throbber
PCT
`INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
`
`WORLD INTELLECTUAL PROPERTY ORGANIZATION
`International Bureau
`
`(51) International Patent Classification 7 :
`HO4B 7/005
`
`Al
`
`(11) International Publication Number:
`
`WO 00/57574
`
`(43) International Publication Date:
`
`28 September 2000 (28.09.00)
`
`(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
`BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
`ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
`KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
`MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
`SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
`US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
`LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
`AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
`BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
`MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
`GA, GN, GW, ML, MR, NE, SN, TD, TG).
`
`Published
`With international search report.
`
`(21) International Application Number:
`
`PCT/US00/07476
`
`(22) International Filing Date:
`
`22 March 2000 (22.03.00)
`
`(30) Priority Data:
`60/125,417
`60/136,556
`60/136,557
`
`22 March 1999 (22.03.99)
`28 May 1999 (28.05.99)
`28 May 1999 (28.05.99)
`
`US
`US
`US
`
`(71) Applicant (for all designated States except US): INTERDIG-
`ITAL TECHNOLOGY CORPORATION [US/US]; Suite
`527, 300 Delaware Avenue, Wilmington, DE 19801 (US).
`
`(72) Inventors; and
`(75) Inventors/Applicants (for US only): ZEIRA, Ariela [US/US];
`8 Old Oak Road, Trumball, CT 06611 (US). OZLUTURK,
`Fatih, M. [TR/US]; 70 Willowdale Avenue, Port Washing-
`ton, NY 11050 (US). SHIN, Sung—Hyuk [KR/US]; 1531 8th
`Street, Fort Lee, NJ 07024 (US).
`
`(74) Agents: VOLPE, Anthony, S. et al.; Volpe and Koenig,
`P.C., One Penn Center, Suite 400, 1617 John F. Kennedy
`Boulevard, Philadelphia, PA 19103 (US).
`
`(54) Title: COMBINED CLOSED LOOP/OPEN LOOP POWER CONTROL IN A TIME DIVISION DUPLEX COMMUNICATION
`SYSTEM
`
`e's
`
`DATA
`GENERATOR
`
`SPREADING AND
`TRAINING SEQUENCE
`INSERTION DEVICE
`
`—so
`
`SPREADING AND
`REFERENCE
`CHANNEL DATA — TRAINING SEQUENCE
`GENERATOR
`INSERTION DEVICE
`1S1.
`
`CLOSED
`INTERFERENCE
`LOOP POWER 4— MEASUREMENT DEVICE
`COMMAND 41" \
`SIGNAL POWER
`CONTROL
`GENERATOR ..- 1MEASUREMENT DEVICE
`
`TRANSMIT POWER
`CALCULATION DEVICE
`
`MO
`
`CHANNEL
`ESTIMATION
`DEVICE
`+
`DATA
`ESTIMATION --
`DEVICE
`
` -95
`
`RECEIVING co
`STATION
`
`s6—V
`
`(64
`MODULATOR
`.5 -6 8
`DEMODULATOR
`
`s
`
`WIRELESS RADIO
`
`CHANNEL
`
`COMBINED CLOSED/OPEN
`LOOP POWER CONTROLLER
`.4110
`POWER MEASUREMENT
`DEVICE
`
`4-
`
`PATHUOSS ESTIMATION
`DEVICE
`,_II
`QUALITY
`MEASUREMENT DEVICE
`+
`TRANSMIT POWER
`CALCULATION DEVICE
`
`.14
`
`—tO
`
`"•• I BB
`CHANNEL ESTIMATION
`DEVICE
`
`DATA ESTIMATION
`DEVICE
`
`TRANSMITTING' ,
`STATION D.e
`
`661_
`
`DEMODULATOR
`
`58
`
`2
`
`DATA
`GENERATOR
`
`
`
`
`SPREADING AND
`TRAINING SEQUENCE
`INSERTION DEVICE
`104-
`
`MODULATOR
`
`(57) Abstract
`
`Combined closed loop/open loop power control controls transmission power levels in a spread spectrum time division duplex
`communication station. A first communication station (50) receives communications from a second communication station (52). The
`first station transmits power commands based on in part a reception quality of the received communications. The first station transmits a
`second communication having a transmission power level in a first time slot. The second station receives the second communication and
`the power commands. A power level of the second communication as received is measured. A path loss estimate is determined based on in
`part the measured received second communication power level and the first communication transmission power level. The second station
`transmits a second communication to the first station in a second time slot. The second communication transmission power level is set
`based on in part the path loss estimate weighted by a factor and the power commands. The factor is a function of a time separation of the
`first and second time slots.
`
`Ericsson Exhibit 1011
`Page 1
`
`

`

`FOR THE PURPOSES OF INFORMATION ONLY
`
`Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
`
`AL
`AM
`AT
`AU
`AZ
`BA
`BB
`BE
`BF
`BG
`BJ
`BR
`BY
`CA
`CF
`CG
`CH
`CI
`CM
`CN
`CU
`CZ
`DE
`DK
`EE
`
`Albania
`Armenia
`Austria
`Australia
`Azerbaijan
`Bosnia and Herzegovina
`Barbados
`Belgium
`Burkina Faso
`Bulgaria
`Benin
`Brazil
`Belarus
`Canada
`Central African Republic
`Congo
`Switzerland
`Cote d'Ivoire
`Cameroon
`China
`Cuba
`Czech Republic
`Germany
`Denmark
`Estonia
`
`ES
`FI
`FR
`GA
`GB
`GE
`GH
`GN
`GR
`HU
`1E
`IL
`IS
`IT
`JP
`KE
`KG
`KP
`
`KR
`KZ
`LC
`LI
`LK
`LR
`
`Spain
`Finland
`France
`Gabon
`United Kingdom
`Georgia
`Ghana
`Guinea
`Greece
`Hungary
`Ireland
`Israel
`Iceland
`Italy
`Japan
`Kenya
`Kyrgyzstan
`Democratic People's
`Republic of Korea
`Republic of Korea
`Kazakstan
`Saint Lucia
`Liechtenstein
`Sri Lanka
`Liberia
`
`LS
`LT
`LU
`LV
`MC
`MD
`MG
`MK
`
`ML
`MN
`MR
`MW
`MX
`NE
`NL
`NO
`NZ
`PL
`PT
`RO
`RU
`SD
`SE
`SG
`
`Lesotho
`Lithuania
`Luxembourg
`Latvia
`Monaco
`Republic of Moldova
`Madagascar
`The former Yugoslav
`Republic of Macedonia
`Mali
`Mongolia
`Mauritania
`Malawi
`Mexico
`Niger
`Netherlands
`Norway
`New Zealand
`Poland
`Portugal
`Romania
`Russian Federation
`Sudan
`Sweden
`Singapore
`
`SI
`SK
`SN
`SZ
`TD
`TG
`TJ
`TM
`TR
`TT
`UA
`UG
`US
`UZ
`VN
`YU
`ZW
`
`Slovenia
`Slovakia
`Senegal
`Swaziland
`Chad
`Togo
`Tajikistan
`Turkmenistan
`Turkey
`Trinidad and Tobago
`Ukraine
`Uganda
`United States of America
`Uzbekistan
`Viet Nam
`Yugoslavia
`Zimbabwe
`
`Ericsson Exhibit 1011
`Page 2
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`COMBINED CLOSED LOOP/OPEN LOOP POWER CONTROL IN A
`TIME DIVISION DUPLEX COMMUNICATION SYSTEM
`
`BACKGROUND
`
`This invention generally relates to spread spectrum time division duplex
`
`(TDD) communication systems. More particularly, the present invention relates to
`
`a system and method for controlling transmission power within TDD communication
`
`5
`
`systems.
`
`Figure 1 depicts a wireless spread spectrum time division duplex (TDD)
`
`communication system. The system has a plurality of base stations 301-307. Each
`
`base station 301 communicates with user equipments (UEs) 321-323 in its operating
`
`area. Communications transmitted from a base station 301 to a UE 321 are referred
`
`10
`
`to as downlink communications and communications transmitted from a UE 321 to
`
`a base station 301 are referred to as uplink communications.
`
`In addition to communicating over different frequency spectrums, spread
`
`spectrum TDD systems carry multiple communications over the same spectrum. The
`
`multiple signals are distinguished by their respective chip code sequences (codes).
`
`15
`
`Also, to more efficiently use the spread spectrum, TDD systems as illustrated in
`
`Figure 2 use repeating frames 34 divided into a number of time slots 361-36.,, such
`
`as fifteen time slots. In such systems, a communication is sent in selected time slots
`
`361-36n using selected codes. Accordingly, one frame 34 is capable of carrying
`
`multiple communications distinguished by both time slot 361-36n and code. The
`
`-1-
`
`Ericsson Exhibit 1011
`Page 3
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`combination of a single code in a single time slot is referred to as a resource unit.
`
`Based on the bandwidth required to support a communication, one or multiple
`
`resource units are assigned to that communication.
`
`Most TDD systems adaptively control transmission power levels. In a TDD
`
`5
`
`system, many communications may share the same time slot and spectrum. When
`
`a UE 321 or base station 301 is receiving a specific communication, all the other
`
`communications using the same time slot and spectrum cause interference to the
`
`specific communication.
`
`Increasing the transmission power level of one
`
`communication degrades the signal quality of all other communications within that
`
`10
`
`time slot and spectrum. However, reducing the transmission power level too far
`
`results in undesirable signal to noise ratios (SNRs) and bit error rates (BERs) at the
`
`receivers. To maintain both the signal quality of communications and low
`
`transmission power levels, transmission power control is used.
`
`One approach to control transmission power levels is open loop power
`
`15
`
`control. In open loop power control, typically a base station 301 transmits to a UE
`
`321 a reference downlink communication and the transmission power level of that
`
`communication. The UE 321 receives the reference communication and measures
`
`its received power level. By subtracting the received power level from the
`
`transmission power level, a pathloss for the reference communication is determined.
`
`20
`
`To determine a transmission power level for the uplink, the downlink pathloss is
`
`added to a desired received power level at the base station 301. The UE's
`
`transmission power level is set to the determined uplink transmission power level.
`
`-2-
`
`Ericsson Exhibit 1011
`Page 4
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`Another approach to control transmission power level is closed loop power
`
`control. In closed loop power control, typically the base station 301 determines the
`
`signal to interference ratio (SIR) of a communication received from the UE 321. The
`
`determined SIR is compared to a target SIR (SIRTARGET)• Based on the comparison,
`
`5
`
`the base station 301 transmits a power command, bTpc. After receiving the power
`
`command, the UE 321 increases or decreases its transmission power level based on
`
`the received power command.
`
`Both closed loop and open loop power control have disadvantages. Under
`
`certain conditions, the performance of closed loop systems degrades. For instance,
`
`10
`
`if communications sent between a UE and a base station are in a highly dynamic
`
`environment, such as due to the UE moving, such systems may not be able to adapt
`
`fast enough to compensate for the changes. The update rate of closed loop power
`
`control in TDD is 100 cycles per second which is not sufficient for fast fading
`
`channels. Open loop power control is sensitive to uncertainties in the uplink and
`
`15
`
`downlink gain chains and interference levels.
`
`One approach to combining closed loop and open loop power control was
`
`proposed by the Association of Radio Industries and Business (ARIB) and uses
`
`Equations 1, 2, and 3.
`
`TUE = PBS(11) + L
`
`20
`
`PBS (n) = PBS (n-1) + bTpc ATPC
`
`bTPC =
`
`1: if SIRES ( SIRTARGET
`- 1: if SIRES ) SIRTARGET
`
`-3-
`
`Equation 1
`
`Equation 2
`
`Equation 3
`
`Ericsson Exhibit 1011
`Page 5
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`TUE is the determined transmission power level of the UE 321. L is the estimated
`
`downlink pathloss. PBS(n) is the desired received power level of the base station 301
`
`as adjusted by Equation 2. For each received power command, bTpc, the desired
`
`received power level is increased or decreased by ATpc . OTPc is typically one decibel
`
`5
`
`(dB). The power command, bTpc, is one, when the SIR of the UE's uplink
`
`communication as measured at the base station 30, SIRBS, is less than a target SIR,
`
`Conversely, the power command is minus one, when SIRBS is larger than
`
`S IRTARGET •
`
`S IRTARGET •
`
`Under certain conditions, the performance of these systems degrades. For
`
`10
`
`instance, if communications sent between a UE 32 and a base station 30 are in a
`
`highly dynamic environment, such as due to the UE 32 moving, the path loss
`
`estimate for open loop severely degrades the overall system's performance.
`
`Accordingly, there is a need for alternate approaches to maintain signal quality and
`
`low transmission power levels for all environments and scenarios.
`
`15
`
`SUMMARY
`
`Combined closed loop/open loop power control controls transmission power
`
`levels in a spread spectrum time division duplex communication station. A first
`
`communication station receives communications from a second communication
`
`20
`
`station. The first station transmits power commands based on in part a reception
`
`quality of the received communications. The first station transmits a second
`
`communication having a transmission power level in a first time slot. The second
`
`-4-
`
`Ericsson Exhibit 1011
`Page 6
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`station receives the second communication and the power commands. A power level
`
`of the second communication as received is measured. A path loss estimate is
`
`determined based on in part the measured received second communication power
`
`level and the first communication transmission power level. The second station
`
`5
`
`transmits a second communication to the first station in a second time slot. The
`
`second communication transmission power level is set based on in part the path loss
`
`estimate weighted by a factor and the power commands. The factor is a function of
`
`a time separation of the first and second time slots.
`
`10
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`Figure 1 illustrates a prior art TDD system.
`
`Figure 2 illustrates time slots in repeating frames of a TDD system.
`
`Figure 3 is a flow chart of combine closed loop/open loop power control.
`
`Figure 4 is a diagram of components of two communication stations using
`
`15
`
`combined closed loop/open loop power control.
`
`Figures 5-10 depict graphs of the performance of a closed loop, ARIB's
`
`proposal and two (2) schemes of combined closed loop/open loop power control.
`
`DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
`
`20
`
`The preferred embodiments will be described with reference to the drawing
`
`figures where like numerals represent like elements throughout. Combined closed
`
`loop/open loop power control will be explained using the flow chart of Figure 3 and
`
`-5-
`
`Ericsson Exhibit 1011
`Page 7
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`the components of two simplified communication stations 50, 52 as shown in Figure
`
`4. For the following discussion, the communication station having its transmitter's
`
`power controlled is referred to as the transmitting station 52 and the communication
`
`station receiving power controlled communications is referred to as the receiving
`
`5
`
`station 50. Since combined closed loop/open loop power control may be used for
`
`uplink, downlink or both types of communications, the transmitter having its power
`
`controlled may be located at a base station 301, UE 321 or both. Accordingly, if both
`
`uplink and downlink power control are used, the receiving and transmitting station's
`
`components are located at both the base station 301 and UE 321.
`
`10
`
`The receiving station 50 receives various radio frequency signals including
`
`communications from the transmitting station 52 using an antenna 56, or alternately,
`
`an antenna array. The received signals are passed through an isolator 60 to a
`
`demodulator 68 to produce a baseband signal. The baseband signal is processed,
`
`such as by a channel estimation device 96 and a data estimation device 98, in the
`
`15
`
`time slots and with the appropriate codes assigned to the transmitting station's
`
`communication. The channel estimation device 96 commonly uses the training
`
`sequence component in the baseband signal to provide channel information, such as
`
`channel impulse responses. The channel information is used by the data estimation
`
`device 98, the interference measurement device 90, the signal power measurement
`
`20
`
`device 92 and the transmit power calculation device 94. The data estimation device
`
`98 recovers data from the channel by estimating soft symbols using the channel
`
`infoi illation. Using the soft symbols and channel information, the transmit power
`
`-6-
`
`Ericsson Exhibit 1011
`Page 8
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`calculation device 94 controls the receiving station's transmission power level by
`
`controlling the gain of an amplifier 76.
`
`The signal power measurement device 92 uses either the soft symbols or the
`
`channel information, or both, to determine the received signal power of the
`
`5
`
`communication in decibels (dB). The interference measurement device 90
`
`determines the interference level in dB, IRS, within the channel, based on either the
`
`channel information, or the soft symbols generated by the data estimation device
`
`102, or both.
`
`The closed loop power command generator 88 uses the measured
`
`10
`
`communication's received power level and the interference level, IRS, to determine
`
`the Signal to Interference Ratio (SIR) of the received communication. Based on a
`
`comparison of the determined SIR with a target SIR (SIRTARGET), a closed loop power
`
`command is generated, bTpc, such as a power command bit, bTpc, step 38.
`
`Alternately, the power command may be based on any quality measurement of the
`
`15
`
`received signal.
`
`For use in estimating the path loss between the receiving and transmitting
`
`stations 50, 52 and sending data, the receiving station 50 sends a communication to
`
`the transmitting station 58, step 40. The communication may be sent on any one of
`
`various channels. Typically, in a TDD system, the channels used for estimating path
`
`20
`
`loss are referred to as reference channels, although other channels may be used. If
`
`the receiving station 50 is a base station 301, the communication is preferably sent
`
`over a downlink common channel or a common control physical channel (CCPCH).
`
`-7-
`
`Ericsson Exhibit 1011
`Page 9
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`Data to be communicated to the transmitting station 52 over the reference channel
`
`is referred to as reference channel data. The reference data may include, as shown,
`
`the interference level, IRS, multiplexed with other reference data, such as the
`
`transmission power level of the reference channel, TRS. The interference level, IRS,
`
`5
`
`and reference channel power level, TRS, may be sent in other channels, such as a
`
`signaling channel, step 40. The closed loop power control command, larpc, is
`
`typically sent in a dedicated channel, dedicated to the communication between the
`
`receiving station 50 and transmitting station 52.
`
`The reference channel data is generated by a reference channel data generator
`
`10
`
`86. The reference data is assigned one or multiple resource units based on the
`
`communication's bandwidth requirements. A spreading and training sequence
`
`insertion device 82 spreads the reference channel data and makes the spread
`
`reference data time-multiplexed with a training sequence in the appropriate time slots
`
`and codes of the assigned resource units. The resulting sequence is referred to as a
`
`15
`
`communication burst. The communication burst is subsequently amplified by an
`
`amplifier 78. The amplified communication burst may be summed by a sum device
`
`72 with any other communication burst created through devices, such as a data
`
`generator 84, spreading and training sequence insertion device 80 and amplifier 76.
`
`The summed communication bursts are modulated by a modulator 64. The
`
`20
`
`modulated signal is passed through an isolator 60 and radiated by an antenna 56 as
`
`shown or, alternately, through an antenna array. The radiated signal is passed
`
`through a wireless radio channel 54 to an antenna 58 of the transmitting station 52.
`
`-8-
`
`Ericsson Exhibit 1011
`Page 10
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`The type of modulation used for the transmitted communication can be any of the
`
`those known to those skilled in the art, such as direct phase shift keying (DPSK) or
`
`quadrature phase shift keying (QPSK).
`
`The antenna 58 or, alternately, antenna array of the transmitting station 52
`
`5
`
`receives various radio frequency signals. The received signals are passed through
`
`an isolator 62 to a demodulator 66 to produce a baseband signal. The baseband
`
`signal is processed, such as by a channel estimation device 100 and a data estimation
`
`device 102, in the time slots and with the appropriate codes assigned to the
`
`communication burst of the receiving station 50. The channel estimation device 100
`
`10
`
`commonly uses the training sequence component in the baseband signal to provide
`
`channel information, such as channel impulse responses. The channel information
`
`is used by the data estimation device 102 and a power measurement device 110.
`
`The power level of the processed communication corresponding to the
`
`reference channel, RTS, is measured by the power measurement device 110 and sent
`
`15
`
`to a pathloss estimation device 112, step 42. Both the channel estimation device 100
`
`and the data estimation device 102 are capable of separating the reference channel
`
`from all other channels. If an automatic gain control device or amplifier is used for
`
`processing the received signals, the measured power level is adjusted to correct for
`
`the gain of these devices at either the power measurement device 110 or the pathloss
`
`20
`
`estimation device 112. The power measurement device 110 is a component of the
`
`combined closed loop/open loop controller 108. As illustrated in Figure 4, the
`
`combined closed loop/open loop power controller 108 consists of the power
`
`-9-
`
`Ericsson Exhibit 1011
`Page 11
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`measurement device 110, pathloss estimation device 112, quality measurement
`
`device 114, and transmit power calculation device 116.
`
`To determine the path loss, L, the transmitting station 52 also requires the
`
`communication's transmitted power level, T Rs. The transmitted power level, T Rs,
`
`5
`
`may be sent along with the communication's data or in a signaling channel. If the
`
`power level, T Rs, is sent along with the communication's data, the data estimation
`
`device 102 interprets the power level and sends the interpreted power level to the
`
`pathloss estimation device 112. If the receiving station 50 is a base station 301,
`
`preferably the transmitted power level, T Rs, is sent via the broadcast channel (BCH)
`
`10
`
`from the base station 301. By subtracting the received communication's power level,
`
`R Ts in dB, from the sent communication's transmitted power level, T Rs in dB, the
`
`pathloss estimation device 112 estimates the path loss, L, between the two stations
`
`50, 52, step 42. In certain situations, instead of transmitting the transmitted power
`
`level, TRs, the receiving station 50 may transmit a reference for the transmitted power
`
`15
`
`level. In that case, the pathloss estimation device 112 provides reference levels for
`
`the path loss, L.
`
`If a time delay exists between the estimated path loss and the transmitted
`
`communication, the path loss experienced by the transmitted communication may
`
`differ from the calculated loss. In TDD systems where communications are sent in
`
`20
`
`differing time slots 361-36n, the time slot delay between received and transmitted
`
`communications may degrade the performance of an open loop power control
`
`system. Combined closed loop/open loop power control utilizes both closed loop
`
`-10-
`
`Ericsson Exhibit 1011
`Page 12
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`and open loop power control aspects. If the quality of the path loss measurement is
`
`high, the system primarily acts as an open loop system. If the quality of the path loss
`
`measurement is low, the system primarily acts as a closed loop system. To combine
`
`the two power control aspects, the system weights the open loop aspect based on the
`
`5
`
`quality of the path loss measurement.
`
`A quality measurement device 114 in a weighted open loop power controller
`
`108 determines the quality of the estimated path loss, step 46. The quality may be
`
`determined using the channel information generated by the channel estimation device
`
`100, the soft symbols generated by the data estimation device 102 or other quality
`
`10
`
`measurement techniques. The estimated path loss quality is used to weight the path
`
`loss estimate by the transmit power calculation device 116. If the power command,
`
`bTpc, was sent in the communication's data, the data estimation device 102 interprets
`
`the closed loop power command, bTpc. Using the closed loop power command, bTpc,
`
`and the weighted path loss, the transmit power calculation device 116 sets the
`
`15
`
`transmit power level of the receiving station 50, step 48.
`
`The following is one of the preferred combined closed loop/open loop power
`
`control algorithms. The transmitting station's power level in decibels, PTS, is
`
`determined using Equations 4 and 6.
`
`PTS = Po G(n) + aL
`
`Equation 4
`
`20
`
`Po is the power level that the receiving station 50 desires to receive the
`
`transmitting station's communication in dB. Po is determined by the desired SIR at
`
`the receiving station 50, SIRTARGET, and the interference level, IRS, at the receiving
`
`-11-
`
`Ericsson Exhibit 1011
`Page 13
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`station 50 using Equation 5.
`
`PO = SIRTARGET+IRS
`
`Equation 5
`
`IRS is either signaled or broadcasted from the receiving station 50 to the
`
`transmitting station 52. For downlink power control, SIRTARGET is known at the
`
`5
`
`transmitting station 52. For uplink power control, SIRTARGET is signaled from the
`
`receiving station 50 to the transmitting station 52. G(n) is the closed loop power
`
`control factor. Equation 6 is one equation for determining G(n).
`
`G(n) = G(n-1) + bTpc A —TPC
`
`Equation 6
`
`G(n-1) is the previous closed loop power control factor. The power
`
`10
`
`command, bTpc, for use in Equation 6 is either +1 or -1. One technique for
`
`determining the power command, bTpc, is Equation 3. The power command, bTpc,
`
`is typically updated at a rate of 100 ms in a TDD system, although other update rates
`
`may be used. ATpc is the change in power level. The change in power level is
`
`typically 1 dB although other values may be used. As a result, the closed loop factor
`
`15
`
`increases by 1 dB if bTpc is +1 and decreases by 1 dB if bTpc is -1.
`
`The weighting value, a, is determined by the quality measurement device 114.
`
`a is a measure of the quality of the estimated path loss and is, preferably, based on
`
`the number of time slots, D, between the time slot of the last path loss estimate and
`
`the first time slot of the communication transmitted by the transmitting station 52.
`
`20
`
`The value of a is from zero to one. Generally, if the time difference, D, between the
`
`time slots is small, the recent path loss estimate will be fairly accurate and a is set at
`
`a value close to one. By contrast, if the time difference is large, the path loss
`
`-12-
`
`Ericsson Exhibit 1011
`Page 14
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`estimate may not be accurate and the closed loop aspect is most likely more accurate.
`
`Accordingly, a is set at a value closer to zero.
`
`Equation 7 is one equation for determining a, although others may be used.
`
`a = 1 - (D - 1)/D.
`
`Equation 7
`
`5
`
`D. is the maximum possible delay. A typical value for a frame having fifteen time
`
`slots is six. If the delay is D. or greater, a approaches zero. Using the calculated
`
`transmit power level, PTs, determined by a transmit power calculation device 116, the
`
`combined closed loop/open loop power controller 108 sets the transmit power of the
`
`transmitted communication.
`
`10
`
`Data to be transmitted in a communication from the transmitting station 52 is
`
`produced by a data generator 106. The communication data is spread and time-
`
`multiplexed with a training sequence by the spreading and training sequence
`
`insertion device 104 in the appropriate time slots and codes of the assigned resource
`
`units producing a communication burst. The spread signal is amplified by the
`
`15
`
`amplifier 74 and modulated by the modulator 70 to radio frequency.
`
`The combined closed loop/open loop power controller 108 controls the gain
`
`of the amplifier 74 to achieve the determined transmit power level, Pis, for the
`
`communication. The power controlled communication is passed through the isolator
`
`62 and radiated by the antenna 58.
`
`20
`
`Equations 8 and 9 are another preferred combined closed loop/open loop
`
`power control algorithm.
`
`PTS = PO + K(n)
`
`Equation 8
`
`-13-
`
`Ericsson Exhibit 1011
`Page 15
`
`

`

`WO 00/57574
`
`K(n) = K(n-1) + bTpc A + aL
`- TPC
`
`PCT/US00/07476
`
`Equation 9
`
`K(n) is the combined closed loop/open loop factor. As shown, this factor includes
`
`both the closed loop and open loop power control aspects. Equations 4 and 5
`
`segregate the two aspects.
`
`5
`
`Although the two above algorithms only weighted the open loop factor, the
`
`weighting may be applied to the closed loop factor or both the open and closed loop
`
`factors. Under certain conditions, the network operator may desire to use solely open
`
`loop or solely closed loop power control. For example, the operator may use solely
`
`closed loop power control by setting a to zero.
`
`10
`
`Figures 5-10 depict graphs 118-128 illustrating the performance of a
`
`combined closed-loop/open-loop power control system. These graphs 118-128
`
`depict the results of simulations comparing the performance of the ARM proposed
`
`system, a closed loop, a combined open loop/closed loop system using Equations
`
`4 and 6 (scheme I) and a combined system using Equations 8 and 9 (scheme
`
`15
`
`The simulations were performed at the symbol rate. A spreading factor of sixteen
`
`was used for both the uplink and downlink channels. The uplink and downlink
`
`channels are International Telecommunication Union (ITU) Channel model [ITU-R
`
`M.1225, vehicular, type B]. Additive noises were simulated as being independent
`
`of white Gaussian noises with unity variance. The path loss is estimated at the
`
`20
`
`transmitting station 52 which is a UE 321 and in particular a mobile station. The
`
`BCH channel was used for the path loss estimate. The path loss was estimated two
`
`times per frame at a rate of 200 cycles per second. The receiving station 50, which
`
`-14-
`
`Ericsson Exhibit 1011
`Page 16
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`was a base station 301, sent the BCH transmission power level over the BCH. RAKE
`
`combining was used for both the UE 321 and base station 301. Antenna diversity
`
`combining was used at the base station 301.
`
`Graphs 118, 122, 126 depict the standard deviation of the received signal to
`
`5
`
`noise ratio (SNR) at the base station 301 of the UE's power controlled
`
`communication as a function of the time slot delay, D. Graphs 120, 124, 128 depict
`
`the normalized bias of the received SNR as a function of the delay, D. The
`
`normalization was performed with respect to the desired SNR. Each point in the
`
`graphs 118-128 represents the average of 3000 Monte-Carlo runs.
`
`10
`
`Graphs 118, 120 depict the results for an a set at one. For low time slot
`
`delays (D<4), scheme I and II outperform closed loop power control. For larger
`
`delays (D_4), closed loop outperforms both scheme I and II which demonstrates the
`
`importance of weighting the open loop and closed loop aspects.
`
`Graphs 122, 124 depict the results for an a set at 0.5. As shown, for all delays
`
`15
`
`excluding the maximum, schemes I and II outperform closed loop power control.
`
`The ARIB proposal only outperforms the others at the lowest delay (D=1).
`
`Graphs 126, 128 depict the results for an a set using Equation 7 with Dr.
`
`equal to six. As shown, schemes I and II outperform both closed loop and the ARIB
`
`proposal at all delays, D.
`
`20
`
`-15-
`
`Ericsson Exhibit 1011
`Page 17
`
`

`

`WO 00/57574
`
`PCT/US00/07476
`
`CLAIMS
`
`1.
`
`A method for controlling transmission power levels in a spread
`
`spectrum time division duplex communication system having frames with time slots
`
`for communication, the method comprising:
`
`receiving at a first communication station communications from a second
`
`5
`
`communication station and transmitting from the first station power commands based
`
`on in part a reception quality of the received communications;
`
`transmitting from the first communication station a first communication
`
`having a transmission power level in a first time slot;
`
`receiving at the second communication station the first communication and
`
`10
`
`the power commands;
`
`measuring a power level of the first communication as received;
`
`determining a pathloss estimate based on in part the measured received first
`
`communication power level and the first communication transmission power level;
`
`and
`
`15
`
`setting a transmission power level for a second communication in a second
`
`time slot from the second station to the first station based on in part the pathloss
`
`estimate weighted by a quality factor and the power commands, wherein the quality
`
`factor is a function of a time separation of the first and second time slots.
`
`2.
`
`The method of claim 1 further comprising:
`
`determining a quality, a, of the pathloss estimate based on in part a number
`
`-16-
`
`Er

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket