throbber
Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 1 of 34 PageID #: 101
`
`Exhibit 4
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 2 of 34 PageID #: 102
`
`USOO8524.365B2
`
`(12) United States Patent
`O'Brien et al.
`
`(10) Patent No.:
`(45) Date of Patent:
`
`US 8,524,365 B2
`*Sep. 3, 2013
`
`(54) PREPARATION OF NANOPARTICLE
`MATERLALS
`
`(75) Inventors: Paul O'Brien, High Peak (GB); Nigel
`Pickett, Manchester (GB)
`(73) Assignee: Nanoco Technologies Ltd. (GB)
`
`(*) Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`This patent is Subject to a terminal dis
`claimer.
`
`(21) Appl. No.: 13/267,532
`
`(22) Filed:
`
`Oct. 6, 2011
`
`(65)
`
`Prior Publication Data
`US 2012/OO25155A1
`Feb. 2, 2012
`
`Related U.S. Application Data
`(63) Continuation of application No. 12/854,611, filed on
`Aug. 11, 2010, now Pat. No. 8,062,703, which is a
`continuation of application No. 1 1/579,050, filed as
`application No. PCT/GB2005/001611 on Apr. 27,
`2005, now Pat. No. 7,803,423.
`Foreign Application Priority Data
`
`(30)
`
`Apr. 30, 2004 (GB) ................................... O4O9877.8
`
`(2006.01)
`(2006.01)
`(2006.01)
`
`(51) Int. Cl.
`B82B I/O
`B82B3/00
`C3OB 29/10
`(52) U.S. Cl.
`USPC ........... 428/403; 428/402: 428/668; 428/689:
`427/212; 427/214; 427/215; 977/700; 977/773;
`977/813; 977/814;977/815;977/824; 977/827;
`977/830
`
`(58) Field of Classification Search
`None
`See application file for complete search history.
`
`(56)
`
`References Cited
`
`CN
`EP
`
`U.S. PATENT DOCUMENTS
`2,769,838 A 11/1956 Matter et al.
`3,524,771 A
`8, 1970 Green
`4,609.689 A
`9, 1986 Schwartz et al.
`6,114,038 A
`9, 2000 Castro et al.
`(Continued)
`FOREIGN PATENT DOCUMENTS
`1394599
`2, 2003
`1176646
`1, 2002
`(Continued)
`OTHER PUBLICATIONS
`Timoshkin, "Hunting for a Single-Source Precursor: Toward
`Stoichiometry Controlled CVD of 13-15 composites'. Solid State
`Electronics, vol. 47, (2003), pp. 543-548.*
`(Continued)
`Primary Examiner —Nathan Empie
`Assistant Examiner — Lisha Jiang
`(74) Attorney, Agent, or Firm — Wong, Cabello, Lutsch,
`Rutherford & Brucculeri LLP
`
`ABSTRACT
`(57)
`A method of producing nanoparticles comprises effecting
`conversion of a nanoparticle precursor composition to the
`material of the nanoparticles. The precursor composition
`comprises a first precursor species containing a first ion to be
`incorporated into the growing nanoparticles and a separate
`second precursor species containing a second ion to be incor
`porated into the growing nanoparticles. The conversion is
`effected in the presence of a molecular cluster compound
`under conditions permitting seeding and growth of the nano
`particles.
`
`23 Claims, 18 Drawing Sheets
`
`Y
`is
`NH, d-cdc. He
`\
`Se
`s
`Miss s s
`c
`e
`Se
`idgs
`NH
`NH C:Sise- sé
`O -: sis ? '-- w a Sects
`es: N?
`CS
`-St.
`
`w
`
`O
`
`V
`
`
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 3 of 34 PageID #: 103
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`6,207,229 B1
`3, 2001 Bawendi et al.
`6,221,602 B1
`4/2001 Barbera-guillem et al.
`6,261,779 B1
`7/2001 Barbera-guillem et al.
`6,322,901 B1
`1 1/2001 Bawendi et al.
`6,326,144 B1
`12/2001 Bawendi et al.
`6,333,110 B1
`12/2001 Barbera-Guillem
`6,379,635 B2
`4/2002 O'Brien et al.
`6,423,551 B1
`7/2002 Weiss et al.
`6.426,513 B1
`7/2002 Bawendi et al.
`6,607,829 B1
`8, 2003 Bawendi et al.
`6,660,379 B1
`12/2003 Lakowicz et al.
`6,699,723 B1
`3, 2004 Weiss et al.
`6,815,064 B2 11/2004 Treadway et al.
`6,855,551 B2
`2/2005 Bawendi et al.
`6,914,264 B2
`7/2005 Chen et al.
`6,992.202 B1
`1/2006 Banger et al.
`7,151,047 B2 12/2006 Chan et al.
`7,235,361 B2
`6, 2007 Bawendi et al.
`7,264,527 B2
`9, 2007 Bawendi et al.
`7,544,725 B2
`6, 2009 Pickett et al.
`7,588,828 B2
`9/2009 Mushtaq et al.
`7,674,844 B2
`3/2010 Pickett et al.
`2003, OO17264 A1
`1/2003 Treadway et al.
`2003/0106488 A1
`6/2003 Huang et al.
`2003/0148024 A1
`8, 2003 Kodas et al.
`2004.0007169 A1
`1/2004 Ohtsu et al.
`2004.0036130 A1
`2/2004 Lee et al.
`2004/01 10002 A1
`6, 2004 Kim et al.
`2004/O110347 A1
`6, 2004 Yamashita
`2004/0178390 A1
`9, 2004 Whiteford et al.
`2004/0250745 Al
`12/2004 Ogura et al.
`2839. A. 258 Risin et al.
`2005, 0145853 A1
`7, 2005 Sato et al.
`2006, OO19098 A1
`1/2006 Chan et al.
`2006, OO61017 A1
`3, 2006 Strouse et al.
`2006, OO68154 A1
`3, 2006 Parce et al.
`3.9. 67. A. g3. ity al.
`eng et al.
`2007/0012941 A1
`1/2007 Cheon
`2007.0034.833 A1
`2/2007 Parce et al.
`2007/0059.705 A1
`3/2007 Lu et al.
`2007, 0104865 A1
`5, 2007 Pickett
`2007, 011081.6 A1
`5, 2007 Jun et al.
`2007/0114520 A1
`5, 2007 Garditz et al.
`2007/O125983 A1
`6/2007 Treadway et al.
`2007/013 1905 A1
`6, 2007 Sato et al.
`2007/0199.109 A1
`8, 2007 Yi et al.
`2007/0202333 A1
`8, 2007 O'Brien et al.
`2007/0238126 A1 10, 2007 Pickett et al.
`2008. O107911 A1
`5, 2008 Liu et al.
`2008/O112877 A1
`5, 2008 Xiao et al.
`2008/O121844 A1
`5/2008 Jang et al.
`2008.0160306 A1
`7/2008 Mushtaq et al.
`2008. O190483 A1
`8/2008 Carpenter et al.
`2008.O220593 A1
`9, 2008 Pickett et al.
`2008/0257.201 A1 10, 2008 Harris et al.
`2008/0264479 A1
`10/2008 Harris et al.
`2009/O139574 A1
`6/2009 Pickett et al.
`2009, 0212258 A1
`8, 2009 Mccairn et al.
`2009,0263816 A1 10, 2009 Pickett et al.
`2010.0059721 A1
`3/2010 Pickett et al.
`2010.0068522 A1
`3/2010 Pickett et al.
`2010.0113813 A1
`5, 2010 Pickett et al.
`2010, 0123155 A1
`5, 2010 Pickett et al.
`2010.0193767 A1
`8/2010 Naasani et al.
`2010/0212544 A1
`8, 2010 Harris et al.
`
`EP
`EP
`GB
`GB
`JP
`WO
`
`FOREIGN PATENT DOCUMENTS
`1783 137
`5/2007
`1854,792
`11, 2007
`1995-18910.6
`9, 1995
`24298.38
`3, 2007
`2005,139389
`6, 2005
`WO-97/101.75
`3, 1997
`
`US 8,524.365 B2
`Page 2
`
`WO-OOf 17642
`WO
`WO-O2,04527
`WO
`W933,
`W.
`WO-03/099708
`WO
`WO WO-2004/0085.50
`WO WO-2004/033366
`WO WO-2004/065.362
`WO WO-2004/066361
`WO WO-2005/021150
`WO WO-2005,106082
`WO WO-2005/123575
`WO WO-2006/001848
`WO WO-2006/017125
`WO WO-2006/075974
`WO WO-2006/116337
`WO WO-2006,118543
`WO WO-2006,134599
`WO WO-2007/020416
`WO WO-2007/049052
`WO WO-2007/060591
`WO WO-2007/065039
`WO WO-2007/098378
`WO WO-2007/102799
`WO WO-2008/O13780
`WO WO-2008/O54874
`WO WO-2008, 133660
`WO WO-2009/O16354
`WO WO-2009/040553
`WO WO-2009/106810
`
`3, 2000
`1, 2002
`3583
`12/2003
`1, 2004
`4/2004
`8, 2004
`8, 2004
`3, 2005
`11, 2005
`12/2005
`1, 2006
`2, 2006
`T 2006
`11, 2006
`11, 2006
`12/2006
`2, 2007
`5/2007
`5/2007
`6, 2007
`8, 2007
`9, 2007
`1, 2008
`5, 2008
`11, 2008
`2, 2009
`4/2009
`9, 2009
`
`OTHER PUBLICATIONS
`
`Cumberland et al., “Inorganic Clusters as Single-Source Precursors
`for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials”,
`Chemistry of Materials, vol. 14, (2002), pp. 1576-1574.*
`Agger, J.R. et al., Phys, Chem B (1998) 102, p. 345.
`Aldana, J. et al. “Photochemical instability of CdSe Nanocrystals
`Coated by Hydrophilic Thiols”. J. Am. Chem. Soc. (2001), 123:
`8844-8850.
`Alivisatos, A.P. "Perspectives on the Physical Chemistry of Semi
`ductor N
`tals. J. PhvS. Chem. (1996), 100, pp. 13226
`stor Nanocrystals, rays them, (1996), 100, pp
`-
`--
`Arici et al., Thin Solid Films 45.1452 (2004) 612-618.
`Battaglia et al., “Colloidal Two-dimensional Systems: CodSe Quan
`tum Shells and Wells.” Angew Chem. (2003) 115:5189.
`Bawendi, M.G. The Quantum Mechanics of Larger Semiconductor
`Clusters ("Quantum Dots'), Annu. Rev. Phys. Chem. (1990), 42:
`477-498.
`Berry, C.R. “Structure and Optical Absorption of Agl Microcrystals'.
`Phys. Rev. (1967) 161:848-851.
`& 8
`Bunge, S.D. et al. Growth and morphology of cadmium
`chalcogendes: the synthesis of nanorods, tetrapods, and spheres from
`CdO and CdCOCCH), J. Mater. Chem. (2003) 13:1705-1709.
`Castro et al., Chem, Mater. (2003) 15:3142-3147.
`Castro et al., “Synthesis and Characterization of Colloidal CuInS
`Nanoparticels from a Molecular Single-Source Precursors.” J. Phys.
`Chem. B (2004) 108: 12429.
`Chun et al. Thin Solid Films 480-48 (2005) 46-49.
`Contreraset al., “ZnO/ZnS(O,OH)/Cu(In,Ga)Se/Mo Solar Cell with
`a0
`s
`18:6% Efficiency.” from3d World Conf. on Photoyol. Energy Conv.,
`Late News Paper, (2003) pp. 570-573.
`& 8
`Cui et al., “Harvest of near infrared light in PbSe nanocrystal-poly
`hybird photovoltaic cells.” Appl. Physics Lett. 88 (2006) 18311
`ity photovoltaic cells. Appl. Finysics Let.
`y
`& 8
`Cuberland et al., “Inorganic Clusters as Single-Source Precursors for
`ion of CdSe, ZnS
`P
`d ColSe/ZnSN
`ials' Chemi
`reparation of CdSe, ZnSean
`efAnS Nanomaterials ChemS
`try of Materials, 14, pp. 1576-1584, (2002).
`Dance et al., J. Am. Chem. Soc. (1984) 106:6285.
`Daniels et al, New Zinc and Cadmium Chalcogenide Structured
`Nanoparticles, Mat Res. Soc. Symp. Proc. 789 (2004).
`s
`Eychmüller, A. etal. "A quantum doiquantum well: CdS/HgS/CdS”.
`Chem. Phys. Lett. 2008, pp. 59-62 (1993).
`Fendler, J.H. et al. “The Colloid Chemical Approach to
`Nanostructured Materials”. Adv. Mater. (1995) 7:607-632.
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 4 of 34 PageID #: 104
`
`US 8,524.365 B2
`Page 3
`
`Gao, M. etal. “Synthesis of PbS Nanoparticles in Polymer Matrices'.
`J. Chem. Soc. Commun. (1994) pp. 2779-2780.
`Gou et al., J. Am. Chem. Soc. (2006) 128:7222-7229.
`Gur et al., “Air Stable all-inorganic nanocrystal Solar cells processed
`from solution.” Lawrence Berkeley Natl. Lab., Univ. of California,
`paper LBNL-58424 (2005).
`Gurin, Colloids Surf. A (1998) 142:35-40.
`Guzelian, A. etal. "Colloidal chemical synthesis and characterization
`of InAs nanocrystal quantum dots”, Appl. Phys. Lett. (1996) 69:
`1432-1434.
`Guzelian, A. et al., J. Phys. Chem. (1996) 100: 7212.
`Hagfeldt, A. et al. “Light-induced Redox Reactions in Nanocrystal
`line Systems”, Chem. Rev. (1995):95: 49-68.
`Henglein, A. "Small-Particle Research: Physicochemical Properties
`of Extremely Small Colloidal Metal and Semiconductor Particles'.
`Chem Rev. (1989) 89: 1861-1873.
`Hirpo et al., “Synthesis of Mixed Copper-Indium Chalcogenolates.
`Single-Source Precursors for the Photovoltaic Materials CuInO2
`(Q=S. Se).” J. Am. Chem. Soc. (1993) 115:1597.
`Hu et al., Sol. State Comm. (2002) 121:493-496.
`International Search Report for PCT/GB2005/00 1611 mailed Sep. 8,
`2005 (5 pages).
`Jegier, J.A. et al. “Poly(imidogallane): Synthesis of a Crystalline 2-D
`Network Solid and Its Pyrolysis To Form Nanocrystalline Gallium
`Nitride in Supercritical Ammonia'. Chem. Mater. (1998) 10: 2041
`2043.
`Jiang et al., Inorg. Chem. (2000) 39:2964-2965.
`Kaelin el al., “CIS and CIGS layers from selenized nanoparticle
`precursors.” Thin Solid Films 431-432 (2003) pp. 58-62.
`Kapur et al., “Non-Vacuum processing of Culin-GaSe Solar cells
`on rigid and flexible Substrates using nanoparticl precursor inks.”
`Thin Solid Films 431-432 (2003) pp. 53-57.
`Kher, S. et al. “A Straightforward, New Method for the Synthesis of
`Nanocrystalline GaAs and GaP, Chem. Mater. (1994)6: 2056-2062.
`Kimetal. “Synthesis of CulnGaSe2 Nanoparticles by Low Tempera
`ture Colloidal Route.” J. Mech. Sci. Tech., Vo. 19, No. 11, pp. 2085
`2090 (2005).
`Law et al., “Nanowire dye-sensitized solar cells.” Nature Mater.
`(2005) vol. 4 pp. 455-459.
`Li et al., Adv. Mat. (1999) 11:1456-1459.
`Lieber, C. et al. “Understanding and Manipulating Inorganic Mate
`rials with Scanning Probe Microscopes'. Angew. Chem. Int. Ed.
`Engl. (1996) 35: 687-704.
`Little et al., “Formation of Quantum-dot quanturn-well
`heteronanostructures with large lattice mismatch: Zn/CdS/ZnS,” 114
`J. Chem. Phys. 4 (2001).
`Lu et al., Inorg. Chem. (2000) 39:1606-1607.
`LOver, T. etal. "Preparation of a novel CodSnanocluster material from
`a thiophenolate-capped CdS cluster by chemical removal of SPh
`ligands”. J. Mater. Chem. (1997) 7(4): 647-651.
`Malik et al., Adv. Mat., (1999) 11:1441-1444.
`Matijevic, E., “Monodispersed Colloids: Art and Science”, Langmuir
`(1986) 2:12-20.
`Matijevic, E. "Production of Mondispersed Colloidal Particles'.
`Ann. Rev. Mater. Sci. (1985) 15:483-5 18.
`Mekis, I. et al., “One-Pot Synthesis of Highly Luminescent CdSet.
`CdS Core-Shell Nanocrystals via Organometallic and "Greener”
`Chemical Approaches”, J. Phys. Chem. B. (2003) 107: 7454-7462.
`Mews et al., J. Phys. Chem. (1994) 98:934.
`Micic et al., “Synthesis and Characterization of InP, GaP, and GainP.
`Quantum Dots”, J. Phys. Chem. (1995) pp. 7754–7759.
`Milliron et al., “Electroactive Surfactant Designed to Mediate Elec
`tron Transfer between CdSe Nanocrystals and Organic Semicondic
`tors.” Adv. Materials (2003) 15, No. 1, pp. 58-61.
`Murray, C.B. et al., “Synthesis and Characterization of Nearly
`Monodisperse CoE (E = S, Se, Te) Semiconductor Nanocrystallites”.
`J. Am. Chem. Soc. (1993) 115 (19) pp. 8706-8715.
`Nairn et al., Nano Letters (2006) 6:1218-1223.
`Nazeeruddin et al., “Conversion of Light to Electricity by cis
`X2Bis(2.2"bipyridyl-4,4'-dicarboxylate)ruthenium(II)
`Charge
`Transfer Sensitizers (X=C1-, Br-, I-, CN-, and SCN-) on
`Nanocrystalline TiO, Electrodes.” J. Am. Chem. Soc. (1993)
`115:6382-6390.
`
`Nazeeruddin et al., “Engineering of Efficient Panchromatic Sensitiz
`ers for Nanocrystalline TiO2-Based Solar Cells,” J. Am. Chem. Soc.
`(2001) 123:1613-1624.
`O'Brien et al., “The Growth of Indium Selenide Thin Films frorn a
`Novel Asymmetric Dialkydiselenocarbamate.” 3 Chem. Vap. Depos.
`4, pp. 227 (1979).
`Olshavsky, M.A., et al. “Organometallic Synthesis of GaAs Crystal
`lites Exhibiting Quantum Confinement”. J. Am. Chem. Soc. (1990)
`1.12: 9438-9439.
`Olson et al., J. Phys. Chem. C., (2007) 1 11:16640-16645.
`Patents Act 1977: Search Report under Section 17 for Application
`No. GB0409877.8 dated Oct. 7, 2004 (2 pages).
`Patent Act 1977 Search Report under Section 17 for Application No.
`GB0522027.2 dated Jan. 27, 2006 (1 page).
`Patent Act 1977 Search Report under Section 17 for Application No.
`GB0606845.6 dated Sep. 14, 2006.
`Patent Act 1977 Search Report under Section 17 for Application No.
`GB0719073.9 dated Feb. 29, 2008.
`Patent Act 1977 Search Report under Section 17 for Application No.
`GB0719075.4 dated Jan. 22, 2008.
`Patent Act 1977 Search Report under Section 17 for Application No.
`GB0723539.3 dated Mar. 27, 2008 (1 page).
`Peng et al., “Mechanisms of the Shape Evolution of CdSe
`Nanocrystals”, J. AM. Chem. Soc. (2001) 123: 1389.
`Peng et al., “Kinetics of I-VI and III-V Colloidal Semiconductor
`Nanocrystal Growth: "Focusing” os Size Distributions”. J. Am.
`Chem. Soc., (1998) 129: 5343-5344.
`Penget al., “Shape control of CdSe nanocrystals', Nature, (2000) vol.
`404, No. 6773, pp. 59-61.
`Pradhan, N. et al. “Single-Precursor, One-Pot Versatile Synthesis
`under near Ambient Conditions of Tunable. Single and Dual Band
`Flourescing Metal Sulfide Nanoparticles'. J. Am. Chem. Soc. (2003)
`125: 2050-2051.
`Qi et al., “Efficient polymer-nanocrystal quantum-dot photodetec
`tors.” Appl. Physics Lett. 86 (2005) 093103-093103-3.
`Qu, L. et al. “Alternative Routes toward High Quality CdSe
`Nanocrystals', Nano Lett. (2001) vol. 1, No. 6, pp. 333-337.
`Robel et al., “Quantum Dot Sellar Cells. Harvesting Light Energy
`with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2
`Films,” J. Am. Chem. Soc. (2006) 128; 2385-2393.
`Salata, O.V. et al. “Uniform GaAs quantum dots in a polymer
`matrix”, Appl. Phys. Letters (1994) 65(2): 189-191.
`Sercel, P.C. et al. “Nanometer-scale GaAs clusters from
`organometallic percursors”, Appl. Phys. Letters (1992)61: 696-698.
`Shulz et al., J. Elect. Mat. (1998) 27:433-437.
`Steigerwald, M.L. et al. “Semiconductor Crystallites: A Class of
`Large Molecules”. Acc. Chem. Res. (1990) 23: 183-188.
`Stroscio, J.A. et al. "Atomic and Molecular Manipulation with the
`Scanning Tunneling Microscope'. Science (1991), 254: 1319-1326.
`Trinidade et al., “A Single Source Spproach to the Synthesis of CdSe
`Nanocrystallites”. Advanced Materials, (1996) vol. 8, No. 2, pp.
`161-163.
`Vayssieres et al., “Highly Ordered SnO, Nanorod Arrays from Con
`trolled Aqueous Growth.” Angew. Chem. Int. Ed. (2004)43: 3666
`3670.
`Wang Y. et al. “PbS in polymers, From molecules to bulk solids'. J.
`Chem. Phys. (1987) 87: 73.15-7322.
`Weller, H. "Colloidal Semiconductor Q-Particles: Chemistry in the
`Trasition Region Between Solid State and Molecules'. Angew.
`Chem. int. Ed. Engl. (1993) 32: 41-53.
`Weller, H. "Quantized Semiconductor Particles: A Novel State of
`Mater for Materials Science”, Adv. Mater. (1993) 5: 88-95.
`Wells, R.L. etal. “Synthesis of Nanocrystalline Indium Arsenide and
`Indium Phosphide from Indium(III) Halides and Tris
`(trimethyisilyl)pnicogens. Synthesis, Characterization, and Decom
`position Behavior of I-In-P(SiMe),”, Chem. Mater. (1995)7: 793
`800.
`Xiao et al., J. Mater. Chem. (2001) 11:1417-1420.
`Yang et al., Crystal Growth & Design (2007) 12:2562-2567.
`Yu et al., “Polymer Photovoltaic Cells: Enhanced Efficiencies via a
`Network of Internal Donor-Acceptor Heterojunctions,” 270 Science
`5243 (1995), pp. 1789-1791.
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 5 of 34 PageID #: 105
`
`US 8,524.365 B2
`Page 4
`
`Zhong et al., Nanotechnology 18 (2007) 025602.
`Barron, “Group III Materials: New Phases and Nono-particles with
`Applications in Electronics and Optoelectronics.” Office of Naval
`Research Final Report (1999).
`Dabousi et al., “(CdSe)ZnS Core—Shell Quantum Dots: Synthesis
`and Characterization of a Size Series of Highly Luminescent
`Nanocrystallites.” Jrl. Phys. Chem...(1997) 101, pp. 9463-9475.
`Dehnen et al., “Chalcogen-Bridged Copper Clusters.” Eur, J. Inorg.
`Chem. (2002) pp. 279-317.
`Eisenmann et al., “New Phosphido-bridged Multinuclear Complexes
`of Ag and Zn. Zeitschrift fur anorganische und allgemeine Chemi
`(1995). (1 page—abstract).
`Miller et al., “From Giant Molecular Clusters and Precursors to
`Solid-state Structures.” Current Opinion in Solid State and Materials
`Science, 4 (Apr. 1999) pp. 141-153.
`Timoshkin, “Group 13 imido metallanes and their heavier analogs
`RMYRIn (M=Al. Ga, In;Y=N, PAs, Sb.” Coordination Chemistry
`Reviews (2005).
`Vittal, “The chemistry of inorganic and organometallic compounds
`with adameantane-like structures.” Polyhedron, vol. 15, No. 10, pp.
`1585-1642 (1996).
`Zhong et al., “Composition-Tunable ZnxCu1-xSe Nanocrytals with
`High Luminescence and Stability”, Jrl Amer. Chem. Soc. (2003).
`International Search Report for PCT/GB2006/003028 mailed Jan.
`22, 2007 (5 pages).
`Nielsch et al., “Uniform Nickel Deposition into Ordered Alumina
`Pores by Pulsed Electrodeposition'. Advanced Materials, 2000 vol.
`12, No. 8, pp. 582-586.
`Huang et al., "Bio-Inspired Fabrication of Antireflection
`Nanostructures by Replicating Fly Eyes', Nanotechnology (2008)
`vol. 19.
`Materials Research Society Symposium Proceedings Quantum Dots,
`Nanoparticles and Nanowires, 2004, ISSN: 0272-9172.
`Xie et al., “Synthesis and Characterization of Highly Luminescent
`CdSe-Core CdS/ZnO.5CdO.5S/ZnS Multishell Nanocrystals.” JACS
`Articles published on web Apr. 29, 2005.
`Kim et al., “Engineering InASXP1-X/InP/ZnSe III-V Alloyed Core
`Shell Quantum Dots for the Near-Infrared.” JACS Articles published
`on web Jul. 8, 2005.
`Rao et al. “The Chemistry of Nanomaterials: Synthesis, Properties
`and Applications” (2004).
`Trinidade et al., “Nanocrystalline Seminconductors: Synthesis, Prop
`erties, and Perspectives”. Chemistry of Materials, (2001) vol. 13, No.
`11, pp. 3843-3858.
`International Search Report for PCT/GB2009/001928 mailed Dec. 8,
`2009 (3 pages).
`International Search Report for PCT/GB2009/002605 mailed Feb.
`22, 2010 (3 pages).
`Search Report for GB0813273.0 searched Dec. 8, 2008 (1 page).
`Search Report for GB0814458.6 searched Dec. 5, 2008 (2 pages).
`Search Report for GB0820101.4 searched Mar. 3, 2009 (1 page).
`Search Report for GB0821122.9 searched Mar. 19, 2009 (2 pages).
`Foneberoy et al., “Photoluminescence of tetrahedral quantum-dot
`quantum wells' Physica E, 26:63-66 (2005).
`
`Cao, “Effect of Layer Thickness on the Luminescence Properties of
`ZnS/CdS/ZnS quantum dot quantum well'. J. of Colloid and inter
`face Science 284:516-520 (2005).
`Harrison et al. “Wet Chemical Synthesis on Spectroscopic Study of
`CdHgTe Nanocrystals with Strong Near-infrared Luminescence”
`Mat. Sci and Eng.B69-70:355-360 (2000).
`Sheng et al. "In-Situ Encapsulation of Quantum Dots into Polymer
`Microsphers”. Langmuir 22(8):3782-3790 (2006).
`W. Peter Wuelfing et al., “Supporting Information for Nanometer
`Gold Clusters Protected by Surface Bound Monolayers of Thiolated
`Poly (ethylene glycol) Polymer Electrolyte” Journal of the American
`Chemical Society (XP002529160) (1998).
`International Search Report for PCT/GB2009/000510 mailed Jul. 6,
`2010 (16 pages).
`International Search Peport for PCT/GB2008/00395.8 mailed Sep. 4,
`2009 (4 pages).
`Banger et al., “Ternary single-source precursors for polycrystaline
`thin-film solar cells' Applied Organometallic Chemistry, 16:617
`627, XP002525473 Scheme 1 Chemical Synthesis (2002).
`D Qi. M. Fischbein, M Drindic, S. Selmic, “Efficient polymer
`nanocrystal quantum-dot photodetectors'. Appl. Phys. Lett., 2004,
`84, 4295.
`Shen et al., “Photoacoustic and photoelectrochemical characteriza
`tion of CdSe-sensitized TiO2 electrodes composed of nanotubes and
`nanowires' Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH
`vol. 499, No. 1-2, Mar. 21, 2006, pp. 299-305, XP005272241 ISSN:
`0040-6090.
`Smestad GP, et al., “A technique to compare polythiophene Solid
`state dye sensitized TiO2 solar cells to liquid junction devices' Solar
`Energy Materials and Solar Cells, Elsevier Science Publishers,
`Amsterdam, NL, vol. 76, No. 1, Feb. 15, 2003, pp. 85-105,
`XPOO440O821 ISSN: 0927-0248.
`Chen et al., “Electrochemically synthesized CdS nanoparticle-modi
`fied TiO2 nanotube-array photoelectrodes: Preparation, characteriza
`tion, and application to photoelectrochemical cells' Journal of Pho
`tochemistry and Photobiology, a: Chemistry, Elsevier Sequoia
`Lausanne, CH, vol. 177, No. 2-3, Jan. 25, 2006, pp. 177-184,
`XPOO5239590 ISSN: 1010-6030.
`Wang, et al., “In situ polymerization of amphiphilic diacetylene for
`hole transport in Solid state dye-sensitized Solar cells' Organic Elec
`tronics, El Sevier, Amsterdam NL, vol. 7, No. 6, Nov. 18, 2006, pp.
`546-550, XP005773063 ISSN: 1566-1199.
`International Search Report and Written Opinion for PCT/GB2008/
`001457 mailed Aug. 21, 2008 (14 pages).
`Richardson et al., “Chemical Engineering: Chemical and Biochemi
`cal Reactors and Process Control.” vol. 3. Third Edition pp. 3-5
`(1994).
`Hu et al., Solar Cells: From basics to advanced systems. McGraw
`Hill Book Co. pp. 73-74 (1983).
`Talapinet al. “Synthesis of Surface-Modified Colloidal Serniconduc
`tor Nanocrystals and Study of Photoinduced Charge Separation and
`Transport in Nanocrystal-Polymer Composites.” Physica E. vol. 14.
`pp. 237-241 (2002).
`* cited by examiner
`
`

`

`6e
`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 6 of 34 PageID #: 106
`61
`wPm
`mmm
`6
`
`548,3S,mU
`
`m3mmU2m3,D0.1G&
`
`400nnmmdtbwH%
`
`om2P2oes.mU
`
`
`
`
`
`mmfemWM,m._o_._.m_<n_omn_n_<oo_z<omo._._m__._w_._.._:_>_-m_m_oo8.m._o_.E<n_._._m__._m-m_m_oo3.m._o_._.m_<n_#50Am“5§<mo<5
`
`mm
`
`
`
`
`
`
`
`
`
`
`
`
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 7 of 34 PageID #: 107
`Case 2:20-cv-00038-JRG Document 1—5 Filed 02/14/20 Page 7 of 34 PageID #: 107
`
`U.S. Patent
`
`Sep.3,2013
`
`Sheet20f18
`
`US 8,524,365 B2
`
`
`
`
`
`
`
`.\\m/.mm\.mOI
`
`m8rwmwfl
`am\mm,chm‘
`
`
`
` |w_~9ch)m\molm\/m»:m\Lu\\m\cN.«40,chm.9m.m5‘
`
`
`
`ByaE
`
`\m/_/_>_\ml©g_\mm\\\mmmlmIE“5m:
`
`
`
`mm5mt:\\..CTlmm
`
`
`
`
`
`A3
`
`\m
`
`
`
`
`
`
`
`262025mm28m:$530E5852
`
`N.®_n_
`
`\m:mt::.
`
`
`
`
`
`
`
`
`
`
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 8 of 34 PageID #: 108
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 3 of 18
`
`US 8,524,365 B2
`
`HN
`
`O
`
`O
`
`50S
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 9 of 34 PageID #: 109
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 4 of 18
`
`US 8,524,365 B2
`
`0C0
`sz
`
`DO
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 10 of 34 PageID #: 110
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 5 of 18
`
`US 8,524,365 B2
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 11 of 34 PageID #: 111
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 6 of 18
`
`US 8,524,365 B2
`
`S
`CfO
`c
`CD
`s
`
`EN|WWTWOROWXHH = ZHNJ:
`
`(EIWNOLEOWTALEOV(||)NNITTV9)
`
`g
`
`O
`
`SO R CS O
`
`S
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 12 of 34 PageID #: 112
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 7 of 18
`
`US 8,524,365 B2
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 13 of 34 PageID #: 113
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 8 of 18
`
`US 8,524,365 B2
`
`X
`
`$-
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 14 of 34 PageID #: 114
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 9 of 18
`
`US 8,524,365 B2
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 15 of 34 PageID #: 115
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 10 of 18
`
`US 8,524,365 B2
`
`

`

`w
`6
`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 16 of 34 PageID #: 116m.
`C
`w
`
`12#.B
`
`...ISm.USN
`
`84pa
`
`ma.m3,NGE
`
`m8,EsIbzflmis
`
`aS.aU
`
`mm
`
`mmF312%E:EN838+$12+ixzfifigmvgmecg
`
`ms
`
`P—
`
`R0002..........._..umoooe|,:...........wt\’\fl.
`
`e&0002'...:3.
`
`IInu...32“mwoo§©zoE8§o$8mE.Ii__....:u...
`/o_..mn.._..da..at._...mm00%ii,.E__.n5000298592038meIn-.,......
`.....__u.mo°§©zoE8<m8m8mE........n,_u....n....umBOoowr
`
`.-
`Wn...
`............._..—...m..nmm,oooezoEBEOmmBME
`
`('n 'e) AJJSNEILNI
`
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 17 of 34 PageID #: 117
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 12 of 18
`
`US 8,524,365 B2
`
`
`
`(uu) H10NETENWM
`
`00/099009099009097007098
`
`
`
`(ne) ALISNLN
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 18 of 34 PageID #: 118
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 13 of 18
`
`US 8,524,365 B2
`
`CD O O O CD CD O C d
`O
`O
`O
`O
`O
`O
`O
`O
`Cd Cd Cd Cd Cd Cd Cd Cd
`co S Lb od co cird S. Ld
`r
`x
`x
`.
`CN CN CN CN
`
`i
`
`i
`
`:
`
`:
`:
`:
`
`
`
`CO
`Cd
`
`CO
`St.
`Cd
`Cd
`(n'e) ALISNLN
`
`S
`
`Cd
`Cd
`N
`
`Cd
`O
`CCd
`
`s
`
`3.
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 19 of 34 PageID #: 119
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 14 of 18
`
`US 8,524,365 B2
`
`
`
`(n'e) ALISNLN
`
`
`
`(uu) H10NETHAWM
`
`099009099009097
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 20 of 34 PageID #: 120
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 15 of 18
`
`US 8,524,365 B2
`
`
`
`O
`
`ne) ALISNLN
`
`
`
`(ulu) H10NETENWM
`
`| | `5)|–|
`
`00/099009099009097007
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 21 of 34 PageID #: 121
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 16 of 18
`
`US 8,524,365 B2
`
`
`
`
`
`(uu) H10NETENWM
`
`

`

`eomU
`
`mH.wmag/EE:g8%:+608+Egamvgmoggfzfi
`
`M8,mm
`
`2#.BDa
`
`
`
`w3,.mmQ0E
`
`aE:Eozmdi;w0202‘Pa---o
`
`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 22 of 34 PageID #: 122
`R
`2m
`O
`
`wm
`
`GS
`
`200
`
`mVmmE:g608+812+Eenmmvgmogogzzfi
`
` m.m2mnImm0008........mFs0002In:tomm009:I}mm30008l©.oNWmm000:............mm3,003........
`
`.Dw.002Imo
`
`
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 23 of 34 PageID #: 123
`
`U.S. Patent
`
`Sep. 3, 2013
`
`Sheet 18 of 18
`
`US 8,524,365 B2
`
`
`
`
`
`s
`
`
`
`|
`
`o
`O
`
`N.
`CC
`O
`O
`WISNN
`
`CN
`O
`
`

`

`Case 2:20-cv-00038-JRG Document 1-5 Filed 02/14/20 Page 24 of 34 PageID #: 124
`
`US 8,524,365 B2
`
`1.
`PREPARATION OF NANOPARTICLE
`MATERALS
`
`CROSS REFERENCE TO RELATED
`APPLICATIONS
`
`This application is a continuation of U.S. patent applica
`tion Ser. No. 12/854,611 filed Aug. 11, 2010, now U.S. Pat.
`No. 8,062.703, which is a continuation of U.S. patent appli
`cation Ser. No. 1 1/579,050, filed Oct. 27, 2006, now U.S. Pat.
`No. 7,803,423, issued Sep. 28, 2010, which is a U.S. national
`stage application of International (PCT) Patent Application
`Serial No. PCT/GB2005/001611, filed Apr. 27, 2005, which
`claims the benefit of GB Application No. 0409877.8, filed
`Apr. 30, 2004. The entire disclosures of each of these appli
`cations are hereby incorporated by reference as if set forth at
`length herein in their entirety.
`
`10
`
`15
`
`BACKGROUND OF THE DISCLOSURE
`
`2
`bandwidth emission, which is dependent upon the particle
`size and composition. Thus, quantum dots have higher kinetic
`energy than the corresponding nacrocrystalline material and
`consequently the first excitonic transition (band gap)
`increases in energy with decreasing particle diameter.
`Single core nanoparticles, which consist of a single semi
`conductor material along with an outer organic passivating
`layer, tend to have relatively low quantum efficiencies due to
`electron-hole recombination occurring at defects and dag
`gling bonds situated on the nanoparticle Surface which lead to
`non-radiative electron-hole recombination. One method to
`eliminate defects and daggling bonds is to grow a second
`material, having a wider band-gap and Small lattice mismatch
`with the core material, epitaxially on the surface of the core
`particle, (e.g. another II-VI material) to produce a “core-shell
`particle'. Core-shell particles separate any carriers confined
`in the core from surface states that would otherwise act as
`non-radiative recombination centers. One example is ZnS
`grown on the surface of CdSe cores. The shell is generally a
`material with a wider bandgap then the core material and with
`little lattice mismatch to that of the core material, so that the
`interface between the two materials has as little lattice strain
`as possible. Excessive strain can further result in defects and
`non-radiative electron-hole recombination resulting in low
`quantum efficiencies.
`However, the growth of more than a few mono layers of
`shell material can have the reverse effect thus; the lattice
`mismatch between CdSe and ZnS, is large enough that in a
`core-shell structure only a few monolayers of ZnS can be
`grown before a reduction of the quantum yield is observed,
`indicative of the formation of defects due to breakdown in the
`lattice as a result of high latticed strain. Another approach is
`to prepare a core-multi shell structure where the “electron
`hole' pair is completely confined to a single shell Such as the
`quantum dot-quantum well structure. Here, the core is of a
`wide bandgap material, followed by a thin shell of narrower
`bandgap material, and capped with a further wide bandgap
`layer, such as CdS/HgS/CdS grown using a substitution of Hg
`for Cd on the surface of the core nanocrystal to depositjust 1
`monolayer of HgS.''The resulting structures exhibited clear
`confinement of photoexcited carriers in the HgSlayer.
`The coordination about the final inorganic Surface atoms in
`any core, core-shell or core-multi shell nanoparticles is
`incomplete, with highly reactive “daggling bonds' on the
`Surface, which can lead to particle agglomeration. This prob
`lem is overcome by passivating (capping) the "bare' surface
`atoms with protecting organic groups. The capping or passi
`Vating of particles not only prevents particle agglomeration
`from occurring, it also protects the particle from its Surround
`ing chemical environment, along with providing electronic
`stabilization (passivation) to the particles in the case of core
`material. The capping agent usually takes the form of a Lewis
`base compound covalently bound to Surface metal atoms of
`the outer most inorganic layer of the particle, but more
`recently, so as to incorporate the particle into a composite, an
`organic system or biological system can take the form of an
`organic polymer forming a sheaf around the particle with
`chemical functional groups for further chemical synthesis, or
`an organic group bonded directly to the Surface of the particle
`with chemical functional groups for further chemical synthe
`S1S.
`Many synthetic methods for the preparation of semicon
`ductor nanoparticles have been reported, early routes applied
`conventional colloidal aqueous chemistry, with more recent
`methods involving the kinetically controlled precipitation of
`nanocrystallites, using organometallic compounds.
`
`There has been substantial interest in the preparation and
`characterization, because of their optical, electronic and
`chemical properties, of compound semiconductors consisting
`of particles with dimensions in the order of 2-100 nm, often
`referred to as quantum dots and/or nanocrystals. These stud
`ies have occurred mainly due to their size-tunable electronic,
`optical and chemical properties and the need for the further
`miniaturization of both optical and electronic devices' that
`now range from commercial applications as diverse as bio
`logical labeling, Solar cells, catalysis, biological imaging,
`light-emitting diodes amongst m

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket