1etrk: mode! of coronary ~:teries
`
`j
`J---------·· ······-···· .... .... .... ....
`.)
`1
`.
`I segrr:ents
`! Norrn~l
`
`Use pre;;:;UI·e/fiGw c;oic;km fron! 3d
`
`717
`
`____ ::~~-~~-~ ... :.~--~----~~--~--:-.. ~~-:.: .. ~:-~~~---····::~----···-···-···-···-···-···-···-··········-···-···-·.J
`i
`d~~ .... o"';:-ie}·,+ ··esr.:'t~nce~ t0 >:A-~vnenf~
`r 718
`roadds derived frc111 j:)ft::ViCWS data to ass:gn no~~:~lmea:> fk:VV
`U~e pre·;,sure/f1ov-; so1utwn frorn rnuiHoh:: 3d simuiat!cns <:'d" u.:::-e
`
`-
`
`f
`
`__ ;~~~;;;_~:-~-~~-:~~-~~~::~~:;~;!:".~~:~:c:~::~~:~::: .............. , ............................................ ..
`
`Fig. 28
`
`i
`f.--722
`
`!
`k---721
`
`I
`f.-..-720
`!
`
`r:-:od-el·fDr !tn:ned!:3te: ~jisp:8y of reso!ts.
`r...:L~p b:nod f!0v:1 ar1d pn%<s;ure schltion ·fron~ reduce~:.~. order rnodel S·:::grnent; b;H:k to 3d
`
`··->
`
`the U5Bt
`Sol~.:E redur..f.: or-:1er b)ood fi,())N rnode1 r.apfd~y ftw ea~h lterat~~X1 that f:; g~r:er;~ted hv
`
`cy
`
`;;uch as czrd!ac cutput~ exerc~s.e !evel: hyper·em~zL med:r.:ations~ etc are v-ariabi-e.
`:;e~e-ct.ab~e .and editable {rerncve stenosis: ..:1dd bvpass., etc] ;jnd phV$~~!ogit paramete:s~
`Cre~te user lnterfate tv d!fcw lnterZ;ction v •. +th 3d ~iodel '1-Vhcre e.ach segr~ent i:;
`
`~~;~~~:~i~:~;~~;;~;~;;~;: ;~;;·~~ ;::;ib::;~~;f;;~ ;;;~;:;~~~~-,;~;·~~~,;;~;;;~;;~·~-i~~;~~~;;·;;;;:,;;·;:;;··l--71 9
`
`'/
`
`CATHWORKS EXHIBIT 1008
`Page 19 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 19 of 31
`
`US 2012/0059246 A1
`
`m
`N .
`0)
`ii
`
`CATHWORKS EXHIBIT 1008
`Page 20 of 65
`
`
`
`Patent Application Publication
`
`Mar. 8, 2012 Sheet 20 of 31
`
`US 2012/0059246 A1
`
`0
`0l
`co ........
`
`0
`
`LD co
`~
`
`1..()
`
`C:0 co
`
`0
`1£• co
`
`CD
`ii
`
`l.{)
`
`LD co
`
`CATHWORKS EXHIBIT 1008
`Page 21 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 21 of 31
`
`US 2012/0059246 A1
`
`CATHWORKS EXHIBIT 1008
`Page 22 of 65
`
`
`
`> .....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`
`N --- 0
`0 .....
`N
`rFJ
`c
`
`.....
`0 .....
`N
`N
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`(.H
`
`N
`0 .....
`N
`~CIO
`~ :-:
`~
`
`FIG. 32
`
`894
`
`892
`
`890
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`J
`
`SIMULATION AND ITERATE r
`
`UNTIL SIMULATED AND
`
`PERFUSION MATCH.
`
`MEASURED
`
`CONDITIONS. RERUN
`MODEL BOUNDARY
`UPDATE BLOOD FLOW
`
`l
`
`MEASURED PERFUSION.
`
`COMPARE SIMULATED
`
`PERFUSION WITH
`
`!
`
`DATA TO 3D SEGMENTED
`REGISTER PERFUSION
`
`MYOCARDIUM, IF
`
`NECESSARY.
`
`l
`
`872
`
`DATA (E.G.,CT,PET,SPECT'
`
`CARDIAC PERFUSION
`
`~0
`
`(
`875
`
`1'---888
`
`CALCULATE PERFUSION FROM EACH EPICARDIAL
`
`BRANCH INTO EACH SEGMENTED VOLUME.
`
`8~6
`
`EPICARDIAL BRANCH.
`!....+ VESSEL SIZE OF EACH
`BASED ON THE DISTAL ~-~
`SEGMENT MYOCARDIUM
`
`I
`
`OR OTHER CONDITIONS.
`HYPEREMIA, EXERCISE,
`
`SIMULATE BLOOD FLOW
`
`AND PRESSURE IN
`
`EPICARDIAL ARTERIES
`
`UNDER REST,
`
`,.....
`
`12.........__
`
`!
`
`r+
`
`MYOCARDIAL TISSUE.
`CREATE 3D MODEL OF
`
`ID"--EPICARDIAL CORONARY ~
`
`CREATE 30 MODEL OF
`
`ARTERIES.
`
`~4
`
`HEART RATE, ETC.
`BLOOD PRESSURE,
`PHYSIOLOGIC DATA,
`
`ADDITIONAL
`
`__{_
`874
`
`I
`I
`
`!
`
`CORONARY ARTERIES
`
`IMAGING DATA OF
`PATIENTS MEDICAL
`
`AND HEART
`
`INPUTS:
`
`(
`873
`
`CATHWORKS EXHIBIT 1008
`Page 23 of 65
`
`
`
`Patent Application Publication Mar. 8, 2012 Sheet 23 of 31
`
`US 2012/0059246 A1
`
`··W
`
`~~:0:
`
`-:''" - ·:-'~
`- '"'"
`~ '"' ~
`0 ~
`~
`~ ~ 0
`... I \4
`;;:;;
`......
`~
`~
`0
`. .,.,
`x
`~ ·:-.'¥
`~~
`~~ ~
`~ ...... ~ ~
`~~
`.~ ............ ,
`tJ
`~l~ ~oo
`~ ~l}
`::-:S.:"!
`''""
`
`•:>.'";>(\
`
`A
`*:,.\,.:.:
`
`,;ot.·,
`
`~·
`""""'
`+p
`...
`~ C)
`~
`.9
`.,.--
`~~ ~'
`~ ..... ,:. 0)
`~
`~ .%: 3
`'""'~ .,.
`
`~
`~)-~
`
`~;»
`
`<:".!
`
`»-:-:W"
`
`.0)
`~~~
`~ ..,..
`~ """' ~
`::t::
`©
`"''"''
`:-.....:
`<.'!~
`~:-:-:>/! o.,
`
`I
`
`C') u:
`
`co
`(<")
`co
`
`CATHWORKS EXHIBIT 1008
`Page 24 of 65
`
`
`
`> ......
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ......
`N
`rFJ
`c
`
`......
`(.H
`0 ......
`
`.j;o.
`N
`......
`rFJ =(cid:173)
`
`('D
`('D
`
`N
`0 ......
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = ......
`'"= ~ ......
`
`~ ......
`
`(')
`
`~ ......
`
`(')
`
`HEMODYNAMIC SIMULATION TO DETERMINE POTENTIAL REDUCTION IN PERFUSION DUE TO VULNERABLE PLAQUE. ~
`~
`CALCULATE MYOCARDIAL PERFUSION RISK INDEX BASED ON MYOCARDIAL VOLUME RISK INDEX COMBINED WITH 3D
`
`t
`
`CALCULATE MYOCARDIAL VOLUME RISK INDEX BASED ON PLAQUE VULNERABILITY INDEX COMBINED WITH 30 ~
`
`i+ HEMODYNAMIC SIMULATION TO DETERMINE WHERE RUPTURED PLAQUE COULD FLOW AND GEOMETRIC ANALYSIS
`
`OF VESSEL AND MYOCARDIAL SIZE OF AFFECTED AREAS.
`
`~0
`
`-
`
`CALCULATE PLAQUE RUPTURE VULNERABILITY INDEX BASED ON TOTAL STRESS, STRESS FREQUENCY, STRESS
`
`DIRECTION, AND/OR PLAQUE STRENGTH/ PROPERTIES.
`
`t
`
`flo-COMPUTE STRESS ON PLAQUE DUE TO HEMODYNAMIC
`
`FORCES AND CARDIAC MOTION·INDUCED STRAIN.
`
`G.35
`
`Fl
`
`916
`
`9~4
`
`STRESS/STRAIN IN VESSEL AND PLAQUE
`VESSEL WALL MODEL FOR COMPUTING
`
`I •
`
`,..j38
`
`COMPOSITION AND PROPERTIES FROM IMAGING DATA
`
`PLAQUE MODEL FOR DETERMINING PLAQUE
`~36
`
`flo-COMPUTE ELONGATION, BONDING, AND TORSION OF
`
`VESSEL AND PLAQUE DUE TO CARDIAC MOTION.
`
`VESSEL DEFORMATION FROM 4D IMAGING DATA
`GEOMETRIC ANALYSIS MODEL TO QUANTIFY
`
`....
`
`-
`
`BLOOD VELOCITY AND PRESSURE FIELDS
`HEMODYNAMIC MODEL FOR COMPUTING
`
`!
`
`9 ) MODELS:
`
`---.
`
`-
`
`,..2.34
`
`r-232
`
`~2~
`ADDITIONAL PHYSIOLOGIC DATA, ~24 ~
`'
`20
`
`PATIENT'S MEDICAL IMAGING DATA OF N23
`
`INPUTS: CORONARY ARTERIES AND HEART
`
`-!40
`
`PLAQUE LUMINAL SURFACE DUE TO HEMODYNAMIC
`flo-COMPUTE PRESSURE AND SHEAR STRESS ACTING ON
`
`FORCES DURING REST EXERCISE ETC.
`
`BIOMECHANICAL ANALYSIS:
`
`J12
`BLOOD PRESSURE, HEART RATE, ETC.
`
`CATHWORKS EXHIBIT 1008
`Page 25 of 65
`
`
`
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`(.H
`
`('D
`('D
`
`N
`
`....
`0 .....
`Ul
`N
`.....
`rFJ =(cid:173)
`0 ....
`
`Fig. 36
`
`946
`
`' 920
`
`950
`
`Strain
`~
`
`Index
`Vulnerability
`Plaque
`
`--
`
`942
`
`Measurement
`Plaque Density
`
`Bending
`Vessel
`
`Elongating +
`
`Vessel
`
`Vessel Torsion
`
`induced fo +
`
`and shear
`induced for
`pressure
`force, b I oo d
`!=low induced
`
`on plaque
`
`analysis
`composition
`CT plaque
`
`936 I
`
`analysis
`movement
`40 vessel
`
`simulation
`3D blood flow
`
`934
`
`I
`
`CATHWORKS EXHIBIT 1008
`Page 26 of 65
`
`
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`Fig. 37
`
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`....
`0 .....
`0\
`N
`.....
`rFJ =(cid:173)
`0 ....
`
`(.H
`
`('D
`('D
`
`N
`
`Artery
`Communicating
`Posterior
`
`Cerebral Artery
`Posterior
`
`Artery
`Communicating
`Anterior
`
`Cerebral Artery
`_Anterior
`
`\
`
`l
`
`r-*·t
`
`......:!
`
`-< \
`
`Carotid Arteries
`External
`
`Cerebral Artery
`Right Middle(cid:173)
`
`CATHWORKS EXHIBIT 1008
`Page 27 of 65
`
`
`
`> ....
`
`N --- 0
`0 ....
`N
`rFJ
`c
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`
`g.38
`
`"'---1041
`
`to the patient.
`flow and resistance conditions customized
`geometric model using population-derived
`Solve blood flow models in patient-specific
`
`'·.}.~-"
`
`SOLUTION:
`
`1041 _,...
`
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`....
`0 .....
`-....l
`N
`.....
`rFJ =(cid:173)
`0 ....
`
`(.H
`
`('D
`('D
`
`N
`
`031
`
`1000
`
`j
`
`35
`
`""
`
`1030
`
`"'
`
`34
`
`'""
`
`033
`
`""
`<·
`
`032
`
`..-
`
`etc.
`medication, barorece ptorresponse,
`physical conditions: stress, exercise,
`Adapt model conditions based on
`
`\;,-'
`relationship ( R=R0d~)
`vessel sizes using population-derived
`individual arteries based on distal
`Distribute total cerebral resistance to
`
`....
`
`• .. J;
`
`blood pressure.
`resistance from cerebral flow and
`Calculate total resting cerebral
`
`·.,y
`
`(Q=Q,M").
`population-derived relationship
`brain/head volume data using
`Calculate resting cerebral flow from
`
`·· .. l!
`
`< IIIIIIIIIIIIIIIIUIIUIIUIIUIIUIIIIIUIIUIIUIIIIIIIIIIIIIIIIIIIIIIUIIUIIUIIUIIUIIIIIUIIUIIUIIIIIIIIIIIIIIIIIIIIIIUIIIIIII'
`
`''"''"''"''"'"""'.
`
`1012
`
`measurement.
`I Patient's brachial blood pressure
`
`1011 ........r-cerebral arteries, and brain.
`of aorta, carotid, vertebral,
`Patient's medical imaging data
`
`INPUTS:
`
`1010
`
`CONDITIONS: Calculate patierit-specificbrain arid/or r-
`
`head volume from imaging data.
`
`· •. ;.·
`
`'""
`
`circulation.
`-Distal Intra/Extra cranial
`circulation.
`-Heart and aortic
`geometry.
`-Flow in patient-specific
`models:
`Physics-based blood flow
`
`1022-.r
`
`1020
`
`.....
`
`1 021-.r arteries from imaging data.
`MODELS: Generate patient-specific
`
`geometric model of
`
`•-1/
`
`CATHWORKS EXHIBIT 1008
`Page 28 of 65
`
`
`
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`(.H
`
`('D
`('D
`
`N
`
`....
`0 .....
`CIO
`N
`.....
`rFJ =(cid:173)
`0 ....
`
`39
`
`1066
`
`r-... ._
`
`1064
`
`............
`
`I
`
`•
`
`I
`
`DISPLAY PERFUSION RESULTS ON 30
`
`BRAIN MODEL.
`
`~
`
`CALCULATE PERFUSION FROM EACH CEREBRAL
`
`BRANCH INTO EACH SEGMENTED VOLUME.
`
`SIMULATE BLOOD FLOW AND PRESSURE IN
`
`CEREBRAL ARTERIES UNDER REST,
`
`EXERCISE, BARORECEPTOR RESPONSE,
`
`MEDICATION,ETC.
`
`~
`
`SEGMENT BRAIN BASED ON THE DISTAL
`
`VESSEL SIZE OF EACH BRANCH.
`
`CREATE 30 MODEL OF CEREBRAL ARTERIES.
`
`~
`
`CREATE 30 MODEL OF BRAIN
`
`TISSUE.
`
`I
`
`..
`
`10
`
`10
`
`BLOOD PRESSURE, HEART RATE, ETC.
`
`ADDITIONAL PHYSIOLOGIC DATA,
`
`~INPUTS: AORTA, CAROTID, VERTEBRAL, CEREBRAL
`
`ARTERIES, AND BRAIN
`
`PATIENT'S MEDICAL IMAGING DATA OF
`
`10 '
`
`~
`
`1050
`
`_)
`
`1054
`
`)
`
`1053
`
`CATHWORKS EXHIBIT 1008
`Page 29 of 65
`
`
`
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = '"= = 0" -....
`~ 'e -....
`('D = .....
`'"= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`....
`0 .....
`\0
`N
`.....
`rFJ =(cid:173)
`0 ....
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`(.H
`
`('D
`('D
`
`N
`
`'----BASED ON THEIR LOCATION WITHIN THE 3D
`
`USE ALGORITHM TO BRANCH VESSELS
`
`SEGMENTED VOLUME.
`
`USE CENTERLINES FROM CEREBRAL
`
`VESSELS IN IMAGING DATA.
`
`I---
`
`If..._, r--
`
`OBTAINED (E.G., DOWN TO RESOLUTION
`
`REPEAT UNTIL THE SMALLEST DESIRED
`
`BRANCH OR BRAIN VOLUME SIZE IS
`
`OF IMAGING DATA)
`
`+
`
`FURTHER SEGMENT THE BRAIN BASED
`
`ON THE NEW BRANCH VESSELS.
`
`...
`
`ASSIGN BRANCH SIZES BASED ON
`BRANCHES IN THE CEREBRAL TREE.
`
`CREATE NEXT GENERATION OF
`
`MORPHOMETRIC ALGORITHMS
`
`AND DATA.
`
`~
`
`-
`
`+
`
`I
`I
`
`VESSEL SIZE OF EACH CEREBRAL BRANCH.
`
`SEGMENT BRAIN BASED ON THE DISTAL
`
`t
`
`CREATE 3D MODEL OF BRAIN TISSUE.
`
`+
`
`02
`
`/1100
`
`PATIENT'S MEDICAL IMAGING DATA OF AORTA, CAROTID, ~03
`
`VERTEBRAL, CEREBRAL ARTERIES, AND BRAIN
`
`INPUTS:
`
`CATHWORKS EXHIBIT 1008
`Page 30 of 65
`
`
`
`> ....
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ....
`N
`rFJ
`c
`
`0
`(.H
`.....
`rFJ =(cid:173)
`~
`
`....
`0 ....
`
`(.H
`
`('D
`('D
`
`0
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = "'= = 0" -....
`~ 'e -....
`('D = .....
`"'= ~ .....
`
`~ .....
`
`(')
`
`~ .....
`
`(')
`
`74
`
`72
`
`70
`
`J
`
`SIMULATION AND ITERATE
`
`CONDITIONS. RERUN
`MODEL BOUNDARY
`UPDATE BLOOD FLOW
`
`UNTIL SIMULATED AND
`
`PERFUSION MATCH.
`
`MEASURED
`
`MEASURED PERFUSION.
`
`PERFUSION WITH
`
`COMPARE SIMULATED
`
`+
`
`BRAIN, IF NECESSARY.
`DATA TO 3D SEGMENTED
`REGISTER PERFUSION
`
`.........
`
`DATA(E.G., MIR, PET,
`BRAIN PERFUSION
`
`L::
`SPECT)
`
`)
`1155
`
`F
`
`------
`
`FIG. 41
`
`11~ CALCULATE PERFUSION FROM EACH CEREBRAL
`
`BRANCH INTO EACH SEGMENTED VOLUME.
`
`I
`
`t-
`
`PRESSURE IN CEREBRAL ARTERIES
`
`SIMULATE BLOOD FLOW AND
`
`UNDER REST, EXERCISE,
`
`~
`
`BARORECEPTOR RESPONSE,
`
`MEDICATION, ETC.
`
`1~6
`
`~ ON THE DISTAL VESSEL SIZE r-,......
`
`SEGMENT BRAIN BASED
`
`OFEACH CEREBRALBRANCH
`
`~64
`
`•
`
`CREATE 30 MODEL OF
`
`BRAIN TISSUE.
`
`CREATE 30 MODEL OF CEREBRAL
`
`ARTERIES.
`
`I
`I
`
`t
`
`11t
`
`11~
`
`~
`
`1150
`
`DATA, BLOOD PRESSURE,
`ADDITIONAL PHYSIOLOGIC
`
`HEART RATE, ETC.
`
`CEREBRAL ARTERIES, AND BRAIN
`OF AORTA, CAROTID, VERTEBRAL,
`PATIENTS MEDICAL IMAGING DATA
`
`)
`1154 ,
`
`)
`1153
`
`'-\I , INPUTS:
`1152
`
`CATHWORKS EXHIBIT 1008
`Page 31 of 65
`
`
`
`> ......
`
`0\
`.j;o.
`N
`\0
`Ul
`0
`0
`N ..._
`0 ......
`N
`rFJ
`c
`
`......
`(.H
`0 ......
`......
`(.H
`......
`rFJ =(cid:173)
`
`('D
`('D
`
`N
`0 ......
`N
`~CIO
`~ :-:
`~
`
`.... 0 =
`.... 0 = '"= = 0' -....
`~ 'e -....
`('D = ......
`'"= ~ ......
`
`~ ......
`
`(")
`
`~ ......
`
`(")
`
`FIG. 42
`
`01---
`r--
`
`. 34
`
`232
`
`230
`
`,.- ,.._
`
`,.- ,.._
`
`HEMODYNAMIC SIMULATION TO DETERMINE POTENTIAL REDUCTION IN PERFUSION DUE TO VULNERABLE PLAQUE.
`CALCULATE CEREBRAL PERFUSION RISK INDEX BASED ON CEREBRAL VOLUME RISK INDEX COMBINED WITH 3D
`
`f
`
`30 HEMODYNAMIC SIMULATION TO DETERMINE WHERE RUPTURED PLAQUE COULD FLOW AND GEOMETRIC
`CALCULATE CEREBRAL VOLUME RISK INDEX BASED ON PLAQUE VULNERABILITY INDEX COMBINED WITH
`
`ANALYSIS OF VESSEL AND SIZE OF AFFECTED AREAS.
`
`t
`
`CALCULATE PLAQUE RUPTURE VULNERABILITY INDEX BASED ON HEMODYNAMIC STRESS,
`
`STRESS FREQUENCY, STRESS DIRECTION, AND/OR PLAQUE STRENGTH/ PROPERTIES.
`
`___.
`
`1---+
`
`.:.]
`122l
`
`-
`
`.. COMPUTE STRESS ON PLAQUE DUE TO HEMODYNAMIC~'"
`
`FORCES AND NECK MOVEMENT-INDUCED STRAIN.
`
`STRESSISTRAIN IN VESSEL AND PLAQUE
`VESSEL WALL MODEL FOR COMPUTING
`
`+
`I
`
`)316
`
`!---
`
`~~3 0
`
`PLAQUE LUMINAL SURFACE DUE TO HEMODYNAMIC
`... COMPUTE PRESSURE AND SHEAR STRESS ACTING ON
`
`FORCES DURING REST EXERCISE ETC.
`
`)322
`
`BIOMECHANICAL ANALYSIS:
`
`.......... COMPOSITION AND PROPERTIES FROM IMAGING DATA
`
`PLAQUE MODEL FOR DETERMINING PLAQUE
`)514
`BLOOD VELOCITY AND PRESSURE FIELDS
`HEMODYNAMIC MODEL FOR COMPUTING
`r1f12
`
`4
`J
`
`r-
`
`MODELS:
`
`1200 r
`
`..J304
`
`BLOOD PRESSURE, HEART RATE, ETC.
`
`ADDITIONAL PHYSIOLOGIC DATA,
`
`AORTA, CAROTID,VERTEBRAL, ~03
`
`PATIENT'S MEDICAL IMAGING DATA OF
`
`CEREBRAL ARTERIES, AND BRAIN
`
`~~~~~~~~~·
`
`INPUTS:
`
`1
`
`CATHWORKS EXHIBIT 1008
`Page 32 of 65
`
`
`
`US 2012/0059246 AI
`
`Mar. 8, 2012
`
`1
`
`METHOD AND SYSTEM FOR
`PATIENT-SPECIFIC MODELING OF BLOOD
`FLOW
`
`PRIORITY
`
`[0001] This application is a continuation of copending U.S.
`patent application Ser. No. 13/013,561, filed Jan. 25, 2011,
`which claims the benefit of priority from U.S. Provisional
`Application No. 61/401,462, filed Aug. 12, 2010, U.S. Pro(cid:173)
`visional Application No. 61/401,915, filed Aug. 20, 2010,
`U.S. Provisional Application No. 61/402,308, filed Aug. 26,
`2010, U.S. Provisional Application No. 61/402,345, filed
`Aug. 27, 2010, and U.S. Provisional Application No. 61/404,
`429, filed Oct. 1, 2010, which are herein incorporated by
`reference in their entirety.
`
`TECHNICAL FIELD
`
`[0002] Embodiments include methods and systems for
`modeling of fluid flow and more particularly methods and
`systems for patient-specific modeling of blood flow.
`
`BACKGROUND
`
`[0003] Coronary artery disease may produce coronary
`lesions in the blood vessels providing blood to the heart, such
`as a stenosis (abnormal narrowing of a blood vessel). As a
`result, blood flow to the heart may be restricted. A patient
`suffering from coronary artery disease may experience chest
`pain, referred to as chronic stable angina during physical
`exertion or unstable angina when the patient is at rest. A more
`severe manifestation of disease may lead to myocardial inf(cid:173)
`arction, or heart attack.
`[0004] A need exists to provide more accurate data relating
`to coronary lesions, e.g., size, shape, location, functional
`significance (e.g., whether the lesion impacts blood flow), etc.
`Patients suffering from chest pain and/or exhibiting symp(cid:173)
`toms of coronary artery disease may be subjected to one or
`more tests that may provide some indirect evidence relating to
`coronary lesions. For example, noninvasive tests may include
`electrocardiograms, biomarker evaluation from blood tests,
`treadmill tests, echocardiography, single positron emission
`computed tomography (SPECT), and positron emission
`tomography (PET). These noninvasive tests, however, typi(cid:173)
`cally do not provide a direct assessment of coronary lesions or
`assess blood flow rates. The noninvasive tests may provide
`indirect evidence of coronary lesions by looking for changes
`in electrical activity of the heart (e.g., using electrocardio(cid:173)
`graphy (ECG)), motion of the myocardium (e.g., using stress
`echocardiography ), perfusion of the myocardium (e.g., using
`PET or SPECT), or metabolic changes (e.g., using biomark(cid:173)
`ers).
`[0005] For example, anatomic data may be obtained non(cid:173)
`invasively using coronary computed tomographic angiogra(cid:173)
`phy (CCTA). CCTA may be used for imaging of patients with
`chest pain and involves using computed tomography (CT)
`technology to image the heart and the coronary arteries fol(cid:173)
`lowing an intravenous infusion of a contrast agent. However,
`CCTA also cannot provide direct information on the func(cid:173)
`tional significance of coronary lesions, e.g., whether the
`lesions affect blood flow. In addition, since CCTA is purely a
`diagnostic test, it cannot be used to predict changes in coro(cid:173)
`nary blood flow, pressure, or myocardial perfusion under
`other physiologic states, e.g., exercise, nor can it be used to
`predict outcomes of interventions.
`
`[0006] Thus, patients may also require an invasive test,
`such as diagnostic cardiac catheterization, to visualize coro(cid:173)
`nary lesions. Diagnostic cardiac catheterization may include
`performing conventional coronary angiography (CCA) to
`gather anatomic data on coronary lesions by providing a
`doctor with an image of the size and shape of the arteries.
`CCA, however, does not provide data for assessing the func(cid:173)
`tional significance of coronary lesions. For example, a doctor
`may not be able to diagnose whether a coronary lesion is
`harmful without determining whether the lesion is function(cid:173)
`ally significant. Thus, CCA has led to what has been referred
`to as an "oculostenotic reflex" of some interventional cardi(cid:173)
`ologists to insert a stent for every lesion found with CCA
`regardless of whether the lesion is functionally significant. As
`a result, CCA may lead to unnecessary operations on the
`patient, which may pose added risks to patients and may
`result in unnecessary heath care costs for patients.
`[0007] During diagnostic cardiac catheterization, the func(cid:173)
`tional significance of a coronary lesion may be assessed inva(cid:173)
`sively by measuring the fractional flow reserve (FFR) of an
`observed lesion. FFR is defined as the ratio of the mean blood
`pressure downstream of a lesion divided by the mean blood
`pressure upstream from the lesion, e.g., the aortic pressure,
`under conditions of increased coronary blood flow, e.g.,
`induced by intravenous administration of adenosine. The
`blood pressures may be measured by inserting a pressure wire
`into the patient. Thus, the decision to treat a lesion based on
`the determined FFR may be made after the initial cost and risk
`of diagnostic cardiac catheterization has already been
`incurred.
`[0008] Thus, a need exists for a method for assessing coro(cid:173)
`nary anatomy, myocardial perfusion, and coronary artery
`flow noninvasively. Such a method and system may benefit
`cardiologists who diagnose and plan treatments for patients
`with suspected coronary artery disease. In addition, a need
`exists for a method to predict coronary artery flow and myo(cid:173)
`cardial perfusion under conditions that cannot be directly
`measured, e.g., exercise, and to predict outcomes of medical,
`interventional, and surgical treatments on coronary artery
`blood flow and myocardial perfusion.
`[0009]
`It is to be understood that both the foregoing general
`description and the following detailed description are exem(cid:173)
`plary and explanatory only and are not restrictive of the dis(cid:173)
`closure.
`
`SUMMARY
`
`[0010]
`In accordance with an embodiment, a system for
`determining cardiovascular information for a patient includes
`at least one computer system configured to receive patient(cid:173)
`specific data regarding a geometry of the patient's heart and
`create a three-dimensional model representing at least a por(cid:173)
`tion of the patient's heart based on the patient-specific data.
`The at least one computer system is further configured to
`create a physics-based model relating to a blood flow charac(cid:173)
`teristic of the patient's heart and determine a fractional flow
`reserve within the patient's heart based on the three-dimen(cid:173)
`sional model and the physics-based model.
`[0011]
`In accordance with another embodiment, a method
`for determining patient-specific cardiovascular information
`using at least one computer system includes inputting into the
`at least one computer system patient -specific data regarding a
`geometry of the patient's heart, and creating, using the at least
`one computer system, a three-dimensional model represent(cid:173)
`ing at least a portion of the patient's heart based on the
`
`CATHWORKS EXHIBIT 1008
`Page 33 of 65
`
`
`
`US 2012/0059246 AI
`
`Mar. 8, 2012
`
`2
`
`patient-specific data. The method further includes creating,
`using the at least one computer system, a physics-based
`model relating to a blood flow characteristic of the patient's
`heart, and determining, using the at least one computer sys(cid:173)
`tem, a fractional flow reserve within the patient's heart based
`on the three-dimensional model and the physics-based
`model.
`[0012]
`In accordance with another embodiment, a non(cid:173)
`transitory computer readable medium for use on at least one
`computer system containing computer-executable program(cid:173)
`ming instructions for performing a method for determining
`patient-specific cardiovascular information is provided. The
`method includes receiving patient-specific data regarding a
`geometry of the patient's heart and creating a three-dimen(cid:173)
`sional model repres