`
`11111111111111111 111111111111111111111IIIIIIIIIIIIII
`
`(12) United States Patent
`Running et al.
`
`(10) Patent No.: US 12,023,254 B1
`*Jul. 2, 2024
`(45) Date of Patent:
`
`(54) TOTAL REVERSE SHOULDER SYSTEMS
`AND METHODS
`
`(71) Applicant: Shoulder Innovations, Inc., Grand
`Rapids, MI (US)
`
`(72)
`
`Inventors: Donald E. Running, Holland, MI (US);
`Robert J. Ball, West Olive, MI (US);
`Jason Slone, Silver Lake, IN (US)
`
`(73) Assignee: Shoulder Innovations, Inc., Grand
`Rapids, MI (US)
`
`*)
`
`Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`
`This patent is subject to a terminal dis-
`claimer.
`
`(21)
`
`Appl. No.: 18/605,361
`
`(22)
`
`Filed:
`
`Mar. 14, 2024
`
`Related U.S. Application Data
`
`(63)
`
`(60)
`
`Continuation of application No. 17/435,333, filed as
`application No. PCT/US2020/022094 on Mar. 11,
`2020.
`Provisional application No. 62/816,708, filed on Mar.
`11, 2019.
`
`(51)
`
`Int. Cl.
`A61F 2/30
`A61B 17/17
`A61B 17/80
`A61B 17/86
`A61F 2/40
`(52) U.S. Cl.
`CPC
`
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`(2006.01)
`
`A61F 2/4081 (2013.01); A61B 17/1778
`(2016.11); A61F 2/30749 (2013.01); A61F
`2002/30616 (2013.01); A61F 2002/4085
`(2013.01)
`
`(58) Field of Classification Search
`None
`See application file for complete search history.
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`
`2,781,758 A
`3,979,778 A
`4,003,095 A
`
`2/1957 Jacques
`9/1976 Stroot
`1/1977 Gristina
`(Continued)
`
`FOREIGN PATENT DOCUMENTS
`
`AU
`DE
`
`3/2024
`2018251815
`12/1993
`4220217
`(Continued)
`
`OTHER PUBLICATIONS
`
`U.S. Appl. No. 13/018,341, filed Jan. 31, 2011, Gunther.
`(Continued)
`
`Primary Examiner — Ann Schillinger
`(74) Attorney, Agent, or Firm Knobbe Martens Olson
`& Bear, LLP
`
`(57)
`
`ABSTRACT
`
`A reverse shoulder system can include, for example, a
`glenoid baseplate comprising a longitudinal axis, the glenoid
`baseplate further including a stem and a central channel
`within a sidewall of the stem. The stem can include a
`longitudinal axis. The longitudinal axis of the glenoid base-
`plate can be angled with respect to the longitudinal axis of
`the stem, wherein the longitudinal axis of the glenoid
`baseplate is not perpendicular with respect to the longitudi-
`nal axis of the stem. Other components including a gleno-
`sphere, tools, and methods of use are also disclosed.
`
`22 Claims, 21 Drawing Sheets
`
`2OO
`
`/
`/O2
`
`7
`
`1OO
`
`2O2
`
`.3:OO
`
`CATALYST, EX-1001
`PAGE 1
`
`
`
`US 12,023,254 B1
`Page 2
`
`7,294,149 B2
`7,320,709 B2
`7,329,284 B2
`7,465,319 B2
`7,517,364 B2
`7,618,462 B2
`7,678,151 B2
`7,749,278 B2
`7,753,959 B2
`7,766,969 B2 *
`
`Hozack et al.
`11/2007
`Felt et al.
`1/2008
`Maroney et al.
`2/2008
`Tornier
`12/2008
`4/2009 Long et al.
`11/2009 Ek
`3/2010 Ek
`7/2010 Frederick et al.
`7/2010 Berelsman et al.
`8/2010 Justin
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`
`3/1977 Weisman et al.
`4,012,796 A
`9/1977 Stroot
`4,045,826 A
`6/1980 Pappas et al.
`4,206,517 A
`4/1981 Amstutz et al.
`4,261,062 A
`9/1983 Zweymuller
`4,404,693 A
`11/1985 Kinnett
`4,550,450 A
`10/1987 Link et al.
`4,698,063 A
`10/1987 Levchenko et al.
`4,700,660 A
`1/1988 Wroblewski et al.
`4,783,192 A
`5/1989 Barbarito et al.
`4,827,919 A
`9/1989 Dines et al.
`4,865,605 A
`3/1990 Link et al.
`4,908,036 A
`10/1990 Burkhead et al.
`4,964,865 A
`1/1991 Worland
`4,986,833 A
`2/1991 Kampner
`4,990,161 A
`7/1991 Matsen, III et al.
`5,030,219 A
`7/1991 Matsen, III et al.
`5,032,132 A
`1/1992 Burkhead et al.
`5,080,673 A
`4/1992 Grundei
`5,108,440 A
`1/1994 Davydov et al.
`5,281,226 A
`2/1994 Dong
`5,282,865 A
`5/1994 Rockwood, Jr. et al.
`5,314,479 A
`5/1994 Hoffman et al.
`5,314,489 A
`9/1994 Bonutti
`5,344,458 A
`10/1994 Fox et al.
`5,358,525 A
`12/1994 Davidson
`5,370,694 A
`8/1995 Shearer et al.
`5,437,677 A
`10/1995 Shearer et al.
`5,462,563 A
`1/1996 James et al.
`5,480,450 A
`2/1996 Lackey et al.
`5,489,309 A
`2/1996 Mikhail
`5,489,310 A
`4/1996 Sheehan et al.
`5,507,748 A
`4/1996 Wolf
`5,507,819 A
`5/1996 Doi
`5,514,184 A
`8/1996 Bonutti
`5,549,683 A
`1/1997 Dong
`5,593,448 A
`5,702,447 A * 12/1997 Walch
`
`A61F 2/4081
`606/327
`
`12/1997 Craig et al.
`5,702,486 A
`5/1998 Clement, Jr. et al.
`5,746,771 A
`5/1998 Tanamal et al.
`5,755,811 A
`6/1998 Dong et al.
`5,769,856 A
`9/1998 Williamson et al.
`5,800,551 A
`7/1999 Bigliani et al.
`5,928,285 A
`2/2000 Ling et al.
`6,019,766 A
`3/2000 Buss et al.
`6,037,724 A
`5/2001 Ondria et al.
`6,228,119 B1
`5/2001 Schwimmer et al.
`6,231,913 B1
`9/2001 Pope et al.
`6,290,726 B1
`1/2002 Tornier et al.
`6,334,874 B1
`4/2002 Shultz et al.
`6,364,910 B1
`4/2002 Arcand
`6,368,353 B1
`4/2002 Resch et al.
`6,379,386 B1
`10/2002 Allard et al.
`6,458,136 B1
`2/2003 Ondria et al.
`6,514,287 B2
`2/2003 Tallarida et al.
`6,520,964 B2
`7/2003 Hyde, Jr.
`6,589,281 B2
`8/2003 Tallarida et al.
`6,610,067 B2
`9/2003 Maroney
`6,620,197 B2
`1/2004 Resch et al.
`6,673,115 B2
`1/2004 Frankle et al.
`6,679,916 B1
`1/2004 Ek
`6,679,917 B2
`3/2004 Lannotti et al.
`6,699,289 B2
`3/2004 Pope et al.
`6,709,463 B1
`3/2004 Grusin et al.
`6,712,823 B2
`7/2004 Tornier
`6,761,740 B2
`8/2004 Stone et al.
`6,783,549 B1
`4/2005 Lipman et al.
`6,875,234 B2
`6,953,478 B2 * 10/2005 Bouttens
`
`7,011,686 B2
`7,044,973 B2
`7,238,089 B2
`7,238,208 B2
`7,261,741 B2
`
`3/2006 Ball et al.
`5/2006 Rockwood et al.
`7/2007 Tsumuraya et al.
`7/2007 Camino et al.
`8/2007 Weisman et al.
`
`8/2010 Murphy
`7,776,098 B2
`2/2011 Deffenbaugh
`7,892,287 B2
`4/2011 Deffenbaugh et al.
`7,922,769 B2
`8/2011 Gunther
`8,007,538 B2
`10/2011 Gunther
`8,038,719 B2
`11/2011 Guederian et al.
`8,048,161 B2
`11/2011 Dietz et al.
`8,048,167 B2
`5/2012 Leyden et al.
`8,177,786 B2
`11/2012 Tornier et al.
`8,303,665 B2
`9/2013 Angibaud et al.
`8,529,629 B2
`12/2013 Forrer et al.
`8,608,805 B2
`5/2014 Capon et al.
`8,721,726 B2
`7/2014 Gunther et al.
`8,778,028 B2
`9/2014 Ambacher
`8,840,671 B2
`10/2014 Roche et al.
`8,870,962 B2
`12/2014 Lannotti et al.
`8,920,508 B2
`1/2015 Wiley et al.
`8,940,054 B2
`8/2015 Lappin
`9,114,017 B2*
`3/2016 Winslow
`9,283,083 B2 *
`7/2016 Ries et al.
`9,381,086 B2
`11/2016 Burkhead, Jr. et al.
`9,498,345 B2
`1/2017 Courtney, Jr. et al.
`9,545,311 B2
`1/2017 Tornier et al.
`9,545,312 B2
`4/2017 Gunther et al.
`9,610,166 B2
`9,615,839 B2* 4/2017 Olson
`9,693,784 B2
`7/2017 Gunther
`9,867,710 B2
`1/2018 Dalla Pria et al.
`9,962,265 B2
`5/2018 Ek et al.
`10,034,753 B2
`7/2018 Dressler et al.
`10,143,559 B2
`12/2018 Ries et al.
`10,357,373 B2*
`7/2019 Gargac
`10,492,926 B1
`12/2019 Gunther
`10,702,390 B2
`7/2020 Chavarria et al.
`10,722,373 B2
`7/2020 Hodorek et al.
`10,779,952 B2
`9/2020 Gunther et al.
`10,786,265 B2
`9/2020 Gunther
`10,925,745 B2 * 2/2021 Cardon
`10,966,788 B2
`4/2021 Britton et al.
`11,065,125 B2
`7/2021 Ball
`11,166,733 B2 * 11/2021 Neichel
`11,259,931 B2
`3/2022 Pressacco et al.
`11,464,645 B2 * 10/2022 Cardon
`11,564,802 B2 *
`1/2023 Ball
`D977,643 S
`2/2023 Ball et al.
`11,696,772 B2
`7/2023 Gunther
`11,771,561 B2 * 10/2023 Running
`
` A61F 2/389
`623/20.15
`
` A61F 2/4603
` A61F 2/4014
`
` A61B 17/8897
`
` A61F 2/4081
`
` A61F 2/4637
`
` A61B 34/10
`
` A61F 2/30724
` A61F 2/4637
`
`11,957,595 B2
`2001/0011192 Al
`2001/0037153 Al
`2001/0047210 Al
`2002/0055783 Al
`2002/0082702 Al
`2002/0087213 Al
`2002/0095214 Al
`2002/0111689 Al
`2002/0138148 Al
`2003/0033019 Al
`2003/0100952 Al
`2003/0114933 Al
`2003/0125809 Al
`2003/0144738 Al
`2003/0158605 Al
`2003/0163202 Al *
`
`A61F 2/4081
`623/23.11
`
` A61F 2/30749
`623/19.13
`
`4/2024 Gunther et al.
`8/2001 Ondria et al.
`11/2001 Rockwood, Jr. et al.
`11/2001 Wolf
`5/2002 Tallarida et al.
`6/2002 Resch et al.
`7/2002 Bertram, III
`7/2002 Hyde, Jr.
`8/2002 Hyde, Jr. et al.
`9/2002 Hyde, Jr. et al.
`2/2003 Lob
`5/2003 Rockwood, Jr. et al.
`6/2003 Bouttens et al.
`7/2003 Iannotti et al.
`7/2003 Rogalski
`8/2003 Tournier
`8/2003 Lakin
`
` A61F 2/3601
`623/22.21
`
`2003/0236572 Al
`2004/0002766 Al
`2004/0039449 Al
`
`12/2003 Bertram, III
`1/2004 Hunter et al.
`2/2004 Tournier
`
`CATALYST, EX-1001
`PAGE 2
`
`
`
`US 12,023,254 B1
`Page 3
`
`9/2012
`2012/0239156 Al
`3/2013
`2013/0060346 Al
`4/2013
`2013/0090736 Al
`2013/0150972 Al* 6/2013
`
`De Wilde et al.
`Collins
`Katrana et at
`Lannotti
`
` A61F 2/4059
`623/18.11
`
`6/2013 Gunther
`2013/0166033 Al
`8/2013 Hirai et al.
`2013/0194353 Al
`8/2013 McDaniel et al.
`2013/0197651 Al
`10/2013 Lappin et al.
`2013/0261752 Al
`1/2014 Cardon et al.
`2014/0025173 Al
`4/2014 Deffenbaugh et al.
`2014/0107794 Al
`8/2014 Frankle
`2014/0243986 Al
`9/2014 Furuya
`2014/0253641 Al
`9/2014 Winslow et al.
`2014/0257499 Al
`9/2014 Chavarria et al.
`2014/0277520 Al
`4/2015 Gunther et al.
`2015/0105861 Al
`8/2015 Lang
`2015/0223941 Al
`9/2015 Deransart et al.
`2015/0265411 Al
`2/2016 Kovacs et al.
`2016/0045323 Al
`9/2016 Pressacco et al.
`2016/0270922 Al
`2016/0302934 Al* 10/2016 Chavarria
`2017/0000617 Al
`1/2017 Ries et al.
`2017/0056187 Al
`3/2017 Humphrey et al.
`2017/0071749 Al
`3/2017 Lappin et al.
`2017/0202674 Al *
`7/2017 Gunther
`2017/0209275 Al
`7/2017 Levy
`2017/0273806 Al
`9/2017 Cardon et al.
`2017/0304063 Al
`10/2017 Hatzidakis et al.
`2017/0360456 Al
`12/2017 Gunther
`2018/0071104 Al
`3/2018 Kovacs et al.
`2018/0078377 Al* 3/2018 Gargac
`2018/0161169 Al
`6/2018 Cardon et al.
`2018/0193150 Al
`7/2018 Winslow et al.
`2018/0200067 Al
`7/2018 Axelso, Jr. et al.
`2018/0243102 Al
`8/2018 Burkhead, Jr. et al.
`2018/0333268 Al
`11/2018 Cardon et al.
`2018/0368982 Al
`12/2018 Ball
`2019/0336293 Al
`11/2019 Kehres
`2020/0261209 Al *
`8/2020 Stchur
`2020/0383792 Al
`12/2020 Cardon et al.
`2021/0038401 Al
`2/2021 Ball et al.
`2021/0137692 Al
`5/2021 Budge
`2021/0137693 Al
`5/2021 Ball et al.
`2021/0236292 Al * 8/2021 Chavarria
`2021/0244547 Al
`8/2021 Gunther et al.
`2021/0251640 Al
`8/2021 Gunther
`2021/0338446 Al
`11/2021 Ball
`2022/0151795 Al
`5/2022
`Running et al.
`2022/0175543 Al
`6/2022
`Ball
`2022/0175544 Al
`6/2022
`Ball et al.
`2023/0078024 Al
`3/2023
`Gunther et al.
`2023/0080207 Al
`3/2023
`Gunther et al.
`2023/0081505 Al
`3/2023 Gunther
`2023/0090753 Al
`3/2023 Running et al.
`
` A61F 2/40
`
` A61F 2/30749
`
` A61F 2/4081
`
` A61F 2/0811
`
` A61F 2/40
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`
`2/2004 Southworth
`2004/0039451 Al
`3/2004 Guederian et al.
`2004/0059424 Al
`4/2004 Ball et al.
`2004/0064187 Al
`4/2004 Maroney et al.
`2004/0064189 Al
`4/2004 Ball et al.
`2004/0064190 Al
`6/2004 Katsuya
`2004/0107002 Al
`6/2004 Wiley et al.
`2004/0122519 Al
`6/2004 Lipman et al.
`2004/0122520 Al
`8/2004 Geremakis et al.
`2004/0167629 Al
`8/2004 Rolston
`2004/0167630 Al
`9/2004 Long et al.
`2004/0193168 Al
`9/2004 Long et al.
`2004/0193275 Al
`9/2004 Maroney et al.
`2004/0193276 Al
`9/2004 Long et al.
`2004/0193277 Al
`9/2004 Maroney et al.
`2004/0193278 Al
`2004/0199260 Al* 10/2004 Pope
`
`2004/0220674 Al
`2004/0230311 Al
`2004/0260398 Al
`2005/0043805 Al
`2005/0049709 Al
`2005/0065612 Al
`2005/0075638 Al
`2005/0107882 Al
`2005/0119531 Al
`2005/0177241 Al
`2005/0261775 Al
`2005/0278030 Al
`2006/0036328 Al
`2006/0069443 Al
`2006/0069444 Al
`2006/0069445 Al
`2006/0195194 Al
`2006/0200249 Al
`2007/0038302 Al
`2007/0050042 Al
`2007/0055380 Al
`2007/0112433 Al
`2007/0118229 Al
`2007/0156246 Al *
`
`11/2004 Pria
`11/2004 Cyprien et al.
`12/2004 Kelman
`2/2005 Chudik
`3/2005 Tornier
`3/2005 Winslow
`4/2005 Collazo
`5/2005 Stone et al.
`6/2005 Sharratt
`8/2005 Angibaud et al.
`11/2005 Baum et al.
`12/2005 Tornier et al.
`2/2006 Parrott et al.
`3/2006 Deffenbaugh et al.
`3/2006 Deffenbaugh et al.
`3/2006 Ondrla et al.
`8/2006 Gunther
`9/2006 Beguin et al.
`2/2007 Shultz et al.
`3/2007 Dietz et al.
`3/2007 Berelsman et al.
`5/2007 Frederick et al.
`5/2007 Bergin et al.
`7/2007 Meswania
`
`2007/0179624 Al * 8/2007 Stone
`
`Ruebelt et al.
`9/2007
`2007/0225817 Al
`Reubelt et al.
`9/2007
`2007/0225818 Al
`Gunther
`1/2008
`2008/0021564 Al
`Holovacs et al.
`4/2008
`2008/0082175 Al
`7/2008 Malandain et al.
`2008/0177327 Al
`9/2008 Felt et al.
`2008/0234820 Al
`2008/0294268 Al* 11/2008 Baum
`
`2009/0105837 Al
`2009/0125113 Al
`2009/0228112 Al
`2009/0270866 Al
`2009/0281630 Al
`2009/0287309 Al
`2010/0049327 Al
`2010/0087876 Al
`2010/0087877 Al
`2010/0114326 Al
`2010/0161066 Al
`2010/0217399 Al
`2010/0249938 Al
`2010/0274360 Al
`2011/0029089 Al
`2011/0106266 Al
`2011/0112648 Al
`2011/0137424 Al
`2011/0144758 Al
`2011/0276144 Al
`2011/0313533 Al
`2012/0172996 Al
`2012/0209392 Al
`
`4/2009 LaFosse et al.
`5/2009 Guederian et al.
`9/2009 Clark et al.
`10/2009 Poncet
`11/2009 Delince et al.
`11/2009 Walch et al.
`2/2010 Isch et al.
`4/2010 Gunther
`4/2010 Gunther
`5/2010 Winslow et al.
`6/2010 Lonetti et al.
`8/2010 Groh
`9/2010 Gunther et al.
`10/2010 Gunther
`2/2011 Giuliani et al.
`5/2011 Schwyzer et al.
`5/2011 Gunther
`6/2011 Lappin et al.
`6/2011 Deffenbaugh
`11/2011 Wirth et al.
`12/2011 Gunther
`7/2012 Ries et al.
`8/2012 Angibuad et al.
`
`A61F 2/442
`623/23.5
`
`A61F 2/40
`623/19.12
`A61F 2/4081
`623/22.36
`
`A61F 2/4081
`623/18.11
`
`FOREIGN PATENT DOCUMENTS
`
`10164328 Al
`DE
`0299889 A2
`EP
`0339530 A2
`EP
`0570816 Al
`EP
`1464305 Al
`EP
`1488764 B1
`EP
`1858453
`EP
`1952788 Al
`EP
`2601912
`EP
`2083759 B1
`EP
`2689750 B1
`EP
`3090705
`EP
`3598957
`EP
`2248820 Al
`FR
`2567019 Al
`FR
`2695313 Al
`FR
`04-282149 A
`JP
`JP
`2013-158909
`2014-515651
`JP
`2017-148558 A
`JP
`2017-523872 A
`JP
`WO WO 2006/093763
`
`7/2003
`1/1989
`11/1989
`11/1993
`10/2004
`12/2006
`11/2007
`8/2008
`6/2013
`9/2015
`8/2016
`11/2016
`7/2018
`5/1975
`1/1986
`3/1994
`10/1992
`8/2013
`7/2014
`8/2017
`8/2017
`8/2006
`
`CATALYST, EX-1001
`PAGE 3
`
`
`
`US 12,023,254 B1
`Page 4
`
`(56)
`
`References Cited
`
`FOREIGN PATENT DOCUMENTS
`
`WO WO 2008/011078 A2
`WO WO 2009/071940 Al
`WO WO 2011/112425
`WO WO 2013/148437
`WO WO 2012/075183
`WO WO 2014/067961
`WO WO 2014/0195909
`WO WO 2016/025378
`WO WO 2017/184792
`WO WO 2018/022227
`WO WO 2018/129286
`WO WO 2018/181420
`WO WO 2019/006205
`WO WO 2019/178104
`WO WO 2019/213073
`WO WO 2020/023975
`WO WO 2020/185893
`WO WO 2023/183283
`WO WO 2024/026101
`
`1/2008
`6/2009
`9/2011
`10/2013
`4/2014
`5/2014
`12/2014
`2/2016
`10/2017
`2/2018
`7/2018
`10/2018
`1/2019
`9/2019
`11/2019
`1/2020
`9/2020
`9/2023
`2/2024
`
`OTHER PUBLICATIONS
`
`U.S. Appl. No. 13/088,976, filed Apr. 18, 2011, Gunther.
`U.S. Appl. No. 16/701,118, filed Dec. 2, 2019, Gunther.
`U.S. Appl. No. 18/058,058, filed Nov. 22, 2022, Running et al.
`U.S. Appl. No. 29/870,666, filed Feb. 1, 2023, Ball et al.
`U.S. Appl. No. 18/477,416, filed Sep. 28, 2023, Running et al.
`U.S. Appl. No. 18/349,805, filed Jul. 10, 2023, Gunther.
`Biomet, "AbsoluteTM Bi-Polar." 2001 in 2 pages.
`Biomet, "CopelandTM Humeral Resurfacing Head, Interlok®/HA
`Coated Implant Information", 2003 in 1 page.
`Biomet, "CopelandTM Humeral Resurfacing Head," 2001 in 12
`pages.
`Biomet, "CopelandTM Humeral Resurfacing Head, MacrobondTM
`Implant Information," 2003 in 1 page.
`Biomet, "CopelandTM Humeral Resurfacing Head, Surgical Tech-
`nique," 2003 in 2 pages.
`Boileau et al., "The Three-Dimensional Geometry of the Proximal
`Humerus. Implications for Surgical Technique and Prosthetic Design,"
`J. Bone Joint Surg. Br. 79: 857-865, 1997.
`
`Braun, et al., Modular Short-stem Prosthesis in Total Hip Arthroplasty:
`Implant Positioning and the Influence of Navigation, ORTHO
`SuperSite (Oct. 2007) in 8 pages.
`Clavert et al. Glenoid resurfacing: what are the limits to asymmetric
`reaming for posterior erosion? J. Shoulder and Elbow Surg. Nov./
`Dec. 2007: 843-848.
`Dalla Pria, Paolo. Slide presentation, entitled "Shoulder Prosthesis
`Design and Evolution", to the Naples International Shoulder Con-
`gress in Italy (2000) in 55 pages.
`Depuy, "Global C.A.P., Surgical Technique Resurfacing Humeral
`Head Implant," 2004 in 23 pages.
`Inset Mini-glenoid Brochure, Titan Modular Shoulder System Bro-
`chure, Ascension Orthopedics, 2011, 4 pages.
`Karduna et al. Glenhumeral Joint Translations before and after Total
`Shoulder Arthroplasty. J. Bone and Joint Surg. 79(8) (1997): 1166-
`1174.
`Redacted letter from a third party dated Aug. 24, 2012 in 2 pages.
`Levy et al., "Cementless Surface Replacement Arthroplasty of the
`Should. 5- to 10-year Results with the Copeland Mark-2 Prosthe-
`sis," J. Bone Joint Surg. Br. 83: 213-221, 2001.
`Lima-Lto Medical Systems Glenoidi/Glenoids catalogue (2001) in
`1 page.
`Lima-Lto Miniglenoide Cementata document 7560.50.030 (1999)
`in 1 page.
`Panisello, et al., Bone remodelling after total hip arthroplasty using
`an uncemented anatomic femoral stem: a three-year prospective
`study using bone densitometry, J Ortho Surg 14(1):32-37 (2006).
`Ross, Mark and Duke, Phillip, "Early Experience In The Use of a
`New Glenoid Resurfacing Technique" Glenoid Presentation, SESA
`Nov. 4, 2006, Session 4/0800-0930 p. 93 in 1 page.
`Tight Fit Tools, Right Angle Drill Attachment, Serial No. 00400
`www.tightfittools.comtriganat.html in 1 page/downloaded Mar. 11,
`2005.
`TITAN(TM) Modular Shoulder System Brochure, 2011, available at
`http://www.ascensionortho.com/Assets/PDF/TitanModular/
`TITANModularShoulder Brochure-revD.pdf (2 pages).
`Tournier et al., Enhancement of Glenoid Prosthesis Anchorage
`using Burying Technique. Techniques in Shoulder & Elbow Surgery
`9(1)(2008): 35-42.
`Wang et al., Biomechanical Evaluation of a Novel Glenoid Design
`in Total Shoulder Arthroplasty. J. Shoulder & Elbow Surgery (2005)
`15: 129S-140S.
`Statement of Grounds and Particulars of Opposition for Australian
`Patent Application No. 2006218936 dated Oct. 5, 2012 in 8 pages.
`
`* cited by examiner
`
`CATALYST, EX-1001
`PAGE 4
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 1 of 21
`
`US 12,023,254 B1
`
`a
`
`CATALYST, EX-1001
`PAGE 5
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 2 of 21
`
`US 12,023,254 B1
`
`extension
`
`CATALYST, EX-1001
`PAGE 6
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 3 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 7
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 4 of 21
`
`US 12,023,254 B1
`
`/
`
`0
`
`CATALYST, EX-1001
`PAGE 8
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 5 of 21
`
`US 12,023,254 B1
`
`i'r
`\i-
`Lf
`/
`
`'IT.'
`kf
`I
`
`\
`
`Lt')
`l't
`l'(
`
`Lf)Lr) 1
`
`7
`
`4
`
`ti
`
`CATALYST, EX-1001
`PAGE 9
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 6 of 21
`
`US 12,023,254 B1
`
`1
`
`CATALYST, EX-1001
`PAGE 10
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 7 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 11
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 8 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 12
`
`
`
`lualud °S11
`
`1Z Jo 6 WIN
`
`la rseczott sn
`
`•
`
`FIG: 8../I
`
`Tic 80
`
`FIc 8C
`
`FN. 8D Tic: 8E FIc 811
`
`17: 8g
`
`TN. 89{
`
`FN. 81
`
`FN. 81
`
`IN 87(
`
`CATALYST, EX-1001
`PAGE 13
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 10 of 21
`
`US 12,023,254 B1
`
`i.
`
`CATALYST, EX-1001
`PAGE 14
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 11 of 21
`
`US 12,023,254 B1
`
`0
`
`CATALYST, EX-1001
`PAGE 15
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 12 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 16
`
`
`
`lualud °S11
`
`1Z Jo £T WIN
`
`la rseczott sn
`
`0
`
`2
`
`n
`
`Anterior—Posterior View
`
`Inferior—Superior View
`
`CATALYST, EX-1001
`PAGE 17
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 14 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 18
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 15 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 19
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 16 of 21
`
`US 12,023,254 B1
`
`o
`
`o
`
`0
`
`0
`a
`
`CATALYST, EX-1001
`PAGE 20
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 17 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 21
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 18 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 22
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 19 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 23
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 20 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 24
`
`
`
`U.S. Patent
`
`Jul. 2, 2024
`
`Sheet 21 of 21
`
`US 12,023,254 B1
`
`CATALYST, EX-1001
`PAGE 25
`
`
`
`US 12,023,254 B1
`
`1
`TOTAL REVERSE SHOULDER SYSTEMS
`AND METHODS
`
`This application is a continuation of U.S. application Ser.
`No. 18/477,416, filed Sep. 28, 2023, which is a continuation
`of U.S. application Ser. No. 18/058,058, filed Nov. 22, 2022,
`now U.S. Pat. No. 11,771,561, which is a continuation of
`U.S. application Ser. No. 17/435,333, filed Aug. 31, 2021,
`which is the national phase of International Application No.
`PCT/US2020/022094, filed Mar. 11, 2020, which claims the
`benefit of priority from U.S. Provisional No. 62/816,708,
`filed Mar. 11, 2019, which are all hereby incorporated by
`reference in their entireties.
`
`BACKGROUND
`
`Shoulder replacement is a commonly performed medical
`procedure for treatment of osteoarthritis, rheumatoid arthri-
`tis, as well as for treatment of certain deformities related to
`oncological indications as well as trauma. There are two
`primary types of articulations available to surgeons for
`treatment: anatomic and reverse. With anatomic, the surgeon
`replaces the articular surfaces with industrial materials such
`that the articulating surfaces are substantially the same shape
`as the natural anatomy. A stem can be commonly fixed inside
`the canal of the humerus, a metallic articular head can be
`rigidly fixed to the proximal aspect of the same, the articular
`head having a convex articular surface adapted to articulate
`with the glenoid implant. The glenoid implant can include
`on its back side (medial side) certain pegs or posts or fins
`adapted to be rigidly fixed within the glenoid fossa of the
`scapula and on its front side a concave or flat articular
`surface adapted to articulate with the humeral head of the
`humeral implant.
`When a reverse prosthesis is used, the articular surface is
`reversed in that the metallic ball is rigidly fixed to the
`glenoid fossa of the scapula, and the concave articular
`surface is rigidly fixed to the humeral bone, thereby revers-
`ing the fashion of articulation of the prosthesis.
`The surgeon chooses between the two types of prostheses
`by assessing a number of conditions of the patient including
`level of pain, patient activity level, deformity or severity of
`the boney degradation, the strength of surrounding soft
`tissues, and present or absence of prior surgery, and particu-
`larly the health and strength of the rotator cuff muscle and
`tendon. Disease of the rotator cuff is common among
`patients with arthritis of the shoulder. In this circumstance,
`it is commonly observed that the absence of insufficiency of
`the rotator cuff leads to a condition where the anatomic
`shoulder replacement prosthesis is not sufficiently stabilized
`by surrounding soft tissue. In this case, a reverse shoulder
`replacement prosthesis can be preferred in some cases due to
`the higher inherent stability of the articulation. In addition,
`the reverse prosthesis can advantageously utilize the remain-
`ing muscles in a way they can be more effective in the
`absence of the other soft tissue structures by adjusting the
`position of the articular surfaces within the joint.
`
`SUMMARY
`
`In some embodiments, disclosed herein is a reverse shoul-
`der system, comprising any number of a glenoid baseplate
`comprising a longitudinal axis, the glenoid baseplate further
`comprising a stem and a central channel within a sidewall of
`the stem, the stem comprising a longitudinal axis. The
`longitudinal axis of the glenoid baseplate can be angled with
`respect to the longitudinal axis of the stem, wherein the
`
`5
`
`10
`
`2
`longitudinal axis of the glenoid baseplate is not perpendicu-
`lar with respect to the longitudinal axis of the stem.
`In some configurations, the glenoid baseplate comprises a
`generally disc-shaped portion extending radially outward
`from the central channel.
`In some configurations, the stem comprises a sidewall that
`extends superiorly with respect to the disc portion.
`In some configurations, the glenoid baseplate comprises a
`peripheral edge.
`In some configurations, the peripheral edge comprises
`spaced-apart anti-rotation features.
`In some configurations, the anti-rotation features com-
`prise slots.
`In some configurations, an inferior portion of the periph-
`15 eral edge comprises a porous coating.
`In some configurations, an inferior surface of the gener-
`ally disc-shaped portion comprises a porous coating, but a
`superior surface does not comprise a porous coating.
`In some configurations, the peripheral edge and/or an
`20 inferior surface of the baseplate comprises a conical geom-
`etry.
`In some configurations, an inferior surface of the base-
`plate is concave.
`In some configurations, the stem comprises a Morse taper
`25 lock superior to a superior-most portion of the generally
`disc-shaped portion of the glenoid baseplate.
`In some configurations, the system further comprises a
`glenosphere.
`In some configurations, the glenosphere comprises a
`30 superior dome-shaped surface comprising a rotational con-
`trol feature configured such that an inserter tool can lock the
`glenosphere and the baseplate to allow for rotation of the
`glenosphere and the baseplate together.
`In some configurations, the rotational control feature
`35 comprises a spline.
`In some configurations, the system further comprises a
`central set screw and locking nut.
`In some configurations, the system further comprises a
`central compression screw non-integral with the baseplate
`40 and configured for placement adjacent and distal to the
`central set screw.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`55
`
`45
`
`These drawings are illustrative embodiments and do not
`present all possible embodiments of this invention.
`FIG. 1 illustrates an embodiment of components of a total
`reverse shoulder system.
`FIG. 2 illustrates various embodiments of humeral trays
`so that can be utilized with total reverse shoulder systems,
`according to some embodiments.
`FIG. 3 illustrates a variety of humeral bearing compo-
`nents that can be utilized with total reverse shoulder sys-
`tems, according to some embodiments.
`FIG. 4 illustrates schematically an embodiment of a
`glenoid baseplate configured to be inset into the glenoid.
`FIG. 5 illustrates schematically an embodiment of a
`glenoid baseplate 500 configured to be inset into the glenoid.
`FIG. 6 illustrates a threaded locking insert for a central
`60 channel of a stem/post, according to some embodiments.
`FIG. 7 illustrates various views of glenospheres, accord-
`ing to some embodiments.
`FIG. 8 illustrates a schematic cross-section of a fully
`assembled glenosphere with a locking bolt, according to
`65 some embodiments.
`FIGS. 8A-8U illustrate a glenoid surgical technique,
`according to some embodiments.
`
`CATALYST, EX-1001
`PAGE 26
`
`
`
`US 12,023,254 B1
`
`3
`FIG. 9 illustrates an embodiment of a sizer/angle guide.
`FIG. 10 illustrates an embodiment of a stem drill guide.
`FIG. 11 schematically illustrates a stem angle change with
`a rotational adjustment.
`FIG. 12 schematically illustrates views of a glenoid
`baseplate inserter (alone on the left and together with a
`baseplate on the right), according to some embodiments.
`FIG. 13 schematically illustrates views of a calibrated
`central drill, according to some embodiments.
`FIG. 14 schematically illustrates views of fixed angle
`peripheral drill guides, according to some embodiments.
`FIG. 15 schematically illustrates views of variable angle
`peripheral drill guides, according to some embodiments.
`FIG. 16 schematically illustrates side and top views of
`central screws, according to some embodiments.
`FIG. 17 schematically illustrates side and top views of
`fixed angle peripheral compression screws, according to
`some embodiments.
`FIG. 18 schematically illustrates side and top views of
`variable angle peripheral screws, according to some embodi-
`ments.
`FIG. 19 schematically illustrates views of a glenosphere
`inserter, according to some embodiments.
`
`DETAILED DESCRIPTION
`
`In some embodiments, disclosed herein are various
`embodiments of a total reverse shoulder system, including a
`variety of humeral trays, humeral bearings, inset glenoid
`baseplates, threaded locking inserts, and glenospheres. Gle-
`noid surgical techniques are also described, which can
`utilize various tools including but not limited to sizer/angle
`guides, stem drill guides, glenoid baseplate inserters, cali-
`brated central drills, peripheral drill guides with fixed or
`variable angles, central screws, fixed angle peripheral com-
`pression screws, variable angle peripheral screws, and gle-
`nosphere inserters. Dimensions listed on the accompanying
`Figures are non-limiting examples only.
`FIG. 1 illustrates an embodiment of components of a total
`reverse shoulder system, including a glenosphere 200 and a
`glenoid baseplate 102 which can be partially or completely
`inset in some embodiments. The glenoid baseplate 102 can
`be a generally disc-shaped structure and include a central
`aperture defining a surface of (e.g., integral with an elongate
`stem), or configured to fit an elongate stem or post there-
`through. The glenoid baseplate 102 can include a longitu-
`dinal axis that is at an angle to a longitudinal axis of the
`elongate stem 100. The longitudinal axis of the glenoid
`baseplate 102 can be at an angle, such as generally oblique
`with respect to the longitudinal axis of the elongate stem
`100. In some embodiments, the angle is an acute angle, and
`not a right angle. The angle between the two intersecting
`longitudinal axes of the respective baseplate 102 and the
`stem 100 could be, for example, about, at least about, or no
`more than about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60,
`65, 70, 75, 80, 85, 90, or more or less degrees, or ranges
`including any two of the foregoing values.
`FIG. 2 illustrates various embodiments of humeral trays
`that can be utilized with total reverse shoulder systems,
`according to some embodiments. The humeral trays can
`include various inner diameters IDs and outer diameters
`ODs, including 30 mm, 32 mm, 34 mm, 36 mm, 38 mm, 40
`mm, 42 mm, or more or less IDs and/or ODs, and ranges
`including any two of the foregoing values. The trays can
`include one or more pegs, such as a central peg extending
`from a medial surface. The trays can be neutral, or include
`extensions (e.g., in thickness) that can be, for example, +2,
`
`4
`4, 6, 8, 10, 12 mm, or ranges including any two of the
`foregoing values. The trays can include various cross-
`sections, including oval or round cross-sections. The trays
`can be compatible with the same poly bearing surfaces in
`5 some cases. In some embodiments, a kit can include at least
`four different sizes of trays (34 mm oval neutral; 34 mm
`oval+6 mm extension; 38 mm round neutral; 38 mm
`round+6 mm extension.
`FIG. 3 illustrates a variety of humeral bearing compo-
`io nents that can be utilized with total reverse shoulder sys-
`tems, according to some embodiments, including humeral
`trays as illustrated and described in connection with FIG. 2.
`The bearing components can include, for example, a periph-
`eral ring 302 and a central recessed portion that can be
`is outlined radially outwardly by an inner edge of the periph-
`eral ring, and an inner bowl-shaped portion 304. The periph-
`eral ring can include indicia, such as a slot or other marking
`399 illustrating the highest point of the bearing component.
`Also illustrated is the recessed poly dome 395, and a partial
`20 or full annular barb 397 around the outer circumference of
`the bearing component. The bearing component can include
`a variety of geometries include neutral, 1, 2, 3, 4, 5, 6, 7, 8,
`9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 degree angles to
`horizontal, or ranges including any two of the foregoing
`25 values. In some embodiments, the bearing component does
`not change the joint center. In some embodiments, the
`bearing component can include 30, 31, 32, 33, 34, 35, 36, 37,
`38, 39, 40, 41, 42, 43, 44, 45 mm, or more or less spherical
`diameters, or ranges including any two of the foregoing
`30 values. In some embodiments, systems and methods can
`include an offset of 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mm, or
`ranges including any two of the foregoing values.
`FIG. 4 illustrates schematically an embodiment of a
`glenoid baseplate configured to be inset into the glenoid G
`35 as illustrated. The longitudinal axis of the baseplate can be
`angled with respect to the longitudinal axis of the stem/post
`as described, for example, with respect to FIG. 1, and can
`include a version change 499 to compensate for posterior
`bony defects. In some embodiments, the glenoid baseplate
`40 includes a central channel therethrough defining a surface of
`(e.g., integral with an elongate stem), or configured to fit
`configured to house a stem/post as shown. The glenoid
`baseplate can include a generally conical shape with a
`concave undersurface configured to rest withi