throbber
Pearls
`
`Emerging and Emerged Pathogenic Candida Species:
`Beyond the Candidaalbicans Paradigm
`
`Nicolas Papon1*, Vincent Courdavault1, Marc Clastre1, Richard J. Bennett2
`
`1 Universite´ Franc¸ois-Rabelais de Tours, EA2106, Biomole´cules et Biotechnologies Ve´ ge´ tales, Tours, France, 2 Department of Microbiology and Immunology, Brown
`University, Providence, Rhode Island, United States of America
`
`Candidaalbicans and Non-albicansCandida (NAC)
`Species Infections: General Information in
`Predisposing Conditions and Clinical Incidence
`
`Many ascomycete yeast species from the Candida genus are
`widely distributed in nature and act as common saprophytic
`constituents of the normal human microflora. However, some of
`these fungal species can also become opportunistic pathogens
`following a transition from a commensal to a pathogenic phase,
`induced by alterations in the host environment. Candida species
`thereby rarely trigger infection in healthy people, but
`take
`advantage of a locally or systematically impaired immune system
`to proliferate in the host and cause diseases termed ‘‘candidiasis.’’
`Such fungal infections can be subdivided into three major groups:
`cutaneous (skin and its appendages), mucosal
`(oropharyngeal,
`esophageal, and vulvovaginal) and systemic (bloodstream infec-
`tions,
`i.e., candidemia and other forms of invasive candidiasis
`[IC]). While superficial candidiasis (cutaneous and mucosal)
`is
`often observed in AIDS patients, oropharyngeal
`thrush and
`vaginitis are more frequently seen in immunocompetent infants
`and adult women, respectively. Candidemia and IC are common
`in cancer patients or in transplant individuals following immuno-
`suppression. Candidiasis currently represents the fourth leading
`cause of nosocomial infections, at 8% to 10%, and mortality due to
`systemic candidiasis remains high, ranging from 15% to 35%
`depending on the infecting Candida species [1].
`Although Candida albicans remains the most frequently isolated
`agent of candidiasis, non-albicans Candida (NAC) species now
`account
`for a substantial part of clinical
`isolates collected
`worldwide in hospitals. NAC species of particular clinical
`importance include Candida glabrata, Candida tropicalis, Candida
`parapsilosis, and Candida krusei
`(synonym: Issatchenkia orientalis), as
`well as the less-prominent species Candida guilliermondii, Candida
`lusitaniae, Candida kefyr, Candida famata (synonym: Debaryomyces
`hansenii), Candida inconspicua, Candida rugosa, Candida dubliniensis,
`and Candida norvegensis (Table 1). A complementary set of about 20
`opportunistic NAC species is also known, but exhibits lower
`isolation rates [2].
`
`Trends in Species Distribution and Antifungal
`Susceptibility of NAC Species
`
`Global surveillance programs (e.g. SENTRY and ARTEMIS)
`provide a tremendous amount of data regarding global trends in
`various aspects of NAC candidiasis
`including geographical
`variation in the frequency of species, distribution by specimen
`type and patient age, as well as changes in the antifungal
`susceptibility of collected NAC isolates [2].
`four decades
`An overview of
`the literature from the last
`highlights an important fact: Due to the growing size of the
`population at special risk (due to neutropenia, immunosuppres-
`sion, metabolic dysfunction, and anticancer chemotherapy),
`candidiasis remains a persistent public health problem, and the
`
`proportion of NAC species among Candida isolates recovered from
`patients is increasing. Whereas NAC species accounted for 10%–
`40% of all systemic candidiasis from 1970 to 1990, this proportion
`reached 35%–65% in the last two decades [3]. A recent ten-year
`analysis of the worldwide distribution of NAC species indicated
`that C. glabrata remains the most common NAC species and that C.
`parapsilosis, C. tropicalis, and C. krusei are also frequently isolated
`(Table 1). C. guilliermondii and C.
`lusitaniae have shown gradual
`emergence as a cause of invasive candidiasis, while C. kefyr, C.
`famata, C.
`inconspicua, C. rugosa, C. dubliniensis, and C. norvegensis,
`although rarely isolated, are now considered emerging NAC
`species, as their isolation rate has increased between 2- and 10-fold
`over the last 15 years [2].
`Interestingly, significant geographic variation in the frequency
`of NAC species occurs. Among marked trends, C. glabrata is more
`prominent in North America than in Latin America. In addition,
`C.
`tropicalis is frequently isolated in Asia-Pacific and less often
`encountered in the rest of the world, whilst C. parapsilosis remains
`3-fold more commonly recovered in North America than in
`Europe. Finally, C. guilliermondii and C. rugosa are more prominent
`in Latin America, and C. inconspicua and C. norvegensis in Europe [2]
`than in the rest of the world.
`Antifungal compounds currently used to treat systemic candi-
`diasis belong to three families: polyenes, azoles, and echinocan-
`dins. Most of the NAC species exhibit particular patterns of
`primary resistance or reduced susceptibility toward these antifun-
`gals (Table 1). For example, a high level of resistance toward azoles
`is well known for C. krusei, C. inconspicua, C. rugosa, and C. norvegensis,
`whereas C. parapsilosis and C. guilliermondii stand out due to their
`decreased susceptibility to echinocandins [4].
`
`A Particular Codon Usage in Most NAC Species
`Delays Development of Genetic Tools
`
`Since the end of the last century, the clinical importance of NAC
`species has promoted research aimed at identifying molecular
`events underlying pathogenicity and antifungal resistance in these
`emerging yeasts. However, the development of genetic approaches
`
`Citation: Papon N, Courdavault V, Clastre M, Bennett RJ (2013) Emerging and
`Emerged Pathogenic
`Candida
`Species:
`Beyond the Candida
`albicans
`Paradigm. PLoS Pathog 9(9): e1003550. doi:10.1371/journal.ppat.1003550
`
`Editor: Joseph Heitman, Duke University Medical Center, United States of
`America
`
`Published September 26, 2013
`Copyright: ß 2013 Papon et al. This is an open-access article distributed under
`the terms of
`the Creative Commons Attribution License, which permits
`unrestricted use, distribution, and reproduction in any medium, provided the
`original author and source are credited.
`
`Funding: The authors received no specific funding for this study.
`
`Competing Interests: The authors have declared that no competing interests
`exist.
`
`* E-mail: nicolas.papon@univ-tours.fr
`
`PLOS Pathogens | www.plospathogens.org
`
`1
`
`September 2013 | Volume 9 |
`
`Issue 9 | e1003550
`
`LCY Biotechnology Holding, Inc.
`Ex. 1044
`Page 1 of 4
`
`

`

`Selectablemarkers,Reportergenes,Regulatablesystems
`
`Available
`
`Diploid
`
`ND
`
`Selectablemarkers
`
`Selectablemarkers,Reportergenes
`
`Selectablemarkers
`
`Selectablemarkers
`
`Selectablemarkers,Reportergenes
`
`Selectablemarkers,Reportergenes,Regulatablesystems
`
`Selectablemarkers,Reportergenes
`
`Selectablemarkers,Reportergenes,Regulatablesystems
`
`Selectablemarkers,Reportergenes,Regulatablesystems
`
`Haploid
`
`ND
`
`Available
`
`Haploid
`
`Available
`
`ND
`
`Available
`
`Haploid
`
`Available
`
`Haploid
`
`Available
`
`Diploid
`
`Available
`
`Diploid
`
`Available
`
`Diploid
`
`Available
`
`Haploid
`
`Available
`
`Diploid
`
`+
`
`2
`
`+
`
`2
`
`+
`
`+
`
`+
`
`+
`
`+
`
`+
`
`2
`
`+
`
`+
`
`Yeast,Pseudohyphae
`
`Moleculartoolsavailableg
`
`PloidyeGenomesequencef
`
`Sex.d
`
`Morphologyc
`
`doi:10.1371/journal.ppat.1003550.t001
`gfromreferences[5,10].
`ffromreferences[19,21–24].
`efromreference[21].
`dfromreference[6],Sex.:sexualorparasexualreproduction;ND:unknown.
`cfromreference[14].
`bfromreference[1],(+++):strongprimaryresistance;(+):moderateprimaryresistance;(R+++):strongsecondaryresistance(acquired).
`afromreference[2],Freq.:frequencyofisolation(range).
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae,Hyphae
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae
`
`Yeast,Pseudohyphae,Hyphae
`
`Yeast,Pseudohyphae,Hyphae
`
`Polyenes(+++),Azoles(+++)
`Azoles(+++)
`Azoles(+)
`
`Polyenes(R+++)
`Echinocandins(+),Azoles(+)
`Polyenes(+),Azoles(+++)
`Echinocandins(+)
`
`Polyenes(+),Azoles(+)
`
`Azoles(+++)
`
`0.1%(0.02–0.1)
`
`0.1%(0.1–0.2)
`
`0.2%(0.1–1)
`
`0.2%(0.1–0.5)
`
`6.0%(4–14)
`
`7.2%(5–13)
`
`11.3%(7–21)
`
`63.8%(49–68)
`
`Resistanceb
`
`Freq.a
`
`0.3%(0.1–0.5)
`
`C.famata(D.hansenii)
`
`0.5%(0.3–0.6)
`
`C.kefyr(K.marxianus)
`
`0.6%(0.5–0.6)
`
`0.7%(0.1–2)
`
`C.lusitaniae
`
`C.guilliermondii
`
`2.4%(1–4)
`
`C.krusei(I.orientalis)
`
`C.norvegensis
`
`C.dubliniensis
`
`C.rugosa
`
`C.inconspicua
`
`C.parapsilosis
`
`C.tropicalis
`
`C.glabrata
`
`C.albicans
`
`Species
`
`Table1.IntroducingcharacteristicsofCandidaspecies.
`
`PLOS Pathogens | www.plospathogens.org
`
`2
`
`September 2013 | Volume 9 |
`
`Issue 9 | e1003550
`
`LCY Biotechnology Holding, Inc.
`Ex. 1044
`Page 2 of 4
`
`

`

`in NAC species has been hindered by three main factors: (i) most
`pioneering studies during the early stages of the ‘‘pathogenic yeast
`genetics’’ field were carried out in C. albicans; (ii) the particular codon
`usage of most of Candida species has precluded the direct use of S.
`cerevisiae or bacterial molecular tools in these NAC species [5]; (iii)
`most pathogenic Candida species have limited modes of sexual
`reproduction unlike S. cerevisiae [6].
`Originally, the genus name Candida was attributed to yeast
`species able to form hyphae or pseudohyphae (Table 1) and for
`which no sexual
`spores were observed. Nevertheless, recent
`phylogenetic analysis has clarified that Candida species actually
`represent a polyphyletic group within the Saccharomycotina [7]
`(Figure 1). More precisely, C.
`tropicalis, C.
`parapsilosis, C.
`guilliermondii, C.
`lusitaniae, C. famata, C. rugosa, and C. dubliniensis
`form part of the Candida CTG clade and translate CTG codons as
`serine instead of leucine. In contrast, C. glabrata and C. kefyr belong
`to the Saccharomycetaceae, with C. glabrata and S. cerevisiae falling
`within the whole genome duplication (WGD) clade. The
`remaining species C. krusei, C.
`inconspicua, and C. norvegensis are
`probably closely related in the Saccharomycetaceae clade, which
`could give insights into their common resistance toward azole
`antifungals.
`During the late 1990s, C. glabrata genetics was by far the most
`advanced of the NAC species due to its haploid status, its classical
`codon usage (allowing the direct use of S. cerevisiae tools), and its
`high frequency of isolation in hospitals [8]. Genetic studies of
`CTG clade species expanded in the 2000s and focused on the
`development of molecular
`tools, as well as
`transformation
`procedures, due to the biotechnological potential of
`several
`Candida yeasts (C. guilliermondii, C. famata, C. tropicalis, and C. rugosa)
`as well as clinical incidence (C. dubliniensis and C. parapsilosis) [5,9].
`Specifically, drug-resistant markers and reporter genes (encoding
`fluorescent protein variants, luciferase, or beta-galactosidase) were
`adapted by changing CTG codons to allow their functionality in
`this particular clade [5] (Table 1).
`
`Figure 1. Schematic representation illustrating the phylogeny
`of NAC species. C. tropicalis, C. parapsilosis, C. guilliermondii, C.
`lusitaniae, C. famata (D. hansenii), C. rugosa, and C. dubliniensis form part
`of the Candida CTG clade and translate CTG codons as serine instead of
`leucine. In contrast, C. glabrata and C. kefyr (K. marxianus) belong to the
`Saccharomycetaceae, with C. glabrata and S. cerevisiae falling within the
`‘‘whole genome duplication’’ (WGD) clade. The remaining species C.
`krusei (I. orientalis), C.
`inconspicua, and C. norvegensis are probably
`closely related in the Saccharomycetaceae clade. The branch lengths
`are arbitrary.
`doi:10.1371/journal.ppat.1003550.g001
`
`Mechanisms Underlying Antifungal Resistance,
`Virulence, and Morphological Transitions in NAC
`Species: Is Candidaalbicans the Rule or the
`Exception?
`
`C. albicans genetics, with the construction and phenotypical
`analysis of targeted mutant strains since 1994, has provided a
`foundation for understanding fundamental processes in pathogenic
`yeasts [10]. Intense research in C. albicans from the end of the 20th
`century shed light on the molecular mechanisms involved in drug
`resistance [11], biofilm formation [12], adherence [13], yeast-
`hyphal switching and its role in virulence [14], and sexual mating
`[15,16]. C. albicans has therefore become the model yeast for
`investigating the multiple factors controlling the host–pathogen
`interaction. As a result, C. albicans biology is now the paradigm for
`Candida research in the medical mycology community.
`In response to the clinical emergence of NAC species, research
`programs were initiated to further understand these opportunistic
`yeasts. The first studies highlighted marked differences in behavior
`between different Candida species. This included stress adaptation
`[17], which may come from the fact
`that each species has
`independently evolved to promote survival
`in their respective
`natural niches and their specific host. It must also be kept in mind
`that each Candida species displays specific traits such as ploidy,
`sexual behavior (if any) [6], and morphology [14] (Table 1). These
`could directly impact their ability to adapt to the host’s response,
`to disseminate in the organism, and to develop resistance
`mechanisms to antifungals during treatments.
`Due to the lack of genetic and molecular resources, researchers
`have often assumed that if a yeast species is related to another
`yeast species, the underlying molecular and cellular mechanisms
`must also be closely related. However, even within a clade, the
`genetic distance between any two NAC species is often larger than
`the genetic distance between humans and some fishes [18].
`Therefore, in no way should it be argued that C. albicans makes the
`rules for all NAC species. As a corollary, in future investigations,
`the biology of each Candida species should continue to be addressed
`on a case-by-case basis.
`
`Perspectives: Genome Resources and
`Postgenomic Technologies Dedicated to NAC
`
`A large range of rapidly evolving genomic and postgenomic
`approaches,
`including genome sequences and gene expression
`data, have recently enhanced the understanding of Candida yeasts
`pathogenicity.
`The first published genomes of Candida species were C. glabrata
`in 2003 (alongside the C. famata genome sequence) [19], followed
`by C. albicans [20] in 2004, which has further strengthened the
`prominent role of C. albicans and C. glabrata in the field. In January
`2005, the Broad Institute Fungal Genome Initiative, in collabo-
`ration with the Wellcome Trust Sanger Institute, made available
`the sequences of five CTG clade genomes, including C. tropicalis, C.
`parapsilosis, C. dubliniensis, C. guilliermondii, and C. lusitaniae [21,22].
`Finally, genome sequences of C. kefyr (teleomorph Kluyveromyces
`marxianus) [23] and C. krusei [24] were recently published. These
`genome resources have provided new insights into gene family
`evolution within Candida species and identified gene families
`enriched in the most common pathogenic NAC species [21]. This
`area of research is further supported by the creation of databases
`dedicated to genome annotation,
`including gene ontology
`browsers
`specializing in metabolic pathways, virulence, and
`morphogenesis
`[25]. These bioinformatics
`tools provide an
`
`PLOS Pathogens | www.plospathogens.org
`
`3
`
`September 2013 | Volume 9 |
`
`Issue 9 | e1003550
`
`LCY Biotechnology Holding, Inc.
`Ex. 1044
`Page 3 of 4
`
`

`

`accurate annotation of NAC genome sequences and give precious
`help to future Candida gene evolutionary analyses.
`Postgenomic technologies have also emerged to support the
`Candida research field. Quantitative transcriptional profiling
`strategies (e.g. RNA-Seq, microarray) currently allow the active
`screening of genes commonly or
`specifically required for
`pathogenicity, morphogenesis, and antifungal resistance in multi-
`ple Candida species [26–28].
`Thanks to the growing number of yeast genome sequences
`available, as well as the utilization of postgenomic approaches,
`the palette of newly identified pathogenicity-related genes in
`NAC species is now predicted to increase rapidly. However,
`efforts need to continue toward the development of classical
`
`References
`
`invasive candidiasis: a
`1. Pfaller MA, Diekema DJ (2007) Epidemiology of
`persistent public health problem. Clin Microbiol Rev 20: 133–163.
`doi:10.1128/CMR.00029-06.
`2. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, et al. (2010) Results
`from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007:
`a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and
`voriconazole as determined by CLSI standardized disk diffusion. J Clin
`Microbiol 48: 1366–1377. doi:10.1128/JCM.02117-09.
`3. Krcmery V, Barnes AJ (2002) Non-albicans Candida spp. causing fungaemia:
`pathogenicity and antifungal
`resistance.
`J Hosp Infect 50: 243–260.
`doi:10.1053/jhin.2001.1151.
`4. Walker LA, Gow NA, Munro CA (2013) Elevated chitin content reduces the
`susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother
`57: 146–154. doi:10.1128/AAC.01486-12.
`5. Papon N, Courdavault V, Clastre M, Simkin AJ, Cre`che J et al. (2012) Deus ex
`Candida genetics: overcoming the hurdles for the development of a molecular
`toolbox in the CTG clade. Microbiology 158: 585–600. doi:10.1099/
`mic.0.055244-0.
`6. Bennett RJ (2010) Coming of age–sexual reproduction in Candida species. PLoS
`Pathog 6: e1001155. doi:10.1371/journal.ppat.1001155.
`7. Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny
`based on 42 complete genomes derived from supertree and combined gene
`analysis. BMC Evol Biol 6: 99. doi:10.1186/1471-2148-6-99.
`8. Silva S, Negri M, Henriques M, Oliveira R, Williams DW et al. (2012) Candida
`glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology,
`pathogenicity and antifungal resistance. FEMS Microbiol Rev 36: 288–305.
`doi:10.1111/j.1574-6976.2011.00278.x.
`9. Papon N, Savini V, Lanoue A, Simkin AJ, Cre`che J, et al. (2013) Candida
`guilliermondii: biotechnological applications, perspectives for biological control,
`emerging clinical
`importance and recent advances in genetics. Curr Genet
`59:73–90. doi:10.1007/s00294-013-0391-0.
`10. Samaranayake DP, Hanes SD (2011) Milestones in Candida albicans gene
`manipulation. Fungal Genet Biol 48: 858–865. doi:10.1016/j.fgb.2011.04.003.
`11. Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and
`consequences for treatment. Am J Med 125: S3–13. doi:10.1016/j.amjmed.2011.
`11.001.
`12. Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8: e1002585.
`doi:10.1371/journal.ppat.1002585.
`13. Finkel JS, Xu W, Huang D, Hill EM, Desai JV, et al. (2012) Portrait of Candida
`albicans adherence regulators. PLoS Pathog 8: e1002525. doi:10.1371/journal.
`ppat.1002525.
`14. Thompson DS, Carlisle PL, Kadosh D. Coevolution of morphology and
`virulence in Candida species. Eukaryot Cell 10: 1173–1182. doi:10.1128/
`EC.05085-11.
`
`molecular tools dedicated to each pathogenic NAC species to
`further analyze the function of large numbers of uncharacterized
`genes. This is an essential prerequisite for the identification of
`new fungal targets and the subsequent development of novel
`antifungal drugs.
`
`Acknowledgments
`
`We thank Andy Simkin (University of Essex, Colchester, United Kingdom)
`for critical reading. We also thank Ce´cile Fairhead (Institut de Ge´ne´tique et
`Microbiologie, Universite´ Paris Sud 11, Orsay, France) for valuable advice.
`We acknowledge the Broad Institute Fungal Genome Initiative for making
`the complete genome sequence of many Candida species available.
`
`20.
`
`the
`15. Hull CM, Raisner RM, Johnson AD. 2000. Evidence for mating of
`‘‘asexual’’ yeast Candida albicans in a mammalian host. Science 289: 307–310.
`doi:10.1126/science.289.5477.307.
`16. Magee BB, Magee PT. 2000. Induction of mating in Candida albicans by
`construction of MTLa and MTLalpha strains. Science 289: 310–313.
`doi:10.5580/1f5e.
`17. Li D, Agrellos OA, Calderone R (2010) Histidine kinases keep fungi safe and
`vigorous. Curr Opin Microbiol 13:424–430. doi:10.1016/j.mib.2010.04.007.
`18. Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11: 512–524.
`doi:10.1038/nrg2811.
`19. Wong S, Fares MA, Zimmermann W, Butler G, Wolfe KH (2003) Evidence
`from comparative genomics for a complete sexual cycle in the ‘asexual’
`pathogenic yeast Candida glabrata. Genome Biol 4: R10. doi:10.1186/gb-2003-4-
`2-r10.
`Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, et al. (2004) The
`diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:
`7329–7334. doi:10.1073/pnas.0401648101.
`21. Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, et al. (2009)
`Evolution of pathogenicity and sexual reproduction in eight Candida genomes.
`Nature 459: 657–662. doi:10.1038/nature08064.
`Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, et al. (2009)
`Comparative genomics of the fungal pathogens Candida dubliniensis and Candida
`albicans. Genome Res 19: 2231–2244. doi:10.1101/gr.097501.109.
`Jeong H, Lee DH, Kim SH, Kim HJ, Lee K, et al. (2012) Genome sequence of
`the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555.
`Eukaryot Cell 11: 1584–1585. doi:10.1128/EC.00260-12.
`24. Chan GF, Gan HM, Ling HL, Rashid NA (2012) Genome sequence of Pichia
`kudriavzevii M12, a potential producer of bioethanol and phytase. Eukaryot Cell
`11: 1300–1301. doi:10.1128/EC.00229-12.
`25. Maguire SL, Ohe´igeartaigh SS, Byrne KP, Schro¨der MS, O’Gaora P et al.
`(2013) Comparative Genome Analysis and Gene Finding in Candida Species
`Using CGOB. Mol Biol Evol 30: 1281–1291. doi:10.1093/molbev/mst042.
`26. Grumaz C, Lorenz S, Stevens P, Lindemann E, Scho¨ ck U et al. (2013) Species
`and condition specific adaptation of the transcriptional landscapes in Candida
`albicans and Candida dubliniensis. BMC Genomics 14: 212. doi:10.1186/1471-
`2164-14-212.
`(2011)
`27. Silva AP, Miranda IM, Guida A, Synnott J, Rocha R et al.
`Transcriptional profiling of azole-resistant Candida parapsilosis strains. Antimicrob
`Agents Chemother 55: 3546–3556. doi:10.1128/AAC.01127-10.
`28. Porman AM, Hirakawa MP, Jones SK, Wang N, Bennett RJ (2013) MTL-
`independent phenotypic switching in Candida tropicalis and a dual role for Wor1
`in regulating switching and filamentation. PLoS Genet 9: e1003369.
`doi:10.1371/journal.pgen.1003369.
`
`22.
`
`23.
`
`PLOS Pathogens | www.plospathogens.org
`
`4
`
`September 2013 | Volume 9 |
`
`Issue 9 | e1003550
`
`LCY Biotechnology Holding, Inc.
`Ex. 1044
`Page 4 of 4
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket