`
`
`
`
`
`
`
`
`EX 1012
`EX 1012
`
`
`
`
`VEHICLE TECHNOLOGY
`RESEARCH CENTER FOR
`LOWER SAXONY
`
`
`
`LithoRec
`Recycling lithium-ion batteries
`
`
`
`Prof. Dr.-Ing. Arno Kwade, Gunnar Bärwaldt (editors)
`
`
`sponsored by the:
`
`Federal Ministry for the
`Environment, Nature
`Conservation and Nuclear
`Safety
`
`Cuvillier Verlag Göttingen
`International scientific publisher
`
`www.lithorec.de
`
`Ascend Elements EX1012 Page 1
`
`
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`Ascend Elements EX1012 Page 2
`
`
`
`Recycling lithium-ion
`batteries
`Final report of the joint project
`
`Duration of the project:
`
`September 01, 2009 - September 30, 2011
`
`Joint final report on the following individual projects
`
`I+ME ACTIA GmbH
`16EM0012
`Audi AG
`16EM0013
`Electrocycling GmbH
`16EM0014
`16EM0015 H.C. Starck GmbH
`16EM0016 Chemetall GmbH
`16EM0017 Westfälische Wilhelms-Universität Münster
`16EM0018
`Süd-Chemie
`16EM0019 Recylex GmbH
`16EM0020
`Volkswagen AG
`16EM0021
`Evonik Litarion GmbH
`16EM0022
`Fränkisches Recycling Zentrum
`16EM0023
`Brunswick University of Technology
`
`Brunswick, 02.04.2012
`
`Federal Ministry for
`the Environment,
`Nature Conservation
`and Nuclear Safety
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`Ascend Elements EX1012 Page 3
`
`
`
`Bibliographic information of the German National Library
`The German National Library lists this publication in the German National Bibliography;
`detailed bibliographic data is available on the Internet at http://dnb.d-nb.de.
`1st
`ed. - Göttingen: Cuvillier, 2012
`
`978-3-95404-112-1
`
`© CUVILLIER VERLAG, Göttingen 2012
`
`Nonnenstieg 8, 37075 Göttingen
`
`Tel: 0551-54724-0
`
`Fax: 0551-54724-21
`
`www.cuvillier.de
`
`All rights reserved. It is not permitted to reproduce the book or parts thereof by
`photomechanical means (photocopy, microcopy) without the express permission of the
`publisher.
`
`1st Edition, 2012
`
`Printed on acid-free paper
`
`978-3-95404-112-1
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`Ascend Elements EX1012 Page 4
`
`
`
`List of authors
`Prof. Arno Kwade (Institute for Particle Technology, TU Brunswick) Scientific project management
`Gunnar Bärwaldt (Automotive Research Center Niedersachsen) Project coordination
`
`Coordinators of the industrial partners involved
`Tobias Meinfelder (AUDI AG)
`Martin Steinbild (Chemetall GmbH)
`Kai Kramer (Electrocycling GmbH)
`Dr. Robert Barenschee (Evonik Litarion GmbH)
`Dr. Markus Weinmann (H.C.Starck GmbH)
`Axel Schober (I+ME actia GmbH)
`Matthias Walch (Fränkisches Recyclingzentrum)
`Peter Brandes (Recylex GmbH)
`Dr. Nikolas Tran (Süd-Chemie AG)
`Dr. Marko Gernuks (Volkswagen AG)
`
`Participating scientific institutions
`apl. Prof. Christoph Herrmann, Stefan Andrew
`(Institute for Machine Tools and Production Engineering, TU Brunswick)
`Prof. Michael Kurrat, Hannes Haupt
`(Institute for High Voltage Technology and Electrical Power Systems, TU Brunswick)
`Prof. Arno Kwade, Christian Hanisch, Stephan Olliges
`(Institute for Particle Technology, TU Brunswick)
`Prof. Thomas Spengler, Claas Hoyer
`(Institute of Automotive Economics and Industrial Production, TU Brunswick)
`Prof. Thomas Vietor, Dennis Wedler
`(Institute for Construction Technology, TU Brunswick)
`Prof. Martin Winter, Dr. Sascha Nowak
`(Institute for Physical Chemistry, WWU Münster)
`
`General contact address:
`Brunswick University of Technology
`Automotive Research Center of Lower Saxony
`Langer Kamp 19
`38106 Brunswick
`0531-391 7980
`nff@tu-braunschweig.de.
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`Ascend Elements EX1012 Page 5
`
`
`
`Overview of the partners involved in the individual project areas:
`
`Industrial partners
`
`Scientific partners
`
`Work step
`Work package
`
`Project area
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`The partners involved are responsible for the results and statements within the individual work steps.
`
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`Ascend Elements EX1012 Page 6
`
`
`
`
`
`I Table of contents
`I Table of contents .......................................................................................................................... I
`II List of illustrations ....................................................................................................................... V
`III List of tables ............................................................................................................................. IX
`A 1 Executive summary ................................................................................................................. 1
`A.1 Key results in the individual project areas ................................................................................ 2
`A.1.1 Project area A ................................................................................................................... 2
`A.1.2 Project area B ................................................................................................................... 2
`A.1.3 Project area C ................................................................................................................... 3
`A.1.4 Project area D ................................................................................................................... 4
`A.1.5 Project area E ................................................................................................................... 4
`A.1.6 Project area F ................................................................................................................... 4
`A.1.7 Project area G ................................................................................................................... 5
`A.2 Publications ............................................................................................................................. 5
`A.3 Definitions ............................................................................................................................... 7
`A Analysis and development of logistical collection and Feedback processes ............................... 8
`A.1 Analysis of the volume of used batteries ................................................................................. 8
`A.1.1 Identification and analysis of the influencing factors relevant to the reflux of used Li-ion
`batteries ..................................................................................................................................... 8
`A.1.2 Development of a simulation model for estimating the reflux of used Li-ion batteries ........ 9
`A.1.2.1 Description of the modules ....................................................................................... 10
`A.1.3 Development of scenarios for the long-term development of sales and use of electric
`vehicles over time .................................................................................................................... 11
`A.1.3.1 Background assumptions ......................................................................................... 11
`A.1.3.2 Scenario assumptions .............................................................................................. 11
`A.1.4 Performing a simulation study on waste battery returns with explicit consideration of
`uncertain influences ................................................................................................................. 13
`A.1.4.1 “Pessimistic” scenario .............................................................................................. 13
`A.1.4.2 “Political” scenario .................................................................................................... 14
`A.1.4.3 “Realistic” scenario ................................................................................................... 14
`A.1.4.4 Comparison of the scenarios .................................................................................... 14
`A.1.4.5 Sensitivity analysis ................................................................................................... 17
`A.2 Analysis and design of information flows ............................................................................... 19
`A.2.1 Analysis and adaptation of the information supply and requirements for the expansion and
`testing processes ..................................................................................................................... 19
`A.2.2 Analysis and adaptation of information supply and demand for the transportation process
` ................................................................................................................................................. 21
`A.2.3 Analysis and adaptation of information supply and demand for the storage/collection
`process .................................................................................................................................... 23
`A.2.4 Identification of information from upstream processes that is required during the recycling
`process .................................................................................................................................... 25
`A.2.5 Design of a tool for the needs-based collection and provision of information and a concept
`for implementing the tool in a software solution ........................................................................ 26
`A.2.5.1 Information flow along the process chain .................................................................. 26
`A.2.5.2 Options for collecting and providing information in line with requirements ................ 26
`A.2.5.3 Requirements for an information tool ........................................................................ 28
`A.2.5.4 Selection and structure of a suitable information tool ................................................ 28
`A.3 Development of collection concepts ...................................................................................... 31
`A.3.1 Requirements analysis for potential networks for recycling Li-ion batteries ..................... 31
`A.3.1.1 Definition of system boundaries ................................................................................ 31
`A.3.1.2 Determining network constellations .......................................................................... 34
`
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`I
`
`Ascend Elements EX1012 Page 7
`
`
`
`
`
`A.3.1.3 Derivation of a catalog of requirements .................................................................... 37
`A.3.2 Development and construction of prototype tools and design of various battery expansion
`concepts with the help of corresponding expansion studies ..................................................... 38
`A.3.3 Development and implementation of a packaging system and design of a fastening
`system ..................................................................................................................................... 40
`A.3.4 Development and implementation of a storage system and design of a warehouse ........ 42
`A.3.5 Economic efficiency calculation of the entire collection concept ...................................... 43
`A.3.6 Development of a decision support tool for the design of networks ................................. 45
`A.3.6.1 Modeling the geographical area ............................................................................... 45
`A.3.6.2 Modeling the volume of used batteries ..................................................................... 46
`A.3.6.3 Modeling the processes ............................................................................................ 46
`A.3.6.4 Modeling of capacities .............................................................................................. 48
`A.3.6.5 Modeling of material flows ........................................................................................ 48
`A.3.7 Deriving recommendations for action to design the network structure ............................. 49
`A.3.7.1 Political/VW-OTLG case study ................................................................................. 50
`A.3.7.2 Realistic/VW-OTLG case study ................................................................................ 53
`A.3.7.3 Realistic/VG-10 case study ...................................................................................... 54
`A.3.7.4 Robust/VW-OTLG case study .................................................................................. 55
`A.3.7.5 Deriving recommendations for action ....................................................................... 56
`A.4 Development of discharge processes for Li-ion batteries ....................................................... 59
`A.4.1 Researching secondary markets for lithium-ion battery modules ..................................... 59
`A.4.2 Preparation of technical specifications for the secondary markets .................................. 59
`A.4.3 Analysis of existing battery modules with regard to the depth of repair ........................... 60
`A.4.4 Development of an evaluation methodology for battery modules and single cells ........... 62
`A.4.5 Technical development of a semi-automated test procedure ........................................... 63
`A.4.6 Process development for the end loading tool ................................................................. 64
`A.4.7 Technical development of a semi-automated end loading tool ........................................ 65
`A.4.8 Testing the prototype ...................................................................................................... 66
`B.1 Mechanical dismantling into individual components ............................................................... 67
`B.1.1 Product analysis and structuring of dismantling .............................................................. 67
`B.1.2. Concepts for semi-automated dismantling steps ............................................................ 71
`B.1.3 Design of alternative dismantling systems (layout, linking of workstations/workplaces) ... 77
`B.1.4 Design of the elements of the dismantling system ........................................................... 85
`B.1.6 Derivation of requirements for a battery design suitable for dismantling and automation . 94
`B.2 Treatment and utilization of electrolytes ................................................................................ 96
`B.2.1 Development of opening concepts .................................................................................. 96
`B.2.2 Draining the wet battery cell ............................................................................................ 97
`B.2.3 Process development of a suitable distillation process for electrolyte recovery ............... 98
`B.2.4 Process development of alkaline recrystallization of the conductive salts........................ 99
`B.3 Mechanical, thermal and chemical processing of the individual components ......................... 99
`B.3.1 Dismantling the dry cells and sorting ............................................................................... 99
`B.3.2 Processing and recycling of cell housings, separators and metallic components .......... 100
`B.3.3 Process development for the dry separation of active materials from the current collector
` ............................................................................................................................................... 101
`B.3.4 Process development of the wet mechanical separation of the electrode coatings from the
`current collector and their mechanical separation ................................................................... 105
`B.3.5 Preparation of highly concentrated, particulate active material suspensions ................. 108
`B.3.6 Extraction of binder systems from electrode materials depending on the separation
`alternatives ............................................................................................................................. 110
`B.4 Hydrometallurgical processing and recycling of non-ferrous metals ..................................... 110
`B.4.1 Laboratory work on hydrometallurgical extraction and purification processes ............... 111
`
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`II
`
`Ascend Elements EX1012 Page 8
`
`
`
`
`
`B.4.2 Pilot plant for acid-based extractions and fluorine-free conductive salt
`production .............................................................................................................................. 120
`B.4.3 Pilot plant for purification using ion exchangers and salt splitting using electrodialysis .. 124
`C Development of manufacturing processes for “recycling batteries” ......................................... 132
`C.1 Characterization of the recycled raw materials .................................................................... 133
`C.1.1 Creation of a raw material specification for the recycled lithium raw materials by the active
`material manufacturers ........................................................................................................... 133
`C.1.2 Evaluation of recycled lithium and transition metal salts in comparison with commercial
`and recycled primary raw materials ........................................................................................ 135
`C.1.3 Comprehensive analysis of chemical and physical material parameters and assessment
`of potential reuse .................................................................................................................... 136
`C.1.4 Evaluation of possible uses for different qualities of recovered raw materials ............... 136
`C.2 Synthesis and characterization of recycled active materials ................................................ 137
`C.2.1 Synthesis of active materials from recycled raw materials ............................................ 137
`C.2.2 Production of conducting salts from laboratory recycled materials and comparison with
`commercial conducting salts .................................................................................................. 139
`C.2.3 Characterization of active materials - product output control ......................................... 139
`C.3 Production and characterization of new electrodes and test cells from recycled active
`materials .................................................................................................................................... 143
`C.3.1 Standardized electrode and cell production from commercial reference materials and
`electrochemical characterization ............................................................................................ 143
`C.3.2 Standardized electrode and cell production from reconditioned active materials and
`electrochemical characterization ............................................................................................ 146
`C.3.3 Standardized electrode and cell production from recycled active materials obtained from
`formed cells and electrochemical characterization ................................................................. 148
`C.3.4 Standardized electrode and cell production from recycled active materials obtained from
`aged cells and electrochemical characterization..................................................................... 150
`D.1 Recording the performance and analyzing the aging of conventionally available active
`materials using a standard cell (LiFePO4 and layered oxides) ................................................... 155
`D.2 Recording the performance and analyzing the aging of recycled active materials and multiple
`recycled active materials using a standard cell (LiFePO4 and layered oxides) .......................... 167
`D.3 Analysis of the mechanisms of ageing in comparison of conventional and recycled active
`materials .................................................................................................................................... 174
`E Economic and ecological evaluation of recycling concepts for Li-ion batteries ........................ 174
`E.1 Survey and process simulation of energy demand .............................................................. 174
`E.2 Life cycle assessment of the entire recycling process chain ................................................ 176
`E.4 - E.6 Economic evaluation of the LithoRec process ............................................................. 176
`E.4.1 Modularization and creation of reference systems ........................................................ 178
`E.4.2 Estimate of investments and fixed costs ....................................................................... 179
`E.4.2.1 Transshipment warehouse ..................................................................................... 179
`E.4.2.2 Dismantling plant .................................................................................................... 182
`E.4.2.3 Mechanical processing plant .................................................................................. 184
`E.4.2.4 Hydrometallurgical processing plant ....................................................................... 185
`E.4.3 Estimate of process coverage contributions .................................................................. 186
`E.4.3.1 Definitions and procedure ....................................................................................... 186
`E.4.3.2 Contribution margin in dismantling ......................................................................... 188
`E.4.3.3 Contribution margin in mechanical processing ....................................................... 190
`E.4.3.4 Contribution margin in hydrometallurgical processing ............................................. 192
`E.4.3.5 Total process contribution margin and sensitivity analysis ...................................... 193
`E.4.4 Break-even points ......................................................................................................... 197
`E.4.4.1 Throughput-related profit thresholds ....................................................................... 198
`E.4.4.2
`Time-related profit thresholds ............................................................................ 204
`
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`III
`
`Ascend Elements EX1012 Page 9
`
`
`
`
`
`E. 4.5 Summary ..................................................................................................................... 205
`F Development of easy-to-disassemble battery systems and life cycle-oriented safety concepts
`
`207
`F.1 Development of a tool for integrated recycling and environmental assessment of battery
`systems ..................................................................................................................................... 207
`F.2 Characteristic dismantling, recycling parameters and dismantling-friendly electrode design 210
`F.2.1 Determination of a characteristic dismantling and determination of recycling parameters
`for representative battery construction concepts .................................................................... 210
`F.2.2 Determining a design for electrodes that is easy to dismantle ....................................... 212
`F.3 Development of design and construction guidelines for the dismantling-friendly
`development/production of batteries .......................................................................................... 212
`F.4 Development of tools (CAD tools, K. catalogs...) for the design and simulation of overall
`battery concepts, taking into account the mutual influences of battery, peripherals and vehicle
`technology ................................................................................................................................. 216
`F.5 Derivation of life cycle-oriented safety concepts, especially for dismantling, dismantling and
`recycling of lithium-ion batteries ................................................................................................. 218
`F.6 Development of (minimum) documentation standards for proper treatment, dismantling,
`dismantling and recycling........................................................................................................... 220
`G Conceptual design of a recycling pilot plant ........................................................................... 222
`G.1 Discharging the batteries and dismantling the system components..................................... 223
`G.2 Separation of active materials ............................................................................................. 224
`H Bibliography ........................................................................................................................... 236
`I
`Annexes ............................................................................................................................. 238
`
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`IV
`
`Ascend Elements EX1012 Page 10
`
`
`
`
`
`II List of illustrations
`Figure A-1: Concept of the model for estimating the volume of used batteries .......................... 9
`Figure A-2: Comparison of the used battery volume (mass) of the three scenarios ................. 15
`Figure A-3: Comparison of used battery volumes (mass) by battery variant in the three
`scenarios ................................................................................................................................ 16
`Figure A-4: Influence of selected parameters on the volume of used batteries ....................... 18
`Figure A-5: Influence of battery service life on the volume of used batteries (kg/a) ................. 19
`Figure A-6: Schematic representation of the recycling information system .............................. 30
`Figure A-7: Network constellation A - single-level collection concept ...................................... 35
`Figure A-8: Network constellation B - two-stage collection concept with integrated dismantling
`and processing ....................................................................................................................... 36
`Figure A-9: Network constellation C - two-stage collection concept with decoupled dismantling
`and processing ....................................................................................................................... 37
`Figure A-10: HV - Battery removal KIT .................................................................................... 39
`Figure A-11: Disposable cardboard packaging Sanyo battery system for Audi Q5 .................. 40
`Figure A-12: Battery box (battery box made of rigid plastic) .................................................... 41
`Figure A-13: Labeling of warehouse entrances and exits ........................................................ 43
`Figure A-14: Module formation from processes....................................................................... 47
`Figure A-15: decentralized collection in the “Political/VW-OTLG” case study, second planning
`period 2015 to the end of 2017 ............................................................................................... 51
`Figure A-16: decentralized collection in the “Political/VW-OTLG” case study, third planning
`period 2018 to the end of 2020 ............................................................................................... 52
`Figure A-17: Highly decentralized collection and dismantling in the “Political/VW-OTLG” case
`study, fourth planning period 2021 to the end of 2025 ............................................................ 53
`Figure A-18: decentralized collection and dismantling in the “Realistic/VW-OTLG” case study
`from 2021 to the end of 2025 .................................................................................................. 54
`Figure A-19: Comparison of the structures in period III from the case studies “Realistic/VW-
`OTLG” (a) and “Political/VW-OTLG” (b) with those from the case study “Robust/VW-OTLG” (c)
` ............................................................................................................................................... 56
`Figure A-20: Comparison of the structures in period IV from the case studies “Realistic/VW-
`OTLG” (a) and “Political/VW-OTLG” (b) with those from the case study “Robust/VW-OTLG” (c)
` ............................................................................................................................................... 56
`Figure A-21: Secondary markets ............................................................................................ 59
`Figure A-23: Schematic diagram of the discharging process for battery systems .................... 64
`Figure A-24: Current cell discharge and gripper solution ......................................................... 65
`Figure A-25: Discharging tool circuit diagram principle............................................................ 66
`Figure A-26: Cell voltage curve during discharge .................................................................... 66
`Figure B-1: Impressions of the test dismantling of battery system A ....................................... 68
`Figure B-2: Impressions of the test dismantling of battery system B ....................................... 68
`Figure B-3: Connection graph ................................................................................................. 69
`Figure B-4: Dismantling priority graph ..................................................................................... 70
`Figure B-5: Example assessment of automation capability ..................................................... 72
`Figure B-6: Example evaluation of dismantling ....................................................................... 72
`Figure B-7: Criteria catalog (English) ...................................................................................... 73
`Figure B-8: Portfolio representation for assessing the automation capability for the individual
`step ......................................................................................................................................... 74
`Figure B-9: Principle of the gripping device (left); parameters for motor design (top right) and
`control architecture (bottom right) ........................................................................................... 77
`Figure B-10: Schematic of the general dismantling of battery systems ................................... 79
`Figure B-11: Layout of a dismantling system for the “2015 realistic” scenario ......................... 82
`
`
`This work is protected by copyright and may not be reproduced in any form or passed on to third parties.
`It is for personal use only.
`
`V
`
`Ascend Elements EX1012 Page 11
`
`
`
`
`
`Figure B-12: Layout of a dismantling system for the “2030 realistic” scenario ......................... 84
`Figure B-13: Multi-DIAG diagnostic device .............................................................................. 86
`Figure B-14: Gripper system with individual subsystems and components ............................. 87
`Figure B-15: Operating concept of the gripper system ............................................................ 89
`Figure B-16: Screenshots of the visualization ......................................................................... 89
`Figure B-17: Evaluation of the measurements ........................................................................ 93
`Figure B-18: Electrode stack (IPC-WWU) ............................................................................... 97
`Figure B-19: Analysis of the 1st fraction of the distillation process using GC-MS (IPC-WWU) 98
`Fi