throbber
111111
`
`1111111111111111111111111111111111111111111111111111111111111
`US009613186B2
`
`c12) United States Patent
`Fonte
`
`(10) Patent No.:
`(45) Date of Patent:
`
`US 9,613,186 B2
`*Apr. 4, 2017
`
`(54) SYSTEMS AND METHODS FOR
`DETERMINING BLOOD FLOW
`CHARACTERISTICS USING FLOW RATIO
`
`(71) Applicant: HeartFlow, Inc., Redwood City, CA
`(US)
`
`(72)
`
`Inventor: Timothy A. Fonte, San Francisco, CA
`(US)
`
`(73) Assignee: HeartFlow, Inc., Redwood City, CA
`(US)
`
`( *) Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`
`This patent is subject to a terminal dis(cid:173)
`claimer.
`
`(21) Appl. No.: 15/055,081
`
`(22) Filed:
`
`Feb. 26, 2016
`
`(65)
`
`Prior Publication Data
`
`US 2016/0180055 Al
`
`Jun. 23, 2016
`
`Related U.S. Application Data
`
`(63) Continuation of application No. 14/803,722, filed on
`Jul. 20, 2015, now Pat. No. 9,339,200, which is a
`continuation of application No. 14/323,634, filed on
`Jul. 3, 2014, now Pat. No. 9,087,147.
`
`(60) Provisional application No. 61/973,091, filed on Mar.
`31, 2014.
`
`(51)
`
`(2011.01)
`(2011.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2011.01)
`(2006.01)
`(2006.01)
`
`Int. Cl.
`G06F 19100
`G06F 19110
`A61B 51103
`A61B 51026
`A61B 5102
`G06F 17150
`G06F 17110
`A61B 51029
`A61B 51107
`G06T 19100
`A61B 5/00
`A61B 5/021
`(52) U.S. Cl.
`CPC ...... G06F 1913437 (2013.01); A61B 5102007
`(2013.01); A61B 51029 (2013.01); A61B
`511073 (2013.01); A61B 517275 (2013.01);
`A61B 517278 (2013.01); G06F 17110
`(2013.01); G06F 1715009 (2013.01); G06T
`19100 (2013.01); A61B 5/0037 (2013.01);
`A61B 5/0044 (2013.01); A61B 5/021
`(2013.01); A61B 5/026 (2013.01); A61B
`5/02028 (2013.01); G06T 2210/41 (2013.01)
`(58) Field of Classification Search
`None
`See application file for complete search history.
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`
`5/2001 Taylor
`6,236,878 B1
`4/2012 Taylor
`8,157,742 B2
`1112012 Taylor
`8,315,812 B2
`5/2014 Taylor
`8,734,356 B2
`2009/0299349 A1
`12/2009 Kubota
`112010 Spilker
`2010/0017171 A1
`9/2010 Taylor
`2010/0241404 A1
`2012/0041318 A1
`2/2012 Taylor eta!.
`2/2012 Taylor eta!.
`2012/0041319 A1
`2012/0041323 A1 * 2/2012 Taylor .
`
`2013/0246034 A1
`2014/0073976 A1
`2014/0073977 A1
`
`9/2013 Sharma et al.
`3/2014 Fonte
`3/2014 Grady
`
`A61B 5/02007
`600/508
`
`OTHER PUBLICATIONS
`
`U.S. Appl. No. 611210,401 "Patent-Specific Hemodynamics of the
`Cardiovascular System", filed Mar. 17, 2009.
`U.S. Appl. No. 61/973,091, entitled "Systems and Methods for
`Determining Blood Flow Characteristics Using Flow Ratio", filed
`Mar. 31, 2014.
`U.S. Appl. No. 61/700,213, entitled "Systems and Methods for
`Estimating Blood Flow Characteristics From Vessel Geometry and
`Physiology", filed Sep. 12, 2012.
`U.S. Appl. No. 61/793,673, entitled "Estimation of Ischemia and
`Blood Flow Metrics From Patient-Specific Anatomy and Charac(cid:173)
`teristics", filed Mar. 15, 2013.
`Jerry T. Wong, et a!.; "Determination of Fractional Flow Reserve
`(FFR) Based on Scaling Laws: a Simulation Study", Physics in
`Medicine and Biology, 53 (2008) pp. 3995-4011.
`Pijls, Nico HJ, and Bernard De Bruyne, "Validation of fractional
`flow reserve in animals." Coronary pressure. Springer Netherlands,
`2000. 131-152.
`International Search Report and Written Opinion for corresponding
`application No. PCT/US2015/023080, dated Jul. 7, 2015, (11
`pages).
`Eiman, J., "Fractional Flow Reserve Measurement", Medscape Dec.
`2, 2013.
`* cited by examiner
`
`Primary Examiner- Lori A Claw
`(74) Attorney, Agent, or Firm- Bookoff McAndrews,
`PLLC
`
`ABSTRACT
`(57)
`Embodiments include a system for determining cardiovas(cid:173)
`cular information for a patient which may include at least
`one computer system configured to receive patient-specific
`data regarding a geometry of an anatomical structure of a
`patient; create a model representing at least a portion of the
`anatomical structure; create a physics-based model relating
`to a blood flow characteristic within the anatomical struc(cid:173)
`ture; determine a first blood flow rate at at least one point of
`interest in the model; modifY the model; determine a second
`blood flow rate at a point in the modified model correspond(cid:173)
`ing to the at least one point of interest in the model; and
`determine a fractional flow reserve value as a ratio of the
`second blood flow rate to the first blood flow rate.
`
`20 Claims, 35 Drawing Sheets
`
`CATHWORKS EXHIBIT 1001
`Page 1 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'.0'-C
`rJl
`d
`
`Ul
`(.H
`0 .....
`....
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`54
`
`I
`t.
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`7J).
`
`e •
`
`Flow Reserve (cFFR}
`Computed Fractional
`
`Con1puter
`
`,___r--1 0
`
`Patient·spedfic data
`
`Flow & Pressure
`Simulated Blood
`
`FIG. 1A
`
`40
`
`frorn !::xperirnent>:l! d<J.t>:-1
`Physiology laws deduced
`
`............... ;=;~~:::::~f:: .·?:·~ ......... j
`
`<i•: ... ,,, ...• ,, .. .:;=t:t?:L:·f.-.-/'20
`•.{:]" _/l"
`¥-'-
`
`tt~?};":{~~~ ~
`
`;
`
`·:-:
`
`t···=·=·=·•·•·•:):
`
`V•v=O
`
`30
`\
`
`-~
`
`pv,.1 +pv-Vv= -Vp+ V•r
`··=·;:,::,,_. -.. -•. --.~,-----..• -. ----.........
`·==··
`
`of Blood Flow
`Governing Equations
`
`~~rg:?~/
`
`•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•.•)
`
`·· ...
`
`··==··.
`
`i
`!''···· ...•
`
`CATHWORKS EXHIBIT 1001
`Page 2 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`N
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`HYPEREMIC CORONARY PERFUSION PRESSURE
`
`(% of normal)
`
`FIG. 18
`
`~
`
`AI
`
`S
`
`5
`
`1
`
`t
`
`5
`
`~
`
`S
`
`1
`
`~
`
`Pa
`
`Pd
`
`:r:
`0..
`UJ
`a:::
`w
`2
`0
`2-·
`
`>(cid:173)
`
`~~
`
`100
`=0
`Pa Pd~ Pv
`
`70
`
`C7
`
`0 1 0 20 30 40 50 60 70 80 90 1 00
`0 1
`10
`20
`30
`00 >-* 40
`().!: 50
`0::::0
`o E 60
`<(ro
`__~....--70
`ro
`_J
`0
`80
`0
`0
`90
`u..
`100
`
`Qs ------?'(
`
`~
`~=~~--
`
`fOo ~~~
`~0
`
`ON----------------~
`
`~ _J
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`Pa
`=-
`Pd
`
`(Pa-Pv)
`(Pd-Pv}
`
`=
`
`R
`
`{Pa-Pv)
`
`R
`
`(Pd-Pv}
`
`FFR=-=
`
`ON
`Q
`
`CATHWORKS EXHIBIT 1001
`Page 3 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`
`(.H
`
`.....
`rFJ =- ('D
`
`('D
`
`0 ....
`~ ...
`'e :-:
`>
`
`N
`
`-....l
`
`FIG. 2
`
`500
`
`Provide Patient-Specific Treatment Planning
`
`V4oo
`
`Output Results
`
`Perform Computational Analysis And
`
`i
`
`~300
`
`Determine Boundary Conditions
`Prepare Model For Analysis And
`
`_i_
`
`~200
`
`........................
`
`Based On Obtained Anatomical Data
`
`Create Three-Dim~nsional Model
`
`i
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`100
`
`Anatomical Data
`
`Obtain And Preprocess Patient-Specific
`
`CATHWORKS EXHIBIT 1001
`Page 4 of 77
`
`

`

`0'1 = N
`
`""""' 00
`...
`""""' w
`0'1
`.. :...c
`rJl
`d
`
`Ul
`(.H
`0 .....
`....
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ....
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`400
`~
`
`FIG. 3
`
`1
`
`VERIFiCATiON
`INDEPENDENT
`
`FINALIZE
`
`SOLUTION
`VERIFY
`
`4j
`! I HYPEREMIA
`
`FLOW
`
`SIMULATION ~ RESULTS ~ REPORT~ OF FINAL RESULTS
`
`FLOW SOLUTION
`
`--------------------~462 ______________________ <404------------------~4-o6--------------------------~4os ________________________________________________________________________________ _
`
`,
`~300
`
`I--
`
`SOLID MODEL
`
`SMOOTH
`
`OUTPUT AND
`
`r+
`
`v,ERIFY MESH 1
`
`\314
`
`GENERATE
`\312
`
`coN81TIONS FOR
`SET BOUNDARY
`
`~o~6~T~~~ .., FiNAL MESH -. A~~~g~~g~;y
`
`'RIM MODEL ..,
`.,.
`
`<306
`
`SECTIONAL AREA
`CALCULATE cRoss-
`.------J.-3_04_~
`
`~~~~~~g~
`PREPARE
`
`( 310
`
`SEGMENTATION
`
`ARTIFACTS
`
`CORRECT IF NEEDED
`
`AND MM~UALLY ~ MISREGISTRA: ION _.., REVIEW OF
`~EVIEW ~UMEN
`
`INDEPENDENT
`
`CORRECT STEI~TS,
`
`4J MANUALLY CORRECT~ SEGMENT LUMEN _...,
`
`'
`
`IF NEEDED
`
`AUTOMATICALLY
`
`REV.IE~'V PLAQUE AND
`
`(260
`
`\258
`
`~256
`
`\254
`
`(252
`
`\250
`
`•
`
`"\. 200
`
`AUTOMATiCALLY I I AUTOMATICALLY I
`
`<248
`
`<246
`
`AND MANUALLY ~ DETECT PLAQUE 1---i SEGMENT PLAQUE
`
`CORRECT iF NEEDED
`REVIEW CENTERLINES
`
`,244
`
`s242
`
`f-1>
`
`1 ~ CENTERUNES
`---"1
`L.J MYOCARDIAL w. FIND ARTERY
`AUTOMATICALLY
`
`fv1ASS
`
`CALCUlATE
`40
`
`52
`
`rvlANUALLY CORRECT r-
`SEGMENTATION AND
`
`... RE.iiiE\iiTA~~~or~ic"""
`
`IF NEEDED
`
`ARTERY AND HEA~~·\..,.I~U~LrAUTO-~itfi~~LLY.. s·EL.ECT .. Cg~6-N·A-RY
`
`ARTERY ROOT
`
`POINTS
`
`MYOCARDIUM
`
`SEGMENT
`
`SEGMENT AORTA
`
`OF CT DATA
`
`SEGMENTATION
`
`CATHWORKS EXHIBIT 1001
`Page 5 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 5 of 35
`
`US 9,613,186 B2
`
`CATHWORKS EXHIBIT 1001
`Page 6 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 6 of 35
`
`US 9,613,186 B2
`
`CATHWORKS EXHIBIT 1001
`Page 7 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 7 of 35
`
`US 9,613,186 B2
`
`CATHWORKS EXHIBIT 1001
`Page 8 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 8 of 35
`
`US 9,613,186 B2
`
`:·-·
`
`r;.LJ ~ ~ ;:; •
`
`~~::::::l::,:,:,:,:,:,:::::::::;:;:,:,:,::::::::;::::i:i:::i:illi6
`
`ro
`E
`~
`(!)
`0.. >
`I
`E
`:J
`E ·-X
`
`(YJ
`~
`
`Q
`~
`•
`(!)
`ii:
`
`CATHWORKS EXHIBIT 1001
`Page 9 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 9 of 35
`
`US 9,613,186 B2
`
`.}: -:;::
`
`li,.,·
`
`..
`
`::::·
`
`~~7~1~ " ::.·: .. •.
`
`CATHWORKS EXHIBIT 1001
`Page 10 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 10 of 35
`
`US 9,613,186 B2
`
`--
`
`0
`1.{)
`C")
`
`CATHWORKS EXHIBIT 1001
`Page 11 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 11 of 35
`
`US 9,613,186 B2
`
`CATHWORKS EXHIBIT 1001
`Page 12 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 12 of 35
`
`US 9,613,186 B2
`
`u:~::~~::~~~~1:<:;···~,~iy-····cr·····~{:····y········ (.j
`
`11r··-r··l ~~~··> ,x,
`
`•('
`: f
`
`•.••
`
`:?~~:
`
`~':.'
`
`~-§
`
`~<::
`: ~1
`~ >k~
`~>·i·~~:-.-. >··-..~..
`.-~ >::::<
`,._.. /'~~~·:>··~·-·.' ,•'
`.,.
`/: ('
`
`,_-~·.:.
`
`;:
`
`o m ~ •
`
`~
`
`.-.~.
`
`:
`
`~ ~ •
`
`N
`
`f ~~(~}
`
`CATHWORKS EXHIBIT 1001
`Page 13 of 77
`
`

`

`0'1 = N
`
`""""' 00
`"'
`""""' w
`0..,
`\C
`rJl
`d
`
`Ul
`(.H
`0 .....
`('D a ....
`rFJ =(cid:173)
`
`(.H
`
`0 ....
`
`N
`
`-....l
`
`~
`
`'e :-:
`>
`
`.j;o.
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`FIG. 23
`
`.·.·.·.· .. I
`
`0.95
`
`,. I
`
`54
`
`I
`
`RCA cfFR;;;; 0.80
`LCX cFFR = 0~72
`LAD cffR = 0.66
`
`HR=75
`BP=120/80
`Age= 64
`Patient Name
`
`CATHWORKS EXHIBIT 1001
`Page 14 of 77
`
`

`

`0'1 = N
`
`""""' 00
`...
`""""' w
`0'1
`.. :...c
`rJl
`d
`
`Ul
`(.H
`0 .....
`....
`....
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ....
`~ :-:
`
`N
`
`-....l
`
`24A
`
`FIG
`
`~641
`
`to the patient.
`flow and resistance conditions customized
`geometric model using population-derived
`Solve blood flow models in patient-specific
`
`:{~
`
`-
`
`6
`
`SOLUTION:
`
`30
`
`635.....----' physical conditions: hyperemia,
`Adapt model conditions based on
`
`exercise, medication, etc.
`
`\;.-
`
`relationship {R=R0~~)
`vessel sizes using population-derived
`individual arteries based on distal
`Distribute total coronary resistance to
`
`\:1
`
`634______...
`
`~;-.
`
`resistance from coronary flow and
`Calculate total resting coronary
`
`633.----.--blood pressure.
`
`....
`
`··.:;'
`
`632--------population-derived relationship
`
`{Q=Q.,Ma).
`
`ventricular mass data using
`Calculate resting coronary flow from
`
`\~.-·
`
`CONDITIONS: Calculate patient-specific ventricular
`
`mass from imaging data.
`
`631
`
`....
`
`-Distal coronary circulation.
`circulation.
`-Heart and aortic
`coronary geometry.
`-Flow in patient-specific
`models:
`Physics-based blood flow
`
`62~
`
`62
`
`MODELS: Generate patient-specific
`
`imaging data.
`coronary arteries from
`geometric model of
`
`621------
`
`~ = ~
`
`~
`~
`~
`•
`7J).
`
`e •
`
`600
`
`I
`
`610
`
`612
`
`.... ,
`f .............................................................................................................. ~
`
`\~I
`
`measurement.
`Patient's brachia I blood pressure
`
`of coronary arteries and heart.
`Patient's medical imaging data
`
`611
`INPUTS:
`
`CATHWORKS EXHIBIT 1001
`Page 15 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 15 of 35
`
`US 9,613,186 B2
`
`1300
`
`~
`
`1301
`r--------------------------------------~__J)
`BUILD A 3-D MODEL OF CORONARY ANATOMY FROM MEDICAL
`IMAGING DATA
`
`l
`
`COMPUTE BLOOD FLOW ('?")WITHIN THE 3-D MODEL
`(AN "ORIGINAL" MODEL)
`
`DETERMINE A BLOOD FLOW RATE AT A POINT OF INTEREST
`OR MUTIPLE POINTS OF INTEREST
`
`1302
`~
`
`1303
`
`I
`
`I
`: . ._ ___ ______ "!''Il _________ . . '
`I
`
`~--------------------------'--------------------------
`1 ;-l - - - - - - - - - - -L - - - - - - - - - - ._ I
`I
`OPTIONAL: DERIVE A REDUCED-ORDER rv10DEL FROM 3-D
`: I
`BLOOD FLOW RESULTS
`I
`I
`--------------------------~-------------------------· 1305
`~--------------i~~-------------~~
`ALTER GEOMETRY OF THE 3-D MODEL OR ALTER A CORRESPONDING
`REDUCED-ORDER MODEL PROXIMAL TO EACH POINT OF INTEREST
`SUCH THAT ANATOMIC RESTRICTIONS (E.G., STENOSIS) ARE
`REMOVED (E.G., CREATING A "REVISED" MODEL)
`
`CALCULATE BLOOD FLOW ("QN") AT EACH POINT OF INTEREST
`IN THE REVISED MODEL
`l
`DETERMINE FFR AS THE RATIO OF BLOOD FLOW RATE IN THE
`REVISED VS. ORIGINAL MODELS AT THE POINT(S) OF INTEREST:
`(Q/QN)
`
`......... ..._..,1306
`
`"-'1307
`
`FIG. 248
`
`CATHWORKS EXHIBIT 1001
`Page 16 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 16 of 35
`
`US 9,613,186 B2
`
`CATHWORKS EXHIBIT 1001
`Page 17 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`-....l
`....
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`FIG. 240
`
`SERVER SYSTEMS
`
`DEVICES
`STORAGE
`
`PROCESSING
`
`DEVICES
`
`2106
`
`2100
`
`NETWORK
`ELECTRONIC
`
`PHYSICIAN
`
`2102
`
`PROVIDER
`THIRD PARTY
`
`2104
`
`PHYSICiAN
`
`2102
`
`PROViDER
`THIRD PARTY
`
`2104
`
`CATHWORKS EXHIBIT 1001
`Page 18 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`QO
`....
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`~------------------'
`
`FIG. 24E
`
`FLO\N CHARACTERISTICS, TO STORAGE DEVICE
`
`ALGORITHM, INCLUDiNG PREDICTED BLOOD
`
`SAVE RESULTS OF MACHINE LEARNING
`
`!
`
`-----1
`
`USE SAVED RESULTS OF MACHINE LEARNING
`
`PATiENT'S BLOOD FLOVV CHARACTERISTICS
`ALGORITHM TO PRODUCE ESTiMATES OF
`
`FOR POINTS IN THE PATIENT-SPECIFIC
`
`GEOMETRIC MODEL
`
`!
`
`PHYSIOLOGiCAL PARAMETERS USED It~ THE
`MODEL, CREATE A FEATURE VECTOR OF THE
`FOR POINTS IN THE PATiENT'S GEOMETRIC
`
`TPAit~ING MODE
`
`1
`
`'
`j------------------:
`
`MEASURED OR ESTIMATED PHYSiOLOGICAL
`GEOMETRIC MODEL, AND (8) ONE OR MORE
`iN DIGITAL FORMAT: (A) PATIENT-SPECIFIC
`FOR PATIENT DESIRING ANALYSIS, ACQUIRE
`
`PARAMETERS
`
`' , ____________________ J
`
`'
`
`ALGORITHM, INCLUDING FEATURE WEIGHTS,
`
`SAVE RESULTS OF MACHINE LEARNING
`
`TO STORAGE DEVICE
`
`!
`
`_,.,
`
`AT POINTS FROM THE FEATURE VECTORS
`PREDICT BLOOD FLOW CHARACTERISTiCS
`TRAIN A MACHINE LEARNING ALGORITHM TO
`
`!
`
`VECTOR WiTH THE VALUES OF BLOOD FLOW
`PARAMETERS AND ASSOCIATE THE FEATURE
`FEATURE VECTOR OF THE PHYSIOLOGICAL
`FOR POINTS IN THE MODEL, CREATE A
`
`CHARACTERISTICS
`
`!
`
`320
`
`VALUES OF BLOOD FLO'v'v CHARACTERISTICS
`
`PHYSIOLOGICAL PARAMETERS, AND (C)
`
`SPECIFIC GEOMETRIC MODEL, (B) ONE OR
`ACQUIRE, IN DIGITAL FORMAT: (A) PATIENT-
`
`MORE MEASURED OR ESTIMATED
`
`' '
`' ' : 320
`
`CATHWORKS EXHIBIT 1001
`Page 19 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 19 of 35
`
`US 9,613,186 B2
`
`"¢
`
`· Ati:~:j:;:;~;l::B d ;r.;
`
`CATHWORKS EXHIBIT 1001
`Page 20 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`0
`N
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`7J).
`
`e •
`
`FIG. 26
`
`0
`
`25
`
`D UNTREATED TREATED I CHANGE I
`
`I
`I
`I
`+19%
`I
`+19%
`II +17%
`I
`II +11 % I
`
`II +9%
`+7%
`
`1.5
`2.6
`
`3,5
`4.2
`
`6.2
`
`8.4
`(CC/S)
`
`II
`II
`II
`II
`II
`7.6 uuuuull
`{CC/S)
`
`1.3
`2.4
`
`2,9
`3.5
`
`5.3
`
`LCX2 II
`II
`LCX1
`LAD4 II
`MEAN VELOCITY(CM/S) LAD3 II
`LAD2 I[
`lr
`LAD1
`
`. 50
`
`175
`
`100
`
`/520
`
`CATHWORKS EXHIBIT 1001
`Page 21 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'-0\,C
`rJl
`d
`
`Ul
`(.H
`0 .....
`N ....
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`700
`
`I
`
`order modeL
`<.:onditions for reduced
`simulation to spe::::ify(cid:173)
`inl'crmation from 3D
`f:Ar:3ct function>'!!
`
`702
`
`I
`
`703
`
`flow modeL
`·order blood
`Ot1/1D n:~duce<i
`
`j_
`
`FIG. 27
`
`<~NN•••••••••••••••••••••••••••••••WmNNmNN!
`
`treatment options,
`model and iterate
`n~duc;:::d t.~rder
`t<--1akz: changes to
`
`705
`(
`
`704
`(
`
`modeL
`mode! to 3d
`reduced order
`re:wfts from
`Extrapolate
`
`~!"
`
`'f'
`
`simulation.
`and blood flow
`ge-ornetrk n-~ode!
`;3D patient spe.dfk
`
`701 ;
`
`CATHWORKS EXHIBIT 1001
`Page 22 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`__ '..c
`rJl
`d
`
`Ul
`(.H
`0 .....
`N
`N
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ....
`~ :-:
`
`N
`
`-....l
`
`I ~~:~~~~~~,;~~~;:~,;o;~;,,~:~0~o,:~::~:tro:)~ rec,;•:eti ors:~r :Y:i:<dei segment~, baci-; to 3d ~ 722
`~ ;"~:B'·.·~~;· .. .,.
`I :~~~::b~:r~::(~~.:!~~~~ ~:::~~:,:,~::~~~;;:~de~)~~P:.:d~~;;,:~:. :t~~;~:;,~:~~~,m~lers, ~ 720
`i Cr-e~tr.:-u~~r ::1terf~:.:.e to:.: en ow 1t:t-erar..ti•.Jt"! \ ... :~th 3d ~f!t..."!det ~,;-~.:r~~re e·a:::h segrne!1t 5::;
`
`j--721
`.-. )_.. .-.;., ~.;; ».,. ::•.:::::·._.,.,.., ... ~ !..•~
`! <..-·~·-'-;.:. .-···it· .. -e o.-·>er ~.: ...... ::5 f'·wv rn,. . .,..;e:: ~·:...-.·i·;:-.. ; ... r y: ..... :; ... }t..!>l'"'"-;0,..5 -~ ... ). .... ~~ .;t.:.<~··"-.!Jot.;a; :.......
`l
`........................................................................................................................................................... ~2. ....................................................................................................................................................... ..
`
`.,..,.::.:-...•
`
`~.:;..:,..• ~ ... :::y :•...-.... :..;.~· ... o
`
`• v-... :. -:·
`
`:-.. -~
`
`FIG. 28
`
`............................................................................... ~:.:-............................................................................. .
`\. ............................................................................. : .............................................................................. •
`
`.. 1:•-..•v
`
`., ·~}
`
`i
`
`;'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:.:~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.
`
`718
`
`l depe-r.:doer.t resistanc:e-s tc· segn:.~nts ..
`! :<~;·-...·~tz::.-v:oz: (;.,.;,.t :··•/:~· ~· ...,v:-..:.-.. .... ..._,.._ ... .._-;.;;
`}~'...· o.-.'-:.-<1¢.<: ::....,-•• ~!:: -..."'~ .-•.-.<\'.:
`l '~"'i .. :., ,; . ._.>vw; '·""" "'~-'""'">'•< •<>b ,., ·w··>w· '""·~ ''·)~~' ·fl"""
`~--u~~-~:~~-~-.~~~;~;-;-~~~f-:~~;~~~;~~~~~-~-~~--~;-·;;.~~-;;~~;~;~-~~;;;~-;;j--~;;·;;~;;~;;;:;;~~-~;;.-~~~-------r-
`
`l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`
`L:::::~;~:~~:::: .................. ~······································
`
`....................................... ::.· ..................................... .
`
`· ··
`
`717 __j ~;~:,'-~~~~:~;.~~~~:~:~;~~::::•;.;'r::;:~~;~~~~;:;. b
`
`9
`
`71
`
`i :-,H,:·f.o•«<H:h•
`i
`. "''" ,;,, .. ~
`.
`l Create· :~edl:ced bfdef O··d b: 1-d bk>ot: fiOV·} :'1:ddet ~N~th r-:::..~st~H~:ct:s czic\,:l&t.·::=d f:·~-:.m: S-d L___
`;~~~~~~~~~~~~~~~~~~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::~:~::::::::::::::::::::::::::::::::::::::::::::::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i
`
`L!_'-~~::::~ ~re><s, L 716
`
`r_-_-__________ ___j··
`
`714~~~ r·;~:~~~;~i~~J~~~~---·········
`
`•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'•'·:······················; ... ·.···
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`710
`
`I
`
`713
`
`712
`
`711
`
`O$vkif; the :30 n>ode! ii"5tt.-: '$-egn:ent;: based on a~~~=to~nk. ~~:.~tures.
`
`··.:.·
`
`'f~ y~f)~/K: rn~ "f;:rytor / P;;.~·nte-)
`Perk:n)) 3D bk:od fk>v.:· ·$h·r:-:;~¢tk;:~ {l .e. rr~eU:od::; .7!-:> des<x~be:d h:
`.......................................................... :Jt .......................................................... .
`fro..-::m l:~!~gk:g d~ta:.
`Ge-n:::r3t?: p~tiertt<>f)B6fic ge<nn::t:·::. r:fOd~:l c::f ·ro:··onat+)t :.xrt~:~·.ie.>
`
`CATHWORKS EXHIBIT 1001
`Page 23 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`
`(.H
`N
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ....
`~ :-:
`
`N
`
`....:J
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`FIG. 29
`
`ON 30 MYOCARDIUM MODEL.
`DISPLAY PERFUSION RESULTS
`
`CALCULATE PERFUSION FROM EACH EPICARDIAL
`
`BRANCH INTO EACH SEGMENTED VOLUME.
`
`~ u-s 16
`
`!Sao2
`
`-
`
`)800
`
`EPICARDIAL ARTERIES UNDER REST, HYPEREMIA,
`
`SIMULATE BLOOD FLOW AND PRESSURE IN
`
`EXERCISE, OR OTHER CONDITIONS.
`
`VESSEL SIZE OF EACH EPICARDIAL BRANCH.
`SEGMENT MYOCARDIUM BASED ON THE DISTAL
`
`8
`
`l
`
`CREATE 3D MODEL OF EPICARDIAL
`
`CORONARY ARTERIES.
`
`s814
`
`I
`
`CREATE 3D MODEL OF MYOCARDIAL TISSUE.
`
`r8'l0
`
`I
`
`BLOOD PRESSURE, HEART RATE, ETC.
`
`ADDITIONAL PHYSIOLOGIC DATA,
`
`OF CORONARY ARTERIES AND HEART.
`PATiENT'S MEDICAL IMAGiNG DATA
`
`INPUTS:
`
`804
`
`803
`
`CATHWORKS EXHIBIT 1001
`Page 24 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'.0'-C
`rJl
`d
`
`Ul
`(.H
`0 .....
`
`.j;o.
`N
`.....
`rFJ =- ('D
`
`('D
`
`0 ....
`
`N
`
`-....l
`
`~
`
`'e :-:
`>
`
`.j;o.
`
`~ = ~
`
`~
`~
`~
`•
`7J).
`
`e •
`
`850
`
`845
`
`832
`
`)
`,.830
`
`CORONARY VESSELS IN CT DATA.
`
`USECENTERUNESFROM
`
`,...._
`
`-
`
`•
`
`·······················································-·······················································
`
`VESSEL SIZE OF E.A.CH EPICARDIAL BRA~lCH.
`SEGMENT MYOCARDIUM BASED ON THE DISTAL
`
`1"'""835
`
`CREATE 3D MODEL OF MYOCARDIAL TISSUE.
`
`-..__,833
`
`OF CORONARY ARTERIES AND HEART
`
`PATIENT'S MEDICAL IMAGING DATA
`
`iNPUTS:
`
`FURTHER SEGMENT THE MYOCARDIUM BASED ~0 SEGMENTED VOLUME.
`LOCATION WITHIN 3D
`VESSELS BASED ON THEIR
`USE ALGORITHM TO BRANCH
`
`FIG. 30
`
`REPEAT UNTIL THE SMALLEST DESIRED BRANCH
`
`(E.G. DOWN TO RESULATION OF IMAGING DATA)
`OR MYOCARDIAL VOLUME SIZE IS OBTAINED
`
`'--
`
`~
`
`ON THE NEW BRANCH VESSELS.
`
`-
`
`~
`
`CORONARY TREE. ASSIGN BRANCH SiZES BASED
`CREATE NEXT GENERATION OF BRANCHES IN THE
`
`ON MORPHOMETRIC ALGORITHMS AND DATA
`
`855 ,.....
`
`CATHWORKS EXHIBIT 1001
`Page 25 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 25 of 35
`
`US 9,613,186 B2
`
`<.0
`~~
`
`<.0
`&5~
`
`,.....
`(¥)
`•
`(!)
`
`u:
`
`CATHWORKS EXHIBIT 1001
`Page 26 of 77
`
`

`

`0'1 = N
`
`"""" 00
`'"
`"""" w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`0\
`N
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ....
`~ :-:
`
`N
`
`-....l
`
`1G,32
`
`94
`
`892
`
`890
`
`I
`
`SiMULATION AND ITERATE
`
`CONDITIONS. RERUN
`MODEL BOUNDARY
`UPDATE BLOOD FLOW
`
`UNTIL SIMULATED AND
`
`PERFUSION MATCH.
`
`MEASURED
`
`l
`
`MEASURED PERFUSION.
`
`COMPARE SIMULATED
`
`PERFUSION WITH
`
`!
`
`DATA TO 3D SEGMENTED
`REGISTER PERFUSION
`
`MYOCARDIUM. IF
`
`NECESSARY
`
`~
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`872
`
`DATA (le CT,PET,SPECT)
`CARDIAC PERFUSION
`
`~
`
`870
`
`(
`
`875
`
`~888
`
`CALCULATE PERFUSION FROM EACH EPICARDiAL
`
`BRANCH INTO EACH SEGMENTAL VOLUME.
`
`I
`
`886
`{
`
`r+
`
`BASED ON THE DISTAL 1-
`SEGMENT MYOCARDIUM
`
`EPICARDIAL BRANCH.
`L...., VESSEL SIZE OF EACH
`
`OR OTHER CONDITIONS.
`HYPEREMIC, EXERCISE,
`
`EPICARDIAL ARTERIES
`
`AND PRESSURE IN
`
`SIMULATE BLOOD FLOW
`
`~2~
`
`-UNDER REST
`1
`
`r+
`
`MYOCARDIAL TISSUE.
`CREATE 3D MODEL OF
`
`8J4
`
`HEART RATE, ETC.
`BLOOD PRESSURE,
`PSYSIOLOGIC DATA,
`
`ADDITIONAL
`
`(
`
`874
`
`EPICARDIAL CORONARY 1--
`CREATE 3D MODEL OF
`
`m~
`
`ARTERIES.
`
`I
`I
`
`!
`
`CORONARY ARTERIES
`
`IMAGING DATA OF
`PATIENT'S MEDICAL
`
`AND HEART
`
`INPUTS:
`
`(
`
`873
`
`CATHWORKS EXHIBIT 1001
`Page 27 of 77
`
`

`

`0'1 = N
`
`""""' 00
`...
`""""' w
`0'1
`.. :...c
`rJl
`d
`
`Ul
`(.H
`0 .....
`....:J
`N
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`....:J
`
`~ = ~
`
`~
`~
`~
`•
`7J).
`
`e •
`
`FIG. 34
`
`838
`
`_pl~Ktttr~ rn:pturt~912
`
`-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·
`
`c .................... , _p<:~rfnston dtti:' t;;y
`hi1~h ri:~J.>. of hws;'
`'it{~gmmr!. ·with
`\\4.v<x: ardi~l
`
`.:,. .. ·
`
`910
`l t~i:'.<'lthJ!:l
`
`pl.aqu.~?
`
`'>.hlh~en~bk•
`
`837
`
`846
`
`I
`
`FIG. 33
`
`P~0~ue
`
`W'a!! shear stress
`
`908
`
`904
`Flow induced fo
`
`~
`
`902
`Vesse!w'aH
`
`..
`
`'·"·· ....
`
`CATHWORKS EXHIBIT 1001
`Page 28 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`,_.'..c
`rJl
`d
`
`Ul
`(.H
`0 .....
`QO
`N
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`954
`
`HEMODYNAMIC SIMULATION TO DETERMINE POTENTIAL REDUCTION IN PERFUSiON DUE TO VULNEPA.BLE PLAQUE,
`GALCUU\TED MYOCARDIAL PERFUSION RISK INDEX BASED ON MYOCARDIAL VOLUME RISK INDEX COMBINED VVITH 3D
`
`...
`
`FIG. 35
`
`CALCULATE MYOCARDIAL VOLUME RISK INDEX BASED ON PLAQUE VULNERABILITY INDEX COMBINED WITH 3D ~
`
`L.._ HEMODYNAMIC SIMULATION TO DETERMINE WHERE RUPTURED PLAQUE COULD FLOW AND GEOMETRIC ANALYSIS
`
`OF VESSEL AND MYOCARDIAL SIZE OF AFFECTED AREAS,
`
`~
`~0
`
`CALCULATE PLAQUE RUPTURE VULNERABILITY INDEX BASED ON TOTAL STRESS, STRESS FREQUENCY, STRESS
`
`DIRECTION, AND/OR PLAQUE STRENGTHi PROPERTIES .
`
`...
`
`r---
`
`.. COMPUTE STRESS ON PLAQUE DUE TO HEMODYNAMiC
`
`FORCES AND CARDIAC MOTION-INDUCED STRAIN.
`
`9~4
`
`~4
`
`STRESS/ STRAIN IN VESSEL AND PLAQUE.
`VESSEL WALL MODEL FOR COMPUTING
`
`I ...
`
`,-.j38
`
`1--COMPOSITION AND PROPERTIES FROM IMAGING DATA.
`
`PLAQUE MODEL FOR DETERMINING PLAQUE
`
`,---$36
`
`._ COMPUTE ELONGATION, BONDING, AND TORSION OF
`
`VESSEL AND PLAQUE DUE TO CARDIAC MOTION,
`
`VESSEL DEFORMATION FROM 40 IMAGiNG DATA ..
`GEOMETRIC ANALYSIS MODEL TO QUN~TIFY
`
`J!_40
`
`• PLAQUE LUMINAL SURFACE DUE TO HEMODYNAMIC
`COMPUTE PRESSURE AND SHEAR STRESS ACTING ON
`BIOMECHA.NICAL ANALYSIS:
`
`FORCES DURING REST. EXERCISE ,ETC.
`
`)E-4
`
`~22
`~24 ~
`20
`
`BLOOD PRESSURE, HEART RATE, ETC.
`
`ADDITIONAL PHYSIOLOGIC DATA.
`
`PATIH~T'S MEDICAL IMAGING DATA OF ~23
`
`INPUTS: CORONARY ARTERIES AND HEART.
`
`BLOOD VELOCITY AND PRESSURE FIELDS,
`HEMODYNAMIC MODEL FOR COMPUTING
`
`r-234
`
`,..J'
`932
`
`~
`
`e lv10DELS:
`
`.--
`
`CATHWORKS EXHIBIT 1001
`Page 29 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 29 of 35
`
`US 9,613,186 B2
`
`+
`~I
`II
`I c
`J
`
`~,~
`1
`II
`
`1
`
`II ~
`
`ll1
`I:
`l:M I
`~~~~
`~~-"
`
`~::::::::::::::::::::::::::::::::::::::::::::::::::
`
`CATHWORKS EXHIBIT 1001
`Page 30 of 77
`
`

`

`U.S. Patent
`
`Apr. 4, 2017
`
`Sheet 30 of 35
`
`US 9,613,186 B2
`
`~
`;»
`'t::::
`$:(
`13
`. ...,
`.e
`.:0.
`-il:i
`Q
`
`·~
`e:;
`~
`'~
`
`!!:'
`i!.)
`-=
`. .:! <
`~·"':"·
`, ... , !!
`t;
`Z,..Q
`1:
`=i! s
`.3~ i s~
`
`·~·
`
`i
`...
`a-
`·~· ~ i~
`~;
`a.u
`
`~
`~
`
`t!l>
`-~
`-i
`Jl
`@
`.g ~
`"(
`roV'
`~.
`i e~ e~
`0~ !l~
`..so.
`a;. Q.
`
`€!"
`~ ~
`g
`i1
`:c -~·
`.• S~Pi:
`01:. 0
`
`tl)
`-~
`-~
`
`~
`;»
`~
`~
`iii
`li
`'0
`E: :~
`i ~
`'"fl
`m w 0
`
`0.
`
`!
`-~
`:e:
`1i
`a
`~ ;g
`~ g ~
`~
`uo
`
`'a
`.:1
`
`0
`
`CATHWORKS EXHIBIT 1001
`Page 31 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`8
`
`'
`
`FIG.
`
`"--1041
`
`to the patient.
`flow and resistance conditions customized
`geometric model using population-derived
`Solve blood flow models in patient-specific
`
`\~/
`
`.../'
`
`104
`
`SOLUTION:
`
`Ul
`(.H
`0 .....
`....
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`(.H
`
`0 ....
`~ ....
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`··.:~ ..
`
`,············································································································~
`
`1000 I
`
`·····---~-?-~-~--_
`
`measurement
`I Patient's brachial blood pressure
`
`35
`
`-'""'
`
`1030
`
`,....._
`
`34
`
`h
`
`etc.
`medication, baroreceptor response,
`physical conditions: stress, exercise,
`Adapt model conditions based on
`
`,;,
`relationship (R=R0d~)
`vessel sizes using population-derived
`individual arteries based on distal
`Distribute total cerebral resistance to
`
`~ ·V
`
`33
`
`1-----
`..
`
`blood pressure.
`resistance from cerebral flow and
`Calculate total resting cerebral
`
`032
`
`,-
`
`\.;::
`
`(Q=Q,W).
`population-derived relationship
`brain/head volume data using
`Calculate resting cerebral flow from
`
`·),
`
`031
`
`head volume from imaging data.
`
`CONDITIONS: Calculate patient-specific brain and/or r
`
`...
`
`circulation.
`-Distal Intra/Extra cranial
`circulation.
`-Heart and aortic
`1022..__/"' geometry.
`
`-Flow in patient-specific
`models:
`Physics-based blood flow
`
`1020
`
`1 021--../"' arteries from imaging data.
`MODELS:
`
`geometric model of
`Generate patient-specific
`
`··.v
`
`1 011--...r--cerebral arteries, and brain.
`of aorta, carotid, vertebral,
`INPUTS:
`Patient's medical imaging data
`
`1010
`
`CATHWORKS EXHIBIT 1001
`Page 32 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`N
`(.H
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`'" ...
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`39
`
`~ 1066 -
`
`1064
`
`~
`
`DISPLAY PERFUSION RESULTS ON 3D
`
`BRAIN MODEL.
`
`~
`
`CALCULATE PERFUSION FROM EACH CEREBRAL
`
`BRANCH INTO EACH SEGMENTED VOLUME.
`
`I
`
`t
`
`SIMULATE BLOOD FLOW AND PRESSURE IN
`
`CEREBRAL ARTERIES UNDER REST,
`
`EXERCISE, BARORECEPTOR RESPONSE,
`
`MEDICATION,ETC.
`
`~
`
`SEGMENT BRAIN BASED ON THE DISTAL
`
`VESSEL SIZE OF EACH BRANCH.
`
`CREATE 3D MODEL OF CEREBRAL ARTERIES
`
`.!
`
`I
`
`BLOOD PRESSURE, HEART RATE, ETC.
`
`ADDITIONAL PHYSIOLOGIC DATA,
`
`CREATE 3D MODEL OF BRAIN
`
`TISSUE.
`
`•
`
`iNPUTS: AORTA, CAROTID, VERTEBRAL, CEREBRAL
`
`PATIENT'S MEDICAL IMAGING DATA OF
`
`ARTERIES, AND BRAIN .
`
`10
`
`10
`
`10
`
`~
`
`1050
`
`)
`
`1054
`
`)
`
`1053
`
`CATHWORKS EXHIBIT 1001
`Page 33 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(,H
`0 .....
`
`(,H
`(,H
`
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ....
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`BASED ON THEIR LOCATION WITHIN THE 3D
`
`USE ALGORITHM TO BRANCH VESSELS
`
`SEGMENTED VOLUME .
`
`-
`
`r
`
`USE CENTERUNES FROM CEREBRAL
`
`VESSELS IN IMAGING DATA.
`
`I""-"-
`
`VESSEL SIZE OF EACH CEREBRALBRANCH.
`SEGMENT BRAIN BASED ON THE DISTAL
`
`•
`
`CREATE 30 MODEL OF BRAIN TISSUE.
`
`+
`
`I
`I
`
`02
`
`/-1100
`
`PATIENT'S MEDICAL IMAGING DATA OF AORTA, CAROTID, No3
`
`VERTEBRAL, CEREBRA.L ARTERIES AND BRAIN.
`
`INPUTS:
`
`---------------------------------------------------------------------------------------------------------
`
`REPEAT UNTIL THE SMALLEST DESIRED
`
`OBTAINED (e.g. DOWM TO RESOLUTION
`
`OF IMAGING DATA)
`
`BRANCH OR BRAIN VOLUME SIZE IS
`
`FURTHER SEGMENT THE BRAIN BASED
`
`ON THE NEW BRANCH VESSELS.
`
`•
`•
`
`BRANCHES IN THE CEREBRAL TREE. -
`
`MORPHOMETRICAL ALGORITHMS
`ASSIGN BRANCH SIZES BASED ON
`
`AND DATA
`
`CREATE NEXT GENERATION OF
`
`t
`
`-
`
`..
`
`CATHWORKS EXHIBIT 1001
`Page 34 of 77
`
`

`

`0'1 = N
`
`""""' 00
`...
`""""' w
`0'1
`...'..c
`rJl
`d
`
`Ul
`(.H
`0 .....
`(.H ...
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`74
`
`72
`
`70
`
`I
`
`SIMULATION AND ITERATE
`
`UNTIL SIMULATED AND
`
`PERFUSION MATCH.
`
`MEASURED
`
`CONDITIONS. RERUN
`MODEL BOUNDARY
`UPDATE BLOOD FLOW
`
`MEASURED PERFUSION.
`
`COMPARE SIMULATED
`
`PERFUSION WITH
`
`t
`
`BRAIN, IF NECESSARY.
`DATA TO 3D SEGMENTED.-
`REGISTER PERFUSION
`
`DATA(ieMIR, PET,
`BRAIN PERFUSION
`
`L_
`SPECT)
`
`)
`1155
`
`~
`
`1150
`
`FIG. 41
`
`11~ CALCULATE PERFUSION FROM EACH CEREBRAL
`
`BRANCH INTO EACH SEGMENTED VOLUME.
`
`---"'
`
`- r
`
`ON THE DISTAL VESSEL SIZE f--
`
`SEGMENT BRAIN BASED
`
`1~6
`OF EACH BRANCH.
`
`~64
`
`CREATE 3D MODEL OF
`
`-CEREBRAL TISSUE.
`•
`
`PRESSURE IN CEREBRAL ARTERIES
`
`SIMULATE BLOOD FLOW AND
`
`UNDER REST, EXERCISE,
`
`BARORECEPTOR RESPONSE,
`
`MEDICATION, ETC.
`
`CREATE 30 rv!ODEL OF BRAIN
`
`ARTERIES.
`
`I
`I
`
`•
`
`----+
`
`11~
`
`11t
`
`DATA, BLOOD PRESSURE,
`ADDITIONAL PHYSIOLOGIC
`
`HEART RATE, ETC.
`
`CEREBRAL ARTERIES AND BRAIN .
`OF AORTA, CAROTID, VERTEBRAL,
`PATIENT'S MEDICAL IMAGING DATA
`
`)
`1154
`
`)
`
`1153
`
`INPUTS:
`
`~
`
`1152
`
`CATHWORKS EXHIBIT 1001
`Page 35 of 77
`
`

`

`0'1 = N
`
`""""' 00
`'"
`""""' w
`0'1
`'"'..c
`
`rJl
`d
`
`Ul
`(.H
`0 .....
`Ul
`(.H
`.....
`rFJ =(cid:173)
`
`('D
`('D
`
`0 ....
`~ ...
`~ :-:
`
`N
`
`-....l
`
`34
`
`32
`
`30
`
`ft-
`v-
`
`ft-
`v-
`
`fot----
`v-
`
`.::;-
`122L
`
`-
`
`-
`
`)3; 0
`
`FIG. 42
`
`HEMODYNAMIC SIMULATION TO DETERMINE POTENTIAL REDUCTION iN PERFUSION DUE TO VULNERABLE PLAQUE.
`CALCULATED CEREBRAL PERFUSION RISK INDEX BASED ON CEREBRAL VOLUME RISK INDEX COMBINED WITH 30
`
`+
`
`3D HEMODYNAMIC SIMULATION TO DETERMINE WHERE RUPTURED PLAQUE COULD FLOW AND GEOMETRIC
`
`ANALYSIS OF VESSEL AND SIZE OF AFFECTED AREAS.
`
`CALCULATE CEREBRAL VOLUME RISK INDEX BASED ON PLAQUE VULNERABILITY INDEX COMBINED WITH
`
`t
`
`CALCULATE PLAQUE RUPTURE VULNERABILITY INDEX BASED ON HEMODYNAMIC STRESS,
`
`STRESS FREQUENCY, STRESS DIRECTION, AND/OR PLAQUE STRENGTH/ PROPERTIES.
`
`-
`
`--
`
`~COMPUTE STRESS ON PLAQUE DUE TO HEMODYNAMIC
`
`FORCES AND NECK MOVEMENT-INDUCED STR.A.IN.
`
`..,. PLAQUE LUMINAL SURFACE DUE TO HEMODYNAMiC
`COMPUTE PRESSURE AND SHEAR STRESS ACTING ON
`BIOMECHANICAL ANALYSiS:
`
`;_522
`
`FORCES DURING REST EXERCISE ETC.
`
`~ = ~
`
`~
`~
`~
`•
`00
`
`e •
`
`1200

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket