throbber
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
`
`(19) World Intellectual Property Organization
`International Bureau
`
`(43) International Publication Date
`2 December 2010 (02.12.2010)
`
`(10) International Publication Number
`WO 2010/138211 Al
`
`(51) International Patent Classification:
`HOSB 37/00 (2006.01)
`
`(21) International Application Number:
`PCT/US2010/001597
`
`(22) International Filing Date:
`
`(25) Filing Language:
`
`(26) Publication Language:
`
`28 May 2010 (28.05.2010)
`
`English
`
`English
`
`(30) Priority Data:
`61/217,2 15
`
`28 May 2009 (28.05.2009)
`
`US
`
`(63) Related by continuation (CON) or continuation-in-part
`(CIP) to earlier application:
`US
`Filed on
`
`12/287,267 (CIP)
`6 October 2008 (06.10.2008)
`
`(71) Applicant (for all designated States except US): LYNK
`LABS, INC.
`[US/US]; 25 11 Technology Drive, Suite
`108, Elgin, IL 60123-9323 (US).
`
`(72) Inventors; and
`(75) Inventors/Applicants (for US only): MISKIN, Michael
`[US/US]; 2 Pinecone Lane, Sleepy Hollow,
`IL 601 18
`(US). KOTTRISCH, Robert, L . [GB/GB]; 10 The Hol
`lies, Shefford, Bedfordshire SGl 75BX (GB).
`
`(74) Agent: LAKE, Michael, D.; Factor & Lake, Ltd, 1327
`W . Washington Blvd., Suite 5G/H, Chicago,
`IL 60607
`(US).
`
`(81) Designated States (unless otherwise indicated, for every
`kind of national protection available): AE, AG, AL, AM,
`AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
`CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
`DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
`HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
`KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
`ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
`NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
`SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
`TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
`
`(84) Designated States (unless otherwise indicated, for eveiy
`kind of regional protection available): ARIPO (BW, GH,
`GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
`ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
`TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
`EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
`LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
`SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
`GW, ML, MR, NE, SN, TD, TG).
`
`Published:
`— with international search report (Art. 21(3))
`
`(54) Title: MULTI- VOLTAGE AND MULTI-BRIGHTNESS LED LIGHTING DEVICES AND METHODS OF USING SAME
`
`(57) Abstract: A single chip multi-voltage or
`multi-brightness LED lighting device having at
`least two LED circuits having at least two LEDs
`connected sep es, and electrically unconnected in
`a parallel relationship, a forward operating dp ve
`voltage of at least six volts and are monolithical-
`Iy integrated on a single substrate, configurable
`by means of connecting the circuits so as to pro
`vide optional operating voltage level and/or d e
`sired bnghtness level wherein the electrical con
`nection at the LED packaging level when the
`single chips are integrated into the LED package
`Alternatively,
`the LED package may have exter
`nal electrical contacts that match the integrated
`chips within Optionally allowable,
`the drive
`voltage level and/or the bnghtness level select-
`ability may be passed on through to the exterior
`of the LED package and may be selected by the
`LED package user, the PCB assembly facility, or
`the end product manufacturer.
`
`12/24 VAC SINGLE CHIP
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 1
`
`

`

`Multi-Voltage And Multi-Brightness LED Lighting Devices
`
`And Methods Of Using Same
`
`RELATED APPLICATIONS
`
`[Para 1]
`
`The application is a continuation-in-part of U.S. Patent Application No.
`
`12/287,267, filed October 6, 2008, which claims the priority to U.S. Provisional Application
`
`No. 60/997,771, filed October 6, 2007; this application also claims priority to U.S.
`
`Provisional Application No. 61/217,215, filed May 28, 2009; the contents of each of these
`
`applications are expressly incorporated herein by reference.
`
`TECHNICAL FIELD
`The present invention generally relates to light emitting diodes ("LEDs") for
`[Para 2]
`
`AC operation. The present invention specifically relates to multiple voltage level and
`
`multiple brightness level LED devices, packages and lamps.
`
`FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
`None.
`[Para 3]
`
`BACKGROUND OF THE INVENTION
`
`[Para 4]
`
`[Para 5]
`
`Field of the Invention
`
`The present invention generally relates to light emitting diodes ("LEDs") for
`
`multi-voltage level and/or multi-brightness level operation. The present invention
`
`specifically relates to multiple voltage level and multiple brightness level light emitting diode
`
`circuits, single chips, packages and lamps "devices" for direct AC voltage power source
`
`operation, bridge rectified AC voltage power source operation or constant DC voltage power
`
`source operation.
`
`[Para 6]
`
`Description of the Related Art
`
`LEDs are semiconductor devices that produce light when a current is supplied to them.
`LEDs are intrinsically DC devices that only pass current in one polarity and historically have
`
`been driven by DC voltage sources using resistors, current regulators and voltage regulators
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 2
`
`

`

`to limit the voltage and current delivered to the LED. Some LEDs have resistors built into
`
`the LED package providing a higher voltage LED typically driven with 5V DC or 12V DC.
`
`[Para 7 1
`
`With proper design considerations LEDs may be driven more efficiently with
`
`direct AC or rectified AC than with constant voltage or constant current DC drive schemes.
`
`[Para 8]
`
`Some standard AC voltage in the world include 12VAC, 24VAC, lOOVAC,
`
`1lOVAC, 120VAC, 220VAC, 230VAC, 240VAC and 277VAC. Therefore, it would be
`
`advantageous to have a single chip LED or multi-chip single LED packages that could be
`
`easily configured to operate at multiple voltages by simply selecting a voltage and/or current
`
`level when packaging the multi-voltage and/or multi-current single chip LEDs or by selecting
`
`a specific voltage and/or current level when integrating the LED package onto a printed
`
`circuit board or within a finished lighting product. It would also be advantageous to have
`
`multi-current LED chips and/or packages for LED lamp applications in order to provide a
`
`means of increasing brightness in LED lamps by switching in additional circuits just as
`
`additional filaments are switched in for standard incandescent lamps.
`
`[Para 9]
`
`US 7,525,248 discloses a c i>-scale LED lamp including discrete LEDs
`
`capable of being built upon electrically insulative, electrically conductive, or electrically semi
`
`conductive substrates. Further, the construction of the LED lamp enables the lamp to be
`
`configured for high voltage AC or DC power operation. The LED based solid-state light
`
`emitting device or lamp is built upon an electrically insulating layer that has been formed
`
`onto a support surface of a substrate. Specifically, the insulating layer may be epitaxially
`
`grown onto the substrate, followed by an LED buildup of an n-type semiconductor layer, an
`
`optically active layer, and a p-type semiconductor layer, in succession. Isolated mesa
`
`structure of individual, discrete LEDs is formed by etching specific portions of the LED
`
`buildup down to the insulating layer, thereby forming trenches between adjacent LEDs.
`
`Thereafter, the individual LEDs are electrically coupled together through conductive
`
`elements or traces being deposited for connecting the n-type layer of one LED and the p-type
`
`layer of an adjacent LED, continuing across all of the LEDs to form the solid-state light
`
`emitting device. The device may therefore be formed as an integrated AC/DC light emitter
`
`with a positive and negative lead for supplied electrical power. For instance, the LED lamp
`
`may be configured for powering by high voltage DC power (e.g., 12V, 24V, etc.) or high
`
`voltage AC power (e.g., 110/1 20V, 220/240V, etc.).
`
`[Para 10]
`
`US 7,213,942 discloses a single-cA LED device through the use of
`
`integrated circuit technology, which can be used for standard high AC voltage (110 volts for
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 3
`
`

`

`North America, and 220 volts for Europe, Asia, etc.) operation. The single-cL
`A C LED
`device integrates many smaller LEDs, which are connected in series. The integration is done
`during the LED fabrication process and the final product is a single-cL i / >device that can be
`plugged directly into house or building power outlets or directly screwed into incandescent
`
`lamp sockets that are powered by standard AC voltages. The series connected smaller LEDs
`
`are patterned by photolithography, etching (such as plasma dry etching), and metallization on
`
`a single chip. The electrical insulation between small LEDs within a single-c i
`
`is achieved
`
`by etching light emitting materials into the insulating substrate so that no light emitting
`
`material is present between small LEDs. The voltage crossing each one of the small LEDs is
`
`about the same as that in a conventional DC operating LED fabricated from the same type of
`
`material (e.g., about 3.5 volts for blue LEDs).
`
`[Para 11]
`
`Accordingly, single chip LEDs have been limited and have not been integrated
`
`circuits beyond being fixed series or fixed parallel circuit configurations until the
`
`development of AC LEDs. The AC LEDs have still however been single circuit, fixed single
`
`voltage designs.
`
`[Para 12]
`
`LED packages have historically not been integrated circuits beyond being
`
`fixed series or fixed parallel circuit configurations.
`
`[Para 13]
`
`The art is deficient in that it does not provide a multi-voltage and/or multi-
`
`current circuit monolithically integrated on a single substrate which would be advantageous.
`
`[Para 14]
`
`It would further be advantageous to have a multi-voltage and/or multi-
`
`brightness circuit that can provide options in voltage level, brightness level and/or AC or DC
`
`powering input power preference.
`
`[Para 15]
`
`It would further be advantageous to provide multiple voltage level and/or
`
`multiple brightness level light emitting LED circuits, chips, packages and lamps "multi-
`
`voltage and/or multi-brightness LED devices" that can easily be electrically configured for at
`
`least two forward voltage drive levels with direct AC voltage coupling, bridge rectified AC
`
`voltage coupling or constant voltage DC power source coupling. This invention comprises
`
`circuits and devices that can be driven with more than one AC or DC forward voltage "multi-
`
`voltage" at 6V or greater based on a selectable desired operating voltage level that is
`
`achieved by electrically connecting the LED circuits in a series or parallel circuit
`
`configuration and/or more than one level of brightness "multi-brightness" based on a
`
`switching means that connects and/or disconnects at least one additional LED circuit to
`
`and/or from a first LED circuit. The desired operating voltage level and/or the desired
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 4
`
`

`

`brightness level electrical connection may be achieved and/or completed at the LED
`
`packaging level when the multi-voltage and/or multi-brightness circuits and/or single chips
`
`are integrated into the LED package, or the LED package may have external electrical
`
`contacts that match the integrated multi-voltage and/or multi-brightness circuits and/or single
`chips within, thus allowing the drive voltage level aήd/or the brightness level select-ability to
`be passed on through to the exterior of the LED package and allowing the voltage level or
`
`brightness level to be selected at the LED package user, or the PCB assembly facility, or the
`
`end product manufacturer.
`
`[Para 16]
`
`It would further be advantageous to provide at least two integrated circuits
`
`having a forward voltage of at least 12VAC or 12VDC or greater on a single chip or within a
`
`single LED package that provide a means of selecting a forward voltage when packaging a
`
`multi-voltage and/or multi-brightness circuit using discrete die (one LED chip at a time) and
`
`wire bonding them into a circuit at the packaging level or when packaging one or more multi-
`
`voltage and/or multi-brightness level single chips within a LED package.
`
`[Para 17]
`
`It would further be advantageous to provide multi-voltage and/or multi-
`
`brightness level devices that can provide electrical connection options for either AC or DC
`
`voltage operation at preset forward voltage levels of 6V or greater.
`
`[Para 18]
`
`It would further be advantageous to provide multi-brightness LED devices that
`
`can be switched to different levels of brightness by simply switching additional circuits on or
`
`off in addition to a first operating circuit within a single chip and or LED package. This
`
`would allow LED lamps to switch to higher brightness levels just like 2-way or 3-way
`
`incandescent lamps do today.
`
`[Para 19]
`
`The benefits of providing multi-voltage circuits of 6V or greater on a single
`
`chip is that an LED packager can use this single chip as a platform to offer more than one
`
`LED packaged product with a single chip that addresses multiple voltage levels for various
`
`end customer design requirements. This also increase production on a single product for the
`
`chip maker and improves inventory control. This also improves buying power and inventory
`
`control for the LED packager when using one chip.
`
`[Para 20]
`
`The present invention provides for these advantages and solves the
`
`deficiencies in the art.
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 5
`
`

`

`SUMMARY OF THE INVENTION
`
`[Para 21]
`
`According to one aspect of the invention at least two single voltage AC LED
`
`circuits are formed on a single chip or on a substrate providing a multi-voltage AC LED
`
`device for direct AC power operation. Each single voltage AC LED circuit has at least two
`
`LEDs connected to each other in opposing parallel relation.
`
`[Para 22]
`
`According to another aspect of the invention, each single voltage AC LED
`
`circuit is designed to be driven with a predetermined forward voltage of at least 6VAC and
`
`preferably each single voltage AC LED circuit has a matching forward voltage of 6VAC,
`
`12VAC, 24VAC, 120VAC, or other AC voltage levels for each single voltage AC LED
`
`circuit.
`
`[Para 23]
`
`According to another aspect of the invention, each multi-voltage AC LED
`
`device would be able to be driven with at least two different AC forward voltages resulting in
`
`a first forward voltage drive level by electrically connecting the two single voltage AC LED
`
`circuits in parallel and a second forward voltage drive level by electrically connecting the at
`
`least two single voltage level AC LED circuits in series. By way of example, the second
`
`forward voltage drive level of the serially connected AC LED circuits would be
`
`approximately twice the level of the first forward voltage drive level of the parallel connected
`
`AC LED circuits. The at least two parallel connected AC LED circuits would be twice the
`i
`current of the at least two serially connected AC LED circuits. In either circuit configuration,
`
`the brightness would be approximately the same with either forward voltage drive selection
`
`of the multi-voltage LED device.
`
`[Para 24]
`
`According to another aspect of the invention, at least two single voltage series
`
`LED circuits, each of which have at least two serially connected LEDs, are formed on a
`
`single chip or on a substrate providing a multi-voltage AC or DC operable LED device.
`
`[Para 25]
`
`According to another aspect of the invention, each single voltage series LED
`
`circuit is designed to be driven with a predetermined forward voltage of at least 6V AC or
`
`DC and preferably each single voltage series LED circuit has a matching forward voltage of
`
`6V, 12V, 24V, 120V, or other AC or DC voltage levels. By way of example, each multi-
`
`voltage AC or DC LED device would be able to be driven with at least two different AC or
`
`DC forward voltages resulting in a first forward voltage drive level by electrically connecting
`
`the two single voltage series LED circuits in parallel and a second forward voltage drive level
`
`by electrically connecting the at least two single voltage level series LED circuits in series.
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 6
`
`

`

`The second forward voltage drive level of the serially connected series LED circuits would be
`
`approximately twice the level of the first forward voltage drive level of the parallel connected
`
`series LED circuits. The at least two parallel connected series LED circuits would be twice
`
`the current of the at least two serially connected series LED circuits. In either circuit
`
`configuration, the brightness would be approximately the same with either forward voltage
`
`drive selection of the multi-voltage series LED device.
`
`[Para 26]
`
`According to another aspect of the invention, at least two single voltage AC
`
`LED circuits are formed on a single chip or on a substrate providing a multi-voltage and/or
`
`multi-brightness AC LED device for direct AC power operation.
`
`[Para 27]
`
`According to another aspect of the invention, each single voltage AC LED
`
`circuit has at least two LEDs connected to each other in opposing parallel relation. Each
`
`single voltage AC LED circuit is designed to be driven with a predetermined forward voltage
`
`of at least 6VAC and preferably each single voltage AC LED circuit has a matching forward
`
`voltage of 6VAC, 12VAC, 24VAC, 120VAC, or other AC voltage levels for each single
`
`voltage AC LED circuit. The at least two AC LED circuits within each multi-voltage and/or
`
`multi current AC LED device would be left able to be driven with at least two different AC
`
`forward voltages resulting in a first forward voltage drive level by electrically connecting the
`
`two single voltage AC LED circuits in parallel and a second forward voltage drive level by
`
`electrically connecting the at least two single voltage level AC LED circuits in series. The
`
`second forward voltage drive level of the serially connected AC LED circuits would be
`
`approximately twice the level of the first forward voltage drive level of the parallel connected
`
`AC LED circuits. The at least two parallel connected AC LED circuits would be twice the
`
`current of the at least two serially connected AC LED circuits. In either circuit configuration,
`
`the brightness would be approximately the same with either forward voltage drive selection
`
`of the multi-voltage LED device.
`
`[Para 28]
`
`According to another aspect of the invention at least two single voltage LED
`
`circuits are formed on a single chip or on a substrate, and at least one bridge circuit made of
`
`LEDs is formed on the same single chip or substrate providing a multi-voltage and/or multi-
`
`brightness LED device for direct DC power operation. Each single voltage LED circuit has
`
`at least two LEDs connected to each other in series. Each single voltage LED circuit is
`
`designed to be driven with a predetermined forward voltage and preferably matching forward
`
`voltages for each circuit such as 12VDC, 24VDC, 120VDC, or other DC voltage levels for
`
`each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 7
`
`

`

`would be able to be driven with at least two different DC forward voltages resulting in a first
`
`forward voltage drive level when the two single voltage LED circuits are connected in
`
`parallel and a second forward voltage drive level that is twice the level of the first forward
`
`voltage drive level when the at least two LED circuits are connected in series.
`
`[Para 29]
`
`According to another aspect of the invention at least two single voltage LED
`
`circuits are formed on a single chip or on a substrate providing a multi-voltage and/or multi-
`
`brightness LED device for direct DC power operation. Each single voltage LED circuit has
`
`at least two LEDs connected to each other in series. Each single voltage LED circuit is
`
`designed to be driven with a predetermined forward voltage and preferably matching forward
`
`voltages for each circuit such as 12VAC, 24VAC, 120VAC, or other DC voltage levels for
`
`each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device
`
`would be able to be driven with at least two different DC forward voltages resulting in a first
`
`forward voltage drive level when the two single voltage LED circuits are connected in
`
`parallel and a second forward voltage drive level that is twice the level of the first forward
`
`voltage drive level when the at least two LED circuits' are connected in series.
`
`[Para 30]
`
`According to another aspect of the invention at least two single voltage LED
`
`circuits are formed on a single chip or on a substrate, and at least one bridge circuit made of
`
`LEDs is formed on the same single chip or substrate providing a multi-voltage and/or multi-
`
`brightness LED device for direct DC power operation. Each single voltage LED circuit has
`
`at least two LEDs connected to each other in series. Each single voltage LED circuit is
`
`designed to be driven with a predetermined forward voltage and preferably matching forward
`
`voltages for each circuit such as 12VDC, 24VDC, 120VDC, or other DC voltage levels for
`
`each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device
`
`would be able to be driven with at least two different DC forward voltages resulting in a first
`
`forward voltage drive level when the two single voltage LED circuits are connected in
`
`parallel and a second forward voltage drive level that is twice the level of the first forward
`
`voltage drive level when the at least two LED circuits are connected in series.
`
`[Para 31]
`
`According to another aspect of the invention a multi-voltage and/or multi-
`
`current AC LED circuit is integrated within a single chip LED. Each multi-voltage and/or
`
`multi-current single chip AC LED LED comprises at least two single voltage AC LED
`
`circuits. Each single voltage AC LED circuit has at least two LEDs in anti-parallel
`
`configuration to accommodate direct AC voltage operation. Each single voltage AC LED
`
`circuit may have may have at least one voltage input electrical contact at each opposing end
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 8
`
`

`

`of the circuit or the at least two single voltage AC LED circuits may be electrically connected
`
`together in series on the single chip and have at least one voltage input electrical contact at
`
`each opposing end of the two series connected single voltage AC LED circuits and one
`
`voltage input electrical contact at the center junction of the at least two single voltage AC
`
`LED circuits connected in series. The at least two single voltage AC LED circuits are
`
`integrated within a single chip to form a multi-voltage and/or multi-current single chip AC
`
`LED.
`
`[Para 32]
`
`According to another aspect of the invention, at least one multi-voltage and/or
`
`multi-brightness LED devices may be integrated within a LED lamp. The at least two
`
`individual LED circuits within the multi-voltage and/or multi-brightness LED device(s) may
`
`be wired in a series or parallel circuit configuration by the LED packager during the LED
`
`packaging process thus providing for at least two forward voltage drive options, for example
`
`12VAC and 24VAC or 120VAC and 240VAC that can be selected by the LED packager.
`
`[Para 33]
`
`According to another aspect of the invention a multi-voltage and/or multi-
`
`current AC LED package is provided, comprising at least one multi-voltage and/or multi-
`
`current single chip AC LED integrated within a LED package. The multi-voltage and/or
`
`multi-current AC LED package provides matching electrical connectivity pads on the exterior
`
`of the LED package to the electrical connectivity pads of the at least one multi-voltage and/or
`
`multi-current single chip AC LED integrated within the LED package thus allowing the LED
`
`package user to wire the multi-voltage and/or multi-current AC LED package into a series or
`
`parallel circuit configuration during the PCB assembly process or final product integration
`
`process and further providing a AC LED package with at least two forward voltage drive
`
`options.
`
`[Para 34]
`
`According to another aspect of the invention multiple individual discrete LED
`
`chips are used to form at least one multi-voltage and/or multi-current AC LED circuit within
`
`a LED package thus providing a multi-voltage and/or multi current AC LED package. Each
`
`multi-voltage and/or multi-current AC LED circuit within the package comprises at least two
`
`single voltage AC LED circuits. Each single voltage AC LED circuit has at least two LEDs
`
`in anti-parallel configuration to accommodate direct AC voltage operation The LED package
`
`provides electrical connectivity pads on the exterior of the LED package that match the
`
`electrical connectivity pads of the at least two single voltage AC LED circuits integrated
`
`within the multi-voltage and/or multi-current AC LED package thus allowing the LED
`
`package to be wired into a series or parallel circuit configuration during the PCB assembly
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 9
`
`

`

`process and further providing a LED package with at least two forward voltage drive options.
`
`[Para 35]
`
`According to another aspect of the invention a multi-voltage and/or multi-
`
`current single chip AC LED and/or multi-voltage and/or multi current AC LED package is
`
`integrated within an LED lamp. The LED lamp having a structure that comprises a heat sink,
`
`a lens cover and a standard lamp electrical base. The multi-voltage and/or multi-current
`
`single chip AC LED and/or package is configured to provide a means of switching on at least
`
`one additional single voltage AC LED circuit within multi-voltage and/or multi-current AC
`
`LED circuit to provide increased brightness from the LED lamp.
`
`[Para 36]
`
`According to anther broad aspect of the invention at least one multi-current
`
`AC LED single chip is integrated within a LED package.
`
`[Para 37]
`
`According to another aspect of the invention, at least one single chip multi-
`
`current LED bridge circuit is integrated within a LED lamp having a standard lamp base.
`
`The single chip multi-current LED bridge circuit may be electrically connected together in
`
`parallel configuration but left open to accommodate switching on a switch to the more than
`
`one on the single chip and have at least one accessible electrical contact at each opposing end
`
`of the two series connected circuits and one accessible electrical contact at the center junction
`
`of the at least two individual serially connected LED circuits. The at least two individual
`
`circuits are integrated within a single chip.
`
`[Para 38]
`
`According to another aspect of the invention When the at least two circuits are
`
`left unconnected on the single chip and provide electrical pads for connectivity during the
`
`packaging process, the LED packager may wire them into series or parallel connection based
`
`on the desired voltage level specification of the end LED package product offering.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`Figure 1 shows a schematic view of a preferred embodiment of the invention;
`
`[Para 39]
`
`[Para 40]
`
`[Para 41]
`
`[Para 42]
`
`[Para 43]
`
`[Para 44]
`
`[Para 45]
`
`[Para 46]
`
`[Para 47]
`
`Figure 2 shows a schematic view of a preferred embodiment of the invention;
`
`Figure 3 shows a schematic view'of a preferred embodiment of the invention;
`
`Figure 4 shows a schematic view of a preferred embodiment of the invention;
`
`Figure 5 shows a schematic view of a' preferred embodiment of the invention;
`
`Figure 6 shows a schematic view of a preferred embodiment of the invention;
`
`Figure 7 shows a schematic view of a preferred embodiment of the invention;
`
`Figure 8 shows a schematic view of a preferred embodiment of the invention;
`
`Figure 9 shows a schematic view of a preferred embodiment of the invention;
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 10
`
`

`

`[Para 48]
`
`[Para 49]
`
`and,
`
`Figure 10 shows a schematic view of a preferred embodiment of the invention;
`
`Figure 11 shows a schematic view of a preferred embodiment of the invention;
`
`[Para 50]
`
`Figure 12 shows a schematic view of a preferred embodiment of the invention;
`
`DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
`
`[Para 51]
`
`Figure 1 discloses a schematic diagram of a multi-voltage and/or multi-
`
`brightness LED lighting device 10. The multi-voltage and/or multi-brightness LED lighting
`
`device 10 comprises at least two AC LED circuits 12 configured in a imbalanced bridge
`
`circuit, each of which have at least two LEDs 14. The at least two AC LED circuits have
`
`electrical contacts 16a, 16b, 16c, and 16d at opposing ends to provide various connectivity
`
`options for an AC voltage source input. For example, if 16a and 16c are electrically
`
`connected together and 16b and 16d are electrically connected together and one side of the
`
`AC voltage input is applied to 16a and 16c and the other side of the AC voltage input is
`
`applied to 16b and 16d, the circuit becomes a parallel circuit with a first operating forward
`
`voltage. If only 16a and 16c are electrically connected and the AC voltage inputs are applied
`
`to electrical contacts 16b and 16d, a second operating forward voltage is required to drive the
`
`single chip 18. The single chip 18 may also be configured to operate at more than one
`
`brightness level "multi-brightness" by electrically connecting for example 16a and 16b and
`
`applying one side of the line of an AC voltage source to 16a ad 16b and individually applying
`
`the other side of the line from the AC voltage source a second voltage to 26b and 26c.
`
`[Para 52]
`
`Figure 2 discloses a schematic diagram of a multi-voltage and/or multi-
`
`brightness LED lighting device 20 similar to the multi-voltage and/or multi-brightness LED
`
`lighting device 10 described above in figure 1 . The at least two AC LED circuits 12 are
`
`integrated onto a substrate 22. The at elast two AC LED circuits 12 configured in a
`
`imbalanced bridge circuit, each of which have at least two LEDs 14. The at least two AC
`
`LED circuits have electrical contacts 16a, 16b, 16c, and 16d on the exterior of the substrate
`
`22 and can be used to electrically configure and/or control the operating voltage and/or
`
`brightness level of the multi-voltage and/or multi-brightness LED lighting device.
`
`[Para 53]
`
`Figure 3 discloses a schematic diagram of a multi-voltage and/or multi-
`
`brightness LED lighting device 30 similar to the multi-voltage and/or multi-brightness LED
`
`lighting device 10 and 20 described in figures 1 and 2. The multi-voltage and/or multi-
`
`brightness LED lighting device 30 comprises at least two AC LED circuits 32 having at least
`
`PGR2023-00016 - Home Depot
`Ex. 1018 - Page 11
`
`

`

`two LEDs 34 connected in series and anti-parallel configuration. The at least two AC LED
`
`circuits 32 have electrical contacts 36a, 36b, 36c, and 36d at opposing ends to provide various
`
`connectivity options for an AC voltage source input. For example, if 36a and 36c are
`
`electrically connected together and 36b and 36d are electrically connected together and one
`
`side of the AC voltage input is applied to 36a and 36c and the other side of the AC voltage
`
`input is applied to 36b and 36d, the circuit becomes a parallel circuit with a first operating
`
`forward voltage. If only 36a and 36c are electrically connected and the AC voltage inputs are
`
`applied to electrical contacts 36b and 36d, a second operating forward voltage is required to
`
`drive the multi-voltage and/or multi-brightness lighting device 30. The multi-voltage and/or
`
`multi-brightness lighting device 30 may be a monolithically integrated single chip 38, a
`
`monolithically integrated single chip integrated within a LED package 38 or a number of
`
`individual discrete die integrated onto a substrate 38 to form a multi-voltage and/or multi-
`
`brightness lighting device 30.
`
`[Para 54]
`
`Figure 4 discloses a schematic diagram of the same multi-voltage and/or
`
`multi-brightness LED device 30 as described in figure 3 having the at least two AC LED
`
`circuits 32 connected in parallel configuration to an AC voltage source and operating at a first
`
`forward voltage. A resistor 40 may be used to limit current to the multi-voltage and/or multi-
`
`brightness LED lighting device 30.
`
`[Para 55]
`
`Figure 5 discloses a schematic diagram of the same multi-voltage and/or
`
`multi-brightness LED device 30 as described in figure 3 having the at least two AC LED
`
`circuits 32 connected in series configuration to an AC voltage source and operating at a
`
`second forward voltage that is approximately two times greater than the first forward voltage
`
`of the parallel circuit as described in figure 4. A resistor may be used to limit current to the
`
`multi-voltage and/or multi-brightness LED lighting device.
`
`[Para 56]
`
`Figure 6 discloses a schematic diagram of a multi-voltage and/or multi-
`
`brightness LED lighting device 50. The multi-voltage and/or multi-br

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket