throbber
(12) United States Patent
`(10) Patent N0.:
`US 6,743,095 B2
`
`Cole et al.
`(45) Date of Patent:
`Jun. 1, 2004
`
`USOO6743095B2
`
`(54)
`
`INTELLIGENT METERING SYSTEM
`
`(76)
`
`Inventors: Joseph W. Cole, 7221 Sandy Plains
`Ave., Las Vegas, NV (US) 89131;
`Michael J. Bennett, 3061 Sheridan St.,
`Las Vegas, NV (US) 89102
`
`4,352,104 A
`5,257,179 A
`5,580,310 A
`2002/0109609 A1 *
`>1 cited by examiner
`
`9/1982 Mizuta et 211.
`10/1993 DeMar
`12/1996 OFUS et al~
`8/2002 Potter et a1.
`
`............. 340/9322
`
`( * ) Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 216 days.
`
`(21) APPL N05 09/872432
`(22)
`Filed:
`Jun. 1, 2001
`
`(65)
`
`Prior Publication Data
`US 2002/0189917 A1 Dec 19 2002
`'
`’
`(51)
`Int. Cl.7 ................................................... A63F 9/24
`(52) US. CL ..............
`463/25; 463/47
`
`(58) Field of Search .............................. 463/25, 30, 31,
`463/39, 43, 47
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`Primary Examiner—Kim Nguyen
`(74) Attorney, Agent, or Firm—Weide & Miller, Ltd.
`
`ABSTRACT
`(57)
`The present invention is an intelligent metering system for
`currency-activated devices having an electromechanical
`meter. The intelligent metering system includes an inductive
`pickup Winding associated With the electromechanical
`meter. An amplifier is coupled to the inductive pickup
`Winding to boost a signal detected from the inductive pickup
`Winding When electromechanical meter is actuated. A pulse
`detector, coupled to the amplifier, detects pulses,
`false
`triggerings and filters out EMF spikes. A microprocessor is
`coupled to the pulse detector for counting the pulses
`detected by the pulse detector and for storing meter data
`related to the counted pulses in a memory device. An
`interface is coupled to the microprocessor for transmitting
`the meter data from the memory device.
`
`4,004,097 A
`
`1/1977 Spaulding
`
`15 Claims, 3 Drawing Sheets
`
`200
`
`RS-232 OR RS—422
`
`INFRARED TX/RX
`212
`
`/
`
`
`
`
`
`
`
`PULSE
`DETECTOR
`AMPLIFIER
`
`
`SDA
`12C INTERFACE
`m SCL
`
`
`PULSE COUNTER
`
`
`
`NV MEMORY
`
`STANDARD
`METER
`INTERFACE
`g
`
`
`MECHANICAL METER
`
`
`Petitioner Kiosoft Exhibit 1014
`Page 1
`
`Petitioner Kiosoft Exhibit 1014
`Page 1
`
`

`

`US. Patent
`
`Jun. 1, 2004
`
`Sheet 1 0f3
`
`US 6,743,095 B2
`
`22
`
`
`METER
`INTERFACE
`
`20
`
`30
`
` 26
`
`
`
`
`
`MASTER
`CONTROLLER
`
`
`
`COIN COMPARATOR/ACCEPTOR
`
`COIN HOPPER
`
`33
`
`
`
`
`
`FIG. I,
`(PP/OP APT)
`
`104
`
`
`
`
`
`DETECTOR
`
`METER
`
`FIG.2
`
`CONTROLLER
`
`
`
`I 02
`
`20
`
`100
`
`Petitioner Kiosoft Exhibit 1014
`Page 2
`
`Petitioner Kiosoft Exhibit 1014
`Page 2
`
`

`

`US. Patent
`
`Jun. 1, 2004
`
`Sheet 2 0f3
`
`US 6,743,095 B2
`
`200
`
`RS-232 0R RS—422
`
`
`
`INFRARED TX/RX
`3.7.2
`
`12c INTERFACE
`
`.21_0
`
`:3:
`
`
`
`
`
`
`208
`
`PULSE COUNTER
`
`NV MEMORY
`
`AMPLIFIER
`
`PULSE
`DETECTOR
`
`
`
`
`STANDARD
`METER
`
`INTERFACE
`g
`
`
`
`MECHANICAL METER
`
`
`F/G.3
`
`Petitioner Kiosoft Exhibit 1014
`Page 3
`
`Petitioner Kiosoft Exhibit 1014
`Page 3
`
`

`

`US. Patent
`
`Jun. 1, 2004
`
`Sheet 3 0f3
`
`US 6,743,095 B2
`
`300
`
`DETECTING SIGNAL FROM
`INDUCTIVE PICKUP WINDING
`POSITION ED ACTUATOR
`
`ELECTROMAGNET
`
`302
`
`AMPLIFYING SIGNAL FROM
`
`INDUCTIVE PICKUP WINDING
`
`304
`
`DETECTING PULSE FROM
`
`AMPLIFIED SIGNAL
`
`306
`
`COUNTING DETECTED PULSES
`
`308
`
`STORING METER DATA
`RELATED TO COUNTED
`
`PULSES IN MEMORY DEVICE
`
`310
`
`TRANSMITTING METER DATA
`FROM MEMORY DEVICE
`
`THROUGH INTERFACE
`
`F/G.4
`
`Petitioner Kiosoft Exhibit 1014
`Page 4
`
`Petitioner Kiosoft Exhibit 1014
`Page 4
`
`

`

`US 6,743,095 B2
`
`1
`INTELLIGENT METERING SYSTEM
`
`FIELD OF THE INVENTION
`
`The present invention is directed to metering systems, and
`more particularly to a method and apparatus for reading
`electromechanical counters electronically, and/or remotely.
`
`BACKGROUND OF THE INVENTION
`
`The gaming, arcade, and vending machine industry relies
`heavily on electromechanical counters, otherwise referred to
`as meters, to count coin and currency input. These electro-
`mechanical counters are the default standard used by gaming
`compliance agencies and other business entities to keep
`track of the monetary history of these devices. The meters
`report coin-in, coin-out (coins paid out), coins to drop (coins
`that go to the drop bucket), the number of games played, the
`number of jackpots, etc. Vending machines and arcade game
`machines use meters for similar functions.
`
`10
`
`15
`
`20
`
`FIG. 1 illustrates an example of such a meter as used in
`a gaming machine for tracking “coins in”. As illustrated, the
`meter 20 is associated with a meter interface 22. The
`
`interface 22 is normally associated with a master gaming
`machine controller 24. The meter 20 includes a visible count
`
`25
`
`indicator 26 in the form of rotating wheels having numbers
`printed thereon, the wheels cooperating to present a value
`indicative of coin input or other data. Aperson may visually
`inspect the count indicator 26 to obtain the data.
`In use, a signal may be transmitted from a coin comparitor
`30 or hopper 32 indicating that a coin has been received.
`This signal may be transmitted to the master gaming
`machine controller 24. The master gaming machine control-
`ler 24 then sends a signal to the meter interface 22 indicating
`that a coin has been input, and that the meter 20 should be
`caused to increment
`the visible count indicator 26. The
`
`signal from the master gaming machine controller 24 to the
`meter interface 22 is generally in accordance with a unique,
`and often proprietary communication/data protocol. The
`importance of this will be understood below. In any event,
`once the interface receives the data, it sends a signal to the
`meter 20 causing the meter to mechanically rotate one of the
`wheels of the count indicator 26 to reflect the coin input.
`In the gaming industry, electronic systems have been
`devised that tap into the wire leads of the electromechanical
`meters and use an optically-isolated circuit that receives
`current when the meter is energized. This is used to acquire
`what is commonly known as the “soft” count (as opposed to
`a “hard” count, which comprises viewing the visible count
`indicator to obtain the data), because the machine system
`software is used to store the updated meter information in
`the machine logic board, or in a computer database via a
`network from the machine.
`
`The interface and installation of these systems are labor
`intensive and require skilled technicians to properly tap into
`the meters. Errors in the installation can cause the machine
`
`and the meter to malfunction. For example, by tapping into
`the meter leads, the impedance and other electrical charac-
`teristics of the circuit may be substantially altered. This
`alteration may prevent proper operation of the meter.
`Additionally, the amount of circuitry and cabling required to
`interface with all of the various types of machines and
`manufacturers is extensive.
`
`Another problem is that the firmware program required to
`support all of the different installations and machine types is
`extensive and requires very specialized programming skills.
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`2
`the more modem slot machine
`In the gaming industry,
`designs provide meter information via a specialized serial
`interface which, as discussed above, may operate in accor-
`dance with a proprietary protocol. Because slot machine
`vendors often sell electronic slot machine accounting
`systems, they will charge fees to use the protocol. Some of
`these protocols have become industry standards, and the
`owners of these standards charge fees for the latest versions
`or enhancements. Thus, obtaining the meter information by
`tapping into the data lines first requires knowledge of
`ever-changing protocols and complex programming, and
`may also require payment to the slot machine vendor which
`owns the rights in the proprietary protocol.
`No matter how new the design of the machine is and the
`protocol for data transfer with its interface, however, the
`electromechanical meter is still the standard for measure-
`ment. Just like an odometer in an automobile, it must be
`reliable and trusted and not easily tampered with. The
`electromechanical meter manufacturers design these devices
`to work reliably for millions of cycles. The meters are placed
`in machines to function autonomously. They are mounted in
`the machine housing, and even if the logic board of a
`machine is changed (such as putting a new game into an old
`machine, using new hardware and/or software), the meters
`remain intact. In a gaming environment, a meter change in
`a slot machine, or any other gaming machine, must be
`reported to the appropriate gaming compliance agency.
`Nevertheless, electromechanical counters are sill prone to
`tampering. Although these electromechanical counters do
`not have a reset feature, they still may be physically altered.
`Furthermore,
`a person reading the electromechanical
`counter may mistakenly misread and record the number
`shown on the meter, or an unscrupulous individual may
`deliberately record the wrong number. Therefore, inaccurate
`data of the financial performance of the machines would be
`reported. The ability to tamper with the counters to meters
`without detection has lead to abuse by unscrupulous collec-
`tors and service personnel who may decrease the number of
`games played (or coins inserted, etc.) in order to collect the
`unreported portion of the revenue.
`SUMMARY OF THE INVENTION
`
`The present invention comprises an intelligent metering
`system.
`In one embodiment,
`the invention comprises a
`secondary metering system associated with a primary meter-
`ing system which includes an electromechanical meter.
`In one embodiment,
`the intelligent metering system
`includes a detector for passively detecting an event of the
`electromechanical meter. In a preferred embodiment, such
`an event comprises the receipt of an electrical signal acti-
`vating the electromechanical meter for incrementing or
`decrementing a visible count indicator of the meter. The
`detector provides an output to a controller. The controller
`manipulates the detector output, such as by counting output
`signal pulses and/or transmitting an output.
`In one embodiment, the detector comprises an inductive
`pickup coil or winding. The controller includes an amplifier
`coupled to the inductive pickup winding to boost a signal
`detected from the inductive pickup winding, a pulse detector
`coupled to the amplifier for detecting pulses, a micropro-
`cessor coupled to the pulse detector for counting the pulses
`detected by the pulse detector and for storing meter data
`related to the counted pulses in a memory device, and an
`interface coupled to the microprocessor for transmitting the
`meter data from the memory device.
`In one embodiment, the inductive pickup coil comprises
`a secondary winding on an actuator electromagnet of the
`
`Petitioner Kiosoft Exhibit 1014
`Page 5
`
`Petitioner Kiosoft Exhibit 1014
`Page 5
`
`

`

`US 6,743,095 B2
`
`3
`electromechanical meter. In another embodiment, the induc-
`tive pickup coil is located in a housing positioned adjacent
`the electromechanical meter.
`
`the interface associated
`In one or more embodiments,
`with the microprocessor comprises a wireless communica-
`tion interface. The wireless interface may implement an
`infrared or wireless frequency communication protocol/
`architecture.
`
`Further objects, features, and advantages of the present
`invention over the prior art will become apparent from the
`detailed description of the drawings which follows, when
`considered with the attached figures.
`
`DESCRIPTION OF THE DRAWINGS
`
`FIG. 1 illustrates an electromechanical meter and associ-
`
`ated control in accordance with the prior art;
`FIG. 2 is a schematic diagram of the intelligent metering
`system in accordance with the present invention;
`FIG. 3 is a schematic diagram of a particular implemen-
`tation of an intelligent metering system according to an
`embodiment of the present invention; and
`FIG. 4 is a block diagram of the steps of a method of
`reading an electromechanical meter according to an embodi-
`ment of the present invention.
`
`DETAILED DESCRIPTION OF THE
`INVENTION
`
`The invention is an intelligent metering system. In the
`following description, numerous specific details are set forth
`in order to provide a more thorough description of the
`present
`invention.
`It will be apparent, however,
`to one
`skilled in the art, that the present invention may be practiced
`without these specific details. In other instances, well-known
`features have not been described in detail so as not
`to
`obscure the invention.
`
`FIG. 2 is a schematic diagram illustrating an intelligent
`metering system 100 in accordance with an embodiment of
`the present invention. As illustrated, the intelligent metering
`system 100 comprises a secondary metering system associ-
`ated with a primary metering system. Preferably, the primary
`metering system comprises a metering system such as that
`illustrated in detail in FIG. 1, including an electromechanical
`meter 20. As detailed above, such a primary metering system
`may include a meter interface for generating an electrical
`signal which activates the electromechanical meter, causing
`the meter to actuate. In one embodiment, the actuation is of
`a visible indicator of the meter.
`
`In accordance with the invention, the intelligent metering
`system includes a detector 102 and a controller 104. In
`general, the detector, 102 is arranged to detect a meter event.
`In one embodiment, the detector 102 is arranged to detect a
`signal associated with the incrementing/decrementing of the
`meter 20, and more particularly the visible count indicator
`thereof. In the preferred embodiment of the invention, the
`detector 102 comprises a “passive” detector, in that it is
`arranged to detect such an event/signal without needing to
`directly intercept the signal. In one embodiment, the detector
`102 comprises a field sensor (such as described below in
`detail).
`In another embodiment, the detector 102 may be arranged
`to detect a meter event by other than detection of the signal.
`For example,
`the detector 102 may comprise an optical
`sensor for detecting the movement of one or more of the
`wheels or other moving mechanical indicators of the meter
`20. In another embodiment, the detector 102 may comprise
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`4
`a reader, such as a camera or other optical reader for reading
`the visible count indicator itself.
`
`The detector 102 is arranged to provide an output signal
`to the controller 104. The controller 104 may comprise a
`wide variety of devices/components. Preferably, the control-
`ler 104 comprises a device which receives the detector 102
`output signal and manipulates or transfers that signal. In one
`embodiment, the controller 104 may use the signal as an
`input to change a data value in a memory, the data value
`associated with the signal event (such as the counting of
`coins input). In another embodiment, the controller 104 may
`output the signal or other data to a remote device or devices,
`such as a remote accounting system where data is tracked
`and stored.
`
`FIG. 3 illustrates a preferred embodiment of a metering
`system 200 in accordance with the invention.
`In this
`embodiment,
`the detector comprises an inductive pickup
`winding or coil 201. In one embodiment, the pickup coil 201
`may be located adjacent to the meter 20 for detecting a
`magnetic flux generated by an electrical signal/impulse. In
`this embodiment,
`the coil 201 may be positioned in a
`housing which is mounted adjacent to or directly to the
`meter 20. The construction of the coil 201, including the
`number of windings, may vary depending on the desired
`sensitivity,
`the distance of the coil 201 from the wires
`carrying the electrical signal
`in the meter 20, and the
`strength of the signal in the meter 20, among other factors.
`In this embodiment, it will be appreciated that the detector
`is a passive detector, in that only by activation of the meter
`20 is the detector (i.e. coil 201) activated.
`In another embodiment of the invention a standard elec-
`
`tromechanical counter may be manufactured with a second-
`ary winding on the actuator electromagnet of the electro-
`mechanical meter 20. This secondary winding is used as the
`inductive pickup winding/coil 201. The inductive pickup
`coil 201 is used in conjunction with the electronic circuits of
`the metering system to sense and count the counter actua-
`tions without affecting the normal operation or reliability of
`the electromechanical meter 20. In one embodiment, the
`inductive pickup winding 201 is preferably formed from
`15—17 turns of an enamel-coated 34-gauge solid copper
`w1re.
`
`In this embodiment, the controller comprises an amplifier
`202, a pulse detector 204, a pulse counter 206, and a memory
`208: The amplifier 202 boosts a signal from the inductive
`pickup winding 201 when the actuator electromagnet is
`actuated so that the signal has enough amplitude to trigger
`the pulse detector 204. For example, when currency is
`placed into a slot machine, the slot machine determines the
`value of the currency deposited, and then transmits an
`actuation signal to the actuator electromagnet of the elec-
`tromechanical meter 20 to actuate the meter 20 a specific
`number of times depending on the value of the currency and
`the value of the units to be registered by the meter 20. For
`example,.if a dollar is inserted into the slot machine and the
`electromechanical meter 20 stores the units in increments of
`
`25 cents, then the actuator electromagnet will receive four
`actuation signals to add four “turns” to the electromechani-
`cal meter 20. When the electrical signal
`is sent
`to the
`actuator electromagnet to turn the electromechanical meter
`20, the inductive pickup coil 201, along with the electronic
`circuits of the metering system, passively detects, counts and
`records each of the signals made to the actuator electromag-
`net.
`
`The pulse detector 204 preferably comprises a comparator
`circuit with hysteresis so as to illuminate false triggering and
`
`Petitioner Kiosoft Exhibit 1014
`Page 6
`
`Petitioner Kiosoft Exhibit 1014
`Page 6
`
`

`

`US 6,743,095 B2
`
`5
`to filter out EMP spikes, along with its primary purpose of
`detecting pulses.
`In one or more embodiments of the
`invention, the pulse detector 204 may simply comprise a
`low-pass filter.
`The microprocessor 206 is used to count the pulses as the
`electromechanical meter 20 is actuated. The microprocessor
`206 may be of a variety of types. In one embodiment, the
`microprocessor 206 comprises an 8-bit microcontroller such
`as a Phillips Semiconductor Model 87C751 microprocessor.
`In one embodiment,
`the microprocessor 206 is also
`adapted to store pulse/count meter data in a memory device
`208. In a preferred embodiment, the memory device 208
`comprises a non-volatile memory device such as an Amtel
`93C46 electrically-erasable programmable read-only
`(EEPROM) memory chip. The memory device 208 may be
`of a variety of other
`types,
`including RAM, DRAM,
`SDRAM and the like.
`
`In one embodiment, the intelligent metering system 200
`includes means for transmitting meter data to a remote
`device. Preferably, this means comprises a communication
`interface associated with the microprocessor 206 for out-
`putting data therefrom.
`In one embodiment, first and second interfaces 210 and
`212 may be coupled to the microprocessor 206 to transmit
`the meter data to an external device. For example,
`the
`microprocessor 206 may utilize an industry standard 12C
`3-wire interface 210, or a standard EIA RS-232 or RS-422
`interface 212, or both, for connecting to a networked elec-
`tronic accounting system, or to an external receiving device.
`Optionally, a wireless transceiver interface (not shown) may
`also be used to download the meter data to a palm-top
`computer device, a laptop computer, or other similar receiv-
`ing device equipped with a port capable of interfacing with
`the transceiver. The wireless interface may be adapted to
`implement an infrared or radio frequency communication
`architecture/protocol, such as BluetoothTM or IEEE 802.11
`0))
`The intelligent metering system according to an embodi-
`ment of the present invention may be especially useful for
`acquiring slot machine, vending machine, or arcade machine
`hard count meter data (electromechanical readings)
`remotely via radio frequency, or via a land-based media,
`such as over a telephone line or a paging system.
`In addition to currency-driven machines, such as slot or
`other gaming machines, vending machines, or arcade
`machines, the intelligent metering system may be utilized in
`any device having an electromechanical meter or counter,
`such as in a printing or photocopier machine. Therefore,
`service personnel do not need to open up the machine and
`read the electromechanical meter, but may only need to
`simply connect a portable receiving device, such as a
`hand-held computer, into the interface of the printing or
`photocopier machine to read and record the meter data.
`The intelligent metering system according to an embodi-
`ment of the present invention does not require any other
`special
`interface in order to detect
`the actuation of the
`electromechanical meter. In addition, no special protocols
`are required, as industry standard interfaces are used to
`transmit data from the metering system.
`Therefore, in utilizing the intelligent metering system of
`the present invention, an accurate “hard” count reading may
`be obtained, and the values may also be compared with the
`electromechanical meter in order to verify accuracy, as well
`as determining whether the electromechanical meter itself
`has been tampered. Furthermore, the values obtained from
`the intelligent metering system are as reliable as the “hard”
`
`5
`
`10
`
`15
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`6
`count reading because the intelligent metering system is
`entirely passive and dependent upon the actuation of the
`actuator electromagnet of the electromechanical meter 20.
`That is, it “counts” a pulse only when the electromechanical
`meter 20 is actuated and requires no active input (such as
`electrical leads carrying a live current). Therefore, the intel-
`ligent metering system does not have live wires connected to
`it in order to receive direct signals each time the actuator
`electromagnet of the electromechanical meter 20 receives a
`signal.
`The intelligent metering system is preferably self-
`contained and entirely separate from the logic/circuit board
`of the machine in which it is placed. The self-contained
`intelligent metering system is such that any tampering with
`the logic/circuit board of the machine will not affect the
`intelligent metering system. And, to be as tamper resistant as
`possible,
`the intelligent metering system should not be
`dependent upon external power sources; that is, the micro-
`processor 206 and the memory 208 should be self-powered
`and maintenance free. The intelligent metering system
`should be functional in the event of a power failure, or even
`when no power at all is provided to the machine it which it
`is placed. Furthermore, the memory 208 should be unable to
`receive inputs from any other source except from the micro-
`processor 206 of the intelligent metering system. In addition,
`the intelligent metering system should be secure enough so
`that tampering of any of its components, especially the
`microprocessor 206 and the memory 208, is not possible, or
`that the intelligent metering system is capable of recognizing
`when tampering has occurred and recording such informa-
`tion. Therefore, the intelligent metering system, working in
`conjunction with the electromechanical meter 20, is capable
`of providing accurate and reliable “hard” count meter data,
`and accurate transmission of the meter data may be per-
`formed via the interface. The intelligent metering system
`also provides a reliable and accurate system for storing
`meter data that is more tamper resistant than electrome-
`chanical meters or counters.
`
`An advantage of the intelligent metering system of the
`invention is that it can be associated with an existing primary
`metering system already in use in a device. Thus,
`the
`intelligent metering system can easily be adapted in “retro-
`fit” fashion to an existing device. In one embodiment, the
`retrofit comprises the installation of the detector (such as
`winding 201) near the meter 20, along with the controller. In
`an embodiment where the detector comprises a secondary
`winding on the actuator electromagnet of the electrome-
`chanical meter 20, then the actuator electromagnet of the
`meter 20 or the entire meter 20 may be replaced.
`FIG. 4 illustrates a block diagram of the steps of reading
`an electromechanical meter according to an embodiment of
`the present invention. Using the intelligent metering system
`according to an embodiment of the present
`invention
`described above, step 300 shows that a signal is first detected
`from the inductive pickup winding 201 positioned on the
`actuator electromagnet of the electromechanical meter 20
`when the actuator electromagnet is actuated. In step 302, the
`detected signal from the inductive pickup winding 201 is
`amplified. Then in step 304, a pulse is detected from each
`amplified signal. The pulse is preferably detected by the
`pulse detector 204 that comprises a comparator circuit
`having hysteresis for detecting the pulses, detecting false
`triggerings, and filtering EMP spikes. In step 306, each of
`the detected pulses are counted, preferably by the micro-
`processor device 206. The microprocessor 206 preferably
`has a ROM or firmware storing microcode instructions for
`execution by the microprocessor 206 to count the detected
`
`Petitioner Kiosoft Exhibit 1014
`Page 7
`
`Petitioner Kiosoft Exhibit 1014
`Page 7
`
`

`

`US 6,743,095 B2
`
`7
`pulses and store them as meter data. Meter data related to the
`counted pulses are then preferably stored by the micropro-
`cessor 206 in the memory device 208, such as a nonvolatile
`memory device, as in step 308. In step 310, the meter data
`may be transmitted from the memory device 208 through the
`interface 210 and 212. The interface 210 and 212 may be any
`standard type of interface, such as an 12C interface, or an
`RS-232 or RS-422 interface. As mentioned above, the meter
`data may be transmitted to any receiving device, such as a
`hand-held or laptop computer, adapted to interface with the
`intelligent metering system to receive the meter data.
`The intelligent metering system may be adapted for use
`with a variety of primary metering systems. As detailed, the
`intelligent metering system is used with a primary metering
`system including an electromechanical meter for generating
`“coin in” count data. The system of the invention may be
`used with primary metering systems having electromechani-
`cal meters for generating a wide variety of other count data,
`such as coins out and the like.
`
`In one or more embodiments, more than one-intelligent
`metering system may be provided when a gaming machine
`includes more than one electromechanical meter. In one
`
`embodiment, the intelligent metering system may include a
`single controller 104 and a plurality of detectors 102, the
`detectors 102 associated with a plurality of electromechani-
`cal meters. In such event, the single controller 104 may be
`adapted to use the output signals from the plurality of
`detectors 102 to generate a plurality of count data.
`In one or more embodiments of the invention, the intel-
`ligent metering system may be used with electronic meters.
`Such meters may be provided an input signal which causes
`an electronic display of count data to be incremented. In this
`arrangement,
`the mechanical
`indicator (wheels, etc.) are
`replaced with an LCD, LED or other electrically powered or
`operated display.
`While the description above refers to particular embodi-
`ments of the present invention, it will be understood that
`many modifications may be made without departing from
`the spirit thereof The accompanying claims are intended to
`cover such modifications as would fall within the true scope
`and spirit of the present invention.
`We claim:
`
`1. In a gaming machine, an intelligent metering system for
`a coin-counting electromechanical meter of said gaming
`machine which meter which is configured to increment in
`response to an input signal thereto, comprising:
`an inductive pickup winding associated with said electro-
`mechanical meter, said pickup winding configured to
`detect said input signal to said electromechanical meter
`and create a signal in response thereto;
`an amplifier coupled to the inductive pickup winding to
`boost said signal generated by the inductive pickup
`winding created in response to said detected input
`signal;
`a pulse detector, coupled to the amplifier, for detecting
`pulses comprising said boosted signal;
`a microprocessor coupled to the pulse detector for count-
`ing the pulses detected by the pulse detector and for
`storing meter data related to the counted pulses in a
`memory device; and
`an interface coupled to the microprocessor for transmit-
`ting the meter data from the memory device.
`2. The intelligent metering system in accordance with
`claim 1 wherein said electromechanical meter includes an
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`8
`actuator electromagnet and said inductive pickup winding
`comprises a secondary winding of said actuator electromag-
`net.
`
`3. The intelligent metering system according to claim 2,
`wherein the inductive pickup winding is formed with 15 to
`17 turns of enamel-coated 34-gauge solid copper wire.
`4. The intelligent metering system according to claim 1,
`wherein said inductive pickup winding is located in a
`housing adjacent said electromechanical meter.
`5. The intelligent metering system according to claim 1,
`wherein the memory device comprises a re-writeable
`memory device.
`6. The intelligent metering system according to claim 1,
`wherein the interface is a wireless communication interface.
`
`7. The intelligent metering system according to claim 6,
`wherein the interface includes an infrared transceiver circuit
`
`for transmitting the meter data to a receiving device having
`an infrared port.
`8. The intelligent metering system according to claim 1,
`wherein the pulse detector comprises a comparator circuit
`with hysteresis.
`9. The intelligent metering system according to claim 1,
`including a meter interface adapted to send an electrical
`signal to said electromechanical meter for causing actuation
`of said meter.
`
`10. A method of reading a coin-counting electromechani-
`cal meter of a gaming machine, the method comprising the
`steps of:
`creating an output signal with an inductive pickup wind-
`ing in response to an input signal provided to said
`electromechanical meter associated with a coin-
`
`counting increment of said electromechanical meter;
`detecting said output signal from said inductive pickup
`winding;
`amplifying the output signal from the inductive pickup
`winding;
`detecting a pulse from the amplified signal;
`counting the detected pulses;
`storing meter data related to the counted pulses in a
`memory device; and
`transmitting the meter data from the memory device
`through an interface.
`11. The method of reading an electromechanical meter
`according to claim 10, wherein the step of detecting the
`pulse from the amplified signal is performed by a pulse
`detector comprising a comparator circuit with hysteresis for
`detecting pulses, detecting false triggerings and filtering out
`EMP spikes.
`12. The method of reading an electromechanical meter
`according to claim 10, wherein the step of counting the
`detected pulses is performed by a microprocessor.
`13. The method of reading an electromechanical meter
`according to claim 10, wherein said transmitting step com-
`prises transmitting said meter data via a wireless commu-
`nication link.
`
`14. In combination, an electromechanical coin-counting
`meter of a gaming machine, said meter including a mechani-
`cal count indicator, a meter interface adapted to generate an
`electrical signal for causing said electromechanical meter to
`actuate said mechanical count indicator, and a secondary
`metering system, said secondary metering system including
`at least one pickup coil associated with said electromechani-
`cal meter, said at least one pickup coil adapted to generate
`
`Petitioner Kiosoft Exhibit 1014
`Page 8
`
`Petitioner Kiosoft Exhibit 1014
`Page 8
`
`

`

`US 6,743,095 B2
`
`9
`a pulse in response to the activation of said electromechani-
`cal meter, and a processor adapted to count pulses generated
`by said at least one pickup coil.
`15. The combination in accordance With claim 14, includ-
`ing at least one coin accepting deVice associated With said
`meter interface, said at
`least one coin accepting deVice
`
`10
`adapted to output a signal associated With the receipt of a
`coin, and wherein said meter interface is configured to
`generate said electrical signal in response to the input of said
`signal Which is output from said coin accepting deVice.
`*
`*
`*
`*
`*
`
`Petitioner Kiosoft Exhibit 1014
`Page 9
`
`Petitioner Kiosoft Exhibit 1014
`Page 9
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket