throbber
(12) United States Patent
`US 9,458,436 B2
`(10) Patent No.:
`(45) Date of Patent:
`*Oct. 4, 2016
`Cirpus et al.
`
`US009458436B2
`
`METHOD FOR PRODUCING
`POLYUNSATURATED FATTY ACIDS IN
`TRANSGENIC PLANTS
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`(54)
`
`(75)
`
`Inventors: Petra Cirpus, Mannheim (DE); Jfirg
`Bauer, Ludwigshafen (DE); Xiao Qiu,
`Saskatoon (CA); Guohai Wu,
`Saskatoon (CA); Nagamani Datla,
`Saskatoon (CA)
`
`(73)
`
`Assignee: BASF Plant Science GmbH,
`Ludwigshafen (DE)
`
`(*)
`
`Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 1278 days.
`
`This patent is subject to a terminal dis-
`claimer.
`
`(21)
`
`Appl. No.:
`
`10/590,457
`
`(22)
`
`PCT Filed:
`
`Feb. 23, 2005
`
`5,614,393 A
`6,043,411 A
`6,459,018 B1
`6,884,921 B2
`7,777,098 B2
`2004/0049805 A1
`2004/0053379 A1
`2004/0111763 A1
`2004/0172682 A1 *
`2008/0155705 A1
`2009/0222951 A1
`2010/0021976 A1
`
`3/1997 Thomas et 31.
`3/2000 Nishizawa et al.
`10/2002 Knutzon
`4/2005 Browse et 31.
`8/2010 Cirpus et al.
`3/2004 Lerchl et al.
`3/2004 Lerchl et al.
`6/2004 Heinz et al.
`9/2004 Kinney et al.
`6/2008 Zank et al.
`9/2009 Cirpus et al.
`1/2010 Lerchl et al.
`
`................ 800/281
`
`CA
`DE
`DE
`EP
`EP
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`
`FOREIGN PATENT DOCUMENTS
`
`2 485 060
`101 02 337 A1
`102 19 203
`0 550 162
`0 794 250
`WO-91/13972
`WO-93/06712
`WO-93/11245
`WO-94/11516
`WO-94/18337
`WO-95/18222 A1
`WO-96/21022
`
`11/2003
`7/2002
`11/2003
`7/1993
`9/1997
`9/1991
`4/1993
`6/1993
`5/1994
`8/1994
`7/1995
`7/1996
`
`(Continued)
`
`OTHER PUBLICATIONS
`
`PCT No.:
`
`PCT/EP2005/001863
`
`§ 371 (C)(1)s
`(2), (4) Date:
`
`Aug. 25, 2006
`
`PCT Pub. No.: W02005/083093
`
`PCT Pub. Date: Sep. 9, 2005
`
`(86)
`
`(87)
`
`(65)
`
`(30)
`
`Prior Publication Data
`
`GeneSeq Accession ABV74261, Lerchl et a1 (Mar. 28, 2003).*
`
`US 2009/0222951 A1
`
`Sep. 3, 2009
`
`Foreign Application Priority Data
`
`(Continued)
`
`Feb. 27, 2004
`Mar. 13, 2004
`Apr. 8, 2004
`May 14, 2004
`Jul. 16, 2004
`Dec. 24, 2004
`
`(DE) ........................ 10 2004 009 457
`(DE) ........... 10 2004 012 370
`
`(DE) ........... 10 2004 017 518
`
`(DE) .................. 10 2004 024 014
`
`(EP) ............. PCT/EP2004/007957
`
`
`(DE) .................. 10 2004 062 543
`
`(51)
`
`(52)
`
`(58)
`
`Int. Cl.
`C12N 15/82
`C12N 9/02
`A23D 9/00
`A61K 8/92
`
`A61Q 19/00
`C12N 9/10
`A61K 8/36
`A61K 31/202
`U.S. Cl.
`
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`
`CPC ............... C12N 9/0071 (2013.01), A23D 9/00
`(2013.01), A61K 8/361 (2013.01), A61K 8/922
`(2013.01), A61K 31/202 (2013.01), A61Q
`19/00 (2013.01), C12N 9/0083 (2013.01),
`C12N 9/1029 (2013.01), C12N 15/8247
`(2013.01), A61K 2800/86 (2013.01), C12Y
`114/19 (2013.01)
`
`Field of Classification Search
`None
`
`Primary Examiner 7 Elizabeth McElwain
`
`(74) Attorney, Agent, or Firm 7 Drinker Biddle & Reath
`LLP
`
`(57)
`
`ABSTRACT
`
`The present invention relates to a process for the production
`of polyunsaturated fatty acids in the seed of transgenic
`plants by introducing, into the organism, nucleic acids which
`encode polypeptides with a (03-desaturase, A12-desaturase,
`A6-desaturase, A6-elongase, A5-desaturase, A5-elongase
`and/or A4-desaturase activity. The invention furthermore
`relates to recombinant nucleic acid molecules comprising
`the nucleic acid sequences which encode the aforementioned
`polypeptides, either jointly or individually, and transgenic
`plants which comprise the aforementioned recombinant
`nucleic acid molecules. Furthermore, the invention relates to
`the generation of a transgenic plant and to oils, lipids and/or
`fatty acids with an elevated content of polyunsaturated fatty
`acids, in particular arachidonic acid, eicosapentaenoic acid
`and/or docosahexaenoic acid, as the result of the expression
`of the elongases and desaturases used in the process accord-
`ing to the invention.
`
`See application file for complete search history.
`
`25 Claims, 33 Drawing Sheets
`
`1 of 290
`1 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`US 9,458,436 B2
`
`Page 2
`
`(56)
`
`References Cited
`
`FOREIGN PATENT DOCUMENTS
`
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`
`WO-97/21340
`WO-97/30582
`WO-98/46763
`WO-98/46764
`WO-98/46765
`WO-98/46776
`WO-99/27111
`WO-99/64616
`WO-00/12720
`WO-00/21557
`WO-01/59128
`WO-02/08401
`WO-02/44320
`WO-02/057464 A2
`WO-02/077213
`WO-02/081668 A2
`WO-02/092540 A1
`WO-03/064596 A2
`WO-2004/071467
`WO-2005/012316 A2
`WO-2005/083093 A2
`
`6/1997
`8/1997
`10/1998
`10/1998
`10/1998
`10/1998
`6/1999
`12/1999
`3/2000
`4/2000
`8/2001
`1/2002
`6/2002
`7/2002
`10/2002
`10/2002
`11/2002
`8/2003
`8/2004
`2/2005
`9/2005
`
`OTHER PUBLICATIONS
`
`Broun et al, Science 282: 1315-1317, Nov. 13, 1998.*
`Van de Loo et al, PNAS, USA 92: 6743-6747, Jul. 1995*
`Doerks et al, TIG 14(6): 248-250, Jun. 1998.*
`Brenner, S.E., TIG 15(4):132-133. Apr. 1999.*
`Bork et al, TIG 12(10): 425-427, Oct. 1996*
`Cronan, J.E. et a1., “Biosynthesis of Membrane Lipids”, in “E. coli
`und Salmonella”, Section B2, Neidhardt, F.C. et al. eds., ASM Press,
`Washington, DC, (1996), pp. 612-636.
`Gerhardt, B., “Fatty Acid Degradation in Plants”, Prog. Lipid Res.
`31:4 (1992), pp. 417-446.
`Wada, H. et a1., “Enhancement of Chilling Tolerance of a Cyano-
`bacterium by Genetic Manipulation of Fatty Acid Desaturation”,
`Nature 347 (1990), pp. 200-203.
`Yu, R. et a1., “Production of Eicosapentaenoic Acid by a Recom-
`binant Marine Cyanobacterium, Synechococcus sp.”, Lipids, 35:10
`(2000), pp. 1061-1064.
`Magnuson, K. et a1., “Regulation of Fatty Acid Biosynthesis in
`Escherichia coi”, Microbiological Reviews, 57:3 (1993), pp. 522-
`542.
`Akimoto, M. et a1., “Carbon Dioxide Fixation and Polyunsaturated
`Fatty Acid Production by the Red Alga Porphyridium Cruentum”,
`Applied Biochemistry and Biotechnology 73 (1998), pp. 269-278.
`Styrnne, S., “Biosynthesis of ‘Uncommon’ Fatty Acids and Their
`Incorporation into Triacylglycerols”, Biochemistry and Molecular
`Biology of Membrane and Storage Lipids of Plants, N. Murata et a1.,
`Editors, The American Society of Plant Physiologists (1993), pp.
`150-158.
`Frentzen, M., “Acyltransferases from Basic Science to Modified
`Seed Oils”, Fett/Lipid, 100:4-5, S. (1998), pp. 161-166.
`Shanklin, J. et a1., “Desaturation and Related Modifications of Fatty
`Acids”, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 (1998), pp.
`611-641.
`Drexler, H. et a1., “Metabolic Engineering of Fatty Acids for
`Breeding of New Oilseed Crops: Strategies, Problems and First
`Results”, J. Plant Physiol. 160 (2003), pp. 779-802.
`Totani, N. et al., “The Filamentous Fungus Mortierella alpina, High
`in Arachiodonic Acid”, Lipids, 22:2 (1987), pp. 1060-1062.
`Cleland, L.G. et a1., “Fish Oil and Rheumatoid Arthritis: Antiinflam-
`matory and Collateral Health Benefits”, The Journal of Rheumatol-
`ogy, 27:10 (2000), pp. 2305-2307.
`Vazhappilly, R. et a1., “Heterotrophic Production Potential of
`Omega-3 Polyunsaturated Fatty Acids by Microalgae and Algae-
`like Microorganisms”, Botanica Marina 41 (1998), pp. 553-558.
`Tvrdik, P. et al., “Role of a New Mammalian Gene Family in the
`Biosynthesis of Very Long Chain Fatty Acids and Sphingolipids”,
`The Journal of Cell Biology, 149:3 (2000) pp. 707-717.
`
`a1., “Fatty Acid [3-oxidation in
`Guehnemann-Schaefer, K. et
`Glyoxysomes. Characterization of a New Tetrafunctional Protein
`(MFPIII)”, Biochimica et Biophysica Acta 1256 (1995), pp. 181-
`186.
`Meyer, A. et a1., “Novel Fatty Acid Elongases and Their Use for the
`Reconstitution of Docosahexaenoic Acid Biosynthesis”, Journal of
`Lipid Research 45 (2004), pp. 1899-1909.
`Sakuradani, E.
`et
`a1.,
`“A6-Fatty Acid Desaturase from an
`Arachidonic Acid-Producing Mortierella Fungus Gene Cloning and
`Its Heterologous Expression in a Fungus, Aspergillus”, Gene 238
`(1999), pp. 445-453.
`Kinney, A.J., “Genetic Engeering of Oilseeds for Desired Traits”, in
`“Genetic Engineering, Principles and Methods”, vol. 19, Editor: J.
`Setlow, pp. 149-166.
`Voelker, T., “Plant Acyl-ACP Thioesterases: Chain-Length Deter-
`mining Enzymes in Plant Fatty Acid Biosynthesis”,
`in “Genetic
`Engineering, Principles and Methods”, vol. 18, Editor: J. Setlow, pp.
`11 1-1 13.
`Stukey, J.E. et al., “The OLE] Gene of Saccharomyces cerevisiae
`Encodes the A9 Fatty Acid Desaturase and Can Be Functionally
`Replaced by the Rat Stearoyl-CoA Desaturase Gene”, The Jounal of
`Biological Chemistry 265:33 (1990), pp. 20144-20149.
`Zank, T.K. et a1., “Cloning and Functional Expression of the First
`Plant Fatty Acid Elongase Specific for A6 -Polyunsaturated Fatty
`Acids”, Biochemical Society Transactions 28:6 (2000), pp. 654-
`658.
`Poulos, A., “Very Long Chain Fatty Acids in Higher AnimalsiA
`Review”, Lipids 30:1 (1995), pp. 1-14.
`Huang, Y—S. et a1., “Cloning of A12- and A6-Desaturases from
`Mortierella alpina and Recombinant Production ofy-Linolenic Acid
`in Saccharomyces cerevisiae”, Lipids 34:7 (1999), pp. 649-659.
`Tocher, D.R. et a1., “Recent Advances in the Biochemistry and
`Molecular Biology of Fatty Acyl Desaturases”, Prog. Lipid Res.
`37:2/3 (1998), pp. 73-117.
`Horrocks, L.A. et a1., “Health Benefits of Docosahexaenoic Acid
`(DHA)”, Pharmacological Research 40:3 (1999), pp. 211-225.
`McKeon, T. et a1., “Stearoyl-Acyl Carrier Protein Desaturase from
`Safflower Seeds”,
`in Methods in Enzymology, vol. 71, Part C:
`Lipids, Editor: J. Lowenstein (1981), New York, pp. 275-281.
`Takeyama, H. et a1., “Expression of the Eicosapentaenoic Acid
`Synthesis Gene Cluster from Shewanella sp. in a Transgenic Marine
`Cyanobacterium, Synechococcus sp.”, Microbiology 143 (1997),
`pp. 2725-2731.
`Murphy, DJ. et a1., “Biosynthesis, Targeting and Processing of
`Oleosin-like Proteins, Which are Major Pollen Coat Components in
`Brassica napus”, The Plant Journal 13:1 (1998), pp. 1-16.
`Wang, X.-M. et a1., “Biosynthesis and Regulation of Linolenic Acid
`in Higher Plants”, Physiol. Biochem. 26:6 (1988), pp. 777-792.
`Zank, T.K. et a1., “Cloning and Functional Characterisation of an
`Enzyme Involved in the Elongation of A6-polyunsaturated Fatty
`Acids from the Moss Physcomitrella pate/ls”, The Plant Journal
`31:3 (2002), pp. 255-268.
`Millar, A.A. et a1., “CUT1, an Arabidopsis Gene Required for
`Cuticular Wax Biosynthesis and Pollen Fertility, Encodes a Very-
`Long-Chain Fatty Acid Condensing Enzyme”, The Plant Cell 11
`(1999), pp. 825-838.
`Calder, P.C., “Dietary Modification of Inflammation with Lipids”,
`Proceedings of the Nutrition Society 61 (2002), pp. 345-358.
`Kunau, W.-H., et a1., “B-oxidation of Fatty Acids in Mitochondria,
`Peroxisomes, and Bacteria: A Century of Continued Progress”,
`Prog. Lipid Res. 34:4 (1995), pp. 267-342.
`Beaudoin, F. et a1., “Heterologous Reconstitution in Yeast of the
`Polyunsaturated Fatty Acid Biosynthetic Pathway”, Proceedings of
`the National Academy of Sciences of the United States of America
`97:12 (2000), pp. 6421-6426.
`Ohlrogge, J. et a1., “Lipid Biosynthesis”, The Plant Cell 7 (1995),
`pp. 957-970.
`Millar, A.A. et a1., “Very-long-chain Fatty Acid Biosynthesis is
`Controlled through the Expression and Specificity of the Condens-
`ing Enzyme”, The Plant Journal 12:1 (1997), pp. 121-131.
`Shimokawa, H., “Beneficial Effects of Eicosapentaenoic Acid on
`Endothelial Vasodilator Functions in Animals and Humans”, World
`Rev. Nutr. Diet 88 (2001), pp. 100-108.
`
`2 of 290
`2 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`US 9,458,436 B2
`Page 3
`
`(56)
`
`References Cited
`OTHER PUBLICATIONS
`
`Chalova, L. I., et al. “The Composition of Lipids of Phytophthora
`infestans and Their Ability to Induce Potato Phytoalexin Accumu-
`lation”. Biokhimiya, 1987, vol. 52, No. 9, pp. 1445-1453; also see
`Database BIOSIS, Abstract No. PREV198885045135.
`Abbadi, A. et al., “Biosynthesis of Very-Long-Chain Polyunsatu-
`rated Fatty Acids in Transgenic Oilseeds: Constraints on Their
`Accumulation”, The Plant Cell 16 (2004), pp. 2734-2748.
`cDNA,
`“MY-26-A-10 PinfestansMY Phytophthora
`infestans
`mRNA sequence.” Database EMBL, Accession No. BE777235,
`Sep. 21, 2000.
`Domergue, F. et al., “Cloning and Functional Characterization of
`Phaeodactylum tricornutum Front-End Desaturases Involved in
`Eicosapentaenoic Acid Biosynthesis”, Eur. J. Biochem. 269 (2002),
`pp. 4105-4113.
`Kamoun, S. et al., “Initial Assessment of Gene Diversity for the
`Oomycete Pathogen Phytophthora infestans Based on Expressed
`Sequences”, Fungal Genetics and Biology 28 (1999), pp. 94-106.
`Khozin,
`I.
`et
`al.,
`“Elucidation of
`the Biosynthesis of
`Eicosapentaenoic Acid in the Microalga Porphyridium cruentum”,
`Plant Physiol. 114 (1997), pp. 223-230.
`Pereira, S.L. et al., “A Novel 003-Fatty Acid Desaturase Involved in
`the Biosynthesis of Eicosapentaenoic Acid”, Biochem.
`J. 378
`(2004), pp. 665-671.
`Pereira, S.L. et al., “Recent Advances in the Study of Fatty Acid
`Desaturases from Animals and Lower Eukaryotes”, Prostaglandins,
`Leukotrienes and Essential Fatty Acids 68 (2003), pp. 97-106.
`Spychalla, J.P. et al., “Identification of an Animal 00-3 Fatty Acid
`Desaturase by Heterologous Expression in Arabidopsis”, Proc. Natl.
`Acad. Sci. USA 94 (1997), pp. 1142-1147.
`Kajikawa, M., et al., “Isolation and Functional Characterization of
`Fatty Acid A5-Elongase Gene from the Liverwort Marchantia
`polymorpha L.”, FEBS Letters, 2006, vol. 580, pp. 149-154.
`Robert, S. S., et al., “Isolation and Characterisation of a A5-Fatty
`Acid Elongase from the Marine Microalga Pavlova saline”, Mar.
`Biotechnol., 2009, vol. 11, pp. 410-418.
`Pereira, S. L., et al., “Identification of Two Novel Microalgal
`Enzymes
`Involved in the Conversion of the (Jo-Fatty Acid,
`Eicosapentaenoic Acid, into Docosahexaenoic Acid”, Biochem. J.,
`2004, vol. 384, pp. 357-366.
`
`Leonard, A. E., et al., “Elongation of Long-Chain Fatty Acids”,
`Progress in Lipid Research, 2004, vol. 43, pp. 36-54.
`Sperling, P, et al., “The Evolution of Desaturases”, Prostaglandins,
`Leukotrienes and Essential Fatty Acids, 2003, vol. 68, pp. 73-95.
`Domergue, F., et al., “New Insight into Phaeodactylum tricornutum
`Fatty Acid Metabolism. Cloning and Functional Characterization of
`Plastidial and Microsomal A12-Fatty Acid Desaturases”, Plant
`Physiology, 2003, vol. 131, pp. 1648-1660.
`Wu, G., et al., “Stepwise Engineering to Produce High Yields of
`Very Long-Chain Polyunsaturated Fatty Acids in Plants”, Nature
`Biotechnology, 2005, vol. 23, No. 8, pp. 1013-1017.
`Nakamura, M. T., et al., “Structure, Function, and Dietary Regula-
`tion of A6, A5, and A9 Desaturases”, Annu. Rev. Nutr., 2004, vol.
`24, pp. 345-376.
`“P. patens Delta6 Elongase SEQ ID 29”, GeneSeq Database Acces-
`sion No. ABG73608, Mar. 25, 2003.
`“Subname: Full : Polyunsaturated Fatty Acid Elongase elv015a”,
`UniProt Database Accession No. Q8AWE7, Oct. 25, 2005.
`“Polyunsaturated Fatty Acid Elongase (ELOVL Family Member 5,
`Elongation of Long Chain Fatty Acids) (YEAST)”, UniProt Data-
`base Accession No. Q8AX86, Mar. 1, 2003.
`“633167 NCCCWA 1 RT Oncorhynchus Mykiss cDNA Clone
`1RT126D03iBiB02 5, mRNA Sequence”, EMBL Database
`Accession No. CA360014, Nov. 7, 2002.
`“LOC398440 Protein”, UniProt Database Accession No. Q7ZXJ4,
`Jun. 1, 2003.
`Huang, Y.-S., et al., “Enzymes for Transgenic Biosynthesis of
`Long-Chain Polyunsaturated Fatty Acids”, Biochimie, 2004, vol.
`86, No. 11, pp. 793-798.
`“Physcomitrella patens Desaturase Encoding cDNA SEQ ID No. 7”,
`GeneSeq Database Accession No. ABV74260, Mar. 28, 2003.
`“Phaeodactylum tricornutum Desaturase Encoding cDNA SEQ ID
`No. 11”, GeneSeq Database Accession No. ABV74262, Mar. 28,
`2003.
`Sprecher, H. “Metabolism of Highly Unsaturated n-3 and n-6 Fatty
`Acids”, Biochimica et Biophysica Acta, 2000, vol. 1486, pp.
`219-231.
`“Nouveau Dictionnaire des Huiles Végétales: Compositions en
`Acides Gras”, Ucciani E., Ed. Technique & Documentationi
`Lavoisier, 1995, ISBN: 2-7430-0009-0, pp. 577, 578 and 582.
`
`* cited by examiner
`
`3 of 290
`3 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`c
`
`6
`
`m
`
`0
`
`5
`
`2B
`
`
`
`
`
`m5.3.5.muommtfl.m.o<$3«3.3mum?3.5VNuom
`
`
`
`03.9.04mum?95¢mum?
`
`
`
`M”,000m220d</\0095000béq4/\000m:o\0-m<
`
`
`
`1&8:58
`
`
`
`@353.3353
`
`0000300000-?
`
`
`
`S2.3.:3vnow35.2mnow
`
`
`
`>022an0wmu~§0$<
`
`H0000500006<<
`
`twp—005w«Em<m<E3..UtiidwqmbN
`
`iii?You
`
`«50-302.
`
`
`
`M,0mm§mw0bé<00850000-;m_...mnvw0mm©t20$q)03000050000-mé
`
`a£229.A|<oo-_>:o_m_>_
`
`
`....mdN8.,E.2.mt~..m.0<.t3300¢.
`
`
`2.3.2.282PNN2.2.2.03mUNN652%.:90<19385300.?29.2.2.3oumm%QVNlllv
`
`
`
`0mEEmw0bé<\/0mmu2206<\/0mESmm0n-m<
`
`4 of 290
`4 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`
`
`86022096203003(ID3£005,38305083035000:02:30m:o_..m>“F059“.
`
`
`
`
`
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 2 of 33
`
`US 9,458,436 B2
`
`Figure 2:
`
`Substrate specificity of the A5-elongase (SEQ ID NO: 53) with regard to
`
`different fatty acids
`
`%Elongation
`
`N (O
`a
`a
`‘7.
`9!
`(D
`co
`‘-
`‘-
`
`0')
`a
`‘9.
`co
`‘—
`
`(O
`a
`‘7?
`co
`\—
`
`(O m C")
`(‘0
`(D
`(D
`0‘)
`s
`a
`a
`a
`a
`a
`a
`‘I.
`‘f.
`‘0.
`‘9.
`‘3".
`9!
`Y.
`co 0 O O O O O
`‘-
`N N N N N N
`
`Fatty acids
`
`5 of 290
`5 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 3 of 33
`
`US 9,458,436 B2
`
`Figure 3:
`
`Reconstitution of DHA biosynthesis in yeast starting from 20:5033.
`
`/N
`
`..
`
`a
`‘9.N
`
`if
`
`I Qn
`
`FIDsignal
`
`Retention time
`
`6 of 290
`6 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 4 of 33
`
`US 9,458,436 B2
`
`Figure 4:
`
`Reconstitution of DHA biosynthesis in yeast starting from 18:4co3.
`
`9
`‘_
`cog.
`‘—
`
`‘3
`$1;
`o
`N
`
`A
`
`m8 $
`
`320
`NU
`N3
`
`t
`
`3‘
`
`72
`co1'-
`
`m8
`
`‘f.
`—
`co
`2
`F‘—
`odd00‘—
`F/
`.
`
`(g
`‘32
`oN
`
`B \22:6(03
`(DHA)
`
`26:0
`
`E
`S:
`.a
`Q
`u.
`
`Retention time
`
`7 of 290
`7 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 5 of 33
`
`US 9,458,436 B2
`
`Figure 5:
`
`Fatty acid composition (in mol%) of transgenic yeasts which had been
`
`transformed with the vectors pYesB-OmELO3/pYesZ-EgD4 or pYesB—
`
`OmELOB/pYesZ-EgD4+pESCLeu-PtD5. The yeast cells were cultured in
`
`minimal medium without tryptophan and uracil/ and leucin in the presence
`of 250 pM 20:5A5"‘-“"“'17 and 18:4“3-‘2-‘5, respectively. The fatty acid methyl
`
`esters were obtained from cell sediments by acid methanolysis and ana-
`
`lyzed via GLC. Each value represents the mean (n=4) i standard deviation.
`
`pYes3-OmELO/pYesZ-EgD4
`
`pYesS-OmELO/pYesZ-EgD4 EgD4
`
`+ pESCLeu-PtDS
`
`Fatty acids
`
`Feeding of 20:5A5’3’H'M'17
`
`Feeding of 1824‘36'9'12'15
`
`16:0
`
`16:1 A9
`
`18:0
`
`18:1Ag
`
`18:1 A“
`
`9.35 :l: 1.61
`
`14.70 i 2.72
`
`5.11 i 1.09
`
`1949:301
`
`18.93 i 2.71
`
`1194“,”;15
`
`-
`
`20:1 A“
`
`20:1 4“
`
`3.24 i 0.41
`
`11.13: 2.07
`
`20.442.11.14.”
`
`-
`
`20.545.411.14,"
`
`6.913: 1.10
`
`22:4‘“°’“""”
`
`-
`
`22:5 “mm”
`
`8.77 :t 132
`
`22:6“""“"’3""’9
`
`2.73 :l: 0.39
`
`7.35 i 1.37
`
`10.02 3: 1.81
`
`4.27: 1.21
`
`10.81 i 1.95
`
`11.61 i 1.48
`
`7.79 i 1.29
`
`1.56 i 0.23
`
`4.40 i 0.78
`
`30.05 :I: 3.16
`
`3.72 :l: 0.59
`
`5.71 i 1.30
`
`1.10 :l: 0.27
`
`0.58 i 0.10
`
`8 of 290
`8 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 6 of 33
`
`US 9,458,436 B2
`
`
`
`
`
`9:27..mmg53>36583Embmnswucm5:95:2205mEEEQmu5%EmEtoaxm9.63“.no239“.
`
`
`
`
`
`65:00
`
`.Sm._.o_m
`
`IIIIIJIIIJ
`
`LL‘VL‘LL‘Q‘Q'SIOZ
`
`VL‘L L‘s-cm
`
`ZL'6‘9'838L
`
`asuodsaa
`
`2‘m:tm_.m?39NF3ormmnom\attiatwmnwu<3
`
`
`2:53.:
`
`9 of 290
`9 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 7 of 33
`
`US 9,458,436 B2
`
`mh
`
`45
`
`45
`
`40
`
`,
`u;
`
`"’
`
`8
`
`ID
`.4
`
`6L‘9l-‘8L‘OL‘LV9:ZZ
`
`LL'VL'LL'B'SVS-UZ
`
`6VL28L
`
`6v|r39L
`
`029',
`
`039L
`
`a
`IBUBES OH
`
`mh
`
`45
`
`425
`
`40
`
`.’=‘
`, E
`8' a)
`E
`
`3%
`
`m
`
`8
`
`‘0
`u
`
`a
`
`zL'vL‘LL‘B'sngZ
`
`6VL'8L
`
`6VL59L
`
`038L
`
`0-9L
`
`%
`
`33
`8
`
`E
`
`E;
`
`(D
`
`“6
`.5
`*5
`U)
`_S_LU
`r:
`9
`3
`.3
`
`10 of 290
`10 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 8 of 33
`
`US 9,458,436 B2
`
`E
`
`:
`
`A E
`
`E o
`
`E Z .
`
`2
`=
`
`3 g
`a:
`
`In
`S
`
`‘3
`
`in
`N
`
`m
`
`9L‘SL‘OL‘LVV:ZZ —
`
`vL‘LL‘s‘svviOZ
`
`_
`
`mm
`
`evLIQL
`
`038L
`
`0=9L
`
`2
`
`e
`
`2
`
`'3
`
`m
`S
`
`8
`
`In
`N
`
`Ieu5!s 0H
`
`11 of 290
`11 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`<
`
`VL‘LL‘Q‘QVVOZ
`
`mm
`
`6VL29L
`
`0sz
`
`cm
`
`‘—
`
`“—3
`6
`5‘
`2
`0
`(U
`
`E
`
`g g
`
`“6
`
`.5
`
`5LU
`dd
`
`9
`:3
`
`r?
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 9 of 33
`
`US 9,458,436 B2
`
`3.:.a.m<v5u+.9580c.:ofimflnxm “28>ESAME.hoCoimflaxm”m059“.
`
`/=.=.n.n<Vu°N
`
`/:€~.——.a.m<mu©N
`
`2.2.3.2?3
`
`.v—n—32
`
`/...ENN
`
`3.35.238+v0.5a...”w2230..an
`
`:.:.:....3mnow+33:00no:Bmmafixm
`
`$612.3.2mnNN
`
`///25.2.2.2?NN
`
`
`
`
`
`2.3.5.».m4m5N+POI—me.5—.:o_mmm._nxm
`
`12 of 290
`12 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`m4,a
`
`mS
`
`1
`
`3
`
`U
`
`2B634.}
`
`w/49:ifafiménM....mnou+«nu-En...5:EmmcExm
`3/f:E:M5.v_.=.m<VuDN2.2aw<
`O25%;:
`m25.292+84%;a87.833
`am$6.23”:+nOJME.”v=o_mmo._nxm
`638584%;"F53833 58>Em0._ma._.ho:o_mmo.axm_
`
`no?059“.
`
`Edam”?+nOJmnh"N:23»..me
`
`
`
`v..a.inflow+MOJMQF“m:o_mm29xm_
`
`13 of 290
`13 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 11 of 33
`
`US 9,458,436 B2
`
`
`
`2mm:nemaw.09.58.
`
` nemau
`
`:283.5.232395:2he9.58.
`
`
`
`«EVEN
`
`ONmr0—.m
`
`14 of 290
`14 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`
`
`“mam;:_".mmmcfibWE.mmmmco_m-m<Eattfoogmzflchv6co_mm2axwu:239".
`
`
`
`
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 12 of 33
`
`US 9,458,436 B2
`
`Figure 12: Desaturation of y-linolenic acid (18:2 (DB-fatty acid) to give a-linolenic acid
`
`(18:3 m3-fatty acid) by Pi-omegaBDes.
`
`mOMEGA3+1&2
`
`
`
`15 of 290
`15 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 13 of 33
`
`US 9,458,436 B2
`
`Figure 13: Desaturation of y—Iinolenic acid (18:2 (DB-fatty acid) to give stearidonic acid
`
`(18:4 cos-fatty acid) by Pi-omega3Des.
`
`piOMEGA3 + y—18:3
`
`
`
`16 of 290
`16 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 14 of 33
`
`US 9,458,436 B2
`
`Figure 14: Desaturation of 020:2 coS-fatty acid to give 020:3 m3-fatty acid by Pi-
`
`omega3Des.
`
`piOMEGA3 + c20:2’“”4
`
`17 of 290
`17 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 15 of 33
`
`US 9,458,436 B2
`
`Figure 15: Desaturation of 020:3 cos-fatty acid to give 020:4 m3-fatty acid by Pi-
`
`omega3Des.
`
`piOMEGA3 + 020:3“.11.“
`
`
`
`18 of 290
`18 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 16 of 33
`
`US 9,458,436 B2
`
`Figure 16: Desaturation of arachidonic acid (020:4 cue-fatty acid) to give eicosapen-
`
`taenoic acid (C20:5 m3-fatty acid) by Pi-omegaBDes.
`
`piOMEGA3 + 020:4A5,8,11,14
`
`
`
`19 of 290
`19 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 17 of 33
`
`US 9,458,436 B2
`
`Figure 17: Desaturation of docosatetraenoic acid (022:4 (DB-fatty acid) to give
`
`docosapentaenoic acid (022:5 coB-fatty acid) by Pi-omegaBDes.
`
`piOMEGA3 + 22:4
`
`
`
`20 of 290
`20 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U S. Patent
`
`Oct. 4, 2016
`
`Sheet 18 of 33
`
`US 9,458,436 B2
`
`‘12
`
`NN
`
`‘3
`o
`N
`
`9°.
`o
`N
`
`9!
`o
`N
`
`c2
`co
`
`\—
`
`6:5
`‘_
`
`
`
`o
`
`21 of 290
`21 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`5
`
`U(
`
`U 2
`
`‘
`
`E E g
`
`t
`5
`.9
`E(U
`U)
`0.)L—
`
`5
`E
`"’
`OJ
`
`0(
`
`'0
`(U
`C,
`CD
`E
`.2
`0'
`
`C
`
`:;
`cu
`L.
`B
`as
`(I)
`OJ
`D
`:3
`o\
`
`“5
`
`a E“
`
`z
`'8
`o.
`
`9
`5.3
`B
`=
`"’
`66
`‘—
`9
`3»
`LT.
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 19 of 33
`
`US 9,458,436 B2
`
`Figure19:Desaturationofphospholipid-boundarachidonicacidtogiveEPAbyPi-Omega3Des
`
`
`
`Fraction
`
`00000
`[\COLOVCO
`
`pammesap 17:02 %
`
`
`
`co
`
`cu
`
`m a
`
`: E O E
`
`
`
`22 of 290
`22 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 20 of 33
`
`US 9,458,436 B2
`
`Figure 20: Conversion of linoleic acid (arrow) to give y-linolenic acid (7-1823) by Ot-
`De56.1.
`
`Absorption mAU
`
`16:016:1
`
`Retention time
`
`23 of 290
`23 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 21 of 33
`
`US 9,458,436 B2
`
`Figure 21: Conversion of linoleic acid and a-linolenic acid (A and C), and reconstitution
`
`of the ARA and EPA synthetic pathways, respectively, in yeast (B and D) in
`
`the presence of OtDG.1.
`
`A) OtDB+LA
`
`GLA
`
`LA
`
`B) OtDG+PSE1+PtD5+LA
`
`
`
`C) OtD6+ALA
`
`D) OtDB+PSE1+PtD5+ALA
`
`
`
`24 of 290
`24 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 22 of 33
`
`US 9,458,436 B2
`
`Figure 22: Expression of ELO(X|) in yeast
`
`Absorption in mA
`
`A) ELO (XI) without fatty acid feeding
`
`
`
`B) ELO (XI) + 18:4A6,9,12,15 (250 ,uM)
`
`
` Retention time in min
`
`C) ELO (XI) + 20:5 (500 ,uM)
`
`25 of 290
`25 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 23 of 33
`
`US 9,458,436 B2
`
`Figure 23:
`
`Absorption in mA
`
`A) EIO (Ci) without fatty acid feeding
`
`B) ELO (Ci) + 18:4 (250 ,uM)
`
`
`
` Retention time in minutes
`
`C) ELO (Ci) + 20:5 (500 ,uM)
`
`26 of 290
`26 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 24 of 33
`
`US 9,458,436 B2
`
`Figure 24: Elongation of eicosapentaenolc acid by OtEIo1 (B) and OtElo1.2 (D), re-
`
`spectively. The controls (A, C) do not show the elongation product (22:5033).
`
`20:5A5,8_11,14.17
`
`
`
`22;5A7,10,13,16,19 H
`20:5A5.8,11,14,17
`
`25
`
`21.5
`
`30
`
`325
`
`35
`
`375
`
`40
`
`42.5
`
`45
`
`HDSmd
`
`18:1A9
`
`27.5
`
`3D
`
`325
`
`35
`
`37,5
`
`40
`
`425
`
`45
`
`Retention time (min)
`
`20:5(03
`
`pYESZ
`
`
`
`27 of 290
`27 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 25 of 33
`
`US 9,458,436 B2
`
`Figure 25: Elongation of arachidonic acid by OtElo1 (B) and OtE|o1.2 (D), respectively.
`
`The controls (A, C) do not show the elongation product (22:4m6).
`
`FIDSigwal
`
`
`
`20:445.5.11,“
`
`
`
`22;4A7.1o,13,16
`_
`
`20:445.5.11.14
`
`Retention time (min)
`
`
`
`28 of 290
`28 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 26 of 33
`
`US 9,458,436 B2
`
`Figure 26: Elongation of 20:5n-3 by the elongases At3g06470.
`
`Absorption in mA
`
`20:5(n-3)
`
`22:5(n-3)
`
` 5
`
`13
`
`15
`
`17
`
`19
`
`7
`
`9
`
`11
`
`Retention time in minutes
`
`29 of 290
`29 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 27 0f 33
`
`US 9,458,436 B2
`
`Figure 27:
`
`Substrate specificity of the Xenopus Elongase (A), Ciona Elongase (B) und
`
`Oncorhynchus Elongase (C)
`
`A)
`
`Wv
`
`C)
`
`20
`
`15
`
`10
`
`25
`
`20
`
`15
`
`10
`
`60
`
`45
`
`30
`
`15
`
`100
`
`75
`
`50
`
`25
`
`100
`
`75
`
`50
`
`25
`
`100
`
`75
`
`50
`
`25
`
`
`
`
`
`absoluteelongation(%)
`
`
`
`
`
`relativeelongation(%)
`
`l
`
`A9
`
`ll
`
`A6
`
`’LQBJLALU‘
`
`A5
`
`l
`
`(D
`5
`$9
`
`(‘0
`9%
`$9
`
`(D
`«3,
`39
`
`C")
`3
`$9
`
`(D
`3.,
`8
`
`('0
`S
`8
`
`(D
`3
`v.
`8
`
`('0
`3
`m
`8
`
`of)
`3
`o
`fi
`
`Fatty acid
`
`30 of 290
`30 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 28 of 33
`
`US 9,458,436 B2
`
`Figure 28:
`
`Substrate specificity of the Ostreococcus A5-elongase (A), the Ostreococ-
`
`cus A6—elongase (B), the Thalassiosira A5-elongase (C) and the Thalas-
`
`siosira Ostreococcus AB-elongase (D)
`
`A)
`
`B)
`
`9
`
`D)
`
`
`
`
`
`absoluteelongation(%)
`
`_
`Fatty Acu d
`
`so
`
`45
`
`3o
`
`15
`
`0
`
`25
`
`20
`
`15
`
`10
`
`5
`
`O
`
`1 5
`
`10
`
`5
`
`0
`80
`
`60
`
`40
`
`20
`
`OL_JK_A_/t£8_JflJL_J
`20:3w3
`203w6
`1&3w6
`184w3
`183w3
`
`204w6l>20:5w3a
`
`182w6l>
`
`100
`
`75
`
`50
`
`25
`
`100
`
`75
`
`50
`
`25
`
`100
`
`75
`
`50
`
`25
`
`100
`
`75
`
`5o
`
`25
`
`226w3
`
`
`
`
`
`relativeelongation(%)
`
`31 of 290
`31 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 29 of 33
`
`US 9,458,436 B2
`
`Figure 29:
`
`Expression of the Phaeodactyium tricornutum A6—elongase (PtELOG) in
`yeast. A) shows the elongation of the 018:3“5'9'12 fatty acid and B) the
`elongation of the C18:3“"'9'12'15 fatty acid
`
`A)
`
`
`
`3)
`
`18:1A9
`18:4A6'9'121'15
`
`
`32 of 290
`32 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 30 of 33
`
`US 9,458,436 B2
`
`Figure 30:
`
`Figure 30 shows the substrate specificity of PtEL06 with regard to the sub-
`strates fed.
`
`PtELO6 specificity
`
`100
`
`-----------------------------------------------------------------------------------------------------
`
`80
`
`60
`
`40
`
`20
`
`0
`
`
`
`A
`°\°v
`
`=
`I2H
`
`fin
`r:
`
`2H
`
`18:2
`
`011823
`
`718:3
`
`18:4
`
`Fatty acid substrate
`
`33 of 290
`33 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 31 of 33
`
`US 9,458,436 B2
`
`
`
`.092an5:,85.822.2532:382aho889:homagmas0528652538
`
`
`
`
`
`#m939;
`
`._.>>
`
`Nam.“fiwfi
`
` _O._u:00
`
`3.2.»,23os
`
`a
`
`mohufiooénofiomqméemEa23:
`
`<AU
`
`Dan:Eomconwom
`
`a2tEQSm
`
`AEEVwEF
`
`rm9‘5‘mrmvSmlLlIILI|I|ILI|lr|IlIL|II|rlIl_
`
`
`
`34 of 290
`34 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 32 of 33
`
`US 9,458,436 B2
`
`3.5.80
`
`.6Ir2IrC.
`
`«SnowmanwuwEEm:aE3mmn 38LL
`Wa\mw«tr—naming:.1m.3E.6:9w.u:6S
`
`.8any
`
`Ir
`
`ZL‘G'ZBL
`
`\
`
`95h533aE2mmh»3.3.9935?
`932%axS
`
`
`E2:
`
`
`
`
`
`->._.n_®a53>BEE—mam:£632535:m_o839:homar—mamoEQSmBmEoEoémO
`
`898cmHansonmoletmoomoleémwooo
`
`”mm9:9“.
`
`35 of 290
`35 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`
`
`

`

`U.S. Patent
`
`Oct. 4, 2016
`
`Sheet 33 of 33
`
`US 9,458,436 B2
`
`ON
`
`
`
`3.5.50255$qu
`
`2‘or
`
` o_:mmm:m._._.
`
`asuodsaa
`
`<40
`
`Bum—.5199
`
`N_.6-an_‘
`
`one
`
`om
`
`2‘m:3NForw
`
`Es:9::
`
`36 of 290
`36 of 290
`
`CSIRO Exhibit 1013
`CSIRO Exhibit 1013
`
`
`
`
`
`.Uw-ZDmm835:82bas?wogofifib225353RE..825...8635momuoomoEommcmb5ED”mm059“—
`
`
`
`
`
`
`

`

`US 9,458,436 B2
`
`1
`METHOD FOR PRODUCING
`POLYUNSATURATED FATTY ACIDS IN
`TRANSGENIC PLANTS
`
`RELATED APPLICATIONS
`
`This application is a national stage application (under 35
`U.S.C. 371) ofPCT/EP2005/001863 filed Feb. 23, 2005, and
`claims benefit of German application 10 2004 009 457.8
`filed Feb. 27, 2004; German application 10 2004 012 370.5
`filed Mar. 13, 2004; German application 10 2004 017 518.7
`filed Apr. 8, 2004; German application 10 2004 024 014.0
`filed May 14, 2004; PCT application PCT/EP2004/07957
`filed Jun. 16, 2004; and German application 10 2004 062
`543.3 filed Dec. 24, 2004.
`
`SUBMISSION ON COMPACT DISC
`
`The contents of the following submission on compact
`discs are incorporated herein by reference in it s entirety:
`two copies of the Sequence Listing (COPY 1 and COPY 2)
`and a computer readable form copy of the Sequence Listing
`(CRF COPY), all on compact disc, each containing: file
`name: “Sequence Listing-13987-00020-US”, date recorded:
`May 9, 2007, size: 613 KB.
`
`FIELD OF THE INVENTION
`
`The present invention relates to a process for the produc-
`tion of polyunsaturated fatty acids in the seed of transgenic
`plants by introducing, into the organism, nucleic acids which
`encode polypeptides with (n3-desaturase, A12-desaturase,
`A6-desaturase, A6-elongase, A5-desaturase, A5-elongase
`and/or A4-desaturase activity, preferably polypeptides with
`A6-desaturase, A6-elongase and A5-desaturase activity.
`The nucleic acid sequences are the sequences shown in
`SEQ ID NO: 11, SEQ ID NO: 27, SEQ ID NO: 193, SEQ
`ID NO: 197, SEQ ID NO: 199 and SEQ ID NO: 201.
`Preferably, a further nucleic acid sequence which encodes a
`polypeptide with a A12-desaturase activity is additionally
`introduced into the plant, in addition to these nucleic acid
`sequences, and also expressed simultaneously. Especially
`preferably, this is the nucleic acid sequence shown in SEQ
`ID NO: 195.
`
`These nucleic acid sequences can advantageously be
`expressed in the organism,
`if appropriate together with
`further nucleic acid sequences which encode polypeptides of
`the biosynthesis of the fatty acid or lipid metabolism.
`Especially advantageous are nucleic acid sequences which
`encode a A6-desaturase, a A5-desaturase, A4-desaturase,
`A12-desaturase and/or A6-elongase activity. These desatu-
`rases and elongases originate advantageously from Thalas-
`siosira, Euglena or Oslreococcus. Furthermore, the inven-
`tion relates to a process for the production of oils and/or
`triacylglycerides with an elevated content of long-chain
`polyunsaturated fatty acids.
`the invention furthermore
`In a preferred embodiment,
`relates to a process for the production of arachidonic acid,
`eicosapentaenoic acid or docosahexaenoic acid and to a
`process for the production of triglycerides with an elevated
`content of unsaturated fatty acids, in particular arichidonic
`acid, eicosapentaenoic acid and/or docosahexaenoic acid, in
`transgenic plants, advantageously in the seed of the trans-
`genic plant. The invention relates to the generation of a
`transgenic plant with an elevated content of polyunsaturated
`fatty acids, in particular arichidonic acid, eicosapentaenoic
`acid and/or docosahexaenoic acid, as the result of the
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`2
`
`expression of the elongases and desaturases used in the
`process according to the invention.
`The invention furthermore relates to recombinant nucleic
`
`acid molecules comprising the nucleic acid sequences which
`encode the polypeptides with A6-desaturase, A6-elongase,
`A5-desaturase and A5-elongase activity, either jointly or
`individually, and transgenic plants which comprise the
`abovementioned recombinant nucleic acid molecules.
`
`A further part of the invention relates to oils, lipids and/or
`fatty acids which have been produced by the process accord-
`ing to the invention, and to their use. Moreover, the inven-
`tion relates to unsaturated fatty acids and to triglycerides
`with an elevated content of unsaturated fatty acids and to
`their use.
`
`DESCRIPTION OF RELATED ART
`
`the
`Lipid synthesis can be divided into two sections:
`synthesis of fatty acids and their binding to sn-glycerol-3-
`phosphate, and the addition or modification of a polar head
`group. Usual lipids which are used in membranes comprise
`phospholipids, glycolipids, sphingolipids and phosphoglyc-
`erides. Fatty acid synthesis starts with the conversion of
`acetyl-CoA into malonyl-CoA by acetyl-CoA carboxylase or
`into acetyl-ACP by acetyl transacylase. After condensation
`reaction,
`these two product molecules
`together
`form
`aceto

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket