throbber
“Where am I?”
`
`Sensors and Methods for
`Mobile Robot Positioning
`
`3
`eWiniversityofMichs
`
`Silver Star Exhibit 1017
`
`by
`J. Borenstein, H.R. Everett, and L.Feng
`Edited and Compiled by J Borenstein
`Contributing Authors: 5. VW. Lee and R.H. Byrne
`Prepared by
`TheUniversity ofMichiga
`for the
`Oak Ridge National _Lab D&B Program
`and for the
`
`Silver Star Exhibit 1017
`
`

`

`%0 &3;0789 41 .,3
`%0 &3;0789 41 .,3
`
`Where am I?
`Sensors and Methods for
`Mobile Robot Positioning
`
`by
`J. Borenstein , H. R. Everett , and L. Feng
`1
`2
`Contributing authors: S. W. Lee and R. H. Byrne
`
`3
`
`Edited and compiled by J. Borenstein
`
`April 1996
`
`Prepared by the University of Michigan
`For the Oak Ridge National Lab (ORNL) D&D Program
`and the
`United States Department of Energy's
`Robotics Technology Development Program
`Within the Environmental Restoration, Decontamination and Dismantlement Project
`
`1)
`
`Dr. Johann Borenstein
`The University of Michigan
`Department of Mechanical
`Engineering and Applied Mechanics
`Mobile Robotics Laboratory
`1101 Beal Avenue
`Ann Arbor, MI 48109
`Ph.: (313) 763-1560
`Fax: (313) 944-1113
`Email: johannb@umich.edu
`
`2)
`
` Commander H. R. Everett
`Naval Command, Control, and
`Ocean Surveillance Center
`RDT&E Division 5303
`271 Catalina Boulevard
`San Diego, CA 92152-5001
`Ph.: (619) 553-3672
`Fax: (619) 553-6188
`Email: Everett@NOSC.MIL
`
`3)
`
` Dr. Liqiang Feng
`The University of Michigan
`Department of Mechanical
`Engineering and Applied Mechanics
`Mobile Robotics Laboratory
`1101 Beal Avenue
`Ann Arbor, MI 48109
`Ph.: (313) 936-9362
`Fax: (313) 763-1260
`Email: Feng@engin.umich.edu
`
`Please direct all inquiries to Johann Borenstein.
`
`Silver Star Exhibit 1017 - 2
`
`

`

`How to Use this Document
`
`The use of the Acrobat Reader utility is straight-forward; if necessary, help is available from
`theHelp Menu. Here are some tips:
`
`You may wish to enable View => Bookmarks & Page to see a list of bookmarks besides the
`current page. Clicking on a bookmark will cause the Acrobat Reader to jump directly to the
`location marked by the bookmark (e.g., the first page in a specific chapter).
`
`You may wish to enable View => Thumbnails & Page to see each page as a small thumbnail-
`sized image besides the current page. This allows you to quickly locate a page that you remember
`because of a table or graphics element. Clicking on a thumbnail will cause the Acrobat Reader to
`jump directly to the page marked by the thumbnail.
`
`Occasionally a term will be marked by a red rectangle, indicating a reference to an external
`document. Clicking inside the rectangle will automatically load the referenced document and
`display it. Clicking on the (cid:128) key will return the Acrobat Reader to the original document.
`
`Occasionally a term will be marked by a blue rectangle. This indicates a link to an external
`video clip. Clicking inside the blue rectangle will bring up the video player (provided one is
`installed on your platform).
`
`If you would like to check the video clips,
`click here for a list and instructions:
`
`If you would like to contribute your own
`material for next year's edition of the
`"Where am I" Report, click here for instruc-
`tions.
`
`Silver Star Exhibit 1017 - 3
`
`

`

`Acknowledgments
`
`This research was sponsored by the
`Office of Technology Development, U.S. Department of Energy,
`under contract DE-FG02-86NE37969
`with the University of Michigan
`
`Significant portions of the text were adapted from
` "Sensors for Mobile Robots: Theory and Application"
`by H. R. Everett,
`A K Peters, Ltd., Wellesley, MA, Publishers, 1995.
`
`Chapter 9 was contributed entirely by
`Sang W. Lee from the Artificial Intelligence Lab
`at the University of Michigan
`
`Significant portions of Chapter 3 were adapted from
`“Global Positioning System Receiver Evaluation Results.”
`by Raymond H. Byrne, originally published as
`Sandia Report SAND93-0827, Sandia National Laboratories, 1993.
`
`The authors wish to thank the Department of Energy (DOE), and especially
`Dr. Linton W. Yarbrough, DOE Program Manager, Dr. William R. Hamel, D&D
`Technical Coordinator, and Dr. Clyde Ward, Landfill Operations Technical
`Coordinator for their technical and financial support of the
`research, which forms the basis of this work.
`
`The authors further wish to thank Professors David K. Wehe and Yoram Koren
`at the University of Michigan for their support, and Mr. Harry Alter (DOE)
`who has befriended many of the graduate students and sired several of our robots.
`
`Thanks are also due to Todd Ashley Everett for making most of the line-art drawings.
`
`4
`
`Silver Star Exhibit 1017 - 4
`
`

`

`Table of Contents
`
`Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
`
`PART I SENSORS FOR MOBILE ROBOT POSITIONING
`
`Chapter 1 Sensors for Dead Reckoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
`1.1 Optical Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
`1.1.1 Incremental Optical Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
`1.1.2 Absolute Optical Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
`1.2 Doppler Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
`1.2.1 Micro-Trak Trak-Star Ultrasonic Speed Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
`1.2.2 Other Doppler-Effect Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
`1.3 Typical Mobility Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
`1.3.1 Differential Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
`1.3.2 Tricycle Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
`1.3.3 Ackerman Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
`1.3.4 Synchro Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
`1.3.5 Omnidirectional Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
`1.3.6 Multi-Degree-of-Freedom Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
`1.3.7 MDOF Vehicle with Compliant Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
`1.3.8 Tracked Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
`
`Chapter 2 Heading Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
`2.1 Mechanical Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
`2.1.1 Space-Stable Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
`2.1.2 Gyrocompasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
`2.1.3 Commercially Available Mechanical Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . 32
`2.1.3.1 Futaba Model Helicopter Gyro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
`2.1.3.2 Gyration, Inc.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
`2.2 Piezoelectric Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
`2.3 Optical Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
`2.3.1 Active Ring Laser Gyros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
`2.3.2 Passive Ring Resonator Gyros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
`2.3.3 Open-Loop Interferometric Fiber Optic Gyros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
`2.3.4 Closed-Loop Interferometric Fiber Optic Gyros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
`2.3.5 Resonant Fiber Optic Gyros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
`2.3.6 Commercially Available Optical Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
`2.3.6.1 The Andrew “Autogyro" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
`2.3.6.2 Hitachi Cable Ltd. OFG-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
`2.4 Geomagnetic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
`2.4.1 Mechanical Magnetic Compasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
`2.4.2 Fluxgate Compasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
`2.4.2.1 Zemco Fluxgate Compasses
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
`
`5
`
`Silver Star Exhibit 1017 - 5
`
`

`

`2.4.2.2 Watson Gyrocompass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
`2.4.2.3 KVH Fluxgate Compasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
`2.4.3 Hall-Effect Compasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
`2.4.4 Magnetoresistive Compasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
`2.4.4.1 Philips AMR Compass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
`2.4.5 Magnetoelastic Compasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
`
`Chapter 3 Ground-Based RF-Beacons and GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
`3.1 Ground-Based RF Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
`3.1.1 Loran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
`3.1.2 Kaman Sciences Radio Frequency Navigation Grid . . . . . . . . . . . . . . . . . . . . . . . 66
`3.1.3 Precision Location Tracking and Telemetry System . . . . . . . . . . . . . . . . . . . . . . . . . 67
`3.1.4 Motorola Mini-Ranger Falcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
`3.1.5 Harris Infogeometric System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
`3.2 Overview of Global Positioning Systems (GPSs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
`3.3 Evaluation of Five GPS Receivers by Byrne [1993]
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
`3.3.1 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
`3.3.2 Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
`3.3.2.1 Parameters tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
`3.3.2.2 Test hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
`3.3.2.3 Data post processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
`3.3.3 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
`3.3.3.1 Static test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
`3.3.3.2 Dynamic test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
`3.3.3.3 Summary of test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
`3.3.4 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
`3.3.4.1 Summary of problems encountered with the tested GPS receivers . . . . . . . . . . 92
`3.3.4.2 Summary of critical integration issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
`
`Chapter 4 Sensors for Map-Based Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
`4.1 Time-of-Flight Range Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
`4.1.1 Ultrasonic TOF Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
`4.1.1.1 Massa Products Ultrasonic Ranging Module Subsystems . . . . . . . . . . . . . . . . . 97
`4.1.1.2 Polaroid Ultrasonic Ranging Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
`4.1.2 Laser-Based TOF Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
`4.1.2.1 Schwartz Electro-Optics Laser Rangefinders . . . . . . . . . . . . . . . . . . . . . . . . . 101
`4.1.2.2 RIEGL Laser Measurement Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
`4.1.2.3 RVSI Long Optical Ranging and Detection System . . . . . . . . . . . . . . . . . . . . 109
`4.2 Phase-Shift Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
`4.2.1 Odetics Scanning Laser Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
`4.2.2 ESP Optical Ranging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
`4.2.3 Acuity Research AccuRange 3000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
`4.2.4 TRC Light Direction and Ranging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
`4.2.5 Swiss Federal Institute of Technology's “3-D Imaging Scanner” . . . . . . . . . . . . . . 120
`4.2.6 Improving Lidar Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
`4.3 Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
`
`6
`
`Silver Star Exhibit 1017 - 6
`
`

`

`. . . . . . . . . . . . . . . . . 125
`4.3.1 Eaton VORAD Vehicle Detection and Driver Alert System
`4.3.2 Safety First Systems Vehicular Obstacle Detection and Warning System . . . . . . . 127
`
`PART II SYSTEMS AND METHODS FOR MOBILE ROBOT POSITIONING
`
`Chapter 5 Odometry and Other Dead-Reckoning Methods . . . . . . . . . . . . . . . . . . . . . . . 130
`5.1 Systematic and Non-Systematic Odometry Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
`5.2 Measurement of Odometry Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
`5.2.1 Measurement of Systematic Odometry Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
`5.2.1.1 The Unidirectional Square-Path Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
`5.2.1.2 The Bidirectional Square-Path Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
`5.2.2 Measurement of Non-Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
`5.3 Reduction of Odometry Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
`5.3.1 Reduction of Systematic Odometry Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
`5.3.1.1 Auxiliary Wheels and Basic Encoder Trailer
`. . . . . . . . . . . . . . . . . . . . . . . . . 138
`5.3.1.2 The Basic Encoder Trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
`5.3.1.3 Systematic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
`5.3.2 Reducing Non-Systematic Odometry Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
`5.3.2.1 Mutual Referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
`5.3.2.2 Internal Position Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
`5.4 Inertial Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
`5.4.1 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
`5.4.2 Gyros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
`5.4.2.1 Barshan and Durrant-Whyte [1993; 1994; 1995] . . . . . . . . . . . . . . . . . . . . . . 147
`5.4.2.2 Komoriya and Oyama [1994]
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
`5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
`
`Chapter 6 Active Beacon Navigation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
`6.1 Discussion on Triangulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
`6.1.1 Three-Point Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
`6.1.2 Triangulation with More Than Three Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 153
`6.2 Ultrasonic Transponder Trilateration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
`6.2.1 IS Robotics 2-D Location System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
`6.2.2 Tulane University 3-D Location System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
`6.3 Optical Positioning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
`6.3.1 Cybermotion Docking Beacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
`6.3.2 Hilare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
`6.3.3 NAMCO LASERNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
`6.3.3.1 U.S. Bureau of Mines' application of the LaserNet sensor . . . . . . . . . . . . . . . 161
`6.3.4 Denning Branch International Robotics LaserNav Position Sensor . . . . . . . . . . . 163
`6.3.5 TRC Beacon Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
`6.3.6 Siman Sensors and Intelligent Machines Ltd., ROBOSENSE . . . . . . . . . . . . . . . . . 164
`6.3.7 Imperial College Beacon Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
`TM
`6.3.8 MTI Research CONAC
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
`6.3.9 Spatial Positioning Systems, inc.: Odyssey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
`
`7
`
`Silver Star Exhibit 1017 - 7
`
`

`

`6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
`
`Chapter 7 Landmark Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
`7.1 Natural Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
`7.2 Artificial Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
`7.2.1 Global Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
`7.3 Artificial Landmark Navigation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
`7.3.1 MDARS Lateral-Post Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
`7.3.2 Caterpillar Self Guided Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
`7.3.3 Komatsu Ltd, Z-shaped landmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
`7.4 Line Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
`7.4.1 Thermal Navigational Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
`7.4.2 Volatile Chemicals Navigational Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
`7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
`
`Chapter 8 Map-based Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
`8.1 Map Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
`8.1.1 Map-Building and Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
`8.1.2 Phenomenological vs. Geometric Representation, Engelson & McDermott [1992] 186
`8.2 Map Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
`8.2.1 Schiele and Crowley [1994]
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
`8.2.2 Hinkel and Knieriemen [1988] — The Angle Histogram . . . . . . . . . . . . . . . . . . . . 189
`8.2.3 Weiß, Wetzler, and Puttkamer — More on the Angle Histogram . . . . . . . . . . . . . 191
`8.2.4 Siemens' Roamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
`8.2.5 Bauer and Rencken: Path Planning for Feature-based Navigation . . . . . . . . . . . . . 194
`8.3 Geometric and Topological Maps
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
`8.3.1 Geometric Maps for Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
`8.3.1.1 Cox [1991] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
`8.3.1.2 Crowley [1989] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
`8.3.1.3 Adams and von Flüe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
`8.3.2 Topological Maps for Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
`8.3.2.1 Taylor [1991] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
`8.3.2.2 Courtney and Jain [1994]
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
`8.3.2.3 Kortenkamp and Weymouth [1993] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
`8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
`
`8
`
`Silver Star Exhibit 1017 - 8
`
`

`

`Chapter 9 Vision-Based Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
`9.1 Camera Model and Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
`9.2 Landmark-Based Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
`9.2.1 Two-Dimensional Positioning Using a Single Camera . . . . . . . . . . . . . . . . . . . . . 209
`9.2.2 Two-Dimensional Positioning Using Stereo Cameras . . . . . . . . . . . . . . . . . . . . . . 211
`9.3 Camera-Calibration Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
`9.4 Model-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
`9.4.1 Three-Dimensional Geometric Model-Based Positioning . . . . . . . . . . . . . . . . . . . 214
`9.4.2 Digital Elevation Map-Based Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
`9.5 Feature-Based Visual Map Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
`9.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
`
`Appendix A A Word on Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
`
`Appendix B Unit Conversions and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
`
`Appendix C Systems-at-a-Glance Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
`
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
`
`Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
`
`Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
`
`Company Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
`
`Bookmark Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
`
`Video Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
`
`Full-length Papers Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
`
`9
`
`Silver Star Exhibit 1017 - 9
`
`

`

`INTRODUCTION
`
`Leonard and Durrant-Whyte [1991] summarized the general problem of mobile robot navigation by
`three questions: “Where am I?,” “Where am I going?,” and “How should I get there?.” This report
`surveys the state-of-the-art in sensors, systems, methods, and technologies that aim at answering the
`first question, that is: robot positioning in its environment.
`Perhaps the most important result from surveying the vast body of literature on mobile robot
`positioning is that to date there is no truly elegant solution for the problem. The many partial
`solutions can roughly be categorized into two groups: relative and absolute position measurements.
`Because of the lack of a single, generally good method, developers of automated guided vehicles
`(AGVs) and mobile robots usually combine two methods, one from each category. The two
`categories can be further divided into the following subgroups.
`
`Relative Position Measurements
`
`a. Odometry This method uses encoders to measure wheel rotation and/or steering orientation.
`Odometry has the advantage that it is totally self-contained, and it is always capable of providing
`the vehicle with an estimate of its position. The disadvantage of odometry is that the position
`error grows without bound unless an independent reference is used periodically to reduce the
`error [Cox, 1991].
`
`b. Inertial Navigation This method uses gyroscopes and sometimes accelerometers to measure rate
`of rotation and acceleration. Measurements are integrated once (or twice) to yield position.
`Inertial navigation systems also have the advantage that they are self-contained. On the downside,
`inertial sensor data drifts with time because of the need to integrate rate data to yield position;
`any small constant error increases without bound after integration. Inertial sensors are thus
`unsuitable for accurate positioning over an extended period of time. Another problem with inertial
`navigation is the high equipment cost. For example, highly accurate gyros, used in airplanes, are
`inhibitively expensive. Very recently fiber-optic gyros (also called laser gyros), which are said to
`be very accurate, have fallen dramatically in price and have become a very attractive solution for
`mobile robot navigation.
`
`Absolute Position Measurements
`
`c. Active Beacons This method computes the absolute position of the robot from measuring the
`direction of incidence of three or more actively transmitted beacons. The transmitters, usually
`using light or radio frequencies, must be located at known sites in the environment.
`
`d. Artificial Landmark Recognition In this method distinctive artificial landmarks are placed at
`known locations in the environment. The advantage of artificial landmarks is that they can be
`designed for optimal detectability even under adverse environmental conditions. As with active
`beacons, three or more landmarks must be “in view” to allow position estimation. Landmark
`positioning has the advantage that the position errors are bounded, but detection of external
`
`10
`
`Silver Star Exhibit 1017 - 10
`
`

`

`landmarks and real-time position fixing may not always be possible. Unlike the usually point-
`shaped beacons, artificial landmarks may be defined as a set of features, e.g., a shape or an area.
`Additional information, for example distance, can be derived from measuring the geometric
`properties of the landmark, but this approach is computationally intensive and not very accurate.
`
`e. Natural Landmark Recognition Here the landmarks are distinctive features in the environment.
`There is no need for preparation of the environment, but the environment must be known in
`advance. The reliability of this method is not as high as with artificial landmarks.
`
`f. Model Matching In this method information acquired from the robot's onboard sensors is
`compared to a map or world model of the environment. If features from the sensor-based map
`and the world model map match, then the vehicle's absolute location can be estimated. Map-
`based positioning often includes improving global maps based on the new sensory observations
`in a dynamic environment and integrating local maps into the global map to cover previously
`unexplored areas. The maps used in navigation include two major types: geometric maps and
`topological maps. Geometric maps represent the world in a global coordinate system, while
`topological maps represent the world as a network of nodes and arcs.
`
`This book presents and discusses the state-of-the-art in each of the above six categories. The
`material is organized in two parts: Part I deals with the sensors used in mobile robot positioning, and
`Part II discusses the methods and techniques that make use of these sensors.
`Mobile robot navigation is a very diverse area, and a useful comparison of different approaches
`is difficult because of the lack of commonly accepted test standards and procedures. The research
`platforms used differ greatly and so do the key assumptions used in different approaches. Further
`difficulty arises from the fact that different systems are at different stages in their development. For
`example, one system may be commercially available, while another system, perhaps with better
`performance, has been tested only under a limited set of laboratory conditions. For these reasons we
`generally refrain from comparing or even judging the performance of different systems or
`techniques. Furthermore, we have not tested most of the systems and techniques, so the results and
`specifications given in this book are merely quoted from the respective research papers or product
`spec-sheets.
`Because of the above challenges we have defined the purpose of this book to be a survey of the
`expanding field of mobile robot positioning. It took well over 1.5 man-years to gather and compile
`the material for this book; we hope this work will help the reader to gain greater understanding in
`much less time.
`
`11
`
`Silver Star Exhibit 1017 - 11
`
`

`

`Part I
`Sensors for
`Mobile Robot Positioning
`
`CARMEL, the University of Michigan's first mobile robot, has been in service since 1987. Since then, CARMEL
`has served as a reliable testbed for countless sensor systems. In the extra “shelf” underneath the robot is an
`8086 XT compatible single-board computer that runs U of M's ultrasonic sensor firing algorithm. Since this code
`was written in 1987, the computer has been booting up and running from floppy disk. The program was written
`in FORTH and was never altered; should anything ever go wrong with the floppy, it will take a computer historian
`to recover the code...
`
`12
`
`Silver Star Exhibit 1017 - 12
`
`

`

`CHAPTER 1
`SENSORS FOR DEAD RECKONING
`
`Dead reckoning (derived from “deduced reckoning” of sailing days) is a simple mathematical
`procedure for determining the prese

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket